{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e2889168-c959-4143-8a16-47f7e8f9c855", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mon Dec 8 12:36:06 2025 \n", "+-----------------------------------------------------------------------------------------+\n", "| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |\n", "+-----------------------------------------+------------------------+----------------------+\n", "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", "| | | MIG M. |\n", "|=========================================+========================+======================|\n", "| 0 Tesla V100-SXM2-32GB On | 00000000:3B:00.0 Off | 0 |\n", "| N/A 38C P0 40W / 300W | 0MiB / 32768MiB | 0% Default |\n", "| | | N/A |\n", "+-----------------------------------------+------------------------+----------------------+\n", "\n", "+-----------------------------------------------------------------------------------------+\n", "| Processes: |\n", "| GPU GI CI PID Type Process name GPU Memory |\n", "| ID ID Usage |\n", "|=========================================================================================|\n", "| No running processes found |\n", "+-----------------------------------------------------------------------------------------+\n" ] } ], "source": [ "!nvidia-smi" ] }, { "cell_type": "markdown", "id": "b2c68ed0-28c2-487c-b3b4-c2f86dcb17d9", "metadata": {}, "source": [ "# Credit Card Fraud Detection\n", "\n", "Link: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud\n", "\n", "Time taken: 90 minutes (deep work)\n", "\n", "Author: [Aayush Bajaj](https://abaj.ai)\n", "\n", "Version control: https://github.com/abaj8494/10khrs-ai-ml-dl/blob/main/projects/interview/credit-card-fraud.ipynb" ] }, { "cell_type": "markdown", "id": "328bafbc-9a10-4b77-8c80-d023ec98ee28", "metadata": {}, "source": [ "## Problem Statement" ] }, { "cell_type": "markdown", "id": "55b33d34-8a70-4271-a609-5de8b9971243", "metadata": {}, "source": [ "It is important that credit card companies are able to recognise fraudulent credit card transactions so that customers are not charged for items that they did not purchase.\n", "\n", "This dataset contains transactions made by credit cards in September 2013 by European cardholders.\n", "\n", "This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is **highly unbalanced**, the positive class (frauds) account for 0.172% of all transactions. (considering mixture loss, focal perhaps).\n", "\n", "It contains only numerical input variables which are the result of a PCA transformation (naturally all the feature would be too large of a dataset to share; also confidentiality!). 28 features with only 'Time' and 'Amount' not being transformed.\n", "\n", "'Time' contains *seconds elapsed* between each transaction and the **first** transaction in the dataset. 'Amount' is the transaction amount (naturally) -- this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and takes value `1` in case of fraud, else `0`.\n", "\n", "Importantly, given the class imbalance ratio, we should measure accuracy using the **Area Under the Precision-Recall Curve** (AUPRC). Realise that **confusion matrix accuracy** is not meaningful for unbalanced classification." ] }, { "cell_type": "code", "execution_count": 11, "id": "bd631168-ca94-41f7-a37c-14cebbd76a4f", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/srv/scratch/z5362216/.venvs/kits/lib64/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading from https://www.kaggle.com/api/v1/datasets/download/mlg-ulb/creditcardfraud?dataset_version_number=3...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 66.0M/66.0M [00:17<00:00, 3.89MB/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Extracting files...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Path to dataset files: /home/z5362216/.cache/kagglehub/datasets/mlg-ulb/creditcardfraud/versions/3\n" ] } ], "source": [ "import kagglehub\n", "\n", "path = kagglehub.dataset_download(\"mlg-ulb/creditcardfraud\")\n", "\n", "print(\"Path to dataset files:\", path)" ] }, { "cell_type": "markdown", "id": "ac4373c4-2731-492d-b0fa-07cd6d243996", "metadata": {}, "source": [ "## Exploratory Data Analysis" ] }, { "cell_type": "code", "execution_count": 12, "id": "007779a2-db00-487b-863c-faa9ddefbd34", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pathlib import Path" ] }, { "cell_type": "code", "execution_count": 18, "id": "0173c185-16a3-45ab-98d9-ccaf43451417", "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "csv_path = Path(path + '/' + 'creditcard.csv')\n", "df = pd.read_csv(csv_path)" ] }, { "cell_type": "code", "execution_count": 19, "id": "31384a77-6b18-498d-8f44-123e7688c11f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimeV1V2V3V4V5V6V7V8V9...V21V22V23V24V25V26V27V28AmountClass
00.0-1.359807-0.0727812.5363471.378155-0.3383210.4623880.2395990.0986980.363787...-0.0183070.277838-0.1104740.0669280.128539-0.1891150.133558-0.021053149.620
10.01.1918570.2661510.1664800.4481540.060018-0.082361-0.0788030.085102-0.255425...-0.225775-0.6386720.101288-0.3398460.1671700.125895-0.0089830.0147242.690
21.0-1.358354-1.3401631.7732090.379780-0.5031981.8004990.7914610.247676-1.514654...0.2479980.7716790.909412-0.689281-0.327642-0.139097-0.055353-0.059752378.660
31.0-0.966272-0.1852261.792993-0.863291-0.0103091.2472030.2376090.377436-1.387024...-0.1083000.005274-0.190321-1.1755750.647376-0.2219290.0627230.061458123.500
42.0-1.1582330.8777371.5487180.403034-0.4071930.0959210.592941-0.2705330.817739...-0.0094310.798278-0.1374580.141267-0.2060100.5022920.2194220.21515369.990
\n", "

5 rows × 31 columns

\n", "
" ], "text/plain": [ " Time V1 V2 V3 V4 V5 V6 V7 \\\n", "0 0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 \n", "1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 \n", "2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 \n", "3 1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 \n", "4 2.0 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 \n", "\n", " V8 V9 ... V21 V22 V23 V24 V25 \\\n", "0 0.098698 0.363787 ... -0.018307 0.277838 -0.110474 0.066928 0.128539 \n", "1 0.085102 -0.255425 ... -0.225775 -0.638672 0.101288 -0.339846 0.167170 \n", "2 0.247676 -1.514654 ... 0.247998 0.771679 0.909412 -0.689281 -0.327642 \n", "3 0.377436 -1.387024 ... -0.108300 0.005274 -0.190321 -1.175575 0.647376 \n", "4 -0.270533 0.817739 ... -0.009431 0.798278 -0.137458 0.141267 -0.206010 \n", "\n", " V26 V27 V28 Amount Class \n", "0 -0.189115 0.133558 -0.021053 149.62 0 \n", "1 0.125895 -0.008983 0.014724 2.69 0 \n", "2 -0.139097 -0.055353 -0.059752 378.66 0 \n", "3 -0.221929 0.062723 0.061458 123.50 0 \n", "4 0.502292 0.219422 0.215153 69.99 0 \n", "\n", "[5 rows x 31 columns]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 21, "id": "612abe7e-93f8-40ea-ac1d-51a599a30ef1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(284807, 31)" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": 22, "id": "6f30fe73-cbf2-451d-94a3-6a22c6687fcc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 284807 entries, 0 to 284806\n", "Data columns (total 31 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Time 284807 non-null float64\n", " 1 V1 284807 non-null float64\n", " 2 V2 284807 non-null float64\n", " 3 V3 284807 non-null float64\n", " 4 V4 284807 non-null float64\n", " 5 V5 284807 non-null float64\n", " 6 V6 284807 non-null float64\n", " 7 V7 284807 non-null float64\n", " 8 V8 284807 non-null float64\n", " 9 V9 284807 non-null float64\n", " 10 V10 284807 non-null float64\n", " 11 V11 284807 non-null float64\n", " 12 V12 284807 non-null float64\n", " 13 V13 284807 non-null float64\n", " 14 V14 284807 non-null float64\n", " 15 V15 284807 non-null float64\n", " 16 V16 284807 non-null float64\n", " 17 V17 284807 non-null float64\n", " 18 V18 284807 non-null float64\n", " 19 V19 284807 non-null float64\n", " 20 V20 284807 non-null float64\n", " 21 V21 284807 non-null float64\n", " 22 V22 284807 non-null float64\n", " 23 V23 284807 non-null float64\n", " 24 V24 284807 non-null float64\n", " 25 V25 284807 non-null float64\n", " 26 V26 284807 non-null float64\n", " 27 V27 284807 non-null float64\n", " 28 V28 284807 non-null float64\n", " 29 Amount 284807 non-null float64\n", " 30 Class 284807 non-null int64 \n", "dtypes: float64(30), int64(1)\n", "memory usage: 67.4 MB\n" ] } ], "source": [ "# ^as expected from the kaggle description brief.\n", "df.info()" ] }, { "cell_type": "code", "execution_count": 23, "id": "d554d525-4989-4f99-8d03-8c8e2b4238c6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimeV1V2V3V4V5V6V7V8V9...V21V22V23V24V25V26V27V28AmountClass
count284807.0000002.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+05...2.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+05284807.000000284807.000000
mean94813.8595751.168375e-153.416908e-16-1.379537e-152.074095e-159.604066e-161.487313e-15-5.556467e-161.213481e-16-2.406331e-15...1.654067e-16-3.568593e-162.578648e-164.473266e-155.340915e-161.683437e-15-3.660091e-16-1.227390e-1688.3496190.001727
std47488.1459551.958696e+001.651309e+001.516255e+001.415869e+001.380247e+001.332271e+001.237094e+001.194353e+001.098632e+00...7.345240e-017.257016e-016.244603e-016.056471e-015.212781e-014.822270e-014.036325e-013.300833e-01250.1201090.041527
min0.000000-5.640751e+01-7.271573e+01-4.832559e+01-5.683171e+00-1.137433e+02-2.616051e+01-4.355724e+01-7.321672e+01-1.343407e+01...-3.483038e+01-1.093314e+01-4.480774e+01-2.836627e+00-1.029540e+01-2.604551e+00-2.256568e+01-1.543008e+010.0000000.000000
25%54201.500000-9.203734e-01-5.985499e-01-8.903648e-01-8.486401e-01-6.915971e-01-7.682956e-01-5.540759e-01-2.086297e-01-6.430976e-01...-2.283949e-01-5.423504e-01-1.618463e-01-3.545861e-01-3.171451e-01-3.269839e-01-7.083953e-02-5.295979e-025.6000000.000000
50%84692.0000001.810880e-026.548556e-021.798463e-01-1.984653e-02-5.433583e-02-2.741871e-014.010308e-022.235804e-02-5.142873e-02...-2.945017e-026.781943e-03-1.119293e-024.097606e-021.659350e-02-5.213911e-021.342146e-031.124383e-0222.0000000.000000
75%139320.5000001.315642e+008.037239e-011.027196e+007.433413e-016.119264e-013.985649e-015.704361e-013.273459e-015.971390e-01...1.863772e-015.285536e-011.476421e-014.395266e-013.507156e-012.409522e-019.104512e-027.827995e-0277.1650000.000000
max172792.0000002.454930e+002.205773e+019.382558e+001.687534e+013.480167e+017.330163e+011.205895e+022.000721e+011.559499e+01...2.720284e+011.050309e+012.252841e+014.584549e+007.519589e+003.517346e+003.161220e+013.384781e+0125691.1600001.000000
\n", "

8 rows × 31 columns

\n", "
" ], "text/plain": [ " Time V1 V2 V3 V4 \\\n", "count 284807.000000 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 \n", "mean 94813.859575 1.168375e-15 3.416908e-16 -1.379537e-15 2.074095e-15 \n", "std 47488.145955 1.958696e+00 1.651309e+00 1.516255e+00 1.415869e+00 \n", "min 0.000000 -5.640751e+01 -7.271573e+01 -4.832559e+01 -5.683171e+00 \n", "25% 54201.500000 -9.203734e-01 -5.985499e-01 -8.903648e-01 -8.486401e-01 \n", "50% 84692.000000 1.810880e-02 6.548556e-02 1.798463e-01 -1.984653e-02 \n", "75% 139320.500000 1.315642e+00 8.037239e-01 1.027196e+00 7.433413e-01 \n", "max 172792.000000 2.454930e+00 2.205773e+01 9.382558e+00 1.687534e+01 \n", "\n", " V5 V6 V7 V8 V9 \\\n", "count 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 \n", "mean 9.604066e-16 1.487313e-15 -5.556467e-16 1.213481e-16 -2.406331e-15 \n", "std 1.380247e+00 1.332271e+00 1.237094e+00 1.194353e+00 1.098632e+00 \n", "min -1.137433e+02 -2.616051e+01 -4.355724e+01 -7.321672e+01 -1.343407e+01 \n", "25% -6.915971e-01 -7.682956e-01 -5.540759e-01 -2.086297e-01 -6.430976e-01 \n", "50% -5.433583e-02 -2.741871e-01 4.010308e-02 2.235804e-02 -5.142873e-02 \n", "75% 6.119264e-01 3.985649e-01 5.704361e-01 3.273459e-01 5.971390e-01 \n", "max 3.480167e+01 7.330163e+01 1.205895e+02 2.000721e+01 1.559499e+01 \n", "\n", " ... V21 V22 V23 V24 \\\n", "count ... 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 \n", "mean ... 1.654067e-16 -3.568593e-16 2.578648e-16 4.473266e-15 \n", "std ... 7.345240e-01 7.257016e-01 6.244603e-01 6.056471e-01 \n", "min ... -3.483038e+01 -1.093314e+01 -4.480774e+01 -2.836627e+00 \n", "25% ... -2.283949e-01 -5.423504e-01 -1.618463e-01 -3.545861e-01 \n", "50% ... -2.945017e-02 6.781943e-03 -1.119293e-02 4.097606e-02 \n", "75% ... 1.863772e-01 5.285536e-01 1.476421e-01 4.395266e-01 \n", "max ... 