# Problems In no particular order, here are a list of the methods you will find in the notebooks. The emphasis is on understanding their limitations, benefits and constructions. - Least Squares Regression - Random Forests - Boosting, Bagging - Ensemble Methods - Multilayer Perceptrons - Naive Bayes - K-means regression - K-nearest Neighbours Clustering - Logistic Regression - Decision Trees - SVM - Kernel Methods - GAN's - Stable Diffusion - Recurrent Neural Networks - Convolutional Neural Networks - Transformers - word2vec, GLoVE and NLP - LLM To gain proficiency in all of the above methods, I have solved classical problems that lend themselves well to that particular method: <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left">Dataset</th> <th scope="col" class="org-left">Accuracy</th> <th scope="col" class="org-left">Model</th> </tr> </thead> <tbody> <tr> <td class="org-left">MNIST</td> <td class="org-left">92%</td> <td class="org-left">Logistic Regression</td> </tr> <tr> <td class="org-left">FMNIST</td> <td class="org-left">B%</td> <td class="org-left">Random Forest</td> </tr> <tr> <td class="org-left">KMNIST</td> <td class="org-left">C%</td> <td class="org-left">2-layer CNN</td> </tr> <tr> <td class="org-left">CIFAR</td> <td class="org-left">D%</td> <td class="org-left">CNN</td> </tr> <tr> <td class="org-left">IRIS</td> <td class="org-left">E%</td> <td class="org-left">SVM</td> </tr> <tr> <td class="org-left">ImageNet</td> <td class="org-left">F%</td> <td class="org-left">ResNet50</td> </tr> <tr> <td class="org-left">Sentiment140</td> <td class="org-left">G%</td> <td class="org-left">LSTM</td> </tr> <tr> <td class="org-left">Boston Housing</td> <td class="org-left">H%</td> <td class="org-left">Linear Regression</td> </tr> <tr> <td class="org-left">Wine Quality</td> <td class="org-left">I%</td> <td class="org-left">Gradient Boosting</td> </tr> <tr> <td class="org-left">Pima Indians Diabetes</td> <td class="org-left">J%</td> <td class="org-left">Decision Tree</td> </tr> <tr> <td class="org-left">IMDB Reviews</td> <td class="org-left">K%</td> <td class="org-left">BERT</td> </tr> <tr> <td class="org-left">KDD Cup 1999</td> <td class="org-left">L%</td> <td class="org-left">K-Means Clustering</td> </tr> <tr> <td class="org-left">Digits</td> <td class="org-left">M%</td> <td class="org-left">Gaussian Mixture Model</td> </tr> <tr> <td class="org-left">CartPole</td> <td class="org-left">N%</td> <td class="org-left">Deep Q-Network</td> </tr> </tbody> </table> <a id="orgcfaa906"></a>