
Benchmark Instances and Branch-and-Cut Algorithm for the
Hashiwokakero Puzzle

Leandro C. Coelho1,2, Gilbert Laporte1,3, Arinei Lindbeck4, Thibaut Vidal5

1 Interuniversity Research Center on Enterprise Networks, Logistics

and Transportation (CIRRELT)

2 Canada Research Chair in Integrated Logistics, Université Laval, Canada
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Abstract. Hashiwokakero, or simply Hashi, is a Japanese single-player puzzle played on a

rectangular grid with no standard size. Some cells of the grid contain a circle, called island,

with a number inside it ranging from one to eight. The remaining positions of the grid are

empty. The player must connect all of the islands by drawing a series of horizontal or vertical

bridges between them, respecting a series of rules: the number of bridges incident to an island

equals the number indicated in the circle, at most two bridges are incident to any side of an

island, bridges cannot cross each other or pass through islands, and each island must eventually

be reachable from any other island. In this paper, we present some complexity results and

relationships between Hashi and well-known graph theory problems. We give a formulation

of the problem by means of an integer linear mathematical programming model, and apply a

branch-and-cut algorithm to solve the model in which connectivity constraints are dynamically

generated. We also develop a puzzle generator. Our experiments on 1440 Hashi puzzles show

that the algorithm can consistently solve hard puzzles with up to 400 islands.

Keywords. Hashiwokakero, Hashi, puzzle, computational complexity, graph theory, integer

linear programming, branch-and-cut.
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1 Introduction

Hashiwokakero, or simply Hashi, is a Japanese single-player puzzle played on a rectangular grid

with no standard size. Some cells of the grid contain a circle, called island, with a number

inside it ranging from one to eight, and the number of islands is denoted by n. The remaining

positions of the grid are empty. The player must connect all the islands by drawing bridges

between them. For this reason, the game is often referred to as building bridges. The solution to

the puzzle must respect the following rules:

1. the bridges must begin and end at distinct islands;

2. they must not cross any other bridges or islands;

3. they may only run horizontally or vertically;

4. at most two bridges may connect any pair of islands;

5. the number of bridges connected to each island must be equal to the number inscribed in

the circle;

6. each island must be reachable from any other island.

Figure 1 depicts a 7×7 puzzle with n = 24 islands along with a feasible solution.

Figure 1: A Hashi puzzle (left) and a feasible solution (right)

Unlike the Sudoku (see, e.g., Coelho and Laporte 2014) the literature on Hashi is rather

scarce. Perhaps the most important contribution to the Hashi literature is that of Andersson

(2009) who proved the problem to be NP-complete by reduction from a Hamiltonian circuit in

unit-distance graphs. Therefore, like all other NP-complete problems, such as the Hamiltonian
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cycle problem (Lawler et al. 1985), the Hamiltonian path problem (Garey et al. 1976), the

maximum cut problem (Gavril 1977), the map coloring problem (Dahl 1987), finding cliques of

given sizes (Karp 1972), the Hashi problem can be reduced to a Boolean satisfiability problem.

We note that the complexity proof of Andersson (2009) is fundamentally based on rule 6

(connectivity). Nevertheless, even without rule 6, we show that the problem remains NP-

complete via a different reduction. Indeed, the problem of reconstructing disjoint sets of

orthogonal segments (RDOS) can be reduced to a Hashi instance in which all islands have

value one, and therefore where no double bridges are needed. RDOS has been proven to be

NP-complete using an elegant reduction from 3-SAT in Rendl and Woeginger (1993). Finally

the problem without the connectivity and no-crossing rules (2 and 6) containing only islands of

value one is solvable by an O(n log n) polynomial algorithm.

Beyond complexity results, some algorithms have been presented. Malik et al. (2012)

combined heuristics operators and a backtracking algorithm to find feasible solutions. The

operators are based on the intuitive decisions that a player would make when solving the game.