2.720284e+01 1.050309e+01 2.252841e+01 4.584549e+00 \n", "\n", " V25 V26 V27 V28 Amount \\\n", "count 2.848070e+05 2.848070e+05 2.848070e+05 2.848070e+05 284807.000000 \n", "mean 5.340915e-16 1.683437e-15 -3.660091e-16 -1.227390e-16 88.349619 \n", "std 5.212781e-01 4.822270e-01 4.036325e-01 3.300833e-01 250.120109 \n", "min -1.029540e+01 -2.604551e+00 -2.256568e+01 -1.543008e+01 0.000000 \n", "25% -3.171451e-01 -3.269839e-01 -7.083953e-02 -5.295979e-02 5.600000 \n", "50% 1.659350e-02 -5.213911e-02 1.342146e-03 1.124383e-02 22.000000 \n", "75% 3.507156e-01 2.409522e-01 9.104512e-02 7.827995e-02 77.165000 \n", "max 7.519589e+00 3.517346e+00 3.161220e+01 3.384781e+01 25691.160000 \n", "\n", " Class \n", "count 284807.000000 \n", "mean 0.001727 \n", "std 0.041527 \n", "min 0.000000 \n", "25% 0.000000 \n", "50% 0.000000 \n", "75% 0.000000 \n", "max 1.000000 \n", "\n", "[8 rows x 31 columns]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "markdown", "id": "8a897ebf-9dbf-487c-8feb-fcb6d0d82236", "metadata": {}, "source": [ "### Class Imbalances" ] }, { "cell_type": "code", "execution_count": 26, "id": "551e0184-5a34-4d80-8d71-eeb90126150f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Class\n", "0 284315\n", "1 492\n", "Name: count, dtype: int64" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# class imbalance details\n", "df[\"Class\"].value_counts() # how many of each (raw)" ] }, { "cell_type": "code", "execution_count": 27, "id": "7ed8677f-3170-4bec-acf8-b9006c704dc6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Class\n", "0 0.998273\n", "1 0.001727\n", "Name: proportion, dtype: float64" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"Class\"].value_counts(normalize=True)" ] }, { "cell_type": "code", "execution_count": 28, "id": "58547e60-2a22-4def-834e-e6c009ceed3d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Class 1.000000\n", "V11 0.154876\n", "V4 0.133447\n", "V2 0.091289\n", "V21 0.040413\n", "V19 0.034783\n", "V20 0.020090\n", "V8 0.019875\n", "V27 0.017580\n", "V28 0.009536\n", "Amount 0.005632\n", "V26 0.004455\n", "V25 0.003308\n", "V22 0.000805\n", "V23 -0.002685\n", "V15 -0.004223\n", "V13 -0.004570\n", "V24 -0.007221\n", "Time -0.012323\n", "V6 -0.043643\n", "V5 -0.094974\n", "V9 -0.097733\n", "V1 -0.101347\n", "V18 -0.111485\n", "V7 -0.187257\n", "V3 -0.192961\n", "V16 -0.196539\n", "V10 -0.216883\n", "V12 -0.260593\n", "V14 -0.302544\n", "V17 -0.326481\n", "Name: Class, dtype: float64" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.corr(numeric_only=True)[\"Class\"].sort_values(ascending=False)" ] }, { "cell_type": "markdown", "id": "1d0c8375-0165-4e2e-82a6-1f9bc3d266eb", "metadata": {}, "source": [ "### Plotting Histograms" ] }, { "cell_type": "code", "execution_count": 31, "id": "565bab6e-1e34-41c1-9c94-2f3700225f39", "metadata": {}, "outputs": [], "source": [ "pca_features = [f\"V{i}\" for i in range(1,29)] # list of strings" ] }, { "cell_type": "code", "execution_count": 33, "id": "e2f657e6-85d7-4966-af3b-93d0f394edb1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAgqCAYAAAAjCywZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf1SU553//9cIFkkCM/yw1RlpLMxoVgSxoQaz2QYSN1UZ0ggmkRasJ1EPWfOJaeIWOLtZJ2Zb8Gi6no3dbQ1pPo1aSTG7hl/dZPNJYn6QREtipKZmGZp8lzLupgMyqClU4P7+4fGOBEjQAMPg83HOdY7z5vae9zXM3NcM77muy2IYhiEAAAAAAAAAAIAQMCXYCQAAAAAAAAAAAIwUhQ0AAAAAAAAAABAyKGwAAAAAAAAAAICQQWEDAAAAAAAAAACEDAobAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYPCBgAAAAAAAAAACBkUNgAAAAAAAAAAQMigsAEAAAAAAAAAAEIGhQ0AAAAAAAAAABAyKGwAY2T58uW69957B8W7urp0xRVXaO/evbr11ltlt9tlsVh05MiR8U8SADAhfN6YUVdXp29+85uKiYnRl7/8Za1cuVJ/+MMfgpApACDYPm/M+PGPf6xrr71WsbGxstlsuv766/XKK68EIVMAQLB93pjx4osvmrFdu3bJYrFox44d45ghcOkobABj5O6779Yvf/lL9fT0DIjv27dPM2fO1JIlS7R06VIdOHAgOAkCACaMzxszOjs7VVxcrNbWVn3wwQeKjo7WHXfcEaRsAQDB9Hljxve+9z3927/9m9rb23Xy5Elt2rRJ2dnZ+tOf/hSkjAEAwfJ5Y0ZWVpYkyefzadu2bUpJSQlGmsAlobABjJFbb71V4eHhgwoXTz75pO666y595Stf0d/8zd9o0aJFwUkQADBhfN6Y8d3vflfZ2dm66qqrdOWVV+r+++/XW2+9pd7e3uAkDAAIms8bM+Li4nT11VfLYrHIMAyFhYXp9OnT+p//+Z/gJAwACJrPGzMsFoskacOGDXrooYcUGxsbhCyBS0NhAxgjU6dOVWFhoX7+85+bsffee0+/+c1vtGbNmuAlBgCYcC52zDh48KD+4i/+QuHh4eOYJQBgIhjpmGGz2fSlL31Jt912m1avXq2vfe1rQcgWABBMIxkz9u/fr66uLq1evTpIWQKXhk/DwBi6++67lZKSotbWViUkJOjnP/+5vvWtb8nhcAQ7NQDABDPSMeOdd97RQw89pKqqqiBlCgAItpGMGZ2dnfrTn/6kZ555Rt3d3UHMFgAQTJ81Zpw8eVJ/+7d/q+effz7YaQIXjRkbwBiaN2+eFi1apF/84hfq7e3Vnj17dPfddwc7LQDABDSSMaOpqUnLli3Tzp079dd//ddByhQAEGwj/ZwRGRmpgoIC/dM//ZNee+21IGQKAAi2zxoz/vZv/1Z33323XC5XkLMELh4zNoAxdvfdd6u8vFzz589Xf3+/cnJygp0SAGCC+qwxo6mpSUuWLFF5ebkKCgqCmCUAYCK4mM8ZZ8+eVXNzs2644YZxzBAAMFEMN2a88MIL6urq0o4dOyRJgUBAv/nNb/Tqq6/qmWeeCWLGwOezGIZhBDsJYDI7deqUZs6cqenTpysvL0/bt283f3Z+SnhkZKTeeustpaam6ktf+pKmTGEyFQBcjoYbM44dO6abbrpJ//iP/6h169YFOUsAwEQw3JhRW1urr371q5o3b57+/Oc/a8eOHfrHf/xHNTU1KSkpKchZAwCCYbgx43/+53/U29trHnf77bdr6dKl2rBhg+Lj44OVLjAi/PUUGGNRUVG644479OGHHw6aHh4ZGanIyEhJ0nXXXafIyEi98sorwUgTADABDDdmbN++XX/84x/1/e9/X1dddZXZ/vu//zuI2QIAgmm4McPv9+v222+XzWbTV7/6Vf3nf/6n6urqKGoAwGVsuDFjxowZmjVrltkiIiJktVopaiAkMGMDAAAAAAAAAACEDGZsAAAAAAAAAACAkEFhAwAAAAAAAAAAhAwKGwAAAAAAAAAAIGRQ2AAAAAAAAAAAACGDwgYAAAAAAAAAAAgZFDYAAAAAAAAAAEDICA92AmOtv79fPp9PUVFRslgswU4HACYswzB06tQp2e12TZlyeda9GTMAYGQYMxgzAGCkGDMYMwBgpC5mzJj0hQ2fz6eEhIRgpwEAIaO1tVWzZs0KdhpBwZgBABeHMYMxAwBGijGDMQMARmokY8akL2xERUVJOvdgREdHBzkbAJi4urq6lJCQYF43L0eMGQAwMowZjBkAMFKMGYwZADBSFzNmTPrCxvkpftHR0QweADACl/PUaMYMALg4jBmMGQAwUowZjBkAMFIjGTMuz8UNAQAAAAAAAABASKKwAQAAAAAAAAAAQgaFDQAAAAAAAAAAEDIobAAAAAAAAAAAgJBBYQMAAAAAAAAAAIQMChsAAAAAAAAAACBkUNgAAAAAAAAAAAAhg8IGAAAAAAAAAAAIGRQ2AAAAAAAAAABAyAgPdgIAAGl2Sd2Q8Q/Ls8c5EwCYPLi2AgAmiuHGJIlxCRhLvB8EJi9mbAAAAAAAAAAAgJBBYQMAAAAAAAAAAIQMChsAAAAAAAAAACBkUNgAAAAAAAAAAAAhg8IGAAAAAAAAAAAIGRQ2AAAAAAAAAABAyKCwAQAAAAAAAAAAQgaFDQAAAAAAAAAAEDIobAAAxsSKFSsUExOjlStXSpJOnTqltLQ0s1mtVu3YsUOS5PF4NGvWLPNnr776qiTJMAwVFRXJ6XQqPT1dLS0t5vm3bNkip9Op5ORkHTp0yIxXVFTI5XJp7ty5qq2tHb8OAwAAAAAAYFyEBzsBAMDktHHjRt111136xS9+IUmKiorSkSNHJJ0rWMyePVvf/va3zeNLSkp07733DjhHXV2d/H6/vF6vamtrVVxcrP3796upqUn19fU6fvy4fve73+muu+7S4cOH1d7erm3btuntt9/WqVOnlJmZqaVLlyo8nOEOAAAAAABgsmDGBgBgTGRmZioqKmrIn73xxhuaMWOGvva1r33mOaqrq1VYWChJys7OVkNDgwzDUE1NjfLz8xUeHq6UlBSdPXtWPp9Pzz33nJYvX66oqCjZ7XbNmzdPhw8fHvW+AQAAAAAAIHgobAAAxt2vfvUr3XnnnQNiP/7xj5Wamqp77rlHp0+fliT5fD45HA5JksViUUxMjNrb2wfEJcnhcMjn8w0Zb2trGzaPnp4edXV1DWgAAAAAAACY2ChsAADGlWEYeuaZZ3THHXeYsXvuuUfNzc165513dMUVV+jhhx8el1zKyspktVrNlpCQMC73CwAAAAAAgEs3aoWNf/qnf1JycrLmzZun++67T4Zh6NChQ0pOTpbT6dSWLVvMY1taWpSeni6n06mioiIZhiFJ8vv9ysrKksvlUm5urrq7uyVJ3d3dys3NlcvlUlZWlvx+/2ilDQAYZ6+99pquvvpqzZo1y4x95StfUVhYmMLCwsz9MiTJbrebMy4Mw9DJkycVFxc3IC5JbW1tstvtw8aHU1paqkAgYLbW1tbR7i4AAAAAAABG2agUNv74xz9q586damxsVFNTkxobG/Xmm29qw4YN2rdvn95//33V19erqalJklRcXCyPxyOv1yu/36+6ujpJUnl5ufLy8tTc3KzExERVVFRIkioqKpSYmKjm5mbl5eWpvLx8NNIGAATBUMtQnThxwvz3s88+q+TkZEmS2+3W7t27JZ3bSHzx4sWyWCxyu93at2+fent71dTUpKlTp8put+uWW25RfX29Tp06JZ/Pp2PHjmnRokXD5hIREaHo6OgBDQAAAAAAABNb+GidqLe315xhcfbsWfX396u3t1epqamSpFWrVqm2tlbz589XQ0ODqqqqJEkFBQWqqamR2+1WdXW1+S3dgoICFRcX695771V1dbW2bdtmxq+77jpt3759tFIHAIyBJUuW6N1339WZM2c0a9YsVVVV6brrrtO///u/D9rQ+wc/+IGOHDkii8WiOXPmaNeuXZLOFTZqa2uVlJQkm82myspKSVJqaqqWLl2quXPnatq0aXriiSckSfHx8XrwwQe1cOFCTZkyRY8++qjCw0dtqAMAAAAAAMAEMCp/7Zk+fbo2bdqkr371qwoPD1dRUZEiIiIGbeB68OBBtbe3KzY2VhaLxYyfXzYkEAjIarUOil+4GazNZlNnZ+ewufT09Kinp8e8zUawABAcL7zwwpDxP/zhD4Ni52dlfNqUKVPMIseneTweeTyeQfH169dr/fr1I08UAAAAAAAAIWVUlqI6efKkamtr9eGHH6qtrU0NDQ36+OOPR+PUF42NYAEAAAAAAAAAmLxGpbDxwgsvyOl0KjY2VpGRkcrOztbLL7885AaucXFx6ujoMDcMv3BjV6vVqkAgMCh+4WawnZ2dstlsw+bCRrAAAAAAAAAAAExeo1LYSEhIUENDg7q7u9XX16eXX35ZCxYsUFhYmI4ePaq+vj5VVlYqJydHFotFGRkZ5obhe/fuVU5OjqSBm8Tu2bNn2Ljb7R42FzaCBQAAAAAAuDx9/PHHuvrqq7Vp0yZJ0qFDh5ScnCyn06ktW7aYx7W0tCg9PV1Op1NFRUXmF3D9fr+ysrLkcrmUm5tr7ifb3d2t3NxcuVwuZWVlye/3j3/nAACmUSlsZGRkaPny5Vq4cKFSU1OVlJSkW2+9VTt37lR+fr7mzJmjpUuXKiUlRZK0detWbd68WUlJSYqJiVF2drakc7Mtqqqq5HQ65fV6tXbtWknSunXr5PV65XQ6VVVVpZKSktFIGwAAAAAAAJPID3/4Q2VkZJi3N2zYoH379un9999XfX29mpqaJEnFxcXyeDzyer3y+/3mF3DLy8uVl5en5uZmJSYmqqKiQpJUUVGhxMRENTc3Ky8vT+Xl5ePfOQCAaVQ2D5fODRw//OEPB8QyMjJ07NixQce6XC41NjYOik+fPl0HDx4cFI+MjNSBAwdGK1UAAAAAAABMMs3NzTp+/LhycnL029/+Vj6fT729vUpNTZUkrVq1SrW1tZo/f74aGhpUVVUlSSooKFBNTY3cbreqq6t1+PBhM15cXKx7771X1dXV2rZtmxm/7rrrtH379uB0FAAwOjM2AAAAAAAAgGDatGmTysrKzNs+n08Oh8O87XA41NbWpvb2dsXGxspisQyIS1IgEJDVah0Uv/BcNptNnZ2dw+bR09Ojrq6uAQ0AMLoobAAAAAAAACCkPfvss5ozZ47mzJkT7FRUVlYmq9VqtoSEhGCnBACTzqgtRQUAAAAAAAAEw5tvvqnKykpVVVXp9OnTOnv2rKKjo80ZF5LU1tYmu92uuLg4dXR0yDAMWSwWMy5JVqvVnLVxYdxut6utrU3x8fHq7OyUzWYbNpfS0lI98MAD5u2uri6KG6NkdkndkPEPy7PHORMAwcaMDQAAAAAAAIS0srIytba26sMPP9T27du1bt06/cM//IPCwsJ09OhR9fX1qbKyUjk5ObJYLMrIyDA3DN+7d69ycnIkSW63W7t375Yk7dmzZ9i42+0eNpeIiAhFR0cPaACA0UVhAwAAAAAAAJPSzp07lZ+frzlz5mjp0qVKSUmRJG3dulWbN29WUlKSYmJilJ197hv/paWlqqqqktPplNfr1dq1ayVJ69atk9frldPpVFVVlUpKSoLWJwAAS1EBAAAAAABgElmzZo3574yMDB07dmzQMS6XS42NjYPi06dP18GDBwfFIyMjdeDAgdFMEwDwBVDYAIAQxLqiAAAAAAAAuFyxFBUAAAAAAAAAAAgZFDYAAAAAAAAAAEDIoLABAAAAAAAAAABCBoUNAAAAABPWP/3TPyk5OVnz5s3TfffdJ8MwdOjQISUnJ8vpdGrLli3msS0tLUpPT5fT6VRRUZEMw5Ak+f1+ZWVlyeVyKTc3V93d3ZKk7u5u5ebmyuVyKSsrS36/Pyh9BAAAAHBxKGwAAAAAmJD++Mc/aufOnWpsbFRTU5MaGxv15ptvasOGDdq3b5/ef/991dfXq6mpSZJUXFwsj8cjr9crv9+vuro6SVJ5ebny8vLU3NysxMREVVRUSJIqKiqUmJio5uZm5eXlqby8PGh9BQAAADByFDYAAAAATFi9vb3q7u7W2bNndfbsWfX396u3t1epqakKCwvTqlWrVFtbK8Mw1NDQoOzsbElSQUGBampqJEnV1dUqLCwccRwAAADAxEZhAwAAAMCENH36dG3atElf/epXZbfbtWTJEkVERMjhcJjHOBwOtbW1qb29XbGxsbJYLAPikhQIBGS1WgfFfT6feS6bzabOzs5hc+np6VFXV9eABgAAACA4KGwAAAAAmJBOnjyp2tpaffjhh2pra1NDQ4M+/vjjoORSVlYmq9VqtoSEhKDkAQAAAEAKD3YCAAAAADCUF154QU6nU7GxsZKk7Oxsvfzyy+aMC0lqa2uT3W5XXFycOjo6ZBiGLBaLGZckq9Vqztq4MG6329XW1qb4+Hh1dnbKZrMNm0tpaakeeOAB83ZXVxfFDQAAJojZJXXBTgHAOGPGBgAAAIAJKSEhQQ0NDeru7lZfX59efvllLViwQGFhYTp69Kj6+vpUWVmpnJwcWSwWZWRkmBuG7927Vzk5OZIkt9ut3bt3S5L27NkzbNztdg+bS0REhKKjowc0AAAAAMFBYQMAMCZWrFihmJgYrVy50oxlZmbqmmuuUVpamtLS0vSnP/1JkuT3+5WVlSWXy6Xc3Fx1d3dLkrq7u5WbmyuXy6WsrCz5/X5JkmEYKioqktPpVHp6ulpaWsz72LJli5xOp5KTk3Xo0KFx7DEAYLRlZGRo+fLlWrhwoVJTU5WUlKRbb71VO3fuVH5+vubMmaOlS5cqJSVFkrR161Zt3rxZSUlJiomJMTcSLy0tVVVVlZxOp7xer9auXStJWrdunbxer5xOp6qqqlRSUhK0vgIAAAAYOZaiAgCMiY0bN+quu+7SL37xiwHx/fv3a/78+QNi5eXlysvL07333qtNmzapoqJC9957ryoqKpSYmKh/+7d/086dO1VeXq7t27errq5Ofr9fXq9XtbW1Ki4u1v79+9XU1KT6+nodP35cv/vd73TXXXfp8OHD49ltAMAo++EPf6gf/vCHA2IZGRk6duzYoGNdLpcaGxsHxadPn66DBw8OikdGRurAgQOjlisAAACA8cGMDQDAmMjMzFRUVNSIjq2urlZhYaEkqaCgQDU1NSOOZ2dnq6GhQYZhqKamRvn5+QoPD1dKSorOnj0rn8832l0DAAAAAABAEFHYAACMq+985ztauHChfvzjH5ux8xu6SpLD4TA3hfX5fHI4HJIkm82mzs7OQXGLxaKYmBi1t7cPiJ8/12cVNnp6etTV1TWgAQAAAAAAYGKjsAEAGDd79+7V0aNH9fLLL+vZZ581N3gNlrKyMlmtVrMlJCQENR8AAAAAAAB8PgobAIBxc342hdVq1R133GHuf2G1WhUIBCRJbW1tstvtkiS73W7O3ujs7JTNZhsUNwxDJ0+eVFxc3ID4p881lNLSUgUCAbO1traObocBAAAAAAAw6ihsAADGRW9vr/x+vyTpz3/+s379618rOTlZkuR2u7V7925J0p49e5STkzNk3O12D4rX1dVp8eLFslgscrvd2rdvn3p7e9XU1KSpU6d+ZmEjIiJC0dHRAxoAAAAAAAAmtvBgJwAAmJyWLFmid999V2fOnNGsWbP09NNP67777tPZs2fV19ennJwcrVy5UtK5mRMrV67Ujh07NH/+fD3yyCOSpHXr1ik/P19Op1MOh0P79++XdK6wUVtbq6SkJNlsNlVWVkqSUlNTtXTpUs2dO1fTpk3TE088EZzOAwAAAAAAYMxQ2AAAjIkXXnhhUKyxsXHIY6dPn66DBw8OikdGRurAgQOD4lOmTNGuXbuGPJfH45HH47moXAEAAAAAABA6WIoKAAAAAAAAAACEDAobAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYM9NgAAAAAAAEbB7JK6YKcAAMBlgRkbAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYPCBgAAAAAAAAAACBkUNgAAAAAAAAAAQMigsAEAAAAAAAAAAEIGhQ0AAAAAAAAAABAyKGwAAAAAAAAAAICQQWEDAAAAAAAAAACEDAobAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYPCBgAAAAAAAAAACBkUNgAAAAAAAAAAQMigsAEAAAAAAAAAAEIGhQ0AAAAAAAAAABAywoOdAABgeLNL6oKdAgAAAAAAADChjNqMjQ8++EBZWVmaN2+eUlJSdObMGR06dEjJyclyOp3asmWLeWxLS4vS09PldDpVVFQkwzAkSX6/X1lZWXK5XMrNzVV3d7ckqbu7W7m5uXK5XMrKypLf7x+ttAEAAAAAAAAAQAgZtcLGmjVrtGXLFr333ns6ePCgIiIitGHDBu3bt0/vv/++6uvr1dTUJEkqLi6Wx+OR1+uV3+9XXd25bySXl5crLy9Pzc3NSkxMVEVFhSSpoqJCiYmJam5uVl5ensrLy0crbQAAAAAAAAATyOySuiEbAJw3KoWNY8eOaerUqfqrv/orSVJsbKw++ugj9fb2KjU1VWFhYVq1apVqa2tlGIYaGhqUnZ0tSSooKFBNTY0kqbq6WoWFhSOOAwAAAAAAAACAy8uo7LHR3Nysq666Sjk5OWpra9PKlSt1yy23yOFwmMc4HA4dPHhQ7e3tio2NlcViMeNtbW2SpEAgIKvVOiju8/nMc9lsNnV2dg6bS09Pj3p6eszbXV1do9FFAAAAAAAAAAAwAYzKjI3e3l69+uqr+pd/+Re98cYb+s///E+99NJLo3Hqi1ZWViar1Wq2hISEoOQBAJe7FStWKCYmRitXrpQkffzxx1q2bJmuueYaJScn67HHHjOP9Xg8mjVrltLS0pSWlqZXX31VkmQYhoqKiuR0OpWenq6Wlhbz/2zZskVOp1PJyck6dOiQGa+oqJDL5dLcuXNVW1s7Tr0FAAAAAADAeBmVwobD4VB6eroSEhIUERGh5cuX6+OPPzZnXEhSW1ub7Ha74uLi1NHRYW4Yfj4uSVarVYFAYFDcbreb5+rs7JTNZhs2l9LSUgUCAbO1traORhcBABdp48aNeuqppwbESkpKdPz4cb311lv6yU9+Iq/XO+BnR44c0ZEjR8ylDevq6uT3++X1euXxeFRcXCxJampqUn19vY4fP67Kykpt2LBBktTe3q5t27bp7bff1ksvvaQHHnhAvb2949RjAAAAAMHU2dmp9PR0paWlaf78+Xr88cclSYcOHVJycrKcTqe2bNliHt/S0qL09HQ5nU4VFRWZf6vy+/3KysqSy+VSbm6uuru7JUnd3d3Kzc2Vy+VSVlaW/H7/+HcSACBplAob3/jGN/TRRx/p5MmT6u/v1yuvvKJrr71WYWFhOnr0qPr6+lRZWamcnBxZLBZlZGSYG4bv3btXOTk5kiS3263du3dLkvbs2TNs3O12D5tLRESEoqOjBzQAwPjLzMxUVFSUefuKK67QjTfeKEm66qqrNHfuXJ04ceIzz3HhHkvZ2dlqaGiQYRiqqalRfn6+wsPDlZKSorNnz8rn8+m5557T8uXLFRUVJbvdrnnz5unw4cNj10kAAAAAE0ZUVJReeeUVHTlyRG+99ZZ+9KMfqb29XRs2bNC+ffv0/vvvq76+Xk1NTZKk4uJieTweeb1e+f1+829V5eXlysvLU3NzsxITE1VRUSHp3OzwxMRENTc3Ky8vT+Xl5UHrKwBc7kalsBEeHq4f/ehH+uY3v6nU1FS5XC653W7t3LlT+fn5mjNnjpYuXaqUlBRJ0tatW7V582YlJSUpJibG3Ei8tLRUVVVVcjqd8nq9Wrt2rSRp3bp18nq9cjqdqqqqUklJyWikDQAIktbWVh09elRf//rXzdiPf/xjpaam6p577tHp06clDdxjyWKxKCYmRu3t7QPi0rmZgz6fb8j4hbMHP62np0ddXV0DGgAAAIDQFBYWpiuuuELSuff6hmHozJkz6u3tVWpqqsLCwrRq1SrV1tbKMAw1NDSYf5MqKChQTU2NpIFfsBpJHAAw/kZl83BJWrZsmZYtWzYglpGRoWPHjg061uVyqbGxcVB8+vTpOnjw4KB4ZGSkDhw4MFqpAgCCqKenR3feeae2bdumK6+8UpJ0zz