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CS 229, Autumn 2016
Problem Set #0 Solutions: Linear Algebra and
Multivariable Calculus

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
This specific homework is not graded, but we encourage you to solve each of the problems to
brush up on your linear algebra. Some of them may even be useful for subsequent problem sets.
It also serves as your introduction to using Gradescope for submissions.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [0 points] Gradients and Hessians

Recall that a matrix A ∈ Rn×n is symmetric if AT = A, that is, Aij = Aji for all i, j. Also
recall the gradient ∇f(x) of a function f : Rn → R, which is the n-vector of partial derivatives

∇f(x) =


∂

∂x1
f(x)
...

∂
∂xn

f(x)

 where x =

x1...
xn

 .
The hessian ∇2f(x) of a function f : Rn → R is the n× n symmetric matrix of twice partial
derivatives,

∇2f(x) =


∂2

∂x2
1
f(x) ∂2

∂x1∂x2
f(x) · · · ∂2

∂x1∂xn
f(x)

∂2

∂x2∂x1
f(x) ∂2

∂x2
2
f(x) · · · ∂2

∂x2∂xn
f(x)

...
...

. . .
...

∂2

∂xn∂x1
f(x) ∂2

∂xn∂x2
f(x) · · · ∂2

∂x2
n
f(x)

 .

(a) Let f(x) = 1
2x

TAx+ bTx, where A is a symmetric matrix and b ∈ Rn is a vector. What
is ∇f(x)?

Answer: In short, we know that ∇( 1
2x

TAx) = Ax for a symmetric matrix A, while
∇(bTx) = b. Then ∇f(x) = Ax+ b when A is symmetric. In more detail, we have

1

2
xTAx =

1

2

n∑
i=1

n∑
j=1

Aijxixj ,
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so for each k = 1, . . . , n, we have

∂

∂xk

1

2

n∑
i=1

n∑
j=1

Aijxixj
(i)
=

∂

∂xk

1

2

n∑
i=1,i6=k

Aikxixk +
∂

∂xk

1

2

n∑
j=1,j 6=k

Akjxkxj +
∂

∂xk

1

2
Akkx

2
k

(ii)
=

1

2

n∑
i=1,i6=k

Aikxi +
1

2

n∑
j=1,j 6=k

Akjxj +Akkxk

=

n∑
i=1

Akixi

where step (i) follows because ∂
∂xk

Aijxixj = 0 if i 6= k and j 6= k, step (ii) by the definition
of a partial derivative, and the final equality because Aij = Aji for all pairs i, j. Thus
∇( 1

2x
TAx) = Ax. To see that ∇bTx = b, note that

∂

∂xk
bTx =

∂

∂xk

n∑
i=1

bixi =
∂

∂xk
bkxk = bk.

(b) Let f(x) = g(h(x)), where g : R → R is differentiable and h : Rn → R is differentiable.
What is ∇f(x)?

Answer: In short, if g′ is the derivative of g, then the chain rule gives

∇f(x) = g′(h(x))∇h(x).

Expanding this by components, we have for each i = 1, . . . , n that

∂

∂xi
f(x) =

∂

∂xi
g(h(x)) = g′(h(x))

∂

∂xi
h(x)

by the chain rule. Stacking each of these in a column vector, we obtain

∇f(x) =

g
′(h(x)) ∂

∂x1
h(x)

...
g′(h(x)) ∂

∂xn
h(x)

 = g′(h(x))∇h(x).

(c) Let f(x) = 1
2x

TAx+bTx, where A is symmetric and b ∈ Rn is a vector. What is ∇2f(x)?

Answer: We have ∇2f(x) = A. To see this more formally, note that ∇2(bTx) = 0,
because the second derivatives of bixi are all zero. Let A = [a(1) · · · a(n)], where ai ∈ Rn is
an n-vector (because A is symmetric, we also have A = [a(1) a(2) · · · a(n)]T ). Then we use
part (1a) to obtain

∂

∂xk
(
1

2
xTAx) = a(k)

T
x =

n∑
i=1

Aikxi,

and thus
∂2

∂xkxi
(
1

2
xTAx) =

∂

∂xi
a(k)

T
x = Aik.

(d) Let f(x) = g(aTx), where g : R→ R is continuously differentiable and a ∈ Rn is a vector.
What are ∇f(x) and ∇2f(x)? (Hint: your expression for ∇2f(x) may have as few as 11
symbols, including ′ and parentheses.)
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Answer: We use the chain rule (part (1b)) to see that ∇f(x) = g′(aTx)a, because
∇(aTx) = a. Taking second derivatives, we have

∂

∂xi

∂

∂xj
=

∂

∂xi
g′(aTx)aj = g′′(aTx)aiaj .

Expanding this in matrix form, we have

∇2f(x) = g′′(aTx)


a21 a1a2 · · · a1an
a2a1 a22 · · · a2an

...
...

