{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "# For tips on running notebooks in Google Colab, see\n", "# https://pytorch.org/tutorials/beginner/colab\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Learn the Basics** \\|\\| [Quickstart](quickstart_tutorial.html) \\|\\|\n", "[Tensors](tensorqs_tutorial.html) \\|\\| [Datasets &\n", "DataLoaders](data_tutorial.html) \\|\\|\n", "[Transforms](transforms_tutorial.html) \\|\\| [Build\n", "Model](buildmodel_tutorial.html) \\|\\|\n", "[Autograd](autogradqs_tutorial.html) \\|\\|\n", "[Optimization](optimization_tutorial.html) \\|\\| [Save & Load\n", "Model](saveloadrun_tutorial.html)\n", "\n", "Learn the Basics\n", "================\n", "\n", "Authors: [Suraj Subramanian](https://github.com/subramen), [Seth\n", "Juarez](https://github.com/sethjuarez/), [Cassie\n", "Breviu](https://github.com/cassiebreviu/), [Dmitry\n", "Soshnikov](https://soshnikov.com/), [Ari\n", "Bornstein](https://github.com/aribornstein/)\n", "\n", "Most machine learning workflows involve working with data, creating\n", "models, optimizing model parameters, and saving the trained models. This\n", "tutorial introduces you to a complete ML workflow implemented in\n", "PyTorch, with links to learn more about each of these concepts.\n", "\n", "We\\'ll use the FashionMNIST dataset to train a neural network that\n", "predicts if an input image belongs to one of the following classes:\n", "T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,\n", "Bag, or Ankle boot.\n", "\n", "[This tutorial assumes a basic familiarity with Python and Deep Learning\n", "concepts.]{.title-ref}\n", "\n", "Running the Tutorial Code\n", "-------------------------\n", "\n", "You can run this tutorial in a couple of ways:\n", "\n", "- **In the cloud**: This is the easiest way to get started! Each\n", " section has a \\\"Run in Microsoft Learn\\\" and \\\"Run in Google Colab\\\"\n", " link at the top, which opens an integrated notebook in Microsoft\n", " Learn or Google Colab, respectively, with the code in a fully-hosted\n", " environment.\n", "- **Locally**: This option requires you to setup PyTorch and\n", " TorchVision first on your local machine ([installation\n", " instructions](https://pytorch.org/get-started/locally/)). Download\n", " the notebook or copy the code into your favorite IDE.\n", "\n", "How to Use this Guide\n", "---------------------\n", "\n", "If you\\'re familiar with other deep learning frameworks, check out the\n", "[0. Quickstart](quickstart_tutorial.html) first to quickly familiarize\n", "yourself with PyTorch\\'s API.\n", "\n", "If you\\'re new to deep learning frameworks, head right into the first\n", "section of our step-by-step guide: [1. Tensors](tensor_tutorial.html).\n", "\n", "::: {.toctree maxdepth=\"2\" hidden=\"\"}\n", "quickstart\\_tutorial tensorqs\\_tutorial data\\_tutorial\n", "transforms\\_tutorial buildmodel\\_tutorial autogradqs\\_tutorial\n", "optimization\\_tutorial saveloadrun\\_tutorial\n", ":::\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.9" } }, "nbformat": 4, "nbformat_minor": 4 }