336KGHHpIk/eAHP9DDDz+sbdu2jXkuZWVlevjhh8f8fgAAAACMj87OTt14441qbm7Wtm3b9NFHHw368tPBgwfV3t6u2NhYWSwWM37+S1GBQEBWq3VQ/MIvUtlsNnV2dg6ZQ09Pj3p6eszbfIEKAEbfqMzYAABgJAzD0OrVq7V8+XJzU3FJ+spXvqKwsDCFhYXprrvuMpePunCPJcMwdPLkScXFxQ2IS5/syzRcfDjsywQAAABMLjabTe+++64++OAD/fKXv1RfX9+451BWViar1Wq2hISEcc8BACY7ChsAgHFTWlqqK664Qn//938/IH7hXhvPPvuskpOTJQ3cY6murk6LFy+WxWKR2+3Wvn371Nvbq6amJk2dOlV2u1233HKL6uvrderUKfl8Ph07dkyLFi0aNh/2ZQIAAAAmp6985StasGCB3n///SG//BQXF6eOjg5zw/ALvxRltVoVCAQGxS/8IlVnZ6dsNtuQ980XqABg7FHYAACMiSVLluj2229XfX29Zs2apVdffVVbt27VoUOHlJaWprS0ND333HOSzi0/lZKSotTUVL399tt65JFHJJ0rbMTGxiopKUmbN282N+dLTU3V0qVLNXfuXK1atUqPPfaYJCk+Pl4PPvigFi5cqMzMTD366KMKDx+1VRcBAAAATGD/+7//q1OnTkk6t5zUK6+8ooULFyosLExHjx5VX1+fKisrlZOTI4vFooyMDHPD8L179yonJ0fSwC9Y7dmzZ9i42+0eMg++QAUAY4+/9gAAxsQLL7wwKHb+21Cfdv7DwadNmTJFu3btGvJnHo9HHo9nUHz9+vVav379yBMFAAAAMCn8f//f/6f169fLMAwZhqH/83/+j1JSUrRz507l5+eru7tbhYWFSklJkSRt3bpVq1at0saNG3XzzTebG4mXlpZq5cqV2rFjh+bPn29+8WrdunXKz8+X0+mUw+HQ/v37g9ZXALjcUdgAAAAAAABAyFu0aJGOHDkyKJ6RkaFjx44NirtcLjU2Ng6KT58+XQcPHhwUj4yM1IEDB0YjVQDAF8RSVAAAAAAmrA8++EBZWVmaN2+eUlJSdObMGR06dEjJyclyOp3asmWLeWxLS4vS09PldDpVVFRkzhT0+/3KysqSy+VSbm6uuru7JUnd3d3Kzc2Vy+VSVlaW/H5/UPoIAAAA4OJQ2AAAAAAwYa1Zs0ZbtmzRe++9p4MHDyoiIkIbNmzQvn379P7776u+vl5NTU2SpOLiYnk8Hnm9Xvn9fnPd9PLycuXl5am5uVmJiYmqqKiQJFVUVCgxMVHNzc3Ky8sz93ICAAAAMLFR2AAAAAAwIR07dkxTp07VX/3VX0mSYmNj9dFHH6m3t1epqakKCwvTqlWrVFtbK8Mw1NDQYK6PXlBQoJqaGklSdXW1CgsLRxwHAACT2+ySuiEbgNDBHhsAAAAAJqTm5mZdddVVysnJUVtbm1auXKlbbrlFDofDPMbhcOjgwYNqb29XbGysLBaLGW9ra5MkBQIBWa3WQXGfz2eey2azqbOzc9hcenp61NPTY97u6uoa1b4CAAAAGDkKGwAAAAAmpN7eXr366qs6cuSIvvzlL2vp0qWaOnVqUHIpKyvTww8/HJT7BgAAADAQS1EBAAAAmJAcDofS09OVkJCgiIgILV++XB9//LE540KS2traZLfbFRcXp46ODnPD8PNxSbJarQoEAoPidrvdPFdnZ6dsNtuwuZSWlioQCJittbV1LLoMAAAAYAQobAAAAACYkL7xjW/oo48+0smTJ9Xf369XXnlF1157rcLCwnT06FH19fWpsrJSOTk5slgsysjIMDcM37t3r3JyciRJbrdbu3fvliTt2bNn2Ljb7R42l4iICEVHRw9oAAAAAIKDwgYAAACACSk8PFw/+tGP9M1vflOpqalyuVxyu93auXOn8vPzNWfOHC1dulQpKSmSpK1bt2rz5s1KSkpSTEyMuZF4aWmpqqqq5HQ65fV6tXbtWknSunXr5PV65XQ6VVVVpZKSkqD1FQAAAMDIsccGAAAAgAlr2bJlWrZs2YBYRkaGjh07NuhYl8ulxsbGQfHp06fr4MGDg+KRkZE6cODAqOUKAAAAYHwwYwMAAAAAAAAAAIQMChsAAAAAAAAAACBkUNgAAAAAAAAAAAAhg8IGAAAAAAAAAAAIGRQ2AAAAAAAAAABAyKCwAQAAAAAAAAAAQgaFDQAAAAAAAAAAEDIobAAAAAAAAAAAgJBBYQMAAAAAAAAAAIQMChsAAAAAAAAAACBkUNgAAAAAAAAAAAAhg8IGAAAAAAAAAAAIGRQ2AABjYsWKFYqJidHKlSvN2KFDh5ScnCyn06ktW7aY8ZaWFqWnp8vpdKqoqEiGYUiS/H6/srKy5HK5lJubq+7ubklSd3e3cnNz5XK5lJWVJb/fL0kyDENFRUVyOp1KT09XS0vLOPYYAAAAAAAA44HCBgBgTGzcuFFPPfXUgNiGDRu0b98+vf/++6qvr1dTU5Mkqbi4WB6PR16vV36/X3V1dZKk8vJy5eXlqbm5WYmJiaqoqJAkVVRUKDExUc3NzcrLy1N5ebkkqa6uTn6/X16vVx6PR8XFxePYYwAAAAAAAIwHChsAgDGRmZmpqKgo87bP51Nvb69SU1MVFhamVatWqba2VoZhqKGhQdnZ2ZKkgoIC1dTUSJKqq6tVWFh4SfHs7Gw1NDSYsz8AAAAAAAAwOYQHOwEAwOXB5/PJ4XCYtx0Ohw4ePKj29nbFxsbKYrGY8ba2NklSIBCQ1WodFL/wXDabTZ2dnYPiFotFMTExam9vV3x8/JA59fT0qKenx7zd1dU1ij0GAAAAAISS2SV1Q8Y/LM8e50wAfB5mbAAALltlZWWyWq1mS0hICHZKAAAAAAAA+BwUNgAA48Jut5szLiSpra1NdrtdcXFx6ujoMJeMOh+XJKvVqkAgMCh+4bk6Oztls9kGxQ3D0MmTJxUXFzdsTqWlpQoEAmZrbW0d3U4DAAAAAABg1FHYAACMC7vdrrCwMB09elR9fX2qrKxUTk6OLBaLMjIyzA3D9+7dq5ycHEmS2+3W7t27JUl79uwZNu52uwfF6+rqtHjxYnOJq6FEREQoOjp6QAMAAAAAAMDExh4bAIAxsWTJEr377rs6c+aMZs2apaqqKu3cuVP5+fnq7u5WYWGhUlJSJElbt27VqlWrtHHjRt18883mRuKlpaVauXKlduzYofnz5+uRRx6RJK1bt075+flyOp1yOBzav3+/pHOFjdraWiUlJclms6mysjI4nQcAAAAAAMCYobABABgTL7zwwpDxY8eODYq5XC41NjYOik+fPl0HDx4cFI+MjNSBAwcGxadMmaJdu3ZdfLIAAAAAAAAIGSxFBQAAAAAAAAAAQgaFDQAAAAAAAAAAEDIobAAAAAAAAAAAgJBBYQMAAAAAAAAAAIQMChsAAAAAAAAAACBkUNgAAAAAAAAAAAAhIzzYCQAAAAAAAISS2SV1wU4BAIDLGjM2AAAAAAAAAABAyGDGBgAAAAAAAIBxx+wnAJeKGRsAAAAAAAAAACBkjGph4+OPP9bVV1+tTZs2SZIOHTqk5ORkOZ1ObdmyxTyupaVF6enpcjqdKioqkmEYkiS/36+srCy5XC7l5uaqu7tbktTd3a3c3Fy5XC5lZWXJ7/ePZtoAAAAAAAAAACBEjGph44c//KEyMjLM2xs2bNC+ffv0/vvvq76+Xk1NTZKk4uJieTweeb1e+f1+1dWdm3ZWXl6uvLw8NTc3KzExURUVFZKkiooKJSYmqrm5WXl5eSovLx/NtAEAAAAAAAAAQIgYtcJGc3Ozjh8/rmXLlkmSfD6fent7lZqaqrCwMK1atUq1tbUyDEMNDQ3Kzs6WJBUUFKimpkaSVF1drcLCwhHHAQAAAAAAQtnskrohGwAAGN6oFTY2bdqksrIy87bP55PD4TBvOxwOtbW1qb29XbGxsbJYLAPikhQIBGS1WgfFLzyXzWZTZ2fnsHn09PSoq6trQAMAAAAAAMDk1draqszMTM2bN0+pqamqqqqSNHrLoRuGoaKiIjmdTqWnp6ulpSU4HQUASBqlwsazzz6rOXPmaM6cOaNxui+krKxMVqvVbAkJCcFOCQAAAAAAAGMoPDxcO3bs0Hvvvafnn39e999/v86cOTNqy6HX1dXJ7/fL6/XK4/GouLg4aH0FAIxSYePNN99UZWWlZs+erU2bNunxxx9XfX29OeNCktra2mS32xUXF6eOjg6zQn4+LklWq1WBQGBQ3G63m+fq7OyUzWYbNpfS0lIFAgGztba2jkYXAQAAAAAAMEHNnDlTaWlpkqQZM2YoPj5eHR0do7Yc+oXx7OxsNTQ0mH/bAgCMv1EpbJSVlam1tVUffvihtm/frnXr1ukf/uEfFBYWpqNHj6qvr0+VlZXKycmRxWJRRkaGWSHfu3evcnJyJElut1u7d++WJO3Zs2fYuNvtHjaXiIgIRUdHD2gAAAAAAAC4PDQ2Nqqvr0+RkZGjthz6hXGLxaKYmBi1t7cPef8skw4AYy98LE++c+dO5efnq7u7W4WFhUpJSZEkbd26VatWrdLGjRt18803m5Xz0tJSrVy5Ujt27ND8+fP1yCOPSJLWrVun/Px8OZ1OORwO7d+/fyzTBoAxwyaAAAAAADB2Ojo6tHr1aj3++ONBy6GsrEwPP/xw0O4fAC4Ho17YWLNmjfnvjIwMHTt2bNAxLpdLjY2Ng+LTp0/XwYMHB8UjIyN14MCB0UwTAAAAAAAAk0hPT49uu+02lZSU6Prrr5dhGOZy6BaLZcjl0K1W65DLocfHxw9YDv18PD09XYZh6OTJk4qLixsyj9LSUj3wwAPm7a6uLvaABYBRNipLUQEAAADAWPn444919dVXa9OmTZKkQ4cOKTk5WU6nU1u2bDGPa2lpUXp6upxOp4qKisy1z/1+v7KysuRyuZSbm6vu7m5JUnd3t3Jzc+VyuZSVlSW/3z/+nQMAjArDMLRmzRrddNNN5l4Yo7kc+oXxuro6LV682Fzi6tNYJh0Axh6FDQAAAAAT2g9/+ENlZGSYtzds2KB9+/bp/fffV319vZqamiRJxcXF8ng88nq98vv95h+yysvLlZeXp+bmZiUmJqqiokKSVFFRocTERDU3NysvL0/l5eXj3zkAwKh4/fXX9fTTT+vAgQNKS0tTWlqampqatHXrVm3evFlJSUmKiYkZsBx6VVWVnE6nvF6v1q5dK+nccuher1dOp1NVVVUqKSmRdK6wERsbq6SkJG3evJkxAwCCbEz32AAAAACAL6K5uVnHjx9XTk6Ofvvb38rn86m3t1epqamSpFWrVqm2tlbz589XQ0ODqqqqJEkFBQWqqamR2+1WdXW1Dh8+bMaLi4t17733qrq6Wtu2bTPj1113nbZv3x6cjgIAvpAbbrhB/f39Q/5sNJZDnzJlinbt2vWF8wQAjA5mbAAAAACYsDZt2qSysjLzts/nk8PhMG87HA61tbWpvb1dsbGx5rIg5+OSzDXUPx2/8Fw2m02dnZ3D5tHT06Ourq4BDQAAAEBwUNgAAIyr999/35wanpaWZn4jas2aNUpMTDTjLS0tkoZf/9wwDBUVFcnpdCo9Pd08XpK2bNkip9Op5ORkHTp0KCj9BAB8cc8++6zmzJmjOXPmBDsVlZWVyWq1mo1NYAEAAIDgobABABhXc+fO1ZEjR3TkyBG99tpruvLKK/XXf/3XkqR//ud/Nn+WlJQkafj1z+vq6uT3++X1euXxeFRcXCxJampqUn19vY4fP67Kykpt2LAhOB0FAHxhb775piorKzV79mxt2rRJjz/+uOrr680ZF5LU1tYmu92uuLg4dXR0mBuGn49LktVqVSAQGBS32+3muTo7O2Wz2YbNpbS0VIFAwGytra1j0WUAAAAAI0BhAwAQNNXV1br55pt15ZVXfuYxhYWFkj5ZL/3T8ezsbDU0NMgwDNXU1Cg/P1/h4eFKSUnR2bNn5fP5xr4zAIBRV1ZWptbWVn344Yfavn271q1bp3/4h39QWFiYjh49qr6+PlVWVionJ0cWi0UZGRnmhuF79+5VTk6OpHMbvu7evVuStGfPnmHjbrd72FwiIiIUHR09oAEAAAAIDgobAICg+dWvfqU777zTvL1p0yYtWLBApaWl6uvrkzT8+ucXxi0Wi2JiYtTe3j7k2uvDFTZYLx0AQtPOnTuVn5+vOXPmaOnSpUpJSZEkbd26VZs3b1ZSUpJiYmKUnZ0t6dxsi6qqKjmdTnm9Xq1du1aStG7dOnm9XjmdTlVVVamkpCRofQIAAAAwcuHBTgAAcHnq6upSQ0ODKisrJZ37Vu6MGTPU09Oj733ve/rpT3865stIlZWV6eGHHx7T+wAAjI41a9aY/87IyNCxY8cGHeNyudTY2DgoPn36dB08eHBQ/Pw+TwAAAABCCzM2AABB8eyzz+qWW27RtGnTJEkzZ86UxWLRtGnTtHr1ah0+fFjS8OufXxg3DEMnT55UXFzcgLg0cC31T2O9dAAAAAAAgNBDYQMAEBSfXobqxIkTkqT+/n5VV1crOTlZ0vDrn18Yr6ur0+LFi2WxWOR2u7Vv3z719vaqqalJU6dOHbawwXrpAAAAAAAAoYelqAAA4y4QCOjQoUN65plnzNh3v/td+f1+9ff3KyMjQ/fdd5+kc+uf5+fny+l0yuFwaP/+/ZLOFTZqa2uVlJQkm81mLmmVmpqqpUuXau7cuZo2bZqeeOKJ8e8gAAAAAAAAxgyFDQDAuLNarfrf//3fAbEXX3xxyGOHW/98ypQp2rVr15D/x+PxyOPxfNE0AQAAAAAAMAGxFBUAAAAAAAAAAAgZFDYAAAAAAAAAAEDIoLABAAAAAAAAAABCBoUNAAAAAAAAAAAQMihsAAAAAAAAAACAkEFhAwAAAAAAAAAAhAwKGwAAAAAAAAAAIGRQ2AAAAAAAAAAAACGDwgYAAAAAAAAAAAgZFDYAAAAAAAAAAEDIoLABAAAAAAAAAABCBoUNAAAAAAAAAAAQMihsAAAAAAAAAACAkEFhAwAAAAAAAAAAhAwKGwAAAAAAAAAAIGRQ2AAAAAAAAAAAACGDwgYAAAAAAAAAAAgZFDYAAAAAAAAAAEDICA92AgAAAAAAAAAmr9kldcFOAcAkw4wNAAAAAAAAAAAQMpixAQAAgJDGNwABAAAA4PLCjA0AAAAAAAAAABAyKGwAAMbd7NmzlZqaqrS0NGVlZUmSWlpalJ6eLqfTqaKiIhmGIUny+/3KysqSy+VSbm6uuru7JUnd3d3Kzc2Vy+VSVlaW/H6/JMkwDBUVFcnpdCo9PV0tLS3B6SQAAAAAAADGBIUNAEBQNDQ06MiRI3rppZckScXFxfJ4PPJ6vfL7/aqrO7e0THl5ufLy8tTc3KzExERVVFRIkioqKpSYmKjm5mbl5eWpvLxcklRXVye/3y+v1yuPx6Pi4uLgdBAAAAAAAABjgsIGACDoDMNQQ0ODsrOzJUkFBQWqqamRJFVXV6uwsPCS4tnZ2WpoaDBnfwAAAAAAACD0UdgAAIw7i8WiG2+8Ud/4xje0d+9etbe3KzY2VhaLRZLkcDjU1tYmSQoEArJarYPiPp9PDodDkmSz2dTZ2TkobrFYFBMTo/b29iHz6OnpUVdX14AGAAAAAACAiS082AkAAC4/r732mhwOh06cOKElS5YoISEhKHmUlZXp4YcfDsp9AwAAAAAA4NIwYwMAMO7Oz6iYOXOmli9frpaWFnV0dJhLRrW1tclut0uSrFarAoHAoLjdbjdnb3R2dspmsw2KG4ahkydPKi4ubsg8SktLFQgEzNba2jo2HQYAAAAAAMCoobABABhXZ86c0alTpyRJp0+f1osvvqj58+crIyPD3DB87969ysnJkSS53W7t3r1bkrRnz55h4263e1C8rq5OixcvNpe4+rSIiAhFR0cPaAAAAAAAAJjYWIoKADCu/vd//1crVqyQJPX19WndunX6xje+oa1bt2rVqlXauHGjbr75ZnMj8dLSUq1cuVI7duzQ/Pnz9cgjj0iS1q1bp/z8fDmdTjkcDu3fv1/SucJGbW2tkpKSZLPZVFlZGZyOAgAAAAAAYExQ2AAAjKvExES9++67g+Iul0uNjY2D4tOnT9fBgwcHxSMjI3XgwIFB8SlTpmjXrl2jkisAAAAAAAAmnlFZiqq1tVWZmZmaN2+eUlNTVVVVJUlqaWlRenq6nE6nioqKzLXT/X6/srKy5HK5lJubq+7ubklSd3e3cnNz5XK5lJWVJb/fL+ncGulFRUVyOp1KT09XS0vLaKQNAAAAAAAAAABCzKgUNsLDw7Vjxw699957ev7553X//ffrzJkzKi4ulsfjkdfrld/vN9dOLy8vV15enpqbm5WYmKiKigpJUkVFhRITE9Xc3Ky8vDyVl5dLOrdGut/vl9frlcfjUXFx8WikDQAAAAAAAAAAQsyoFDZmzpyptLQ0SdKMGTMUHx+vjo4ONTQ0mGukFxQUqKamRpJUXV2twsLCS4pnZ2eroaHBnP0BAAAAAAAArFixQjExMVq5cqUZO3TokJKTk+V0OrVlyxYzPlqrjAAAgmNUChsXamxsVF9fnyIjIxUbGyuLxSJJcjgcamtrkyQFAgFZrdZBcZ/PJ4fDIUmy2Wzq7OwcFLdYLIqJiVF7e/uQ99/T06Ourq4BDQAAAAAAAJPbxo0b9dRTTw2IbdiwQfv27dP777+v+vp6NTU1SdKorTICAAiOUS1sdHR0aPXq1UHdtLWsrExWq9VsCQkJQcsFAAAAAAAA4yMzM1NRUVHmbZ/Pp97eXqWmpiosLEyrVq1SbW2tDMMYtVVGAADBMWqFjZ6eHt12220qKSnR9ddfr7i4OHV0dJhT+dra2mS32yVJVqtVgUBgUNxut5uzNzo7O2Wz2QbFDcPQyZMnFRcXN2QepaWlCgQCZmttbR2tLgIAAAAYR62trcrMzNS8efOUmpqqqqoqSaO3fIhhGCoqKpLT6VR6erpaWlqC01EAwJi4cAUQ6ZNVQ9rb20dtlZGhsJoIAIy9USlsGIahNWvW6KabbjKr1xaLRRkZGeZUvr179yonJ0eS5Ha7tXv3bknSnj17ho273e5B8bq6Oi1evNgcfD4tIiJC0dHRAxoAAACA0BMeHq4dO3bovffe0/PPP6/7779fZ86cGbXlQ+rq6uT3++X1euXxeFRcXBy0vgIAJg9WEwGAsTcqhY3XX39dTz/9tA4cOKC0tDSlpaWpqalJW7du1ebNm5WUlKSYmBhzil9paamqqqrkdDrl9Xq1du1aSdK6devk9XrldDpVVVWlkpISSecKG7GxsUpKStLmzZtZxxAAAAC4DMycOVNpaWmSpBkzZig+Pl4dHR2jtnzIhfHs7Gw1NDSYsz8AAKHvwhVApE9WDRnNVUaGwmoiADD2wkfjJDfccIP6+/uH/FljY+Og2PTp03Xw4MFB8cjISB04cGBQfMqUKUHdtwMAAABAcDU2Nqqvr0+RkZGjtnzIhXGLxaKYmBi1t7crPj5+0P339PSop6fHvM2yIgAw8dntdoWFheno0aNKTk5WZWWlHn/88QGrjLjdbu3du1erV6+W9MmqIffee++Qq4wsWLBgwCojQ4mIiFBERMS49BEALlejunk4AAAAAIy2jo4OrV69OqhfdmJZEQCY+JYsWaLbb79d9fX1mjVrlt544w3t3LlT+fn5mjNnjpYuXaqUlBRJGrVVRgAAwTEqMzYAAAAAYCz09PTotttuU0lJia6//noZhmEuH2KxWIZcPsRqtQ65fEh8fPyA5UPOx9PT02UYhk6ePKm4uLgh8ygtLdUDDzxg3u7q6qK4AQATzAsvvDBk/NixY4NiLpdrVFYZAQAEBzM2AAAAAExIhmFozZo1uummm8y9MC5cPkSS9u7dO2iZEElDLh9yPn5++ZAL43V1dVq8eLG5xNWnRUREKDo6ekADAAAAEBwUNgAAAABMSK+//rqefvppHThwQGlpaUpLS1NTU9OoLR/idrsVGxurpKQkbd68WeXl5UHrKwAAAICRYykqAAAAABPSDTfcoP7+/iF/NhrLh0yZMiWo+3YAAAAAuDTM2AAAAAAAAAAAACGDwgYAAAAAAAAAAAgZFDYAAAAAAAAAAEDIYI8NAAAAAAAAAF/Y7JK6YKcA4DLBjA0AAAAAAAAAABAymLEBAACAy8pw3yT8sDx7nDMBAABAKOD9IzDxMGMDAAAAAAAAAACEDAobAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYPCBgBgXLW2tiozM1Pz5s1TamqqqqqqJElr1qxRYmKi0tLSlJaWppaWFklSd3e3cnNz5XK5lJWVJb/fL0kyDENFRUVyOp1KT083j5ekLVu2yOl0Kjk5WYcOHRr/TgIAAAAAAGDMUNgAAIyr8PBw7dixQ++9956ef/553X///Tpz5owk6Z//+Z915MgRHTlyRElJSZKkiooKJSYmqrm5WXl5eSovL5ck1dXVye/3y+v1yuPxqLi4WJLU1NSk+vp6HT9+XJWVldqwYUNwOgoAAAAAAIAxER7sBAAAl5eZM2dq5syZkqQZM2YoPj5eHR0dwx5fXV2tbdu2SZIKCgp03XXXafv27aqurlZhYaEkKTs7W+vXr5dhGKqpqVF+fr7Cw8OVkpKis2fPyufzyW63j33nAAAAMKnMLqkLdgoAAGAIzNgAAARNY2Oj+vr6lJCQIEnatGmTFixYoNLSUvX19UmSfD6fHA6HJMlms6mzs3NQ3GKxKCYmRu3t7QPikuRwOOTz+Ya8/56eHnV1dQ1oAAAAAAAAmNgobAAAgqKjo0OrV6/Wrl27JEllZWX63e9+p7feeku///3v9dOf/nTMcygrK5PVajXb+QILAAAAAAAAJi6WogKAMcCU9c/W09Oj2267TSUlJbr++uslyVyeatq0aVq9erW5qbjdbldbW5vi4+PV2dkpm802IJ6eni7DMHTy5EnFxcWZ8fPa2tqGXYaqtLRUDzzwgHm7q6uL4gYAAAAAAMAEx4wNAMC4MgxDa9as0U033WTukSFJJ06ckCT19/erurpaycnJkiS3263du3dLkvbs2SO32z0oXldXp8WLF8tiscjtdmvfvn3q7e1VU1OTpk6dOmxhIyIiQtHR0QMaAAAAAAAAJjZmbAAAxtXrr7+up59+WqmpqTpw4IAkaffu3dq4caP8fr/6+/uVkZGh++67T5K0bt065efny+l0yuFwaP/+/ZLOFTZqa2uVlJQkm82myspKSVJqaqqWLl2quXPnatq0aXriiSeC0k8AAAAAAACMDQobAIBxdcMNN6i/v39Q/MUXXxzy+MjISLMAcqEpU6aY+3N8msfjkcfj+SJpAgAAAAAAYIKisAEAAAAAAAAAo2S4fTc/LM8e50yAyYvCBgAAAAAAAIARGe6P9gAwntg8HAAAAAAAAAAAhAwKGwAAAAAAAAAAIGRQ2AAAAAAAAAAAACGDwgYAAAAAAAAAAAgZFDYAAAAAAAAAAEDICA92AgAAAAAAAAAQamaX1AU7BeCyxYwNAAAAAAAAAAAQMihsAAAAAAAAAACAkEFhAwAAAAAAAAAAhAwKGwAAAAAAAAAAIGSweTgAAAAAAMAEM9ymxB+WZ49zJgBGy8VuNs7rHRgeMzYAAAAAAAAAAEDIYMYGAHwBF/ttCwAAAAAAQgGfd4OPmVvA8JixAQAAAAAAAAAAQgaFDQAAAAAAAAAAEDIobAAAAAAAAAAAgJDBHhsAAAAAAAAAECLYewOgsAEAAIAQwQaWAICxwhgDAEBoobABACPABx0AAAAAAABgYqCwAQAAAAAAAFym+CIfgFAUUoWN2tpaPfjgg+rv71dxcbHWrl0b7JQATDK8oZs8GDMAXCzWKr58MWYAAEaKMQMAJoaQKWz09vbqgQce0EsvvSSr1aprr71WK1asUFxcXLBTAwBMMIwZAICRYswAAIwUYwYmOr6og8tJyBQ2Dh06pOTkZDkcDknSsmXL9Pzzzys/Pz/ImQEIRczMmNwYM4DQxjUa44kxA7i8MMbgiwj1MYPnP4DJJGQKGz6fzxw4JMnhcKitrW3QcT09Perp6TFvBwIBSVJXV9fYJwkgaOZvfi7YKUwIX+Rad/7/GoYxWukEDWMGEBpC5dr91e9XDRn/7cPfGudMJg7GDMYMYKILlTHmUoTadYcxY/zHjMn8/MelGe797HAu5/e5CK6LGTNCprAxUmVlZXr44YcHxRMSEoKQDQCML+uOL36OU6dOyWq1fvEThQDGDABfxGhcc0MdYwZjBoDxF6rjD2MGYwZCR6heZzB5jGTMCJnCht1uH1AFb2tr06JFiwYdV1paqgceeMC83d/fr46ODsXFxclisYxLrqOpq6tLCQkJam1tVXR0dLDT+ULoy8Q0mfoiTa7+jHdfDMPQqVOnZLfbx/y+xtrlOmZ8lsn02rgU9P/y7f/l3Hdp7PrPmDH8mDEZn3OTrU/0Z2KbbP2RJl+fLrY/jBlj/zljsj3Hvggei0/wWHyCx+ITE/2xuJgxI2QKG4sWLdJvf/tbtbW1yWq16te//rUeeuihQcdFREQoIiJiQMxms41TlmMnOjp6Qj7ZLgV9mZgmU1+kydWf8ezLZPkG1eU+ZnyWyfTauBT0//Lt/+Xcd2ls+s+Y8dljxmR8zk22PtGfiW2y9UeafH26mP4wZozP54zJ9hz7IngsPsFj8Qkei09M5MdipGNGyBQ2wsPD9eijjyorK0v9/f36wQ9+oLi4uGCnBQCYgBgzAAAjxZgBABgpxgwAmDhCprAhSbfeeqtuvfXWYKcBAAgBjBkAgJFizAAAjBRjBgBMDFOCnQA+W0REhDZv3jxoCmMooi8T02TqizS5+jOZ+oLgu9yfT/T/8u3/5dx3if4Hw2R8zCdbn+jPxDbZ+iNNvj5Ntv5MBvxOPsFj8Qkei0/wWHxiMj0WFsMwjGAnAQAAAAAAAAAAMBLM2AAAAAAAAAAAACGDwgYAAAAAAAAAAAgZFDYAAAAAAAAAAEDIoLAxQWVmZuqaa65RWlqa0tLS9Kc//UmS5Pf7lZWVJZfLpdzcXHV3dwc505Hr7+/Xddddp5UrV5qxlpYWpaeny+l0qqioSKGw5cs3v/lNLViwQPPmzdOWLVvMeKj15eOPP9ayZct0zTXXKDk5WY899pj5s1B8nm3YsEFf+cpXlJ6ePiAear+X82prazV37ly5XC5VVFQEOx2EuPb2dn3729/WNddco3nz5qmlpUVS6L4+LsVkGYMu1mS71l+Ky+162traqszMTM2bN0+pqamqqqqSdHk83ycC3sNPfJPlvbw0Oa/xk+09vTQ5xqEVK1YoJiZmwHXg0KFDSk5OltPpHPBaQnANNw5dTibDa260zJ49W6mpqUpLS1NWVlaw0xlXXLc+MdRjMWmuFQYmpBtvvNFoamoaFH/wwQeNxx57bNC/Q8GuXbuMO+64w8jLyzNjeXl5Rk1NzaB/T2SBQMAwDMM4e/ascd111xlvv/22YRih15czZ84YL7/8smEYhnHq1Clj7ty5RnNzs2EYofk8e+2114zf/OY3xrXXXjsgHmq/F8M499xyuVzGH/7wB+PUqVPGnDlzDL/fH+y0EMK++93vGnv37jUM49xr//Tp04ZhhObr41JNljHoYk22a/3Fuhyvpz6fz3jnnXcMwzCMEydOGHa73Th9+vRl8XyfCHgPP/FNlvfyhjE5r/GT6T29YUyeceill14yqqurB1wH0tPTjXfffdfo7e01rrvuOuPo0aNBzBDnDTcOXS4my2tutFx99dXGqVOngp1GUHDd+sRQj8VkuVYwYyPEVFdXq7CwUJJUUFCgmpqaIGc0Mh0dHaqsrNT69evNmGEYamhoUHZ2tqTQ6U90dLQk6ezZszp79qwsFktI9uWKK67QjTfeKEm66qqrNHfuXJ04cUJSaD7P/vIv/1JxcXEDYqH4e5E++RaBw+HQVVddpWXLlun5558PdloIUYFAQL/5zW/0ne98R9K51/6VV14Zsq+PSzGZxqCLNdmu9Rfrcryezpw5U2lpaZKkGTNmKD4+Xh0dHZfF830iC9XX22S8fk6W9/LS5LzGT6b39NLkGYcyMzMVFRVl3vb5fOrt7VVqaqrCwsK0atUq1dbWBjFD4JzJ8prDF8d16xOffiwmEwobE9h3vvMdLVy4UD/+8Y/NWCAQkNVqlSQ5HA61tbUFK72L8nd/93d66KGHFBYWZsba29sVGxsri8UiKbT6c/311+vLX/6ylixZorS0tJDui3Ru2YqjR4/q61//uqTQfZ59Wqj+Xnw+nxwOh3k7VPLGxPTBBx8oPj5e3/3ud7Vw4UJ9//vfV29vb8i+Pi7FZBuDLtVkvdZ/lsv9etrY2Ki+vj5FRkZeds/3YOI9/MQ32d7LS5P7Gh/Kv5/JOg5N1n5NFkONQ5cLnpsDWSwW3XjjjfrGN76hvXv3BjudoOK5MdhkuFaEBzuBy1laWpp6e3sHxZ9//nnt3btXDodDgUBAt956q+bOnWt+Q2WiGq4/P/vZz3Ty5EllZmbq5ZdfHv/ELsFn/W7sdrsaGhp06tQprVy5Ur/97W81Y8aMIGQ5Mp/Xl56eHt15553atm2brrzyyiBkOHKf1xfgcjbc6+Nf/uVfdOjQIe3cuVOpqalavXq1nnzySa1YsSIIWY6dyTQGXYrJdK3H6Ojo6NDq1av1+OOPBzuVSYf38BPfZHovL02+azzv6YEvZrKNQxg7r732mhwOh06cOKElS5YoJSVFqampwU4LE8BkuVZQ2AiiI0eOfO4xVqtVd9xxhw4fPqzs7GxZrVbz2zdtbW0T6o3fcP3513/9V7366quaPXu2uru7derUKa1fv14/+9nP1NHRIcMwZLFYJlR/RvK7iYqK0s0336z/+I//0IMPPhiSfTEMQ6tXr9by5csHbCI0UZ9nI/m9XCguLm7C/l4+i91uH/DNgba2Ni1atCiIGSEUDPf6OHHihL72ta+ZS9N8+9vf1ssvv6y1a9eG5OtjOJNpDLoUk+laP5ou1+tpT0+PbrvtNpWUlOj666+XYRiT6vkebLyHn/jXz8n0Xl6afNf4y+U9vTR5x6Gh+hUqv5PJ4FLGocvFZH3NXarzMxRmzpyp5cuX6+23375sCxtctwY6/9wI9WsFS1FNQL29vfL7/ZKkP//5z/r1r3+t5ORkSZLb7dbu3bslSXv27FFOTk7Q8hype+65R21tbfrwww9VWVmpZcuWadeuXbJYLMrIyFBdXZ2kc9XCid6fQCCgP/7xj5LO/dHgueee0zXXXBOSfZGk0tJSXXHFFfr7v//7AfFQfJ4NJVR/L4sWLdJvf/tbtbW16fTp0/r1r3+tb33rW8FOCyFq5syZ+vKXv6wPPvhAkvTyyy/rL/7iL0L29XGxJtMYdKkm+7X+s1yO11PDMLRmzRrddNNN5vr6l9PzPZh4Dz/xTbb38tLlcY0P5d/PZB2H7Ha7wsLCdPToUfX19amysjJkfieT2WeNQ5eLyfqauxRnzpzRqVOnJEmnT5/Wiy++eNk9Hy7EdesTk+paMZ47lWNkTp8+bXz96183UlJSjHnz5hnFxcVGf3+/YRiG8dFHHxnf/OY3jaSkJOPb3/628fHHHwc524vz0ksvGXl5eebt//qv/zK+/vWvG4mJica6deuMvr6+IGb3+T788EPj2muvNVJSUozk5GTj4YcfNn8Wan1pbW01JBnz5s0zFixYYCxYsMD4j//4D8MwQvN59r3vfc+YMWOGMXXqVMPhcBi/+tWvDMMIvd/Lec8++6zhcrmMpKQk42c/+1mw00GIO3z4sLFw4UJj/vz5RkFBgdHd3W0YRui+Pi5VqI9Bl2KyXesvxeV2PX311VcNi8Vi/r4XLFhgHD169LJ4vgcb7+Envsn0Xt4wJuc1frK9pzeMyTEO3XzzzUZ8fLwRGRlpOBwOo6GhwXjjjTeMefPmGYmJicbmzZuDnSKMzx6HLieT4TU3GlpaWozU1FQjNTXVSE5ONnbs2BHslMYV161PfPqxeO211ybNtcJiGIYR5NoKAAAAAAAAAADAiLAUFQAAAAAAAAAACBkUNgAAAAAAAAAAQMigsAEAAAAAAAAAAEIGhQ0AAAAAAAAAABAyKGwAAAAAAAAAAICQQWEDAAAAAAAAAACEDAobAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYPCBgAAAAAAAAAACBkUNgAAAAAAAAAAQMigsAEAAAAAAAAAAEIGhQ0AAAAAAAAAABAyKGwAAAAAAAAAAICQQWEDAAAAAAAAAACEDAobAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYPCBgAAAAAAAAAACBkUNoAxsHz5ct17772D4l1dXbriiiv085//XBaLRVdddZXZcnJygpApAGAi+Lxx48UXX1RnZ6fWrl2r+Ph4RUdHKz09XR9//HEQsgUABNPnjRk/+tGPBnzOuPLKK2WxWPRv//ZvQcgWABBMI/mcUVFRoTlz5igqKkrXXHONfvnLXwYhU+DiUdgAxsDdd9+tX/7yl+rp6RkQ37dvn2bOnKmsrCxJ0h/+8AedPn1ap0+fVk1NTTBSBQBMAJ83btx4441yu92aOnWq/uu//kudnZ16/PHHNXXq1CBlDAAIls8bM0pLS83PGKdPn9ZTTz0lq9WqZcuWBSljAECwfN6YERMTo7/5m7/Rz372M3V1deknP/mJ7rrrLr333ntByhgYOQobwBi49dZbFR4ergMHDgyIP/nkk7rrrrtksViCkxgAYEL6vHHjP/7jP/Tf//3feuyxxxQbG6spU6Zo4cKFFDYA4DJ0sZ81nnjiCeXn5ysyMnIcswQATASfN2Z88MEHmj17trKysmSxWHTzzTcrISGBwgZCAoUNYAxMnTpVhYWF+vnPf27G3nvvPf3mN7/RmjVrzNj8+fM1Y8YM3XrrrTp+/HgQMgUATASfN24cPHhQTqdThYWFiouLU3Jysn7xi18EMWMAQLCM9LOGdG6G+HPPPae1a9eOc5YAgIng88aMb33rW4qKitJ//ud/qr+/X88995w6Ozt1ww03BDFrYGQobABj5O6779YLL7yg1tZWSdLPf/5zfetb35LD4VB8fLzeeustffDBBzp+/LhcLpf++q//Wl1dXUHOGgAQLJ81bnR0dOill17SX/7lX+rEiRPatWuX7r33Xr3yyitBzhoAEAyfNWZc6Mknn1RqaqquvfbaYKQJAJgAPmvMuOKKK1RQUKBbb71VX/rSl3Trrbdqx44dmjFjRpCzBj4fhQ1gjMybN0+LFi3SL37xC/X29mrPnj26++67JUlXXXWVFi1apKlTp8pms2n79u06e/asGhoagpw1ACBYPm/cmDVrlu6991596Utf0l/+5V/qtttuU21tbZCzBgAEw2eNGecZhqEnn3xyUBwAcHn5rDHj5z//ubZv364333xTf/7zn3Xo0CGVlJSorq4uyFkDn4/CBjCG7r77bv3f//t/VVtbq/7+fuXk5Ax5nMViYd8NAMCw48aCBQuCnBkAYKL5vM8a/+///T+dOHFCBQUFQcoQADBRDDdmvPPOO1q2bJkWLFigKVOmaMGCBbrlllv061//OsgZA5+PwgYwhu688079z//8j77//e9r9erV5iavb731ln73u9+pr69Pp0+fVnFxsSwWixYvXhzkjAEAwTTcuLFixQp1d3frpz/9qfr6+vTWW2/p2Wef1a233hrkjAEAwTLcmHHeE088odzcXNlstuAkCACYMIYbMxYvXqznnntOx44dkyQdO3ZMzz33nBYuXBjMdIERobABjKGoqCjdcccd+vDDDwdMAf/9738vt9ut6Ohofe1rX9OxY8f0/PPPy2q1BjFbAECwDTdu2Gw21dXV6YknnlB0dLRWr16tn/zkJ2zqBwCXseHGDEnq6OjQv//7v7NpOABA0vBjxne/+139zd/8jXJycnTVVVdp+fLluuuuu3TXXXcFMVtgZCyGYRjBTgIAAAAAAAAAAGAkmLEBAAAAAAAAAABCBoUNAAAAAAAAAAAQMihsAAAAAAAAAACAkEFhAwAAAAAAAAAAhAwKGwAAAAAAAAAAIGRQ2AAAAAAAAAAAACEjPNgJjLX+/n75fD5FRUXJYrEEOx0AmLAMw9CpU6dkt9s1ZcrlWfdmzACAkRntMaO1tVWFhYX66KOPFB4eroceeki333671qxZo1deeUXR0dGSpGeeeUZJSUnq7u7Wd77zHTU1NWnWrFmqqqpSfHy8DMPQPffcoxdeeEE2m01PP/20kpKSJElbtmzRU089pYiICD355JNatGiRJKmiokJbt27VlClT9Oijj8rtdo8oZ8YMABgZPmcwZgDASF3UmGFMcq2trYYkGo1Go42wtba2BvvSHTSMGTQajXZxbbTGDJ/PZ7zzzjuGYRjGiRMnDLvdbpw+fdr43ve+Z9TU1Aw6/rHHHjMefPDBQf+uqakx8vLyBv376NGjxnXXXWecPXvWOHr0qJGenm4YhmH4/X5jzpw5RldXl9HW1ma4XC7j7NmzI8qZMYNGo9EurvE5I/i/AxqNRguVNpIxY9LP2IiKipJ07ltg57/pBQAYrKurSwkJCeZ183LEmAEAIzPaY8bMmTM1c+ZMSdKMGTMUHx+vjo6OYY+vrq7Wtm3bJEkFBQW67rrrtH37dlVXV6uwsFCSlJ2drfXr18swDNXU1Cg/P1/h4eFKSUnR2bNn5fP59PLLL2v58uWKiopSVFSU5s2bp8OHD2vx4sWfmzNjBgCMDJ8zGDMAYKQuZsyY9IWN81P8oqOjGTwAYARGa2r0ihUr9PLLL+vmm2/W/v37zXh/f78WL16shIQEM97S0qI777xTnZ2dWrJkif71X/9VFotFfr9ft99+u/7whz8oJSVFv/zlLzVt2rRLWoLkYvrOmAEAIzMWy2k0Njaqr69PCQkJkqRNmzbp7/7u77R8+XL94z/+o8LCwuTz+eRwOCRJNptNnZ2dkjQgbrFYFBMTo/b2dvl8PmVmZpr34XA45PP5Bhx/Pt7W1jZkXj09Perp6TFvnzp1ShJjBgCM1OW8BBOfMwDg4oxkzLg8FzcEAIy5jRs36qmnnhoUf+KJJzR79uwBseLiYnk8Hnm9Xvn9ftXV1UmSysvLlZeXp+bmZiUmJqqiokLSufXQExMT1dzcrLy8PJWXl0uS6urq5Pf75fV65fF4VFxcPLadBACMqo6ODq1evVq7du2SJJWVlel3v/ud3nrrLf3+97/XT3/606DlVlZWJqvVarbzhRcAAAAA44/CBgBgTGRmZg6aOtjR0aHKykqtX7/ejBmGoYaGBmVnZ0s6t6RITU2NJA1YUuRi49nZ2WpoaJBhGGPYSwDAaOnp6dFtt92mkpISXX/99ZLOLVFlsVg0bdo0rV69WocPH5Yk2e12c2ZFZ2enbDbboLhhGDp58qTi4uIGxCWpra1Ndrt92PhQSktLFQgEzNba2jrqjwEAAACAkaGwAQAYN3/3d3+nhx56SGFhYWasvb1dsbGx5jTDC5cBCQQCslqtg+IXuwTJcHp6etTV1TWgAQDGn2EYWrNmjW666SazQC1JJ06ckHRuGcPq6molJydLktxut3bv3i1J2rNnj9xu96B4XV2dFi9eLIvFIrfbrX379qm3t1dNTU2aOnWq7Ha7brnlFtXX1+vUqVPy+Xw6duyYFi1aNGSOERER5hIiLCUCAAAABNek32MDADAxvPPOOzp58qQyMzP18ssvBzsdSeeWFXn44YeDnQYAXPZef/11Pf3000pNTdWBAwckSbt379bGjRvl9/vV39+vjIwM3XfffZKkdevWKT8/X06nUw6Hw9yzye12q7a2VklJSbLZbKqsrJQkpaamaunSpZo7d66mTZumJ554QpIUHx+vBx98UAsXLtSUKVP06KOPKjycj0gAAADARMe7dgDAuHjzzTf16quvavbs2eru7tapU6e0fv16/exnP1NHR4cMw5DFYhmwDIjVajVnbVwYP790SHx8/JBLkKSnpw9YgmQ4paWleuCBB8zbXV1drJkOAEFwww03qL+/f1D8xRdfHPL4yMhIswByoSlTppj7c3yax+ORx+MZFF+/fv2AJRIBAAAATHwsRQUAGBf33HOP2tra9OGHH6qyslLLli3Trl27ZLFYlJGRYW4YvnfvXuXk5EgavNTIcPHPW4JkOCwrAgAAAAAAEHoobAAAxsSSJUt0++23q76+XrNmzdIbb7wx7LFbt27V5s2blZSUpJiYGHMj8dLSUlVVVcnpdMrr9Wrt2rWSzi1B4vV65XQ6VVVVpZKSEknnChuxsbFKSkrS5s2bVV5ePvYdBQAAAAAAwLiyGIZhBDuJsdTV1WUuZcI3cQFgeFwveQwAYKS4XvIYAMBIjfb1srW1VYWFhfroo48UHh6uhx56SLfffrvWrFmjV155xbyPZ555RklJSeru7tZ3vvMdNTU1adasWaqqqlJ8fLwMw9A999yjF154QTabTU8//bSSkpIkSVu2bNFTTz2liIgIPfnkk1q0aJEkqaKiQlu3bjX3ZTo/c3y8HwMAmKwu5nrJjA0AAAAAAACEhPDwcO3YsUPvvfeenn/+ed1///06c+aMJOmf//mfdeTIER05csQsUlRUVCgxMVHNzc3Ky8szZ3XX1dXJ7/fL6/XK4/GouLhYktTU1KT6+nodP35clZWV2rBhgySpvb1d27Zt09tvv62XXnpJDzzwgHp7e4PwCAAAJDYPBxBiZpfUDRn/sDx7nDMBcLF4/QIARgPjCXB5mzlzpmbOnClJmjFjhuLj49XR0THs8dXV1dq2bZskqaCgQNddd522b9+u6upqFRYWSpKys7O1fv16GYahmpoa5efnKzw8XCkpKTp79qx8Pp9efvllLV++XFFRUYqKitK8efN0+PBhLV68eOw7DSBk8D5l/DBjAwAAAAAAACGnsbFRfX19SkhIkCRt2rRJCxYsUGlpqfr6+iRJPp9PDodDkmSz2dTZ2TkobrFYFBMTo/b29gFxSXI4HPL5fEPG29rahsyrp6dHXV1dAxoAYHRR2AAAAAAAAEBI6ejo0OrVq7Vr1y5JUllZmX73u9/prbfe0u9//3v99Kc/DVpuZWVlslqtZjtfeAEAjB4KGwAAAAAAAAgZPT09uu2221RSUqLrr79e0rklqiwWi6ZNm6bVq1fr8OHDkiS73W7OrOjs7JTNZhsUNwxDJ0+eVFxc3IC4JLW1tclutw8bH0ppaakCgYDZWltbR/0xAIDLHYUNAAAAAAAAhATDMLRmzRrddNNN5h4ZknTixAlJUn9/v6qrq5WcnCxJcrvd2r17tyRpz549crvdg+J1dXVavHixLBaL3G639u3bp97eXjU1NWnq1Kmy2+265ZZbVF9fr1OnTsnn8+nYsWNatGjRkDlGREQoOjp6QAMAjC42DwcAAAAAAEBIeP311/X0008rNTVVBw4ckCTt3r1bGzdulN/vV39/vzIyMnTfffdJktatW6f8/Hw5nU45HA7t379f0rnCRm1trZKSkmSz2VRZWSlJSk1N1dKlSzV37lxNmzZNTzzxhCQpPj5eDz74oBYuXKgpU6bo0UcfVXg4f1YDgGDhCgwAAAAAAICQcMMNN6i/v39Q/MUXXxzy+MjISLMAcqEpU6aY+3N8msfjkcfjGRRfv3691q9ff1H5AgDGBktRAQAAAAAAAACAkEFhAwAAAAAAAAAAhAwKGwAAAAAAAAAAIGRcVGGjtbVVmZmZmjdvnlJTU1VVVSVJamlpUXp6upxOp4qKimQYhiTJ7/crKytLLpdLubm56u7uliR1d3crNzdXLpdLWVlZ8vv9kiTDMFRUVCSn06n09HS1tLSY971lyxY5nU4lJyfr0KFDo9J5AAAAAAAAAAAQWi6qsBEeHq4dO3bovffe0/PPP6/7779fZ86cUXFxsTwej7xer/x+v+rq6iRJ5eXlysvLU3NzsxITE1VRUSFJqqioUGJiopqbm5WXl6fy8nJJUl1dnfx+v7xerzwej4qLiyVJTU1Nqq+v1/Hjx1VZWakNGzaM5mMAAAAAAAAAAABCxEUVNmbOnKm0tDRJ0owZMxQfH6+Ojg41NDQoOztbklRQUKCamhpJUnV1tQoLCy8pnp2drYaGBhmGoZqaGuXn5ys8PFwpKSk6e/asfD7fF+w6AAAAAAAAAAAINZe8x0ZjY6P6+voUGRmp2NhYWSwWSZLD4VBbW5skKRAIyGq1Dor7fD45HA5Jks1mU2dn56C4xWJRTEyM2tvbB8TPn2u4wkZPT4+6uroGNAAAAAAAAAAAMDlcUmGjo6NDq1ev1q5du0Y7ny+srKxMVqvVbAkJCcFOCQAAAAAAAAAAjJKLLmz09PTotttuU0lJia6//nrFxcWpo6PD3DC8ra1NdrtdkmS1WhUIBAbF7Xa7OXujs7NTNpttUNwwDJ08eVJxcXED4p8+16eVlpYqEAiYrbW19WK7CAAAAAAAAAAAJqiLKmwYhqE1a9bopptuMvfCsFgsysjIMDcM37t3r3JyciRJbrdbu3fvliTt2bNn2Ljb7R4Ur6ur0+LFi2WxWOR2u7Vv3z719vaqqalJU6dOHbawERERoejo6AENAAAAAAAAAABMDuEXc/Drr7+up59+WqmpqTpw4IAkaffu3dq6datWrVqljRs36uabbzY3Ei8tLdXKlSu1Y8cOzZ8/X4888ogkad26dcrPz5fT6ZTD4dD+/fslnSts1NbWKikpSTabTZWVlZKk1NRULV26VHPnztW0adP0xBNPjFb/AQAAAAAAAABACLmowsYNN9yg/v7+IX/W2Ng4KDZ9+nQdPHhwUDwyMtIsjFxoypQpw+7b4fF45PF4LiZdAAAAAAAAAAAwyVzS5uEAAAAAAAAAAADBQGEDAAAAAAAAAACEDAobAAAAAAAAAAAgZFDYAAAAAAAAAAAAIYPCBgAAAAAAAAAACBkUNgAAY2LFihWKiYnRypUrJUkff/yxli1bpmuuuUbJycl67LHHzGP9fr+ysrLkcrmUm5ur7u5uSVJ3d7dyc3PlcrmUlZUlv98vSTIMQ0VFRXI6nUpPT1dLS4t5ri1btsjpdCo5OVmHDh0axx4DAAAAAABgPFDYAACMiY0bN+qpp54aECspKdHx48f11ltv6Sc/+Ym8Xq8kqby8XHl5eWpublZiYqIqKiokSRUVFUpMTFRzc7Py8vJUXl4uSaqrq5Pf75fX65XH41FxcbEkqampSfX19Tp+/LgqKyu1YcOGcewxAAAAAAAAxgOFDQDAmMjMzFRUVJR5+4orrtCNN94oSbrqqqs0d+5cnThxQpJUXV2twsJCSVJBQYFqampGHM/OzlZDQ4MMw1BNTY3y8/MVHh6ulJQUnT17Vj6fb3w6DAAAAAAAgHERHuwEAACXn9bWVh09elRf//rXJUmBQEBWq1WS5HA41NbWJkny+XxyOBySJJvNps7OzkFxi8WimJgYtbe3y+fzKTMz07wfh8Mhn88nu90+ZB49PT3q6ekxb3d1dY1qPzEys0vqhox/WJ49zpkAAAAAAIBQwIwNAMC46unp0Z133qlt27bpyiuvDGouZWVlslqtZktISAhqPgAAAAAAAPh8FDYAAOPGMAytXr1ay5cvNzcVlySr1apAICBJamtrM2dY2O12c/ZGZ2enbDbboLhhGDp58qTi4uIGxD99rqGUlpYqEAiYrbW1dVT7CwAAAAAAgNFHYQMAMG5KS0t1xRVX6O///u8HxN1ut3bv3i1J2rNnj3JycoaMu93uQfG6ujotXrxYFotFbrdb+/btU29vr5qamjR16tTPLGxEREQoOjp6QAMAAAAAAMDExh4bAIAxsWTJEr377rs6c+aMZs2apX379mnr1q2aN2+e0tLSJElbt27Vt771LZWWlmrlypXasWOH5s+fr0ceeUSStG7dOuXn58vpdMrhcGj//v2SzhU2amtrlZSUJJvNpsrKSklSamqqli5dqrlz52ratGl64okngtJ3AAAAAAAAjB0KGwCAMfHCCy8MihmGMeSx06dP18GDBwfFIyMjdeDAgUHxKVOmaNeuXUOey+PxyOPxXFSuAAAAAAAACB0sRQUAAAAAAAAAAEIGhQ0AAAAAAAAAABAyKGwAAAAACKrW1lZlZmZq3rx5Sk1NVVVVlSSppaVF6enpcjqdKioqMpc09Pv9ysrKksvlUm5urrq7uyVJ3d3dys3NlcvlUlZWlvx+v6RzSyEWFRXJ6XQqPT1dLS0t5n1v2bJFTqdTycnJOnTo0Dj3HAAAAMCloLABAAAAIKjCw8O1Y8cOvffee3r++ed1//3368yZMyouLpbH45HX65Xf71ddXZ0kqby8XHl5eWpublZiYqIqKiokSRUVFUpMTFRzc7Py8vJUXl4uSaqrq5Pf75fX65XH41FxcbEkqampSfX19Tp+/LgqKyu1YcOG4DwAAAAAAC4KhQ0AAAAAQTVz5kylpaVJkmbMmKH4+Hh1dHSooaFB2dnZkqSCggLV1NRIkqqrq1VYWHhJ8ezsbDU0NMgwDNXU1Cg/P1/h4eFKSUnR2bNn5fP5xq3fAAAAAC7NRRU2VqxYoZiYGK1cuVKSdOrUKaWlpZnNarVqx44dkiSPx6NZs2aZP3v11VclXdo08IqKCrlcLs2dO1e1tbVftM8AAAAAJqjGxkb19fUpMjJSsbGxslgskiSHw6G2tjZJUiAQkNVqHRT3+XxyOBySJJvNps7OzkFxi8WimJgYtbe3D4ifP9dwhY2enh51dXUNaAAAAACC46IKGxs3btRTTz1l3o6KitKRI0d05MgRvfPOO7LZbPr2t79t/rykpMT8+V/91V9Juvhp4O3t7dq2bZvefvttvfTSS3rggQfU29v7hTsOAAAAYGLp6OjQ6tWrtWvXrmCnMkhZWZmsVqvZEhISgp0SAAAAcNm6qMJGZmamoqKihvzZG2+8oRkzZuhrX/vaZ57jYqeBP/fcc1q+fLmioqJkt9s1b948HT58+GLSBgAAADDB9fT06LbbblNJSYmuv/56xcXFqaOjw9wwvK2tTXa7XZJktVoVCAQGxe12uzl7o7OzUzabbVDcMAydPHlScXFxA+KfPtenlZaWKhAImK21tXX0HwQAAAAAIzJqe2z86le/0p133jkg9uMf/1ipqam65557dPr0aUkXPw18qPiFHz4+jSniAAAAQGgxDENr1qzRTTfdZH4JymKxKCMjw9wwfO/evcrJyZEkud1u7d69W5K0Z8+eYeNut3tQvK6uTosXL5bFYpHb7da+ffvU29urpqYmTZ06ddjCRkREhKKjowc0AAAAAMExKoUNwzD0zDPP6I477jBj99xzj5qbm/XOO+/oiiuu0MMPPzwad/W5mCIOAAAAhJbXX39dTz/9tA4cOGDu0dfU1KStW7dq8+bNSkpKUkxMjLmReGlpqaqqquR0OuX1erV27VpJ0rp16+T1euV0OlVVVaWSkhJJ5wobsbGxSkpK0ubNm1VeXi5JSk1N1dKlSzV37lytWrVKjz32WHAeAAAAAAAXJXw0TvLaa6/p6quv1qxZs8zYV77yFfPfd911l7lnxvnp3unp6SOaBm632wcsPfVZ08