When no such operators can be feasibly applied, a backtracking procedure takes place to explore

other solutions. Some other papers have considered Hashi as part of a larger framework. Golan

(2011) shows that any Hashi puzzle can be reduced to a minesweeper puzzle. While studying

trees and graphs, Prosser and Unsworth (2006) proposed two new constraints for modeling trees,

and used the Hashi puzzle as an illustration of their technique. Finally, Brain et al. (2009) used

Hashi to illustrate how to efficiently implement algorithms based on answer set programming, a

declarative programming paradigm used to model difficult search problems.

In this paper, we introduce new benchmark instances as well as a mathematical programming

model and branch-and-cut algorithm for the Hashi puzzle. The remainder of this paper is

organized as follows: Section 2 describes the model and algorithm; Section 3 develops a puzzle

generator and Section 4 analyzes the performance of our algorithm on a large set of instances;

conclusions follow in Section 5.

2 Mathematical model and branch-and-cut algorithm

The Hashi puzzle can be defined on an undirected graph G = (V, E), where V is the set of

vertices representing islands. Let di be the number of bridges to be constructed from island i,

and |V | = n. Let δ(i) be the set of vertices adjacent to vertex i either horizontally or vertically.
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Let E be the set of all edges connecting two adjacent vertices of V. By convention, if (i, j) ∈ E ,

then i < j. Let ∆ be the set of intersecting edge pairs {(i, j), (k, l)} ∈ E . We model Hashi as an

integer linear program which admits a solution if and only if the Hashi puzzle is feasible. For

(i, j) ∈ E , our model uses binary variables yij indicating whether two adjacent vertices i and j

are connected by at least one bridge in the solution, and integer variables xij indicating the

number of bridges between i and j. The formulation is then:

∑
i<k,i∈δ(k)

xik +
∑

j>k,j∈δ(k)

xkj = dk k ∈ V (1)

yij ≤ xij ≤ 2yij (i, j) ∈ E (2)

yij + ykl ≤ 1 {(i, j), (k, l)} ∈ ∆ (3)∑
i∈S,j∈V\S

or j∈S,i∈V\S

yij ≥ 1 S ⊂ V, 1 ≤ |S| ≤ n− 1 (4)

xij ∈ {0, 1, 2} (i, j) ∈ E (5)

yij ∈ {0, 1} (i, j) ∈ E . (6)

Constraints (1) force the presence of dk bridges for each vertex k. According to constraints (2),

at most two bridges can exist between any two connected vertices. These constraints also ensure

consistency between the xij and yij variables. Constraints (3) prohibit intersecting bridges, and

constraints (4) are strong connectivity constraints, enforcing the solution to be connected, as

in the traveling salesman problem (Dantzig et al. 1954). Constraints (5) and (6) define the

domains of the variables.

This formulation can be strengthened by adding a valid inequality which exploits the fact

that the graph induced by the positive yij variables must contain a spanning tree. It is called

“weak connectivity constraint” and was found to be helpful in an algorithm in which the strong

connectivity constraints (4) are initially relaxed:

∑
(i,j)∈E

yij ≥ n− 1. (7)

To solve the problem, we use a branch-and-cut algorithm which initially relaxes constraints (4),

and then detects (separates) and reintroduces the offending constraints each time an integer

solution of the resulting branch-and-bound tree is found to be infeasible.
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On the example of Figure 1 it was possible to find a feasible solution without need for

additional strong connectivity constraint. In contrast, Figure 2 shows a new puzzle which

required four added strong connectivity constraints, along with their partial solutions obtained

with our algorithm. It is important to note that without the weak connectivity constraint (7),

87 strong connectivity constraints would have been needed.

3 Puzzle generator

This section describes an algorithm designed to generate large scale Hashi puzzles which will

be used for our experimental analyzes. The generator receives as input the desired number of

islands n, the dimensions of the grid d1 × d2, a parameter α ∈ [0%, 100%] which influences the

number of cycles and the connectivity of the solutions, and a parameter β ∈ [0%, 100%] which

influences the number of double-bridges of the solutions. The generator is made up of four steps:

• Step 1 – Placement of the islands. A first island is placed in a random grid location.

Then, the algorithm iteratively selects a random existing island, a random direction (top,

bottom, left or right), and a random position in this direction (without crossing an existing

edge) if possible to add a new island and edge. This process is repeated n− 1 times.