. . .
...

ana1 ana2 · · · a2n

 = g′′(aTx)aaT .

2. [0 points] Positive definite matrices

A matrix A ∈ Rn×n is positive semi-definite (PSD), denoted A � 0, if A = AT and xTAx ≥ 0
for all x ∈ Rn. A matrix A is positive definite, denoted A � 0, if A = AT and xTAx > 0 for
all x 6= 0, that is, all non-zero vectors x. The simplest example of a positive definite matrix is
the identity I (the diagonal matrix with 1s on the diagonal and 0s elsewhere), which satisfies

xT Ix = ‖x‖22 =
∑n

i=1 x
2
i .

(a) Let z ∈ Rn be an n-vector. Show that A = zzT is positive semidefinite.

Answer: Take any x ∈ Rn. Then xTAx = xT zzTx = (xT z)2 ≥ 0.

(b) Let z ∈ Rn be a non-zero n-vector. Let A = zzT . What is the null-space of A? What is
the rank of A?

Answer: If n = 1, the null space of A is empty. The rank of A is always 1, as the
null-space of A is the set of vectors orthogonal to z. That is, if zTx = 0, then x ∈ Null(A),
because Ax = zzTx = 0. Thus, the null-space of A has dimension n− 1 and the rank of A
is 1.

(c) Let A ∈ Rn×n be positive semidefinite and B ∈ Rm×n be arbitrary, where m,n ∈ N. Is
BABT PSD? If so, prove it. If not, give a counterexample with explicit A,B.

Answer: Yes, BABT is positive semidefinite. For any x ∈ Rm, we may define v = BTx ∈
Rn. Then

xTBABTx = (BTx)TA(BTx) = vTAv ≥ 0,

where the inequality follows because vTAv ≥ 0 for any vector v.

3. [0 points] Eigenvectors, eigenvalues, and the spectral theorem

The eigenvalues of an n× n matrix A ∈ Rn×n are the roots of the characteristic polynomial
pA(λ) = det(λI − A), which may (in general) be complex. They are also defined as the the
values λ ∈ C for which there exists a vector x ∈ Cn such that Ax = λx. We call such a pair
(x, λ) an eigenvector, eigenvalue pair. In this question, we use the notation diag(λ1, . . . , λn)
to denote the diagonal matrix with diagonal entries λ1, . . . , λn, that is,

diag(λ1, . . . , λn) =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 .
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(a) Suppose that the matrix A ∈ Rn×n is diagonalizable, that is, A = TΛT−1 for an invertible
matrix T ∈ Rn×n, where Λ = diag(λ1, . . . , λn) is diagonal. Use the notation t(i) for the
columns of T , so that T = [t(1) · · · t(n)], where t(i) ∈ Rn. Show that At(i) = λit

(i), so
that the eigenvalues/eigenvector pairs of A are (t(i), λi).

Answer: The matrix T is invertible, so if we let t(i) be the ith column of T , we have

In×n = T−1T = T−1
[
t(1) t(2) · · · t(n)

]
=
[
T−1t(1) T−1t(2) · · · T−1t(n)

]
so that

T−1t(i) =
[

0 · · · 0︸ ︷︷ ︸
i−1 times

1 0 · · · 0︸ ︷︷ ︸
n−i times

]T ∈ {0, 1}n,
the ith standard basis vector, which we denote by e(i) (that is, the vector of all-zeros except
for a 1 in its ith position. Thus

ΛT−1t(i) = Λe(i) = λie
(i), and TΛT−1t(i) = λiTe

(i) = λit
(i).

A matrix U ∈ Rn×n is orthogonal if UTU = I. The spectral theorem, perhaps one of the most
important theorems in linear algebra, states that if A ∈ Rn×n is symetric, that is, A = AT ,
then A is diagonalizable by a real orthogonal matrix. That is, there are a diagonal matrix
Λ ∈ Rn×n and orthogonal matrix U ∈ Rn×n such that UTAU = Λ, or, equivalently,

A = UΛUT .

Let λi = λi(A) denote the ith eigenvalue of A.

(b) Let A be symmetric. Show that if U = [u(1) · · · u(n)] is orthogonal, where u(i) ∈
Rn and A = UΛUT , then u(i) is an eigenvector of A and Au(i) = λiu

(i), where Λ =
diag(λ1, . . . , λn).

Answer: Once we see that U−1 = UT because UTU = I, this is simply a repeated
application of part (3a).

(c) Show that if A is PSD, then λi(A) ≥ 0 for each i.

Answer: Let x ∈ Rn be any vector. We know that A = AT , so that A = UΛUT for an
orthogonal matrix U ∈ Rn×n by the spectral theorem. Take the ith eigenvector u(i). Then
we have

UTu(i) = e(i),

the ith standard basis vector. Using this, we have

0 ≤ u(i)
T
Au(i) = (UTu(i))T ΛUTu(i) = e(i)

T
Λe(i) = λi(A).