Olcx9yHnjgAfN2V1cXxQ0AAABgArvhhhvU398/5M8aGxsHxaZPn66DBw8OikdGRurAgQOD4lOmTBl23w6PxyOPx3NR+QIAAAAIrlGZsTHUMlQnTpww//3ss88qOTlZ0sVPA7/llltUX1+vU6dOyefz6dixY1q0aNGwuTBFHAAAAAAAYHJqbW1VZmam5s2bp9TUVFVVVUmSWlpalJ6eLqfTqaKiInOPJr/fr6ysLLlcLuXm5qq7u1uS1N3drdzcXLlcLmVlZcnv90s6typJUVGRnE6n0tPT1dLSYt73li1b5HQ6lZycrEOHDo1zzwEAF7qowsaSJUt0++23q76+XrNmzdIbb7yh/v5+/fu//7tWrlw54Ngf/OAHSklJUWpqqt5++2098sgjki5+Gnh8fLwefPBBLVy4UJmZmXr00UcVHj4qE00AAAAAAAAQQsLDw7Vjxw699957ev7553X//ffrzJkzKi4ulsfjkdfrld/vN/doKi8vV15enpqbm5WYmKiKigpJUkVFhRITE9Xc3Ky8vDzz71N1dXXy+/3yer3yeDwqLi6WJDU1Nam+vl7Hjx9XZWWluTIJACA4LqpC8MILLwwZ/8Mf/jAodn5WxqddyjTw9evXa/369SNPFAAAAAAAAJPOzJkzNXPmTEnSjBkzFB8fr46ODjU0NJizNwoKClRTUyO3263q6mpzifOCggIVFxfr3nvvVXV1tbZt22bGr7vuOm3fvl3V1dUqLCyUJGVnZ2v9+vUyDEM1NTXKz89XeHi4UlJSdPbsWfl8vs9cLh0AMHZGZSkqAAAAAAAAYDw1Njaqr69PkZGRio2NlcVikSQ5HA5zH9dAICCr1Too7vP55HA4JEk2m02dnZ2D4haLRTExMWpvbx8QP38un883ZF49PT3q6uoa0AAAo4vCBgAAAAAAAEJKR0eHVq9ePeyqIMFUVlYmq9VqtoSEhGCnBACTDoUNAAAAAAAAhIyenh7ddtttKikp0fXXX6+4uDh1dHSYG4a3tbWZS0RZrVYFAoFBcbvdbs7e6OzslM1mGxQ3DEMnT55UXFzcgPinz/VppaWlCgQCZmttbR39BwEALnMUNgAAAAAAABASDMPQmjVrdNNNN5l7YVgsFmVkZJgbhu/du1c5OTmSJLfbbe4Du2fPnmHjbrd7ULyurk6LFy+WxWKR2+3Wvn371Nvbq6amJk2dOnXYwkZERISio6MHNADA6LqozcMBAAAAAACAYHn99df19NNPKzU1VQcOHJAk7d69W1u3btWqVau0ceNG3XzzzcrOzpZ0bvbEypUrtWPHDs2fP1+PPPKIJGndunXKz8+X0+mUw+HQ/v37JZ0rbNTW1iopKUk2m02VlZWSpNTUVC1dulRz587VtGnT9MQTT4x/5wEAJgobAAAAAAAACAk33HCD+vv7h/xZY2PjoNj06dN18ODBQfHIyEizMHKhKVOmDLtvh8fjkcfjuah8AQBjg6WoAAAAAAAAAABAyKCwAQAAAAAAAAAAQgaFDQAAAAAAAAAAEDIobAAAAAAAAAAAgJBBYQMAAAAAAAAAAIQMChsAgDGxYsUKxcTEaOXKlWbs0KFDSk5OltPp1JYtW8x4S0uL0tPT5XQ6VVRUJMMwJEl+v19ZWVlyuVzKzc1Vd3e3JKm7u1u5ublyuVzKysqS3++XJBmGoaKiIjmdTqWnp6ulpWUcewwAAAAAAIDxQGEDADAmNm7cqKeeempAbMOGDdq3b5/ef/991dfXq6mpSZJUXFwsj8cjr9crv9+vuro6SVJ5ebny8vLU3NysxMREVVRUSJIqKiqUmJio5uZm5eXlqby8XJJUV1cnv98vr9crj8ej4uLicewxAAAAAAAAxgOFDQDAmMjMzFRUVJR52+fzqbe3V6mpqQoLC9OqVatUW1srwzDU0NCg7OxsSVJBQYFqamokSdXV1SosLLykeHZ2thoaGszZHwAAAAAAAJgcKGwAAMaFz+eTw+EwbzscDrW1tam9vV2xsbGyWCwD4pIUCARktVoHxS88l81mU2dn56C4xWJRTEyM2tvbh82pp6dHXV1dAxoAAAAAAAAmNgobAIDLVllZmaxWq9kSEhKCnRIAAAAAAAA+B4UNAMC4sNvt5owLSWpra5PdbldcXJw6OjrMJaPOxyXJarUqEAgMil94rs7OTtlstkFxwzB08uRJxcXFDZtTaWmpAoGA2VpbW0e30wAAAAAAABh1FDYAAOPCbrcrLCxMR48eVV9fnyorK5WTkyOLxaKMjAxzw/C9e/cqJydHkuR2u7V7925J0p49e4aNu93uQfG6ujotXrzYXOJqKBEREYqOjh7QAAAAAAAAMLFdVGFjxYoViomJ0cqVK81YZmamrrnmGqWlpSktLU1/+tOfJEl+v19ZWVlyuVzKzc1Vd3e3JKm7u1u5ublyuVzKysqS3++XdO6btUVFRXI6nUpPT1dLS4t5H1u2bJHT6VRycrIOHTr0hTsNABh7S5Ys0e233676+nrNmjVLb7zxhnbu3Kn8/HzNmTNHS5cuVUpKiiRp69at2rx5s5KSkhQTE2NuJF5aWqqqqio5nU55vV6tXbtWkrRu3Tp5vV45nU5VVVWppKRE0rnCRmxsrJKSkrR582aV///s3X90lPWd9//XEDgxCswkgSozpGWTGfAmPwgaNXT9QZRVIBMtCSqxwHJa8I433tK17CbZbpuIRxNuXetZ2W5L0+2ukJIa7p6QX95rXSVqo+LmbkiKlTuTSr/ZxNVOfkz40Ykkub5/cLhKmERBJpkZeD7Ouc5h3l5e8/5MMtcn1/W+Pp9PeXloGg8AAAAAAIBJM/1idt62bZu+8Y1v6F//9V/HxPfv36+UlJQxsfLycuXl5enRRx/V9u3bVVFRoUcffVQVFRVKTEzUL37xC+3atUvl5eV69tln1dDQIK/XK4/Ho/r6ehUWFmr//v1qb29XY2OjPvjgA/32t7/VN77xDb333nuX3nIAwKR69dVXx40fOXIkIOZyudTS0hIQnzt3rpqamgLiMTExqqmpCYhPmzZNu3fvvvhkAQAAAAAAEDEuasTG8uXLNWvWrAvat7a2Vhs2bJAkrV+/XnV1dRccz87OVnNzswzDUF1dnfLz8zV9+nSlpqbq9OnT6unpuZi0AQAAAAAAAADAZSIoa2w89NBDWrp0qZ577jkz5vP5ZLVaJUkOh8NczLWnp0cOh0OSZLPZNDAwEBC3WCyKjY1Vb2/vmPjZY31WYWNoaEiDg4NjNgAAAAAAAAAAcHm45MJGZWWl2tradPDgQR04cMBc/DVUysrKZLVazS0hISGk+QAAAAAAAAAAgOC55MLG2dEUVqtVDzzwgLn+hdVqlc/nkyR1d3fLbrdLkux2uzl6Y2BgQDabLSBuGIb6+/sVHx8/Jn7+scZTXFwsn89nbl1dXZfaRAAAAAAAAAAAECYuqbAxPDwsr9crSfr000/18ssvKzk5WZLkdru1Z88eSdLevXuVk5MzbtztdgfEGxoatGzZMlksFrndbu3bt0/Dw8Nqb2/XjBkzPrOwER0drdmzZ4/ZAAAAAAAAAADA5WH6xey8YsUKHT58WCdPntT8+fP185//XI899phOnz6tkZER5eTkaO3atZLOjJxYu3atnn/+eaWkpOjJJ5+UJG3ZskX5+flyOp1yOBzav3+/pDOFjfr6eiUlJclms6mqqkqSlJaWppUrV2rRokW66qqr9JOf/CSY7QcAAAAAAAAAABHkogobr776akCspaVl3H3nzp2rpqamgHhMTIxqamoC4tOmTdPu3bvHPVZpaalKS0svJlUAAAAAAAAAAHAZuuQ1NgAAAAAAAAAAAKYKhQ0AAAAAAAAAABAxKGwAAAAAAAAAAICIQWEDAAAAAAAAAABEDAobAAAAAAAAAAAgYlDYAAAAAAAAAAAAEYPCBgAAAAAAAAAAiBgUNgAAAAAAAAAAQMSgsAEAAAAAAAAAACIGhQ0AAAAAAAAAABAxKGwAAAAACKk1a9YoNjZWa9euNWPLly/X9ddfr/T0dKWnp+uPf/yjJMnr9SorK0sul0u5ubny+/2SJL/fr9zcXLlcLmVlZcnr9UqSDMNQQUGBnE6nMjIy1NnZab7Hjh075HQ6lZycrEOHDk1hiwEAAABcCgobAAAAAEJq27ZtevHFFwPi+/fvV2trq1pbWxUTEyNJKi8vV15enjo6OpSYmKiKigpJUkVFhRITE9XR0aG8vDyVl5dLkhoaGuT1euXxeFRaWqrCwkJJUnt7uxobG/XBBx+oqqpKW7dunaLWAgAAALhUFDYAAAAAhNTy5cs1a9asC9q3trZWGzZskCStX79edXV1FxzPzs5Wc3OzDMNQXV2d8vPzNX36dKWmpur06dPq6ekJdtMAAAAATAIKGwAAAADC0kMPPaSlS5fqueeeM2M+n09Wq1WS5HA41N3dLUnq6emRw+GQJNlsNg0MDATELRaLYmNj1dvbOyZ+9lifVdgYGhrS4ODgmA0AAABAaFDYAAAAABB2Kisr1dbWpoMHD+rAgQNqaGgIaT5lZWWyWq3mlpCQENJ8AAAAgCsZhQ0AAAAAYefsaAqr1aoHHnhA7733nvna5/NJkrq7u2W32yVJdrvdHL0xMDAgm80WEDcMQ/39/YqPjx8TP/9Y4ykuLpbP5zO3rq6u4DYYAAAAwAWjsAEAAAAgrAwPD8vr9UqSPv30U7388stKTk6WJLndbu3Zs0eStHfvXuXk5Iwbd7vdAfGGhgYtW7ZMFotFbrdb+/bt0/DwsNrb2zVjxozPLGxER0dr9uzZYzYAQGisWbNGsbGxWrt2rRlbvny5rr/+eqWnpys9PV1//OMfJUler1dZWVlyuVzKzc2V3++XJPn9fuXm5srlcikrK8vsdwzDUEFBgZxOpzIyMtTZ2Wm+x44dO+R0OpWcnKxDhw5NYYsBAOejsAEAAAAgpFasWKH7779fjY2Nmj9/vt59913dc889SktL09KlS5WSkmLevCouLlZ1dbWcTqc8Ho82b94sSdqyZYs8Ho+cTqeqq6tVVFQk6UxhIy4uTklJSSopKVF5ebkkKS0tTStXrtSiRYu0bt06vfDCC6FpPADgom3btk0vvvhiQHz//v1qbW1Va2urYmJiJEnl5eXKy8tTR0eHEhMTVVFRIUmqqKhQYmKiOjo6lJeXZ/YPDQ0N8nq98ng8Ki0tVWFhoSSpvb1djY2N+uCDD1RVVaWtW7dOUWsBAOO5qMLG+RXxU6dOadWqVbr++uuVnJw85mKgtLRU8+fPNyvlb775pqQvVvmuqKiQy+XSokWLVF9ff0kNBgCE3ve//30lJydr8eLFeuyxx2QYhg4dOqTk5GQ5nU7t2LHD3Lezs1MZGRlyOp0qKCiQYRiSLv7JKwBA+Hr11Vf1hz/8QadOndJ//ud/6s///M/V0tKitrY2HTlyROXl5bJYLJKkuXPnqqmpSR6PRzU1NeaNq5iYGNXU1Mjj8aipqUlz586VJE2bNk27d+9WZ2enWlpa5HK5zPctLS1VZ2enjhw5oszMzKlvOADgC1m+fLlmzZp1QfvW1tZqw4YNkqT169errq7uguPZ2dlqbm6WYRiqq6tTfn6+pk+frtTUVJ0+fVo9PT3BbhoA4AJdVGFjvIp4UVGRPvjgA7377rv6x3/8R3k8njH/7Wyl/LbbbpN08ZXv3t5ePfPMM/q///f/6vXXX9fjjz+u4eHhS2o0ACB0/vCHP2jXrl1qaWlRe3u7Wlpa9M4772jr1q3at2+fjh49qsbGRrW3t0uSCgsLVVpaKo/HI6/Xay4ee7FPXgEAAAC4vD300ENaunSpnnvuOTPm8/lktVolnVm/6ez6Sj09PeZ6TjabTQMDAwFxi8Wi2NhY9fb2jomfPdZEhY2hoSENDg6O2QAAwXVRhY3zK+JXX3217rjjDknSzJkztWjRIn300UefeYyLrXz/27/9m1avXq1Zs2bJbrdr8eLF5sKBAIDINDw8LL/fr9OnT+v06dMaHR3V8PCw0tLSFBUVpXXr1qm+vl6GYai5uVnZ2dmSLv4Jq3PjAAAAAC5flZWVamtr08GDB3XgwAHzgahQKCsrk9VqNbeEhISQ5QIAl6ugrbHR1dWltrY23XDDDWbsueeeU1pamh555BGdOHFC0sVXvseLn62uj4eqOACEt7lz52r79u368pe/LLvdrhUrVig6Onrcc31vb6/i4uLM6UfO7QMu9smr8dBnAAAAAJeHs9cAVqtVDzzwgPlQrNVqlc/nkyR1d3fLbrdLkux2u3kNMTAwIJvNFhA3DEP9/f2Kj48fEz//WOcrLi6Wz+czt66uruA3GACucEEpbAwNDenBBx/UM888o2uuuUaS9Mgjj6ijo0O//vWvdfXVV+uJJ54Ixlt9LqriABDe+vv7VV9fr2PHjqm7u1vNzc06depUSHKhzwAAAAAi3/DwsLm23qeffqqXX35ZycnJkiS32609e/ZIkvbu3aucnJxx4263OyDe0NCgZcuWyWKxyO12a9++fRoeHlZ7e7tmzJgxYWEjOjpas2fPHrMBAILrkgsbhmFo48aNWr16tbmouCRde+21ioqKUlRUlL7xjW+YlfKLrXxfTEVcoioOAOHu1VdfldPpVFxcnGJiYpSdna2DBw+Oe66Pj49XX1+fuWD4uX3AxT55NR76DAAAACDyrFixQvfff78aGxs1f/58vfvuu7rnnnuUlpampUuXKiUlxbxHVVxcrOrqajmdTnk8Hm3evFmStGXLFnk8HjmdTlVXV6uoqEjSmcJGXFyckpKSVFJSYq7Zl5aWppUrV2rRokVat26dXnjhhdA0HgAgKQiFjeLiYl199dX6u7/7uzHxc9faOHDgwLiV8gupfN99991qbGzU8ePH1dPToyNHjujmm2+eMB+q4gAQ3hISEtTc3Cy/36+RkREdPHhQS5YsUVRUlNra2jQyMqKqqirl5OTIYrEoMzPTnB+3srJywiesPu/Jq/HQZwAAAACR59VXX9Uf/vAHnTp1Sv/5n/+pP//zP1dLS4va2tp05MgRlZeXm9PZzp07V01NTfJ4PKqpqVFMTIwkKSYmRjU1NfJ4PGpqatLcuXMlSdOmTdPu3bvV2dmplpYWuVwu831LS0vV2dmpI0eOKDMzc+obDgAwTb+YnVesWKHDhw/r5MmTmj9/vvbt26edO3dq8eLFSk9PlyTt3LlT99xzj/7mb/5Gra2tslgsWrhwoXbv3i3pzA2n+vp6JSUlyWazqaqqStLYyvdVV12ln/zkJ5KkOXPm6Nvf/raWLl2qadOm6e///u81ffpFpQ0ACCOZmZlavXq1eV6/6667dO+99+raa69Vfn6+/H6/NmzYoNTUVEln+pV169Zp27Ztuuuuu8yFxIuLi7V27Vo9//zzSklJ0ZNPPinpzJNX+fn5cjqdcjgc2r9/f8jaCgAAAAAAgOCzGGfn97hMDQ4OmtOV8CQuEPkWFDWMGz9Wnj3FmVx+OF/yGUy2ib6/E+F7DYQvzpd8BqHE34NAZOF8yWcAXEn4O+XSXMz5MiiLhwMAAAAAAAAAAEwFChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGBQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIgaFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGBQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIgaFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAAR46IKG2vWrFFsbKzWrl1rxg4dOqTk5GQ5nU7t2LHDjHd2diojI0NOp1MFBQUyDEOS5PV6lZWVJZfLpdzcXPn9fkmS3+9Xbm6uXC6XsrKy5PV6JUmGYaigoEBOp1MZGRnq7Oy85EYDAAAAAAAAAIDIdFGFjW3btunFF18cE9u6dav27duno0ePqrGxUe3t7ZKkwsJClZaWyuPxyOv1qqGhQZJUXl6uvLw8dXR0KDExURUVFZKkiooKJSYmqqOjQ3l5eSovL5ckNTQ0yOv1yuPxqLS0VIWFhZfcaAAAAAAAAAAAEJkuqrCxfPlyzZo1y3zd09Oj4eFhpaWlKSoqSuvWrVN9fb0Mw1Bzc7Oys7MlSevXr1ddXZ0kqba2Vhs2bPhC8ezsbDU3N5ujPwAAAAAAAAAAwJXlktbY6OnpkcPhMF87HA51d3ert7dXcXFxslgsY+KS5PP5ZLVaA+LnHstms2lgYCAgbrFYFBsbq97e3glzGhoa0uDg4JgNAAAAAAAAAABcHi67xcPLyspktVrNLSEhIdQpAQAAAAAAAACAILmkwobdbjdHXEhSd3e37Ha74uPj1dfXZ04ZdTYuSVarVT6fLyB+7rEGBgZks9kC4oZhqL+/X/Hx8RPmVFxcLJ/PZ25dXV2X0kQAAAAAAAAAABBGLrmwERUVpba2No2MjKiqqko5OTmyWCzKzMw0FwyvrKxUTk6OJMntdmvPnj2SpL17904Yd7vdAfGGhgYtW7bMnOJqPNHR0Zo9e/aYDQAQXj788ENlZWVp8eLFSk1N1cmTJ3Xo0CElJyfL6XRqx44d5r6dnZ3KyMiQ0+lUQUGBWTT3er3KysqSy+VSbm6u/H6/JMnv9ys3N1cul0tZWVnyer0haSMAAAAAAAAmx0UVNlasWKH7779fjY2Nmj9/vt5++23t2rVL+fn5WrhwoVauXKnU1FRJ0s6dO1VSUqKkpCTFxsaaC4kXFxerurpaTqdTHo9HmzdvliRt2bJFHo9HTqdT1dXVKioqknSmsBEXF6ekpCSVlJSovLw8mO0HAITApk2btGPHDr3//vtqampSdHS0tm7dqn379uno0aNqbGxUe3u7JKmwsFClpaXyeDzyer1m0by8vFx5eXnq6OhQYmKiKioqJEkVFRVKTExUR0eH8vLy6DcAAAAAAAAuM9MvZudXX3113PiRI0cCYi6XSy0tLQHxuXPnqqmpKSAeExOjmpqagPi0adO0e/fui0kTABDGjhw5ohkzZui2226TJMXFxamnp0fDw8NKS0uTJK1bt0719fVKSUlRc3OzqqurJUnr169XXV2d3G63amtr9d5775nxwsJCPfroo6qtrdUzzzxjxm+55RY9++yzIWgpAAAAAAAAJsNFFTYAALhUHR0dmjlzpnJyctTd3a21a9fq7rvvlsPhMPdxOBxqampSb2+v4uLizCkIHQ6Hue6Sz+eT1WoNiPf09JjHstlsGhgYmDCXoaEhDQ0Nma8HBweD2lYAAAAAAAAEH4UNAMCUGh4e1ptvvqnW1lZ96Utf0sqVKzVjxoyQ5FJWVqYnnngiJO8NAAAAAACAL+aSFg8HAOBiORwOZWRkKCEhQdHR0Vq9erVOnTpljriQpO7ubtntdsXHx6uvr89cMPxsXJKsVqt8Pl9A3G63m8caGBiQzWabMJfi4mL5fD5z6+rqmowmAwAAAAAAIIgobAAAptRNN92kTz75RP39/RodHdUbb7yhG2+8UVFRUWpra9PIyIiqqqqUk5Mji8WizMxMc8HwyspK5eTkSJLcbrf27NkjSdq7d++EcbfbPWEu0dHRmj179pgNABAaa9asUWxsrNauXWvGDh06pOTkZDmdTu3YscOMd3Z2KiMjQ06nUwUFBWYB3Ov1KisrSy6XS7m5ufL7/ZIkv9+v3NxcuVwuZWVlyev1SpIMw1BBQYGcTqcyMjLU2dk5hS0GAAAA8EVR2AAATKnp06fr6aef1u233660tDS5XC653W7t2rVL+fn5WrhwoVauXKnU1FRJ0s6dO1VSUqKkpCTFxsYqOztb0pnRFtXV1XI6nfJ4PNq8ebMkacuWLfJ4PHI6naqurlZRUVHI2goAuHDbtm3Tiy++OCa2detW7du3T0ePHlVjY6Pa29slSYWFhSotLZXH45HX6zUL4OXl5crLy1NHR4cSExNVUVEhSaqoqFBiYqI6OjqUl5en8vJySVJDQ4O8Xq88Ho9KS0tVWFg4hS0GAAAA8EWxxgYAYMqtWrVKq1atGhPLzMzUkSNHAvZ1uVxqaWkJiM+dO1dNTU0B8ZiYGNXU1AQtVwDA1Fi+fLkOHjxovu7p6dHw8LDS0tIkSevWrVN9fb1SUlLU3Nys6upqSdL69etVV1cnt9ut2tpavffee2a8sLBQjz76qGpra/XMM8+Y8VtuuUXPPvusamtrtWHDBklSdna2Hn74YRmGIYvFMoUtBwAAAHCxGLEBAAAAIOz09PTI4XCYrx0Oh7q7u9Xb26u4uDiz+HA2Lkk+n09WqzUgfu6xbDabBgYGAuIWi0WxsbHq7e0dN5+hoSENDg6O2QAAAACEBoUNAAAAAPgcZWVlslqt5paQkBDqlAAAAIArFoUNAAAAAGHHbrebIy4kqbu7W3a7XfHx8err6zMXDD8blySr1SqfzxcQP/dYAwMDstlsAXHDMNTf36/4+Phx8ykuLpbP5zO3rq6u4DcaAHBB1qxZo9jYWK1du9aMHTp0SMnJyXI6ndqxY4cZ7+zsVEZGhpxOpwoKCsz+w+v1KisrSy6XS7m5ufL7/ZIkv9+v3NxcuVwuZWVlyev1SjrTTxQUFMjpdCojI0OdnZ1T2GIAwPkobAAAAAAIO3a7XVFRUWpra9PIyIiqqqqUk5Mji8WizMxMc8HwyspK5eTkSJLcbrf27NkjSdq7d++EcbfbHRBvaGjQsmXLJlxfIzo6WrNnzx6zAQBCY9u2bXrxxRfHxLZu3ap9+/bp6NGjamxsVHt7uySpsLBQpaWl8ng88nq9Zv9RXl6uvLw8dXR0KDExURUVFZKkiooKJSYmqqOjQ3l5eSovL5d0pp/wer3yeDwqLS1VYWHhFLYYAHA+ChsAAAAAQm7FihW6//771djYqPnz5+vtt9/Wrl27lJ+fr4ULF2rlypVKTU2VJO3cuVMlJSVKSkpSbGyssrOzJZ0ZVVFdXS2n0ymPx6PNmzdLkrZs2SKPxyOn06nq6moVFRVJOlPYiIuLU1JSkkpKSsybVwCA8LZ8+XLNmjXLfN3T06Ph4WGlpaUpKipK69atU319vQzDUHNzs9lPrF+/XnV1dZKk2tpabdiw4QvFs7Oz1dzcbI7+AABMvemhTgAAAAAAXn311XHjR44cCYi5XC61tLQExOfOnaumpqaAeExMjGpqagLi06ZN0+7duy8+WQBAWOnp6ZHD4TBfOxwONTU1qbe3V3FxceZoPIfDYU5B6PP5ZLVaA+LnHstms2lgYCAgbrFYFBsbq97eXs2ZMycgn6GhIQ0NDZmvBwcHg9xiAAAjNgAAAAAAAIAgKSsrk9VqNbeEhIRQpwQAlx0KGwAAAAAAAIhYdrvdHHEhSd3d3bLb7YqPj1dfX585ZdTZuCRZrVb5fL6A+LnHGhgYkM1mC4gbhqH+/n7Fx8ePm09xcbF8Pp+5dXV1Bb/RAHCFo7ABAAAAAACAiGW32xUVFaW2tjaNjIyoqqpKOTk5slgsyszMNBcMr6ysVE5OjqQz6yzt2bNHkrR3794J4263OyDe0NCgZcuWmVNcnS86OlqzZ88eswEAgos1NgAAAAAAABAxVqxYocOHD+vkyZOaP3++qqurtWvXLuXn58vv92vDhg1KTU2VJO3cuVPr1q3Ttm3bdNddd5kLiRcXF2vt2rV6/vnnlZKSoieffFKStGXLFuXn58vpdMrhcGj//v2SzhQ26uvrlZSUJJvNpqqqqtA0HgAgicIGAAAAAAAAIsirr746bvzIkSMBMZfLpZaWloD43Llz1dTUFBCPiYlRTU1NQHzatGnavXv3xScLAJgUTEUFAAAAAAAAAAAiRlAKG0ePHlV6erq5na1ub9q0SYmJiWa8s7NTkuT3+5WbmyuXy6WsrCx5vV5JZxZfKigokNPpVEZGhrm/JO3YsUNOp1PJyck6dOhQMNIGAAAAAAAAAAARJiiFjUWLFqm1tVWtra166623dM011+gv/uIvJEn/8A//YP63pKQkSVJFRYUSExPV0dGhvLw8lZeXSzqz+JLX65XH41FpaakKCwslSe3t7WpsbNQHH3ygqqoqbd26NRhpAwAAAAAAAACACBP0qahqa2t111136ZprrvnMfTZs2CBJWr9+verq6gLi2dnZam5ulmEYqqurU35+vqZPn67U1FSdPn1aPT09wU4dAAAAAAAAAACEuaAXNl566SU9+OCD5uvt27dryZIlKi4u1sjIiCSpp6dHDodDkmSz2TQwMBAQt1gsio2NVW9v75i4JDkcjgkLG0NDQxocHByzAQAAAAAAAACAy0NQCxuDg4Nqbm7W6tWrJUllZWX67W9/q3fffVe/+93v9MMf/jCYbzeusrIyWa1Wc0tISJj09wQAAAAAAAAAAFMjqIWNAwcO6O6779ZVV10lSZo3b54sFouuuuoqbdy4Ue+9954kyW63q7u7W5I0MDAgm80WEDcMQ/39/YqPjx8Tl6Tu7m7Z7fZxcyguLpbP5zO3rq6uYDYRAAAAAAAAAACEUFALG+dPQ/XRRx9JkkZHR1VbW6vk5GRJktvt1p49eyRJe/fuldvtDog3NDRo2bJlslgscrvd2rdvn4aHh9Xe3q4ZM2ZMWNiIjo7W7Nmzx2wAAAAAAAAAAODyMD1YB/L5fDp06JD+9//+32bs61//urxer0ZHR5WZmanHHntMkrRlyxbl5+fL6XTK4XBo//79ks4UNurr65WUlCSbzaaqqipJUlpamlauXKlFixbpqquu0k9+8pNgpQ0AAAAAAAAAACJI0AobVqtVH3/88