• Step 2 – Creating cycles. At the end of Step 1, there are n islands connected by n− 1

edges. To avoid studying particular cases of Hashi puzzles that admit trees as solutions,

the tree is augmented with additional edges, therefore creating cycles. Iteratively, the

algorithm randomly selects two islands which can be connected by a horizontal or vertical

edge without crossing existing ones, and connects them with one additional edge. This

process is repeated bαnc times, leading to n islands connected with n− 1 + bαnc edges.

• Step 3 – Creating double edges. To favor the possible use of double edges in solutions,

the algorithm iteratively considers each edge, and transforms this edge into a double-edge

with probability β.

• Step 4 – Adjacency count and final puzzle. Finally, the number of edges adjacent

to each island is counted and marked. All edges are erased, and the puzzle is returned.

By design, all puzzles are known to be feasible since a feasible solution exists at the end of

Step 3 before erasing the edge information. Also note that this solution may not be unique.
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(a) Hashi puzzle

(b) Intermediate steps: dynamic introduction of the strong connectivity constraints

(c) The completed Hashi

Figure 2: Example of a difficult Hashi requiring four strong connectivity constraints
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4 Computational experiments

We have implemented our algorithms in Visual Basic and used Gurobi 8.0 to build the branch-

and-cut algorithm. To generate a representative set of instances, we considered four possible

instance size values, considering a number of islands n ∈ {100, 200, 300, 400} on boards of

dimensions d1 × d2 ∈ {16 × 16, 24 × 24, 28 × 28, 33 × 33} respectively. We varied the level

of connectivity by selecting α ∈ {0%, 5%, 10%, 15%} as well as the level of double-edges

by considering β ∈ {0.25, 0.5, 0.75}. For each parameters combination (instance group), we

generated 30 random instances to increase the statistical strength of our analyzes, leading

to a total of 30 × 4 × 4 × 3 = 1440 Hashi instances divided into 48 groups. These instances

can be accessed at https://w1.cirrelt.ca/~vidalt/en/research-data.html. We ran the

branch-and-cut algorithm on each instance, and repeated the same experiment without the weak

connectivity constraint (7) to investigate its influence on the search performance.

Tables 1 and 2 present the results of our experiments with and without the weak connectivity

constraint. The first set of columns reports the average CPU time needed to solve each instance

of the group, and the second set of columns reports the average number of strong connectivity

constraints that were dynamically generated during the solution process.

Table 1: Performance of the branch-and-cut algorithm with the weak connectivity constraint
Time (s) Number of strong connectivity constraints

n β α = 0% 5% 10% 15% Avg. α = 0% 5% 10% 15% Avg.

100

0.25 0.05 0.04 0.04 0.03 0.04 1.10 0.70 0.57 0.40 0.69

0.5 0.11 0.10 0.11 0.09 0.10 3.33 3.00 3.13 2.40 2.97

0.75 0.22 0.39 0.39 0.36 0.34 5.93 11.77 12.03 11.07 10.20

Avg. 0.13 0.18 0.18 0.16 0.16 3.46 5.16 5.24 4.62 4.62

200

0.25 0.16 0.15 0.13 0.13 0.14 2.10 1.63 1.13 0.90 1.44

0.5 0.52 0.53 0.49 0.44 0.50 7.93 7.53 6.13 4.87 6.62

0.75 2.13 2.87 3.15 2.91 2.76 31.13 41.40 45.50 38.80 39.21

Avg. 0.94 1.18 1.26 1.16 1.13 13.72 16.86 17.59 14.86 15.76

300

0.25 0.43 0.38 0.40 0.35 0.39 3.47 2.23 2.43 1.33 2.37

0.5 2.34 1.86 1.89 1.69 1.95 18.33 11.73 10.43 7.60 12.03

0.75 15.38 19.35 18.14 13.66 16.63 90.30 107.93 182.17 66.83 111.81

Avg. 6.05 7.20 6.81 5.23 6.32 37.37 40.63 65.01 25.26 42.07

400

0.25 0.92 0.85 0.73 0.80 0.83 4.40 3.50 2.00 2.10 3.00

0.5 6.89 5.71 6.55 7.05 6.55 28.90 16.47 19.70 14.17 19.81

0.75 76.65 152.18 100.68 84.23 103.43 161.80 238.77 159.90 130.20 172.67

Avg. 28.15 52.91 35.99 30.69 36.94 65.03 86.24 60.53 48.82 65.16

Avg. All 8.82 15.37 11.06 9.31 11.14 29.89 37.22 37.09 23.39 31.90
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Table 2: Performance of the branch-and-cut algorithm without the weak connectivity constraint
Time (s) Number of strong connectivity constraints

