Logistic Regression¶
In [4]:
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
In [5]:
input_size = 28 * 28 # 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
In [6]:
!ls
cifar10.ipynb data ionosphere.ipynb stanfordcars.ipynb
cifar_net.pth fmnist.ipynb mnist.ipynb
In [7]:
train_dataset = torchvision.datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
In [5]:
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
In [8]:
use_mps = torch.backends.mps.is_available()
device = torch.device('mps' if use_mps else 'cpu')
model = nn.Linear(input_size, num_classes).to(device)
In [9]:
criterion = nn.CrossEntropyLoss() #used with linear output. nll is paired with softmax act at out.
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
In [10]:
#train
model.train()
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Reshape images to (batch_size, input_size)
images = images.reshape(-1, input_size)
images, labels = images.to(device), labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
Epoch [1/5], Step [100/600], Loss: 2.2347 Epoch [1/5], Step [200/600], Loss: 2.1419 Epoch [1/5], Step [300/600], Loss: 2.0190 Epoch [1/5], Step [400/600], Loss: 1.9189 Epoch [1/5], Step [500/600], Loss: 1.8591 Epoch [1/5], Step [600/600], Loss: 1.7623 Epoch [2/5], Step [100/600], Loss: 1.6987 Epoch [2/5], Step [200/600], Loss: 1.6702 Epoch [2/5], Step [300/600], Loss: 1.6237 Epoch [2/5], Step [400/600], Loss: 1.5532 Epoch [2/5], Step [500/600], Loss: 1.5135 Epoch [2/5], Step [600/600], Loss: 1.5104 Epoch [3/5], Step [100/600], Loss: 1.3992 Epoch [3/5], Step [200/600], Loss: 1.3885 Epoch [3/5], Step [300/600], Loss: 1.3234 Epoch [3/5], Step [400/600], Loss: 1.2412 Epoch [3/5], Step [500/600], Loss: 1.3231 Epoch [3/5], Step [600/600], Loss: 1.3018 Epoch [4/5], Step [100/600], Loss: 1.2082 Epoch [4/5], Step [200/600], Loss: 1.2837 Epoch [4/5], Step [300/600], Loss: 1.2118 Epoch [4/5], Step [400/600], Loss: 1.2367 Epoch [4/5], Step [500/600], Loss: 1.0584 Epoch [4/5], Step [600/600], Loss: 1.1082 Epoch [5/5], Step [100/600], Loss: 1.0643 Epoch [5/5], Step [200/600], Loss: 1.0167 Epoch [5/5], Step [300/600], Loss: 1.0806 Epoch [5/5], Step [400/600], Loss: 1.0155 Epoch [5/5], Step [500/600], Loss: 0.9915 Epoch [5/5], Step [600/600], Loss: 1.0352
In [11]:
#test
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, input_size)
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Accuracy of the model on the 10000 test images: 82.73999786376953 %