ZjYa6+9Nu6+MTExqqmpCYhPmzZNu3fvHvf/KS0tVWlp6aWmCQAAAAAAAAAAIlhQp6ICAAAAAAAAAACYTBQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIgaFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAEBKnTp3SV77yFW3fvl2SdOjQISUnJ8vpdGrHjh3mfp2dncrIyJDT6VRBQYEMw5Akeb1eZWVlyeVyKTc3V36/X5Lk9/uVm5srl8ulrKwseb3eqW8cAAAAAAAAJg2FDQBASDz11FPKzMw0X2/dulX79u3T0aNH1djYqPb2dklSYWGhSktL5fF45PV61dDQIEkqLy9XXl6eOjo6lJiYqIqKCklSRUWFEhMT1dHRoby8PJWXl0994wAAAAAAADBpKGwAAKZcR0eHPvjgA61atUqS1NPTo+HhYaWlpSkqKkrr1q1TfX29DMNQc3OzsrOzJUnr169XXV2dJKm2tlYbNmy44DgAAAAAAAAuDxQ2AABTbvv27SorKzNf9/T0yOFwmK8dDoe6u7vV29uruLg4WSyWMXFJ8vl8slqtAfFzj2Wz2TQwMDBhHkNDQxocHByzAQAAAAAAILxR2AAATKkDBw5o4cKFWrhwYahTUVlZmaxWq7klJCSEOiUAAAAAAAB8jumhTgAAcGV55513VFVVperqap04cUKnT5/W7NmzzREXktTd3S273a74+Hj19fXJMAxZLBYzLklWq9UctXFu3G63q7u7W3PmzNHAwIBsNtuEuRQXF+vxxx83Xw8ODlLcAAAAAAAACHOM2AAATKmysjJ1dXXp2LFjevbZZ7VlyxZ973vfU1RUlNra2jQyMqKqqirl5OTIYrEoMzPTXDC8srJSOTk5kiS32609e/ZIkvbu3Tth3O12T5hLdHS0Zs+ePWYDAAAAAABAeKOwAQAIC7t27VJ+fr4WLlyolStXKjU1VZK0c+dOlZSUKCkpSbGxseZC4sXFxaqurpbT6ZTH49HmzZslSVu2bJHH45HT6VR1dbWKiopC1iYAAAAAAAAEH1NRAQBCZtOmTea/MzMzdeTIkYB9XC6XWlpaAuJz585VU1NTQDwmJkY1NTXBTBMAAAAAAABhhBEbAAAAAAAAAAAgYlDYAAAAAAAAAAAAEYOpqACEpQVFDaFOAQAAAAAAAEAYYsQGAAAAAAAAAACIGEErbCxYsEBpaWlKT09XVlaWJKmzs1MZGRlyOp0qKCiQYRiSJK/Xq6ysLLlcLuXm5srv90uS/H6/cnNz5XK5lJWVJa/XK0kyDEMFBQVyOp3KyMhQZ2dnsNIGAAAAAAAAAAARJKgjNpqbm9Xa2qrXX39dklRYWKjS0lJ5PB55vV41NJyZWqa8vFx5eXnq6OhQYmKiKioqJEkVFRVKTExUR0eH8vLyVF5eLklqaGiQ1+uVx+NRaWmpCgsLg5k2AAAAAAAAAACIEJM2FZVhGGpublZ2drYkaf369aqrq5Mk1dbWasOGDV8onp2drebmZnP0BwAAAAAAAAAAuHIErbBhsVh0xx136KabblJlZaV6e3sVFxcni8UiSXI4HOru7pYk+Xw+Wa3WgHhPT48cDockyWazaWBgICBusVgUGxur3t7ecfMYGhrS4ODgmA0AAAAAAAAAAFwepgfrQG+99ZYcDoc++ugjrVixQgkJCcE69EUpKyvTE088EZL3BgAAAAAAAAAAkytoIzbOjqiYN2+eVq9erc7OTvX19ZlTRnV3d8tut0uSrFarfD5fQNxut5ujNwYGBmSz2QLihmGov79f8fHx4+ZRXFwsn89nbl1dXcFqIgAAAAAAAAAACLGgFDZOnjyp48ePS5JOnDih1157TSkpKcrMzDQXDK+srFROTo4kye12a8+ePZKkvXv3Thh3u90B8YaGBi1btsyc4up80dHRmj179pgNAAAAAAAAAABcHoJS2Pj444916623asmSJcrMzNTGjRt10003aefOnSopKVFSUpJiY2PNhcSLi4tVXV0tp9Mpj8ejzZs3S5K2bNkij8cjp9Op6upqFRUVSTpT2IiLi1NSUpJKSkpUXl4ejLQBAAAAhLkFCxYoLS1N6enpysrKkiR1dnYqIyNDTqdTBQUF5ihxr9errKwsuVwu5ebmyu/3S5L8fr9yc3PlcrmUlZUlr9cr6cxo8IKCAjmdTmVkZKizszM0jQQAAABwUYKyxkZiYqIOHz4cEHe5XGppaQmIz507V01NTQHxmJgY1dTUBMSnTZum3bt3ByNVAAAAABGmublZM2fONF8XFhaqtLRUbrdba9euVUNDg9xut8rLy5WXl6dHH31U27dvV0VFhR599FFVVFQoMTFRv/jFL7Rr1y6Vl5fr2WefVUNDg7xerzwej+rr61VYWKj9+/eHsKUAAAAALkTQ1tgAAAAAgMlmGIaam5vN0eDr169XXV2dJKm2tlYbNmz4QvHs7Gw1Nzeboz8AAJGJkX4AcGWgsAEAAAAgbFksFt1xxx266aabVFlZqd7eXsXFxZlr7jkcDnV3d0uSfD6frFZrQLynp0cOh0OSZLPZNDAwEBC3WCyKjY1Vb2/vuHkMDQ1pcHBwzAYACE/Nzc1qbW3V66+/LulPI/08Ho+8Xq+5HuzZkX4dHR1KTExURUWFJJkj/To6OpSXl2dOiX7uSL/S0lIVFhaGpoEAAAobAAAAAMLXW2+9pZaWFtXW1urpp5/W+++/H5I8ysrKZLVazS0hISEkeQAALg4j/QDg8kRhAwAAAEDYOjuiYt68eVq9erU6OzvV19dn3kjq7u6W3W6XJFmtVvl8voC43W43R28MDAzIZrMFxA3DUH9/v+Lj48fNo7i4WD6fz9y6uromp8EAgEsSDiP9GOUHAJOPwgYAAACAsHTy5EkdP35cknTixAm99tprSklJUWZmpjmNSGVlpXJyciRJbrdbe/bskSTt3bt3wrjb7Q6INzQ0aNmyZeaNr/NFR0dr9uzZYzYAQPgJh5F+jPIDgMlHYQMAAABAWPr444916623asmSJcrMzNTGjRt10003aefOnSopKVFSUpJiY2PN6UWKi4tVXV0tp9Mpj8ejzZs3S5K2bNkij8cjp9Op6upqFRUVSTpT2IiLi1NSUpJKSkrMOdQBAJErHEb6McoPACbf9FAnAAAAAADjSUxM1OHDhwPiLpdLLS0tAfG5c+eqqakpIB4TE6OampqA+LRp07R79+6g5AoACL2TJ09qdHRUs2bNMkf6PfDAA+ZIP7fbrcrKSm3cuFHSn0buPfroo+OO9FuyZEnASL8XX3xR991332eO9IuOjlZ0dPTUNRwArkAUNgAAAAAAABDxPv74Y61Zs0aSNDIyoi1btpgj/datW6dt27bprrvuGjPSb+3atXr++eeVkpKiJ598UtKZkX75+flyOp1yOBzav3+/pDOFjfr6eiUlJclms6mqqio0DQUAUNgAAAAAAABA5GOkHwBcOVhjAwAAAAAAAAAARAwKGwAAAAAAAAAAIGJQ2AAAAAAAAAAAABGDwgYAYEp1dXVp+fLlWrx4sdLS0lRdXS1J6uzsVEZGhpxOpwoKCmQYhiTJ6/UqKytLLpdLubm58vv9kiS/36/c3Fy5XC5lZWXJ6/VKkgzDUEFBgZxOpzIyMtTZ2RmahgIAgEuyoKhh3A0AAACgsAEAmFLTp0/X888/r/fff1+vvPKKvvWtb+nkyZMqLCxUaWmpPB6PvF6vGhrO3LgoLy9XXl6eOjo6lJiYqIqKCklSRUWFEhMT1dHRoby8PJWXl0uSGhoa5PV65fF4VFpaqsLCwpC1FQAAAAAAAMFHYQMAMKXmzZun9PR0SdJ1112nOXPmqK+vT83NzcrOzpYkrV+/XnV1dZKk2tpabdiw4QvFs7Oz1dzcbI7+AAAAAAAAQOSbHuoEAABXrpaWFo2MjCgmJkZxcXGyWCySJIfDoe7ubkmSz+eT1WoNiPf09MjhcEiSbDabBgYGAuIWi0WxsbHq7e3VnDlzAt5/aGhIQ0ND5uvBwcHJaSgAAAAAAACChhEbAICQ6Ovr08aNG7V79+6Q5VBWViar1WpuCQkJIcsFAAAAAAAAF4bCBgBgyg0NDelrX/uaioqK9NWvflXx8fHq6+szp4zq7u6W3W6XJFmtVvl8voC43W43R28MDAzIZrMFxA3DUH9/v+Lj48fNo7i4WD6fz9y6uromrc0AAAAAAAAIDqaiAgBMKcMwtGnTJt15553mWhgWi0WZmZlqaGiQ2+1WZWWlNm7cKElyu93as2ePHn30Ue3du1c5OTlj4kuWLNHevXvldrvN+Isvvqj77rtPDQ0NWrZsmTnF1fmio6MVHR09Ba3GF7GgqGHc+LHy7CnOBAAAAAAAhJOgjNjo6urS8uXLtXjxYqWlpam6ulqStGnTJiUmJio9PV3p6enq7OyUJPn9fuXm5srlcikrK0ter1fSmZtdBQUFcjqdysjIMPeXpB07dsjpdCo5OVmHDh0KRtoAgBD41a9+pZ///Oeqqakx+4f29nbt3LlTJSUlSkpKUmxsrLmQeHFxsaqrq+V0OuXxeLR582ZJ0pYtW+TxeOR0OlVdXa2ioiJJZwobcXFxSkpKUklJicrLy0PWVgAAAAAAAARfUEZsTJ8+Xc8//7zS09P1X//1X7rxxhu1evVqSdI//MM/mE/RnlVRUaHExET94he/0K5du1ReXq5nn31WDQ0N8nq98ng8qq+vV2Fhofbv36/29nY1Njbqgw8+0G9/+1t94xvf0HvvvReM1AEAU+zWW2/V6OjouP+tpaUlIDZ37lw1NTUFxGNiYlRTUxMQnzZtWkjX7QAAAAAAAMDkCsqIjXnz5ik9PV2SdN1112nOnDnq6+ubcP/a2lpz+pH169errq4uIJ6dna3m5mYZhqG6ujrl5+dr+vTpSk1N1enTp9XT0xOM1AEAAAAAAAAAQAQJ+uLhLS0tGhkZUUJCgiRp+/btWrJkiYqLizUyMiJJ6unpkcPhkCTZbDYNDAwExC0Wi2JjY9Xb2zsmLkkOh2PCwsbQ0JAGBwfHbAAAAAAAAAAA4PIQ1MJGX1+fNm7caE4BUlZWpt/+9rd699139bvf/U4//OEPg/l24yorK5PVajW3swUWAAAAAAAAAAAQ+YJW2BgaGtLXvvY1FRUV6atf/aqkM1NUWSwWXXXVVdq4caO5Lobdbld3d7ckaWBgQDabLSBuGIb6+/sVHx8/Ji5J3d3dstvt4+ZRXFwsn89nbl1dXcFqIgAAAAAAAAAACLGgFDYMw9CmTZt05513mmtkSNJHH30kSRodHVVtba2Sk5MlSW63W3v27JEk7d2711xc/Nx4Q0ODli1bJovFIrfbrX379ml4eFjt7e2aMWPGhIWN6OhozZ49e8wGAAAAAAAAAAAuD9ODcZBf/epX+vnPf660tDTV1NRIkvbs2aNt27bJ6/VqdHRUmZmZeuyxxyRJW7ZsUX5+vpxOpxwOh/bv3y/pTGGjvr5eSUlJstlsqqqqkiSlpaVp5cqVWrRoka666ir95Cc/CUbaAAAAAAAAAAAgwgSlsHHrrbdqdHQ0IP7aa6+Nu39MTIxZADnXtGnTzPU5zldaWqrS0tJLSRMAAAAAAAAAAES4oC4eDgAAAAAAAAAAMJkobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiBGXxcAAAAAAAAAAArgQLihpCncIVjxEbAAAAAAAAAAAgYlDYAAAAAAAAAAAAEYPCBgAAAAAAAAAAiBissQHgsjDR3IbHyrOnOBMAAAAAAAAAk4kRGwAAAAAAAAAAIGJQ2AAAAAAAAAAAABGDqagAAEBEYeo5AAAAAACubIzYAAAAAAAAAAAAEYPCBgAAAAAAAAAAiBgUNgAAAAAAAAAAQMSgsAEAAAAAAAAAACIGi4cDAAAAAAAAADBJFhQ1jBs/Vp49xZlcPhixAQAAAAAAAAAAIkZEFTbq6+u1aNEiuVwuVVRUhDodAEAYo88AAFwo+gwAwIWizwCA8BAxU1ENDw/r8ccf1+uvvy6r1aobb7xRa9asUXx8fKhTAwCEGfqM0JpoiC0AhCP6jMsHUzwAmGz0GcCVhWvb8BYxIzYOHTqk5ORkORwOzZw5U6tWrdIrr7wS6rQAAGGIPgMAcKHoMwAAF4o+AwDCR8SM2Ojp6ZHD4TBfOxwOdXd3B+w3NDSkoaEh87XP55MkDQ4OTn6SAC5aSsm/Terxv/xX1ePGf/PEPZP6vpHo7HnSMIwQZ3Lp6DOmxmR/fy/WRN93ie88EGz0GfQZwTIVfQk/IyC06DPoM4BwEW7XsBL3rc53MX1GxBQ2LlRZWZmeeOKJgHhCQkIIsgEQrqzPhzqD8HX8+HFZrdZQpzEl6DOuHHzngclBn0GfEQnoA4DwQJ9BnwHgwl3pf79cSJ8RMYUNu90+pgre3d2tm2++OWC/4uJiPf744+br0dFR9fX1acaMGfryl7+srq4uzZ49e0pyvliDg4NKSEgI2xzDPT+JHIMh3POTwj/HcM9PGj9HwzB0/Phx2e32EGd36S61z4iPj5fFYpmSXMcTCb9DwXSltVeizVdCmy/39tJnjO0zjh8/HpE/70j9PSXvqUXeU+tyzJs+I3yuMyZbpP7+BtOV/hlc6e2X+AykS/sMLqbPiJjCxs0336zf/OY36u7ultVq1csvv6zvfve7AftFR0crOjp6TMxms5nDWGbPnh32v1ThnmO45yeRYzCEe35S+OcY7vlJgTleLk9QXWqfES4i4XcomK609kq0+UpwObeXPuNPfcbZm1SR+vMm76lF3lOLvKfWRHnTZ4TXdcZki9Tf32C60j+DK739Ep+B9MU/gwvtMyKmsDF9+nT9/d//vbKysjQ6Oqq/+Zu/UXx8fKjTAgCEIfoMAMCFos8AAFwo+gwACB8RU9iQpHvvvVf33ntvqNMAAEQA+gwAwIWizwAAXCj6DAAID9NCncBUiY6OVklJScBQwHAS7jmGe34SOQZDuOcnhX+O4Z6fFBk5XsmutJ/PldZeiTZfCa609l7pIvXnTd5Ti7ynFnlPrUjNG8HF7wGfwZXefonPQJq6z8BiGIYxqe8AAAAAAAAAAAAQJFfMiA0AAAAAAAAAABD5KGwAAAAAAAAAAICIQWEDAAAAAAAAAABEjMu2sLF161Zde+21ysjIGBN/6KGHtGjRIqWkpKi4uNiM+/1+5ebmyuVyKSsrS16vNyT5dXZ2KiMjQ06nUwUFBTq7BIrX61VWVpZcLpdyc3Pl9/snNb/z7du3T6mpqUpJSdG6des0NDT0mfmGQm9vr+677z5df/31Wrx4sTo7O8Mux9HRUd1yyy1au3atGQuX/E6dOqVVq1bp+uuvV3Jysl544QXzv4X69+9c9fX1WrRokVwulyoqKkKWx7m6urq0fPlyLV68WGlpaaqurpYUPj/bs06dOqWvfOUr2r59uyTp0KFDSk5OltPp1I4dO0KaGyLnOzgZwvF7HWyRcp4ItivtvPPhhx8qKytLixcvVmpqqk6ePHnZtxnS8uXLdf311ys9PV3p6en64x//KCm8z92f1eeUlpZq/vz5ZnvefPPNEGY6vkjpNyY692/atEmJiYnmZ3z2uiWcLFiwQGlpaUpPT1dWVpak8O+zjh49an6m6enpiomJUU1NTVh+3mvWrFFsbOyY68KJ+otw+tzPzzvSzyUIrki4JzMVwvm+z2S6kq9nzxcpf6cES0ivdY3L1FtvvWX8x3/8h3HjjTeOib/88svG6Oio8emnnxq333678e///u+GYRjGCy+8YHz7298O+PdU55eXl2fU1dUF/Pvb3/628cILLwT8eyqMjo4a8+bNM7xer2EYhvHggw8aP/vZzz4z31D4+te/blRWVhqGYRgnT540Tpw4EXY57t6923jggQeMvLw8MxYu+Z08edI4ePCgYRiGcfz4cWPRokVGR0eHYRih/f071+nTpw2Xy2X853/+p3H8+HFj4cKF5u9lKPX09Bi//vWvDcMwjI8++siw2+3GiRMnwuZne9bf/u3fGg888IB5fsvIyDAOHz5sDA8PG7fccovR1tYW0vyudJHwHZwM4fq9DrZIOU8E25V23rn99tuNN954wzAMw+jt7TVOnz592bcZhnHHHXcY7e3tAfFwPnd/Vp9TUlISVrmeL5L6jYnO/X/5l38Z9uf7r3zlK8bx48fHxCKpzzp+/LgRHx8ftp/366+/btTW1o65Lpyovwinz/38vCP5XILgi4R7MlMhnO/7TKYr9Xr2fJH0d0qwhPJa97IdsfHnf/7nio+PD4ivXLlSFotFM2bMUHp6urq7uyVJtbW12rBhgyRp/fr1qqurm/L8DMNQc3OzsrOzA/KY6vzOZxiGTp06pZGREZ08eVLz5s37zHynms/n03/8x3/ooYcekiRdffXVuuaaa8Iqx76+PlVVVenhhx82Y+GU39VXX6077rhDkjRz5kwtWrRIH330kaTQ//6ddfYpJofDoZkzZ2rVqlV65ZVXQpLLuebNm6f09HRJ0nXXXac5c+aor68vbH62ktTR0aEPPvhAq1atkiT19PRoeHhYaWlpioqK0rp161RfXx+y/BAZ38HJEK7f62CLhPNEsF1p550jR45oxowZuu222yRJcXFx+uSTTy7rNuOzhfO5+7P6nHAXSf3GROf+SBRO1y0Xora2VnfddZeuueaaUKcyruXLl2vWrFnm64n6yHD73M/PO5LPJQiuSLgnMxXC/b7PZLpSr2fPF0l/pwRLKK91L9vCxuc5fvy4GhoatHz5ckln/pBwOBySJJvNpoGBgSnPqbe3V3FxcbJYLJIkh8NhFl58Pp+sVmtAfCpYLBbt2rVLKSkpstvtmjVrlpYvX/6Z+U61Dz/8UHPmzNHXv/51LV26VH/1V3+l4eHhsMrxO9/5jr773e8qKirKjIVTfufq6upSW1ubbrjhBkmh/f0717nf01DnMpGWlhaNjIwoJiYmrH6227dvV1lZmfk6Ej7LK1m4fgcnw5X4uxiu54lgu9LOOx0dHZo5c6ZycnJ0ww036Omnn77s24w/eeihh7R06VI999xzZixSzt3n9zmS9NxzzyktLU2PPPKITpw4EcLsAkXq9+rsuT8hIUHSmXPkkiVLVFxcrJGRkRBnF8hiseiOO+7QTTfdpMrKyrC9bpnISy+9pAcffNB8He6f90S/15H0uUfauQTBFQn3ZKZCJN33mUxX0vXs+SL175Rgmepr3elBP+IUSk9P1/DwcED8lVdekd1un/D/MwxDmzZt0iOPPGL+YRlO+YXKRPk2NDRo9+7dam9vl8Ph0Pr167V3716tXLkybHL8wQ9+oEOHDmnXrl1KS0vTxo0b9dOf/lRr1qwJi/x+9KMfqb+/X8uXL9fBgwenNKfzfd7v5dDQkB588EE988wzYfuEU7jq6+vTxo0b9eMf/zjUqYxx4MABLVy4UAsXLlRzc3Oo07ni8R28soXreSLYrsTzzvDwsN588021trbqS1/6klauXKkZM2aEOi0EyWeduysrK+VwOOTz+XTvvfdq0aJF5tNpofZF+pxHHnlE3/3udyVJf/M3f6MnnnhCzzzzzJTmfbk5/9xfVlam6667TkNDQ/rLv/xL/fCHP9TWrVtDnOVYb731lhwOhz766COtWLFiUq+bg21wcFDNzc2qqqqSFBmfd6TjXHLlCPd7MlMhEu77TCauZzGRUFzrRnRho7W19Qv9f4WFhYqNjdW3v/1tM2a329Xd3a05c+ZoYGBANpttyvOLj49XX1+fDMOQxWJRd3e3WQCxWq1mhfPceDBNlO97772n6dOn68tf/rIkKTc3V6+//rq+/vWvT5jvZJkox48++kh/9md/Zg59uu+++3Tw4EFt3rx5SnOcKL9/+qd/0ptvvqkFCxbI7/fr+PHjevjhh/WjH/0obD5D6UzRb+PGjVq9evWYha6m4vfvQpz9np7V3d2tm2++OSS5nG9oaEhf+9rXVFRUpK9+9asyDGPKf7YTeeedd1RVVaXq6mqdOHFCp0+f1uzZswM+y3AsuF6OIvk7OBnC+XsdbOF8ngi2K/G843A4lJGRYd78W716tU6dOnVZt/lKciF/11utVj3wwAN67733lJ2dHRbn7i/S51x77bXmv7/xjW+E3Q3gSOs3zj/3S2embJCkq666Shs3bjQX2QwnZ582nTdvnlavXq3Ozs6I6bMOHDigu+++W1dddZWkyPi8x/u9ttvtn3mPIFxE6rkEX0y435OZCpFw32cycT372SLt75RgCdW17hU3FdUPf/hD/frXv9Y//dM/jYm73W7t2bNHkrR371653e4pz81isSgzM1MNDQ2SpMrKSuXk5Iyb39n4VHA4HGpra1N/f78k6d///d+1aNGiz8x3qs2bN09f+tKX9OGHH0qSDh48qP/23/5b2OT4yCOPqLu7W8eOHVNVVZVWrVql3bt3h01+ZxUXF+vqq6/W3/3d342Jh/L371w333yzfvOb36i7u1snTpzQyy+/rHvuuSckuZzr7CiwO++805w3Mpx+tmVlZerq6tKxY8f07LPPasuWLfre976nqKgotbW1aWRkRFVVVSH93cMZ4f4dnAzh+r0OtnA/TwTblXjeuemmm/TJJ5+ov79fo6OjeuONN3TjjTde1m3GmZE6Xq9XkvTpp5/q5ZdfVnJysqTwP3dP1OecOz/+gQMHzPaEi0jqN8Y790t/+oxHR0dVW1sbdp/xyZMndfz4cUnSiRMn9NprryklJSVi+qzzp6EK989bOnMjbLz+IhL+VojUcwmCK9zvyUyFSLnvM5muxOvZ80XS3ynBEtJr3aAvRx4m/vIv/9K47rrrjBkzZhgOh8N46aWXDMMwjKioKMPpdBpLliwxlixZYvzzP/+zYRiGcerUKeO+++4zkpKSjNtvv9345JNPQpLf//t//8+44YYbjMTERGPLli3GyMiIYRiG8cknnxi33367kZSUZNx3333GqVOnJjW/8+3atcu4/vrrjZSUFGPdunXGH//4x8/MNxTee+89Y+nSpUZKSoqxfv16w+/3h12OhmEYr7/+upGXl2e+Dpf8urq6DEnG4sWLze/H//k//8cwjND//p3rwIEDhsvlMpKSkowf/ehHIcvjXG+++aZhsVjMz23JkiVGW1tb2Pxsz/XTn/7U+Pa3v20YhmG8/fbbxuLFi43ExESjpKQktIkhYr6DkyEcv9fBFknniWC7ks47jY2NRkpKipGcnGz81V/9lWEYl3+br3QnTpwwbrjhBiM1NdVYvHixUVhYaIyOjhqGEd7n7s/qc9avX2+kpKQYqampRl5entHb2xvibANFSr8x0bk/KyvLSE1NNZKTk41vfvOb5nVLuOjs7DTS0tKMtLQ0Izk52Xj++ecNwwif65bPMjAwYHzpS18yhoaGzFg4ft533XWXMWfOHCMmJsZwOBxGc3PzhP1FOH3u5+f9xhtvRPS5BMEVKfdkpkK43veZTFfy9ez5IuXvlGAJ5bWuxTAMI/jlEgAAAAAAAAAAgOC74qaiAgAAAAAAAAAAkYvCBgAAAAAAAAAAiBgUNgAAAAAAAAAAQMSgsAEAAAAAAAAAACIGhQ0AAAAAAAAAABAxKGwAAAAAAAAAAICIQWEDAAAAAAAAAABEDAobAAAAAAAAAAAgYlDYAAAAAAAAAAAAEYPCBgAAAAAAAAAAiBgUNgAAAAAAAAAAQMSgsAEAAAAAAAAAACIGhQ0AAAAAAAAAABAxKGwAAAAAAAAAAICIQWEDAAAAAAAAAABEDAobAAAAAAAAAAAgYlDYAAAAAAAAAAAAEYPCBjBJVq9erUcffTQgPjg4qKuvvlqvvfaann/+eSUmJmrmzJm688475fF4QpApAGCqfV4fUVlZqXvvvVd2u10Wi0Wtra0B+9bU1Mjlcunqq6/Wrbfeqg8++GAKMgcATLVL7TN+85vf6J577tGcOXNksVg0MDAwNYkDAKbcpfYZ//qv/6qbb75ZVqtV8+bN0ze/+U36DYQtChvAJPnmN7+pn/3sZxoaGhoT37dvn+bNm6ePP/5Yf//3f6/Gxkb19/frq1/9qnJycjQyMhKijAEAU+Xz+ogVK1Zo5cqVqqmpGff/P3r0qL7+9a/r+9//vvr6+nTnnXfqvvvu0/Dw8BRkDwCYSpfaZ8yYMUMPPPCA/uVf/mXykwUAhNSl9hmnTp3S//pf/0sff/yxjhw5oo8++kj/43/8jynIHLh4FsMwjFAnAVyOTp8+LYfDoRdeeEEPPvigGc/MzFROTo4OHz6s66+/Xjt27DD3v+aaa/TKK69o+fLlIcoaADAVPq+P+M53vmPGLBaLfv3rXys9Pd2Mffe739Wvf/1r1dfXm8f70pe+pF/84hfKysqasnYAACbfpfYZZx07dkx/9md/pv7+ftlstinIHAAw1YLVZ5xVW1urRx99VP/f//f/TWbawBfCiA1gksyYMUMbNmzQP//zP5ux999/X//xH/+hTZs2aXR0VOfXFQ3DUFtb21SnCgCYYp/XR3yetra2MRcgM2bM0OLFi+lDAOAydKl9BgDgyhHsPqOpqUlpaWlBzBAIHgobwCT65je/qVdffVVdXV2SpH/+53/WPffcI4fDoezsbP30pz/VkSNHNDQ0pO9+97saGRnR4OBgiLMGAEyFz+ojPs+JEycCnra12Ww6fvz4ZKQKAAixS+kzAABXlmD1GS+//LIqKipUVlY2GWkCl4zCBjCJFi9erJtvvln/+q//quHhYe3du1ff/OY3JUmbNm3SI488ovvuu0/z58/XyMiIFi