n β α = 0% 5% 10% 15% Avg. α = 0% 5% 10% 15% Avg.

100

0.25 0.05 0.04 0.03 0.03 0.04 1.30 0.80 0.53 0.43 0.77

0.5 0.14 0.13 0.12 0.11 0.13 4.33 3.80 3.67 3.40 3.80

0.75 0.80 0.64 0.47 0.45 0.59 24.57 19.20 13.77 12.73 17.57

Avg. 0.33 0.27 0.21 0.20 0.25 10.07 7.93 5.99 5.52 7.38

200

0.25 0.15 0.12 0.10 0.11 0.12 2.23 1.57 0.93 1.00 1.43

0.5 0.52 0.42 0.54 0.48 0.49 9.23 6.57 7.07 6.13 7.25

0.75 4.33 3.82 3.53 3.24 3.73 73.13 60.67 52.47 50.47 59.18

Avg. 1.67 1.46 1.39 1.28 1.45 28.20 22.93 20.16 19.20 22.62

300

0.25 0.40 0.32 0.35 0.29 0.34 4.27 2.53 2.60 1.43 2.71

0.5 2.16 1.80 1.67 1.86 1.87 18.77 12.43 9.07 8.93 12.30

0.75 24.38 24.41 19.69 15.31 20.95 145.93 162.57 105.07 75.37 122.23

Avg. 8.98 8.85 7.24 5.82 7.72 56.32 59.18 38.91 28.58 45.75

400

0.25 0.76 0.72 0.60 0.58 0.66 4.87 3.43 1.90 2.00 3.05

0.5 6.13 5.92 6.53 5.96 6.14 23.77 18.17 17.53 12.43 17.98

0.75 136.33 151.34 138.03 99.21 131.23 320.63 531.90 460.63 301.40 403.64

Avg. 47.74 52.66 48.39 35.25 46.01 116.42 184.50 160.02 105.28 141.56

Avg. All 14.68 15.81 14.31 10.64 13.86 52.75 68.64 56.27 39.64 54.33

As observed in Table 1, our complete branch-and-cut algorithm appears to be very efficient,

with an average CPU time of 11.14 seconds and an average of 31.90 strong connectivity constraints

per instance. The smallest instances with 100 islands are solved within a fraction of a second,

whereas the largest instances with 400 islands are significantly more difficult and require on

average 36.94 seconds and 65.16 cuts. The proportion of double bridges has a significant impact

on the puzzle difficulty, as reflected by a significant increase of CPU time and number of cuts

when β increases.

The results of our branch-and-cut algorithm without the weak connectivity constraint,

reported in Table 2, lead to similar conclusions regarding problem difficulty as a function

of n and β. These results also clearly demonstrate the usefulness of the weak connectivity

constraint (7). Without it, the average CPU time rises up by 24% and the number of strong

connectivity cuts generated through the search rises up by 70%.

Finally, the effect of the parameter α (impacting the number of cycles in the solutions) is

less marked. This is likely due to a combination of two effects: on the one hand, increasing α

leads to solutions with a larger number of edges and makes the puzzle more complicated; on

the other hand, higher α values help respecting the connectivity constraints, an effect which is

especially visible in the results of Table 2, when the weak connectivity constraint is deactivated.
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5 Conclusions

We have designed a set of benchmark instances for the Hashi puzzle and proposed a branch-

and-cut algorithm. We have conducted sensitivity analyses on the impact of the main instance

parameters and features of the solution method. Our experiments demonstrate the good

performance of the algorithm, which solves all puzzles with up to 400 islands, and the contribution

of the weak connectivity constraint in the search.
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