9erPj4+BBnDQCYCp/VR3yemTNnyufzjYn5fD7NmjVrMlIFAITYpfQZAIArSzD6jNdee03r16/XL37xC6Wmpk5SpsClobABTLJvfvOb+pd/+RfV19drdHRUOTk5ks7MZfid73xHHo9Hf/jDH1RUVKTf/e53uv3220OcMQBgqkzUR3yetLQ0tba2mq9Pnz6t999/n4sOALiMfdE+AwBw5bmUPuO1117T2rVr9bOf/Ux33XXXJGYJXBoKG8Ake/DBB/Vf//Vf+qu/+itt3LhRM2bMkCQNDAzo6NGjMgxDPT09+sY3vqGvfe1rSk5ODnHGAICpMlEfIUl+v19+v1+S9Omnn8rv92t0dFSStH79er322mtqbGzU0NCQnnrqKc2ZM4fiOABcxr5on2EYhvx+v4aGhiRJQ0ND8vv9Aev9AQAuH1+0zzh48KDy8vK0Z88e3XPPPSHJHbhQFDaASTZr1iw98MADOnbs2JihfwMDA1qzZo1mzpypG264QU6nUz/96U9DmCkAYKpN1EdIUkxMjGJiYiRJt9xyi2JiYvTGG29IkhYtWqS9e/dq27Ztstls+uUvf6na2lpNnz59ytsAAJgaX7TP+P3vf6+YmBhdf/31kqTrrrtOMTEx+v3vfz+1DQAATJkv2mc88cQTGhwc1IMPPqiZM2eaGxCOLAaPaQAAAAAAAAAAgAjBiA0AAAAAAAAAABAxKGwAAAAAAAAAAICIQWEDAAAAAAAAAABEDAobAAAAAAAAAAAgYlDYAABMijVr1ig2NlZr164dEx8dHdUtt9wyJt7Z2amMjAw5nU4VFBTIMAxJktfrVVZWllwul3Jzc+X3+yVJfr9fubm5crlcysrKktfrlSQZhqGCggI5nU5lZGSos7NziloLAAAAAACAqUJhAwAwKbZt26YXX3wxIP6Tn/xECxYsGBMrLCxUaWmpPB6PvF6vGhoaJEnl5eXKy8tTR0eHEhMTVVFRIUmqqKhQYmKiOjo6lJeXp/LycklSQ0ODvF6vPB6PSktLVVhYOLmNBAAAAAAAwJSzGGcfi71MjY6OqqenR7NmzZLFYgl1OgAQtgzD0PHjx2W32zVtWnDq3gcPHtSuXbu0f/9+SVJfX5/uv/9+/e3f/q3+6Z/+Sfv375dhGHI4HOru7pbFYlFNTY1efvll/ehHP9LChQv13nvvyWq1qrW1VYWFhfq3f/s33X333XrmmWe0ZMkSDQwM6JZbbtHRo0f18MMPKzs7W/fdd1/AcS8EfQYAXJjJ6DMiDX0GAFwY+gz6DAC4UBfTZ0yfopxCpqenRwkJCaFOAwAiRldXl+bPnz8px/7Od76j7373u2Nivb29iouLM//AP1uMkCSfzyer1RoQ7+npkcPhkCTZbDYNDAwExC0Wi2JjY9Xb26s5c+aMm8/Q0JCGhobM193d3Vq8eHGQWgsAl7/J7DPCHdcZAHBx6DPoMwDgQl1In3HZFzZmzZol6cyHMXv27BBnAwDha3BwUAkJCeZ5M9h+/etfq7+/X8uXL9fBgwcn5T0uVllZmZ544omAOH0GAHy2ye4zIgHXGQBwYegz6DMA4EJdTJ9x2Rc2zj4BPHv2bDoPALgAkzU0+p133tGbb76pBQsWyO/36/jx43r44Yf1ox/9SH19fTIMQxaLRd3d3bLb7ZIkq9Vqjto4N26329Xd3a05c+ZoYGBANpttTDwjI0OGYai/v1/x8fET5lRcXKzHH3/cfH22A6XPAIALcyVPp8F1BgBcHPoM+gwAuFAX0mcEZXLDo0ePKj093dxiYmJUU1Ojzs5OZWRkyOl0qqCgQGeX8/B6vcrKypLL5VJubq78fr8kye/3Kzc3Vy6XS1lZWfJ6vZLOzK1VUFAgp9OpjIwMdXZ2BiNtAMAUeuSRR9Td3a1jx46pqqpKq1at0u7du2WxWJSZmWkuGF5ZWamcnBxJktvt1p49eyRJe/funTDudrsD4g0NDVq2bNlndobR0dHmxQUXGQAAAAAAAJEhKIWNRYsWqbW1Va2trXrrrbd0zTXX6C/+4i9UWFio0tJSeTweeb1e86ZVeXm58vLy1NHRocTERFVUVEiSKioqlJiYqI6ODuXl5am8vFzSmZtTXq9XHo9HpaWlKiwsDEbaAIBJtGLFCt1///1qbGzU/Pnz9fbbb0+4786dO1VSUqKkpCTFxsYqOztb0pkRFdXV1XI6nfJ4PNq8ebMkacuWLfJ4PHI6naqurlZRUZGkM4WNuLg4JSUlqaSkxOxHAAAAAAAAcPmwGGeHUQTJz372Mx04cEBVVVXmQq8Wi0U1NTV6+eWX9aMf/UgLFy7Ue++9J6vVqtbWVhUWFurf/u3fdPfdd+uZZ57RkiVLNDAwoFtuuUVHjx7Vww8/rOzsbN13330yDGPMcT/P4OCgOZUJT+ICwMQ4X/IZAMCF4nzJZwAAF4rzJZ8BAFyoizlfBn2NjZdeekkbN25Ub2+v4uLizOLD2WKEJHO+9PPjPT09cjgckiSbzaaBgYGAuMViUWxsrHp7ezVnzpyA9x8aGtLQ0JD5enBwMNhNBAAAAAAAAAAAIRKUqajOGhwcVHNzs1avXh3Mw16UsrIyWa1Wc0tISAhZLgAAAAAAAJga3//+95WcnKzFixfrsccek2EYOnTokJKTk+V0OrVjxw5z32CtCwsACI2gFjYOHDigu+++W1dddZXi4+PV19dndgzd3d2y2+2SZA4nOT9ut9vN0RsDAwOy2WwBccMw1N/fr/j4+HFzKC4uls/nM7eurq5gNhEAAAAAAABh5g9/+IN27dqllpYWtbe3q6WlRe+88462bt2qffv26ejRo2psbFR7e7skBW1dWABAaAS1sPHSSy/pwQcflHRmyqjMzEyzY6isrFROTo6kM4u77tmzR5K0d+/eCeNutzsg3tDQoGXLlk24vkZ0dLRmz549ZgMAAAAAAMDlbXh4WH6/X6dPn9bp06c1Ojqq4eFhpaWlKSoqSuvWrVN9fb0Mw1Bzc7Oys7MlSevXr1ddXZ0kqba2Vhs2bLjgOAAgNIJW2PD5fDp06JDuueceM7Zz506VlJQoKSlJsbGxZodRXFys6upqOZ1OeTwebd68WZK0ZcsWeTweOZ1OVVdXq6ioSNKZwkZcXJySkpJUUlJCVRwAAAAAAACmuXPnavv27fryl78su92uFStWKDo62lyzVfrTOq/BXBd2PENDQxocHByzAQCCK2iLh1utVn388cdjYi6XSy0tLQH7zp07V01NTQHxmJgY1dTUBMSnTZum3bt3BytVAAAAAAAAXEb6+/tVX1+vY8eOKSYmRqtWrdLKlStDkktZWZmeeOKJkLw3AFwpglbYAK4UC4oaxo0fK8+e4kwAAFcK+h4A+BPOiQDG8+qrr8rpdCouLk6SlJ2drYMHD5ojLqQ/rfN67rqwFotl3HVhrVbruOvCzpkzZ8y6sOMpLi7W448/br4eHBxUQkLCJLQawMXgb4jLS1DX2AAAAAAAAACmWkJCgpqbm+X3+zUyMqKDBw9qyZIlioqKUltbm0ZGRlRVVaWcnJygrgs7HtZ/BYDJR2EDAAAAAAAAES0zM1OrV6/W0qVLlZaWpqSkJN17773atWuX8vPztXDhQq1cuVKpqamSgrcuLAAgNJiKCgAAAAAAABHvqaee0lNPPTUmlpmZqSNHjgTsG6x1YQEAocGIDQAAAAAAAAAAEDEobAAAAAAAAAAAgIjBVFQAAAAAgLCzoKgh1CkAAAAgTDFiAwAAAAAAAAAARAxGbABBMtETZcfKs6c4EwAAAODKw9/jAAAAVw5GbAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGBQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIsb0UCcAAAAAAMBkWVDUMG78WHn2FGcCAACAYGHEBgAAAAAAAAAAiBgUNgAAAACEpYGBAWVkZCg9PV0pKSn68Y9/LEk6dOiQkpOT5XQ6tWPHDnP/zs5OZWRkyOl0qqCgQIZhSJK8Xq+ysrLkcrmUm5srv98vSfL7/crNzZXL5VJWVpa8Xu/UNxIAAADARaOwAQAAACAszZo1S2+88YZaW1v17rvv6umnn1Zvb6+2bt2qffv26ejRo2psbFR7e7skqbCwUKWlpfJ4PPJ6vWpoODMFUXl5ufLy8tTR0aHExERVVFRIkioqKpSYmKiOjg7l5eWpvLw8ZG0FAAAAcOEobAAAJsWaNWsUGxurtWvXSpJOnTqlVatW6frrr1dycrJeeOEFc9+LfZLWMAwVFBTI6XQqIyNDnZ2d5rF27Nghp9Op5ORkHTp0aApbDAAItqioKF199dWSpKGhIRmGoZMnT2p4eFhpaWmKiorSunXrVF9fL8Mw1NzcrOzsM+smrF+/XnV1dZKk2tpabdiw4YLjAAAAAMIbhQ0AwKTYtm2bXnzxxTGxoqIiffDBB3r33Xf1j//4j/J4PJIu/knahoYGeb1eeTwelZaWqrCwUJLU3t6uxsZGffDBB6qqqtLWrVunsMUAgMkwMDCgJUuWaP78+frrv/5rffLJJ3I4HOZ/dzgc6u7uVm9vr+Li4mSxWMbEJcnn88lqtQbEe3p6zGPZbDYNDAxMmMfQ0JAGBwfHbAAAAABCg8IGAGBSLF++XLNmzTJfX3311brjjjskSTNnztSiRYv00UcfSbr4J2nPjWdnZ6u5uVmGYaiurk75+fmaPn26UlNTdfr0afX09ExNgwEAk8Jms+nw4cP68MMP9bOf/UwjIyMhyaOsrExWq9XcEhISQpIHAAAAAAobAIAQ6OrqUltbm2644QZJF/8k7blxi8Wi2NhY9fb2jomfPdZnFTZ4+hYAIse1116rJUuW6OjRo2Y/IUnd3d2y2+2Kj49XX1+fuWD42bgkWa1W+Xy+gLjdbjePNTAwIJvNNuH7FxcXy+fzmVtXV9dkNBMAAADABaCwAQCYUkNDQ3rwwQf1zDPP6JprrglpLjx9CwDh7eOPP9bx48clnSmCv/HGG1q6dKmioqLU1tamkZERVVVVKScnRxaLRZmZmeaC4ZWVlcrJyZEkud1u7dmzR5K0d+/eCeNut3vCXKKjozV79uwxGwAgvBw9elTp6enmFhMTo5qaGnV2diojI0NOp1MFBQVmETyYa/0BAKZW0AobH374obKysrR48WKlpqbq5MmTOnTokJKTk+V0OrVjxw5z32B1KACAyGIYhjZu3KjVq1ebi4pLF/8k7blxwzDU39+v+Pj4MfHzjzUenr4FgPD2+9//XrfddpuWLFmi2267Tf/zf/5PpaamateuXcrPz9fChQu1cuVKpaamSpJ27typkpISJSUlKTY21lxIvLi4WNXV1XI6nfJ4PNq8ebMkacuWLfJ4PHI6naqurlZRUVHI2goAuHSLFi1Sa2urWltb9dZbb+maa67RX/zFX6iwsFClpaXyeDzyer1mETxYa/0BAKZe0AobmzZt0o4dO/T++++rqalJ0dHR2rp1q/bt26ejR4+qsbFR7e3tkhS0DgUAEFmKi4t19dVX6+/+7u/GxC/2Sdpz4w0NDVq2bJksFovcbrf27dun4eFhtbe3a8aMGZ9Z2ODpWwAIbzfffLNaW1t1+PBhtbW16b//9/8uScrMzNSRI0fU2dmp0tJSc3+Xy6WWlhZ1dnZq9+7dmjbtzOXO3Llz1dTUJI/Ho5qaGsXExEiS+SSvx+NRU1OT5s6dO+VtBABMjtraWt111126+uqr1dzcbBa7L3ZNvwtZ6w8AMPWmB+MgR44c0YwZM3TbbbdJkuLi4tTT06Ph4WGlpaVJktatW6f6+nqlpKSoublZ1dXVkv7UQbjdbtXW1uq9994z44WFhXr00UdVW1urZ555xozfcsstevbZZ4OROgBgkqxYsUKHDx/WyZMnNX/+fO3bt087d+7U4sWLlZ6eLunMk7X33HOPiouLtXbtWj3//PNKSUnRk08+KenMk7T5+flyOp1yOBzav3+/pDOFjfr6eiUlJclms6mqqkqSlJaWppUrV2rRokW66qqr9JOf/CQkbQcAABdmQVFDqFMAcJl66aWXtHHjRvX29iouLk4Wi0XS2DX9grXW35w5c8a899DQkIaGhszXrOUHAMEXlMJGR0eHZs6cqZycHHV3d2vt2rW6++67AxZwbWpqCmqHMh46DwAID6+++mpAbKKnmc4+SXu+s0/Snm/atGnavXv3uMcqLS0d8/QuAAAAgCvL4OCgmpubVVVVpRMnTkz5+5eVlemJJ56Y8vcFgCtJUKaiGh4e1ptvvqkf/OAHevvtt/XLX/5Sr7/+ejAOfdFYCBYAAAAAAODKdeDAAd1999266qqrFB8fr76+PvMhq3PX4QvWWn/nYy0/AJh8QSlsOBwOZWRkKCEhQdHR0Vq9erVOnTo17gKuwexQxkPnAQAAAAAAcOV66aWX9OCDD0o6M2VUZmamub5rZWXlhGv6fdG1/s7HWn4AMPmCUti46aab9Mknn6i/v1+jo6N64403dOONNyoqKkptbW0aGRlRVVWVcnJygtqhjIfOAwAAAAAA4Mrk8/l06NAh3XPPPWZs586dKikpUVJSkmJjY82FxIuLi1VdXS2n0ymPx6PNmzdLOrPWn8fjkdPpVHV1tYqKiiSduT8VFxenpKQklZSUqLy8fOobCACQFKQ1NqZPn66nn35at99+uwzD0N133y232605c+YoPz9ffr9fGzZsUGpqqqQzHcq6deu0bds23XXXXWM6lItZPBYAAAAAAAA4y2q16uOPPx4Tc7lcamlpCdg3mGv9AQCmVlAKG5K0atUqrVq1akwsMzNTR44cCdg3WB0KAAAAAABfxIKihnHjx8qzpzgTAAAAXKygTEUFAAAAAAAAAAAwFShsAAAAAAAAAACAiEFhAwAAAAAAAAAARAwKGwAAAAAAAAAAIGJQ2AAAAAAAAAAAABGDwgYAAAAAAAAAAIgYFDYAAAAAAAAAAEDEoLABAAAAAAAAAAAixvRQJwAAAAAAAAAAQCgsKGoYN36sPHuKM8HFYMQGAAAAAAAAAACIGBQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIgaFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGBQ2AAAAAAAAAABAxKCwAQAAACAsdXV1afny5Vq8eLHS0tJUXV0tSdq0aZMSExOVnp6u9PR0dXZ2SpL8fr9yc3PlcrmUlZUlr9crSTIMQwUFBXI6ncrIyDD3l6QdO3bI6XQqOTlZhw4dmvpGAgCC5sMPP1RWVpYWL16s1NRUnTx5UocOHVJycrKcTqd27Nhh7tvZ2amMjAw5nU4VFBTIMAxJktfrVVZWllwul3Jzc+X3+yVN3McAAEKDwgYAAACAsDR9+nQ9//zzev/99/XKK6/oW9/6lk6ePClJ+od/+Ae1traqtbVVSUlJkqSKigolJiaqo6NDeXl5Ki8vlyQ1NDTI6/XK4/GotLRUhYWFkqT29nY1Njbqgw8+UFVVlbZu3RqahgIAgmLTpk3asWOH3n//fTU1NSk6Olpbt27Vvn37dPToUTU2Nqq9vV2SVFhYqNLSUnk8Hnm9XjU0NEiSysvLlZeXp46ODiUmJqqiokLSxH0MACA0KGwAACbFmjVrFBsbq7Vr15qxyX5a6rOeyAUARJ558+YpPT1dknTddddpzpw56uvrm3D/2tpabdiwQZK0fv161dXVBcSzs7PV3NwswzBUV1en/Px8TZ8+XampqTp9+rR6enomt1EAgElx5MgRzZgxQ7fddpskKS4uTp988omGh4eVlpamqKgorVu3TvX19TIMQ83NzcrOzpY0cZ9xIXEAQGhQ2AAATIpt27bpxRdfHBOb7KelJnoiFwAQ+VpaWjQyMqKEhARJ0vbt27VkyRIVFxdrZGREktTT0yOHwyFJstlsGhgYCIhbLBbFxsaqt7d3TFySHA7HhIWNoaEhDQ4OjtkAAOGjo6NDM2fOVE5Ojm644QY9/fTT457nu7u71dvbq7i4OFksljFxSfL5fLJarQHxifqY8dBnAMDko7ABAJgUy5cv16xZs8zXPT09k/601ERP5AIAIltfX582btyo3bt3S5LKysr029/+Vu+++65+97vf6Yc//OGk51BWViar1WpuZwssAIDwMDw8rDfffFM/+MEP9Pbbb+uXv/ylXn/99ZDkQp8BAJOPwgYAYEpMxdNSEz2ROxGepAKA8Dc0NKSvfe1rKioq0le/+lVJZ6aoslgsuuqqq7Rx40a99957kiS73W72FQMDA7LZbAFxwzDU39+v+Pj4MXFJ6u7ult1uHzeP4uJi+Xw+c+vq6pqsJgMAvgCHw6GMjAwlJCQoOjpaq1ev1qlTp8Y9z8fHx6uvr898COrc87/VapXP5wuIT9THjIc+AwAmX9AKGwsWLFBaWprS09OVlZUliTnTAQDhjSepACC8GYahTZs26c477zRH5EnSRx99JEkaHR1VbW2tkpOTJUlut1t79uyRJO3du1dutzsg3tDQoGXLlsliscjtdmvfvn0aHh5We3u7ZsyYMWFhIzo6WrNnzx6zAQDCx0033aRPPvlE/f39Gh0d1RtvvKEbb7xRUVFRamtr08jIiKqqqpSTkyOLxaLMzExzCtzKykrl5ORICuxLJoqf7WPGQ58BAJMvqCM2mpub1draag71Y850AMBZEz0VG8ynpSZ6InciPEkFAOHtV7/6lX7+85+rpqZG6enpSk9PV3t7u77+9a8rLS1NaWlpGhkZ0WOPPSZJ2rJlizwej5xOp6qrq1VUVCTpzM2ouLg4JSUlqaSkxLzOSEtL08qVK7Vo0SKtW7dOL7zwQsjaCgC4NNOnT9fTTz+t22+/XWlpaXK5XHK73dq1a5fy8/O1cOFCrVy5UqmpqZKknTt3qqSkRElJSYqNjTWnxi0uLlZ1dbWcTqc8Ho82b94saeI+BgAQGtMn68Bn50yvrq6W9Kc50N1ut2pra83h4uvXr1dhYaEeffRR1dbW6plnnjHjt9xyi5599tmAOdMffvhhGYZhTlsCAAh/drvdfFoqOTlZVVVV+vGPfzzmaSm3263Kykpt3LhR0p+einr00UfHfVpqyZIlAU/kvvjii7rvvvvGPJE7kejoaEVHR09+4wEAX8itt96q0dHRgPhrr7027v4xMTGqqakJiE+bNs1cn+N8paWlKi0tvZQ0AQBhYtWqVVq1atWYWGZmpo4cORKwr8vlUktLS0B87ty5ampqCohP1McAAEIjaIUNi8WiO+64Q9OmTdO3vvUt3XPPPZM+Z/qcOXMC8hgaGtLQ0JD5mvnSASA0VqxYocOHD+vkyZOaP3++qqurzael/H6/NmzYMOZpqXXr1mnbtm266667xjwttXbtWj3//PNKSUnRk08+KenM01L5+flyOp1yOBzav3+/pDOFjfr6eiUlJclms6mqqio0jQcAAAAAAMCkCVph46233pLD4dBHH32kFStWhGye8rKyMj3xxBMheW8AwJ+8+uqr48Yn82mpz3oiFwAAAAAAAJeHoBU2zo6omDdvnlavXq3Ozk5zznSLxTLunOlWq3XcOdPnzJkz7pzpGRkZnztnenFxsR5//HHz9eDgIIvBAgAAAAAuyIKihnHjx8qzpzgTAAAATCQoi4efPHlSx48flySdOHFCr732mlJSUsw50yWpsrIyYG50SePOmX42fu6c6WfjnzdnenR0tGbPnj1mAwAAAAAAAAAAl4egjNj4+OOPtWbNGknSyMiItmzZoptuuok50wEAAAAAAAAAQFAFpbCRmJiow4cPB8SZMx0AAAAAAAAAAARTUKaiAgAAAAAAAAAAmAoUNgAAAAAAAAAAQMSgsAEAAAAAAAAAACIGhQ0AAAAAAAAAABAxKGwAAAAAAAAAAICIQWEDAAAAAAAAAABEDAobAAAAAAAAAAAgYlDYAAAAAAAAAAAAEWN6qBMAAAAAAAAAACAYFhQ1hDoFTAFGbAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGNNDnQAAAAAA4PK2oKgh1CkAAADgMsKIDQAAAAAAAFwWFixYoLS0NKWnpysrK0uS1NnZqYyMDDmdThUUFMgwDEmS1+tVVlaWXC6XcnNz5ff7JUl+v1+5ublyuVzKysqS1+uVJBmGoYKCAjmdTmVkZKizszM0jQQAUNgAAAAAAADA5aO5uVmtra16/fXXJUmFhYUqLS2Vx+OR1+tVQ8OZUWTl5eXKy8tTR0eHEhMTVVFRIUmqqKhQYmKiOjo6lJeXp/LycklSQ0ODvF6vPB6PSktLVVhYGJoGAgAobAAAAAAAAODyZBiGmpublZ2dLUlav3696urqJEm1tbXasGHDF4pnZ2erubnZHP0BAJhaFDYAAAAAAABwWbBYLLrjjjt00003qbKyUr29vYqLi5PFYpEkORwOdXd3S5J8Pp+sVmtAvKenRw6HQ5Jks9k0MDAQELdYLIqNjVVvb29ADkNDQxocHByzAQCCi8XDAQAAAAAAcFl466235HA49NFHH2nFihVKSEiY8hzKysr0xBNPTPn7AsCVhBEbAAAAAAAAuCycHVExb948rV69Wp2dnerr6zOnjOru7pbdbpckWa1W+Xy+gLjdbjdHbwwMDMhmswXEDcNQf3+/4uPjA3IoLi6Wz+czt66urslrMABcoShsAAAAAAhLXV1dWr58uRYvXqy0tDRVV1dLkjo7O5WRkSGn06mCggLzZpXX61VWVpZcLpdyc3Pl9/slSX6/X7m5uXK5XMrKypLX65V05qZUQUGBnE6nMjIy1NnZGZqGAgCC4uTJkzp+/Lgk6cSJE3rttdeUkpKizMxMc8HwyspK5eTkSJLcbrf27NkjSdq7d++EcbfbHRBvaGjQsmXLzCmuzhUdHa3Zs2eP2QAAwUVhAwAw5b7//e8rOTlZixcv1mOPPSbDMHTo0CElJyfL6XRqx44d5r7BunkFAIg806dP1/PPP6/3339fr7zyir71rW/p5MmTKiwsVGlpqTwej7xer3mzqry8XHl5eero6FBiYqIqKiokSRUVFUpMTFRHR4fy8vJUXl4u6cxNKa/XK4/Ho9LSUhUWFoasrQCAS/fxxx/r1ltv1ZIlS5SZmamNGzfqpptu0s6dO1VSUqKkpCTFxsaaC4kXFxerurpaTqdTHo9HmzdvliRt2bJFHo9HTqdT1dXVKioqknSmsBEXF6ekpCSVlJSY/QkAYOpR2AAATKk//OEP2rVrl1paWtTe3q6Wlha988472rp1q/bt26ejR4+qsbFR7e3tkhS0m1cAgMgzb948paenS5Kuu+46zZkzR319fWpubjZvSq1fv151dXWSpNraWm3YsOELxbOzs9Xc3GwW0AEAkScxMVGHDx/W4cOH9Zvf/Ebbtm2TJLlcLrW0tKizs1O7d+/WtGlnbofNnTtXTU1N8ng8qqmpUUxMjCQpJiZGNTU18ng8ampq0ty5cyVJ06ZN0+7du9XZ2amWlha5XK7QNBQAQGEDADD1hoeH5ff7dfr0aZ0+fVqjo6MaHh5WWlqaoqKitG7dOtXX18swjKDdvAIARLaWlhaNjIwoJiZGcXFx5tQfDofDnO/c5/PJarUGxHt6esw51202mwYGBgLiFotFsbGx6u3tHff9h4aGNDg4OGYDAAAAEBpBLWycOnVKX/nKV7R9+3ZJYloRAECAuXPnavv27fryl78su92uFStWKDo62ryxJP3pZlRvb2/Qbl6Nh5tUABAZ+vr6tHHjRu3evTtkOZSVlclqtZpbQkJCyHIBAAAArnRBLWw89dRTyszMNF8zrQgA4Hz9/f2qr6/XsWPH1N3drebmZp06dSokuXCTCgDC39DQkL72ta+pqKhIX/3qVxUfH6++vj7z4aju7m7Z7XZJktVqlc/nC4jb7XazAD4wMCCbzRYQNwxD/f39io+PHzeP4uJi+Xw+c+vq6pq0NgMAAAD4bEErbHR0dOiDDz7QqlWrJJ15YpZpRQBpQVHDuBtwpXr11VfldDoVFxenmJgYZWdn6+DBg+aNJelPN6OCefNqPNykAoDwZhiGNm3apDvvvNO8HrBYLMrMzDQfjqqsrFROTo6kM4u67tmzR5K0d+/eCeNutzsg3tDQoGXLlpmjBM8XHR2t2bNnj9kAAAAAhEbQChvbt29XWVmZ+frcqUAkphUBAJyRkJCg5uZm+f1+jYyM6ODBg1qyZImioqLU1tamkZERVVVVKScnJ6g3r8bDTSoACG+/+tWv9POf/1w1NTVKT09Xenq62tvbtXPnTpWUlCgpKUmxsbHmQ1PFxcWqrq6W0+mUx+PR5s2bJUlbtmyRx+OR0+lUdXW1ioqKJJ3pM+Li4pSUlKSSkhJGhgMAAAARYnowDnLgwAEtXLhQCxcuVHNzczAO+YWVlZXpiSeeCGkOAICJZWZmavXq1Vq6dKmmTZumu+66S/fee6+uvfZa5efny+/3a8OGDUpNTZUk7dy5U+vWrdO2bdt01113jbl5tXbtWj3//PNKSUnRk08+KenMzav8/Hw5nU45HA7t378/ZG0FAFyaW2+9VaOjo+P+t5aWloDY3Llz1dTUFBCPiYlRTU1NQHzatGkhXbcDAAAAwBcTlMLGO++8o6qqKlVXV+vEiRM6ffq0Zs+e/bnTilgslnGnFbFareNOKzJnzpwLmlbk8ccfN18PDg4yZzoAhJmnnnpKTz311JhYZmamjhw5ErCvy+UKys0rAAAAAAAAXB6CMhVVWVmZurq6dOzYMT377LPasmWLvve97zGtCAAAAAAAAAAACKqgrbExnl27dik/P18LFy7UypUrx0wrEow5cQEAAAAAAAAAwJUlKFNRnWvTpk3mv5lWBAAAAAAAAAAABFPQCxvA5WBBUUOoUwAAAAAAAAAAjGNSp6ICAAAAAAAAAAAIJgobAAAAAAAAAAAgYjAVFQAAQJhgKkQAAAAAAD4fIzYAAAAAAAAAAEDEoLABAAAAAAAAAAAiBoUNAAAAAAAAAAAQMShsAAAAAAAAAACAiEFhAwAAAAAAAAAARAwKGwAAAAAAAAAAIGJQ2AAAAAAA4HMsKGoYdwMQXk6dOqWvfOUr2r59uyTp0KFDSk5OltPp1I4dO8z9Ojs7lZGRIafTqYKCAhmGIUnyer3KysqSy+VSbm6u/H6/JMnv9ys3N1cul0tZWVnyer1T3zgAgInCBgAAAAAAAC4LTz31lDIzM83XW7du1b59+3T06FE1Njaqvb1dklRYWKjS0lJ5PB55vV41NJwpVJaXlysvL08dHR1KTExURUWFJKmiokKJiYnq6OhQXl6eysvLp75xAAAThQ0AAAAAAABEvI6ODn3wwQdatWqVJKmnp0fDw8NKS0tTVFSU1q1bp/r6ehmGoebmZmVnZ0uS1q9fr7q6OklSbW2tNmzYcMFxAEBoUNgAAAAAAABAxNu+fbvKysrM1z09PXI4HOZrh8Oh7u5u9fb2Ki4uThaLZUxcknw+n6xWa0D83GPZbDYNDAxMmMfQ0JAGBwfHbACA4KKwAQAAAAAAgIh24MABLVy4UAsXLgx1KiorK5PVajW3hISEUKcEAJed6aFOAAAAAAAAALgU77zzjqqqqlRdXa0TJ07o9OnTmj17tjniQpK6u7tlt9sVHx+vvr4+GYYhi8VixiXJarWaozbOjdvtdnV3d2vOnDkaGBiQzWabMJfi4mI9/vjj5uvBwUGKGwAQZIzYAAAAAAAAQEQrKytTV1eXjh07pmeffVZbtmzR9773PUVFRamtrU0jIyOqqqpSTk6OLBaLMjMzzQXDKysrlZOTI0lyu93as2ePJGnv3r0Txt1u94S5REdHa/bs2WM2AEBwUdgAAAAAAADAZWnXrl3Kz8/XwoULtXLlSqWmpkqSdu7cqZKSEiUlJSk2NtZcSLy4uFjV1dVyOp3yeDzavHmzJGnLli3yeDxyOp2qrq5WUVFRyNoEAGAqKgAAAAAAAFxGNm3aZP47MzNTR44cCdjH5XKppaUlID537lw1NTUFxGNiYlRTUxPMNAEAl4ARGwAAAAAAAAAAIGJQ2AAAAAAAAAAAABGDwgYAAAAAAAAAAIgYFDYAAFPuww8/VFZWlhYvXqzU1FSdPHlShw4dUnJyspxOp3bs2GHu29nZqYyMDDmdThUUFMgwDEmS1+tVVlaWXC6XcnNz5ff7JUl+v1+5ublyuVzKysqS1+sNSRsBAMGxZs0axcbGau3atWZs+fLluv7665Wenq709HT98Y9/lHTxfYNhGCooKJDT6VRGRoY6OzunvoEAAAAALhqFDQDAlNu0aZN27Nih999/X01NTYqOjtbWrVu1b98+HT16VI2NjWpvb5ckFRYWqrS0VB6PR16vVw0NDZKk8vJy5eXlqaOjQ4mJiaqoqJAkVVRUKDExUR0dHcrLy1N5eXnI2gkAuHTbtm3Tiy++GBDfv3+/Wltb1draqpiYGEkX3zc0NDTI6/XK4/GotLRUhYWFU9cwAAAAAF8YhQ0AwJQ6cuSIZsyYodtuu02SFBcXp08++UTDw8NKS0tTVFSU1q1bp/r6ehmGoebmZmVnZ0uS1q9fr7q6OklSbW2tNmzYcMFxAEBkWr58uWbNmnVB+15s33BuPDs7W83NzebIQAAAAADhKyiFjYGBAWVkZCg9PV0pKSn68Y9/LElMKwIACNDR0aGZM2cqJydHN9xwg55++mn19PTI4XCY+zgcDnV3d6u3t1dxcXGyWCxj4pLk8/lktVoD4ucey2azaWBgYMJchoaGNDg4OGYDAESGhx56SEuXLtVzzz1nxi62bzg3brFYFBsbq97e3nHfjz4DAAAACB9BKWzMmjVLb7zxhlpbW/Xuu+/q6aefVm9vL9OKAAACDA8P680339QPfvADvf322/rlL3+p119/PSS5lJWVyWq1mltCQkJI8gAAXJzKykq1tbXp4MGDOnDggHk9MZnoMwAAAIDwEZTCRlRUlK6++mpJZ55kMgxDJ0+eZFoRAEAAh8OhjIwMJSQkKDo6WqtXr9apU6fMp2olqbu7W3a7XfHx8err6zNH9p2NS5LVapXP5wuI2+1281gDAwOy2WwT5lJcXCyfz2duXV1dk9FkAECQnR1lYbVa9cADD+i9994zX19M33Bu3DAM9ff3Kz4+ftz3pM8AAAAAwkfQ1tgYGBjQkiVLNH/+fP31X/+1PvnkE6YVAQAEuOmmm/TJJ5+ov79fo6OjeuONN3TjjTcqKipKbW1tGhkZUVVVlXJycmSxWJSZmWk+iVtZWamcnBxJktvt1p49eyRJe/funTDudrsnzCU6OlqzZ88eswEAwtvw8LA5Ne2nn36ql19+WcnJyZIuvm84N97Q0KBly5aZ1ynno88AAAAAwkfQChs2m02HDx/Whx9+qJ/97GcaGRkJ1qEvCkPEASC8TZ8+XU8//bRuv/12paWlyeVyye12a9euXcrPz9fChQu1cuVKpaamSpJ27typkpISJSUlKTY21hzxV1xcrOrqajmdTnk8Hm3evFmStGXLFnk8HjmdTlVXV6uoqChkbQUAXLoVK1bo/vvvV2Njo+bPn693331X99xzj9LS0rR06VKlpKRo7dq1ki6+b3C73YqLi1NSUpJKSkqY8hYAAACIENODfcBrr71WS5Ys0dGjRz93WhGLxTLutCJWq3XcoeNz5sy5oGlFHn/8cfP14OAgxQ0ACDOrVq3SqlWrxsQyMzN15MiRgH1dLpdaWloC4nPnzlVTU1NAPCYmRjU1NUHLFQAQWq+++mpAbLx+Qbr4vmHatGnavXv3JecIAAAAYGoFZcTGxx9/rOPHj0s6M53UG2+8oaVLlzKtCAAAAAAAAAAACKqgFDZ+//vf67b/n73/D4u7zu/9/8dI/BBSwww/siYzYc2BmWhD+KFiROuPoGlNBPwBURObYLYmHrZxG9dNF2hXwWwVcml3026u7q7SH8cEg8VzLiQQe1LPGqLibrLsYtjYTRlqtjhY7UBmSKLMBnh//8jX2RAgQjIw84b77bre1+U8M848X8C8X6/3PN+v1+vWW5WRkaFbb71V3/jGN5SWlsayIgAAAAAAAAAAIKRCshTVsmXL1NbWNiLOsiIAAAAAAAAAACCUQrZ5OAAAAAAAAAAAwGSjsAEAAAAAAAAAAEyDwgYAAAAAAAAAADANChsAAAAAAAAAAMA0KGwAAAAAAAAAAADToLABAAAAAAAA0/P5fMrKylJmZqaWLl2ql156SZJ06NAhpaamyul0atu2bcHnd3Z2KisrS06nU8XFxTIMQ5Lk9XqVk5Mjl8ulgoIC9ff3S5L6+/tVUFAgl8ulnJwceb3eqW8kAEAShQ0AAAAAAABMA3PnztXBgwfV1tamn/3sZ3ruuefU09OjzZs3a8+ePTp27Jj27dun9vZ2SVJJSYkqKirkdrvl9XrV1NQkSaqqqlJhYaE6OjqUnJys6upqSVJ1dbWSk5PV0dGhwsJCVVVVha2tADDTUdgAAAAAAACA6UVFRWnOnDmSpEAgIMMwdPr0aQ0MDCg9PV1RUVFas2aNGhsbZRiGWlpalJubK0lat26d9u7dK0lqaGjQ+vXrxx0HAEw9ChsAAAAAAACYFnw+nzIyMrRw4UL9+Z//uT799FM5HI7gvzscDnk8HvX09Cg+Pl4Wi2VYXJL8fr+sVuuIeHd3d/C1bDabfD7fqDkEAgH19fUNOwAAoUVhAwAAAAAAANOCzWbT+++/rw8//FCvvPKKBgcHpzyHyspKWa3W4JGUlDTlOQDAdDcr3AkAAAAAAKaHRaVN4U4BACRJV155pTIyMnTs2LHgjAtJ8ng8stvtSkhIUG9vrwzDkMViCcYlyWq1BmdtnBu32+3yeDxKTEyUz+eTzWYb9b3Lysr05JNPBh/39fVR3ACAEGPGBgAAAAAAAEzvk08+0cmTJyWdXU7q4MGDuvbaaxUVFaUjR45ocHBQtbW1ys/Pl8ViUXZ2dnDD8JqaGuXn50uS8vLytGvXLknS7t27x4zn5eWNmkd0dLRiY2OHHQCA0GLGBgAAgEmNdWf08arcKc4EAAAg/H7zm9/osccek2EYMgxD3/jGN5SWlqadO3dq7dq16u/v1/r165WWliZJ2r59u9asWaMtW7bozjvvDG4kXlZWptWrV2vHjh1aunSpvvvd70qSNm3apLVr18rpdMrhcOi1114LW1sBYKajsAEAAAAAAADTW7Zsmdra2kbEs7OzdfTo0RFxl8ul1tbWEfF58+apubl5RDwmJkb19fWhSBUAcIlYigoAAAAAAAAAAJgGMzYAAAAAAAAAADjHWEv/Siz/GwmYsQEAAAAAAAAAAEyDwgYAAAAAAAAAADANChsAAAAAAAAAAMA0KGwAAAAAAAAAAADToLABAAAAAAAAAABMY1a4EwBmqkWlTaPGj1flTnEmAAAAAAAAAGAezNgAAAAAAAAAAACmQWEDABAWn332ma666ipt3bpVknTo0CGlpqbK6XRq27Ztwed1dnYqKytLTqdTxcXFMgxDkuT1epWTkyOXy6WCggL19/dLkvr7+1VQUCCXy6WcnBx5vd6pbxwAIGTuv/9+xcXFafXq1cEYfQYAAAAws1HYAACExbPPPqvs7Ozg482bN2vPnj06duyY9u3bp/b2dklSSUmJKioq5Ha75fV61dR0dhm3qqoqFRYWqqOjQ8nJyaqurpYkVVdXKzk5WR0dHSosLFRVVdXUNw4AEDJbtmzRyy+/PCxGnwEAAADMbCEpbHR1dWn58uVasmSJ0tPTVVdXJyl0d0wZhqHi4mI5nU5lZWWps7MzFGkDAMKko6NDv/71r7Vq1SpJUnd3twYGBpSenq6oqCitWbNGjY2NMgxDLS0tys09u/fMunXrtHfvXklSQ0OD1q9fP+44AMCcli9frrlz5wYf02cAAAAACElhY9asWdqxY4c++OAD7d+/X0888YROnz4dsjummpqa5PV65Xa7VVFRoZKSklCkDQAIk61bt6qysjL4uLu7Ww6HI/jY4XDI4/Gop6dH8fHxslgsw+KS5Pf7ZbVaR8TPfS2bzSafzzdmHoFAQH19fcMOAEBko88AAACAJC0qbRr1wMwQksLGggULlJmZKUmaP3++EhMT1dvbG7I7ps6N5+bmqqWlJTj7AwBgLq+//roWL16sxYsXhzsVVVZWymq1Bo+kpKRwpwQAiFD0GQAAAEDkCPkeG62trRocHFRMTEzI7pg6N26xWBQXF6eenp5R3587qQAgsv30pz9VbW2tFi1apK1bt+qll17Svn37gn2BJHk8HtntdiUkJKi3tzdYzP4iLklWq1V+v39E3G63B1/L5/PJZrONmUtZWZn8fn/w6OrqmowmAwBC6NzzvESfAQAAAMxEIS1s9Pb2qqioSC+++GIoX3ZCuJMKACJbZWWlurq6dPz4cb3wwgvatGmTnn76aUVFRenIkSMaHBxUbW2t8vPzZbFYlJ2dHVzKsKamRvn5+ZKkvLw87dq1S5K0e/fuMeN5eXlj5hIdHa3Y2NhhBwAgstntdvoMAAAAYIYLWWEjEAjovvvuU2lpqW6++eaQ3jF1btwwDJ04cUIJCQmj5sGdVABgTjt37tTatWu1ePFirVy5UmlpaZKk7du3q7y8XCkpKYqLiwsucVhWVqa6ujo5nU653W5t3LhRkrRp0ya53W45nU7V1dWptLQ0bG0CAFy6FStW6IEHHtC+ffu0cOFCvffee/QZAAAAwAw3KxQvYhiGNmzYoDvuuCO4F8a5d0zl5eWppqZGRUVFkn53Z9Tjjz8+6h1TGRkZw+6YysvL08svv6x7771XTU1Nuummm4JLXJ0vOjpa0dHRoWgWAGCSbdiwIfjf2dnZOnr06IjnuFwutba2jojPmzdPzc3NI+IxMTGqr68PZZoAgDB68803R43TZwAAAAAzV0hmbLz77rt69dVXVV9fr8zMTGVmZqq9vT1kd0zl5eUpPj5eKSkpKi8vV1VVVSjSBgAAAAAAAAAAJhOSGRu33HKLhoaGRv23UNwxddlll4V13w4AAAAAAAAAABAZQrp5OAAAAAAAM8mi0qZRDwBTq6urS8uXL9eSJUuUnp6uuro6SVJnZ6eysrLkdDpVXFwc3AvW6/UqJydHLpdLBQUF6u/vlyT19/eroKBALpdLOTk58nq9ks4uw15cXCyn06msrCx1dnaGp6EAAEkUNjDDcRECAAAAAID5zZo1Szt27NAHH3yg/fv364knntDp06dVUlKiiooKud1ueb1eNTWdveavqqpSYWGhOjo6lJycrOrqaklSdXW1kpOT1dHRocLCwuBy6E1NTfJ6vXK73aqoqFBJSUnY2goAoLABAAAAAAAAk1uwYIEyMzMlSfPnz1diYqJ6e3vV0tIS3PN13bp12rt3rySpoaFB69evv6h4bm6uWlpagrM/AABTLyR7bAAAAAAAAACRoLW1VYODg4qJiVF8fLwsFoskyeFwyOPxSJL8fr+sVuuIeHd3txwOhyTJZrPJ5/ONiFssFsXFxamnp0eJiYkj3j8QCCgQCAQf9/X1TU5DAWAGY8YGAAAAAAAApoXe3l4VFRXpxRdfDFsOlZWVslqtwSMpKSlsuQDAdEVhAwAAAAAAAKYXCAR03333qbS0VDfffLMSEhLU29sbXDLK4/HIbrdLkqxWq/x+/4i43W4Pzt7w+Xyy2Wwj4oZh6MSJE0pISBg1j7KyMvn9/uDR1dU1aW0GgJmKwgYAAAAAAABMzTAMbdiwQXfccUdwLwyLxaLs7OzghuE1NTXKz8+XJOXl5WnXrl2SpN27d48Zz8vLGxFvamrSTTfdFFzi6nzR0dGKjY0ddgAAQovCBgAAAAAAAEzt3Xff1auvvqr6+nplZmYqMzNT7e3t2r59u8rLy5WSkqK4uLjgRuJlZWWqq6uT0+mU2+3Wxo0bJUmbNm2S2+2W0+lUXV2dSktLJZ0tbMTHxyslJUXl5eWqqqoKW1sBAGweDgAAAAAAAJO75ZZbNDQ0NOq/tba2jojNmzdPzc3NI+IxMTGqr68fEb/sssvCum8HAGA4ZmwAAAAAAAAAAADToLABAAAAAAAAAABMg8IGAAAAAAAAAAAwDQobAAAAAAAAAADANChsAAAAAAAAAAAA06CwAQAAAAAAAAAATIPCBgAAAAAAAAAAMA0KGwAAAAAAAAAAwDQobAAAAAAAAAAAANOgsAEAAAAAAAAAAEyDwgYAAAAAAAAAADANChsAAAAAAAAAAMA0KGwAAAAAAAAAAADToLABAAAAAAAAAABMg8IGAAAAAAAAAAAwDQobAIAp1dXVpeXLl2vJkiVKT09XXV2dJKmzs1NZWVlyOp0qLi6WYRiSJK/Xq5ycHLlcLhUUFKi/v1+S1N/fr4KCArlcLuXk5Mjr9UqSDMNQcXGxnE6nsrKy1NnZGZ6GAgAm3aJFi5Senq7MzEzl5ORICl1/AgAAACByhaSwcf/99ysuLk6rV68Oxg4dOqTU1FQ5nU5t27YtGOdCAwBmtlmzZmnHjh364IMPtH//fj3xxBM6ffq0SkpKVFFRIbfbLa/Xq6amJklSVVWVCgsL1dHRoeTkZFVXV0uSqqurlZycrI6ODhUWFqqqqkqS1NTUJK/XK7fbrYqKCpWUlIStrQCAydfS0qK2tja99dZbkhSy/gQXtqi0adQDAAAAmAohKWxs2bJFL7/88rDY5s2btWfPHh07dkz79u1Te3u7JC40AGCmW7BggTIzMyVJ8+fPV2Jionp7e9XS0qLc3FxJ0rp167R3715JUkNDg9avX39R8dzcXLW0tASL6ACA6c0wjJD1JwAAAAAiV0gKG8uXL9fcuXODj7u7uzUwMKD09HRFRUVpzZo1amxs5EIDADBMa2urBgcHFRMTo/j4eFksFkmSw+GQx+ORJPn9flmt1hHx7u5uORwOSZLNZpPP5xsRt1gsiouLU09Pz6jvHwgE1NfXN+wAAJiHxWLR7bffrhtuuEE1NTXq6ekJWX9yPvoMAAAAIHLMmowXPffiQDp74dDc3DypFxpfCAQCCgQCwcdccABAZOrt7VVRUZFeeumlsOVQWVmpZ555JmzvDwC4NO+8844cDoc+/vhjrVixQklJSZP2XvQZAAAAQOSYdpuHV1ZWymq1Bo/JvLgBAFycQCCg++67T6Wlpbr55puVkJCg3t7e4JJRHo9HdrtdkmS1WuX3+0fE7XZ7sAju8/lks9lGxA3D0IkTJ5SQkDBqHmVlZfL7/cGjq6tr0toMAAi9L26AWrBgge6++251dnaGrD85H30GAAAAEDkmpbBx7sWB9LsLh1B+cTUWLjgAILIZhqENGzbojjvuCC41aLFYlJ2dHdx3qaamRvn5+ZKkvLw87dq1S5K0e/fuMeN5eXkj4k1NTbrpppuCMwXPFx0drdjY2GEHAMAcTp8+rZMnT0qSTp06pZ/85CdaunRpyPqT89FnAEDku//++xUXF6fVq1cHY4cOHVJqaqqcTqe2bdsWjHd2diorK0tOp1PFxcXB76q8Xq9ycnLkcrlUUFCg/v5+SVJ/f78KCgrkcrmUk5Mjr9c7tY0DAAwzaYWNqKgoHTlyRIODg6qtrVV+fn5Iv7gaCxccGM2i0qZRDwBT791339Wrr76q+vp6ZWZmKjMzU+3t7dq+fbvKy8uVkpKiuLi44H5MZWVlqqurk9PplNvt1saNGyVJmzZtktvtltPpVF1dnUpLSyWd7Tfi4+OVkpKi8vJyVVVVha2tAIDJ88knn+iWW25RRkaGsrOzVVRUpBtuuCFk/QkAwHy2bNmil19+eVhs8+bN2rNnj44dO6Z9+/apvb1dklRSUqKKigq53W55vd7gd1VVVVUqLCxUR0eHkpOTVV1dLUmqrq5WcnKyOjo6VFhYyHUGAISZxfiiJH0JVqxYoffff1+nT59WfHy86urqZLFY9Oijj6q/v1/r169XRUWFJKmjo0Nr1qyRz+fTnXfeqR/96Ee67LLL9N///d9avXq1PB6Pli5dqj179igmJkaff/651q5dq1/96ldyOBx67bXXNG/evHHn1tfXF5wNQpFj5poORYzjVbnhTgHTHOdLfgYIv1D1V/QZmGycL/kZTIfx9WTjXAycNdXnywMHDmjnzp167bXX1N3drdzcXP3yl7+UJO3YsUOff/65SktLg/u7WiwW1dfX64033tCPf/xjLV68WIcPH5bValVbW5tKSkr0f//v/9Uf/dEf6fnnn1dGRoZ8Pp9uvPFGHTt2bFw5zfQ+A5gs4RyP0M9PjomcL0Oyefibb745avzo0aMjYi6XS62trSPi8+bNU3Nz84h4TEyM6uvrLzlHAAAAAAAAzBzd3d3B/Ziks3szNTc3q6enR/Hx8cEla78ockiS3++X1WodET/3tWw2m3w+35jvGwgEFAgEgo/7+vpC2i4AQIgKGwAAAAAAAACkyspKPfPMM+FOA5g2mCmK0UzKHhsAAAAAAABAONnt9uCMC0nyeDyy2+1KSEhQb29vcMPwL+KSgkugnB8/97V8Pp9sNtuY71tWVia/3x88urq6JqN5ADCjUdgAAAAAAADAtGO32xUVFaUjR45ocHBQtbW1ys/Pl8ViUXZ2dnDD8JqaGuXn50uS8vLytGvXLknS7t27x4zn5eWN+b7R0dGKjY0ddgAAQovCBgAAAAAAAExvxYoVeuCBB7Rv3z4tXLhQ7733nnbu3Km1a9dq8eLFWrlypdLS0iRJ27dvV3l5uVJSUhQXF6fc3LMbAZeVlamurk5Op1Nut1sbN26UJG3atElut1tOp1N1dXUqLS0NWzsBAOyxAQAAAAAAgGngzTffHDV+9OjRETGXy6XW1tYR8Xnz5qm5uXlEPCYmRvX19ZecIwAgNJixAQAAAAAAAAAATIMZGwAAAAAAhNii0qZR48ercqc4EwAAgOmHGRsAAAAAAAAAAMA0mLEBAAAAAAAAAAirsWY7AqOhsAEAADDNsPwJAAAAAGA6o7ABAAAwxbgTCQAAAACAi8ceGwAAAAAAAAAAwDSYsQEAAAAAAAAAmBLMYEcoMGMDAAAAAAAAAACYBjM2AJNgI1gAAAAAAAAg/PieLvyYsQEAAAAAAAAAAEyDGRsAAAAAgFGxBjYAAAAiETM2AAAAAAAAAACAaTBjAwAAAACAKcKa3AAAAJeOGRsAAAAAAAAAAMA0mLGBaYU1gAEAAAAAAIDw43s6TCZmbAAAAAAAAAAAANOgsAEAAAAAAAAAAEyDpagAk2PzQQAAAAAAAAAzCYUNAAAAAADCjBuWAAAAxs9US1E1Njbq6quvlsvlUnV1dbjTAQBEMPoMAMB40Wec/VJ9tAMAMBx9BgBEBtPM2BgYGNCTTz6pt956S1arVddff73uv/9+JSQkhDs1AECEoc8ARsfdwMBI9BkAgPGizwBGx80QCAfTFDYOHTqk1NRUORwOSdKqVau0f/9+rV27NsyZIRw4YX45vrzCTEafgUhhlv6KPgMzGX0GIh3naCBy0GcA+DL021PHNIWN7u7uYMchSQ6HQx6PZ8TzAoGAAoFA8LHf75ck9fX1TX6SmDJDgc/CnYJpffWbdZP6+r965q5JfX1Mni/Ok4ZhhDmTS0efgam2tPz/hjuFSUGfgbHQZ5i3z5iu56uZaKLn6LHOuWP9TXCORqjQZ5i3zwDOxzji4o3Vb9PfDjeRPsM0hY3xqqys1DPPPDMinpSUFIZsgJnHuiPcGeBSnTx5UlarNdxpTAn6DCC86DPMjz6DPgPmMdFzLudohBp9Bn0GgJHob0c3nj7DNIUNu90+rAru8Xi0bNmyEc8rKyvTk08+GXw8NDSk3t5eJSQkyGKxTEmuk6Gvr09JSUnq6upSbGxsuNO5ZLQnstGeyDZZ7TEMQydPnpTdbg/Za4bLTOkzptvf9njR7pnVbmnmtj2S202fMbE+I5J/l2Mh56lBzlODnCffhfKlz5B8Pp+uuuoq/ed//ue0Le6Y7W/2YtDG6YE2RraJ9BmmKWwsW7ZMv/rVr+TxeGS1WvXGG2/oqaeeGvG86OhoRUdHD4vZbLYpynLyxcbGmu4P8kJoT2SjPZFtMtozXQbZM63PmG5/2+NFu2eemdr2SG03fcbE+4xI/V1eCDlPDXKeGuQ8+cbKlz7jLKvVaqrf58Uw29/sxaCN0wNtjFzj7TNMU9iYNWuW/vqv/1o5OTkaGhrSt7/9bSUkJIQ7LQBABKLPAACMF30GAGC86DMAIHKYprAhSffcc4/uueeecKcBADAB+gwAwHjRZwAAxos+AwAiw2XhTgDjEx0drfLy8lGnMpoR7YlstCeyTbf24OLN1L8F2j2z2i3N3LbP1HZPR2b8XZLz1CDnqUHOk89s+U61mfDzoY3TA22cHmZCGyXJYhiGEe4kAAAAAAAAAAAAxoMZGwAAAAAAAAAAwDQobAAAAAAAAAAAANOgsAEAAAAAAAAAAEyDwoYJbN68WVdeeaWysrKGxTs7O5WVlSWn06ni4mKZcbuU5cuX65prrlFmZqYyMzP1+eefhzuli9LY2Kirr75aLpdL1dXV4U7nki1atEjp6enKzMxUTk5OuNOZsPvvv19xcXFavXp1MHbo0CGlpqbK6XRq27ZtYcxu4kZrz3T57GDiPvvsM61atUrXXHONUlNT9YMf/CD4b16vVzk5OXK5XCooKFB/f38YM50c07lP/DLTra+5kOl2Hh+vrq4uLV++XEuWLFF6errq6uokzYy/7+lqPP11JJ27L9THnKuiokILFy4Mtuvtt9+e4ky//JwYaeeMsT7f59qwYYOSk5ODP9fOzs4wZDrcl10XRNr56dixY8GfX2ZmpmJiYlRfXz/sOZHwc77Yfi6cP+/zczbT+SKcZsrYfawxeiR83kJlpl2HTNfvHGbCNZXZv9ObEAMR75133jF+/vOfG9dff/2weGFhobF3794R/20mt99+u9He3h7uNC7JmTNnDJfLZXz00UfGyZMnjcWLFxterzfcaV2Sq666yjh58mS407hob731ltHQ0GAUFhYGY1lZWcb7779vDAwMGDfeeKNx5MiRMGY4MaO1Zzp8dnBxTp8+bRw4cMAwDMM4efKkcfXVVxsdHR2GYRjGt771LeMHP/jBiP+eTqZzn3gh07GvuZDpdh4fr+7ubuOXv/ylYRiG8fHHHxt2u904derUtP/7ns7G019H0rn7Qn3MucrLy8Oa53jOiZF2zhjr832uRx55JOI+3192XRDJ56eTJ08aCQkJEflzvth+Lpw/7/NzNsv5Itxmyth9rDF6JHzeQmWmXYdMx+8cZso1ldm/05sIZmyYwB/8wR8oISFhWMwwDLW0tCg3N1eStG7dOu3duzcc6c14X9xZ43A4dMUVV2jVqlXav39/uNOa0ZYvX665c+cGH3d3d2tgYEDp6emKiorSmjVr1NjYGMYMJ+b89mBmmzNnjm6//XZJ0hVXXKGrr75aH3/8sSSpoaFB69evlzR9+4WZ2ifOtL5mup3Hx2vBggXKzMyUJM2fP1+JiYnq7e2d9n/fM10knbsv1MdEki87J0biOWOsz7eZRXr/29DQoDvvvFO/93u/F+5URriYfi7cP+/zczbL+SLcZsrYfbQx+nQzU69DppOZdk01E1DYMKmenh7Fx8fLYrFIkhwOhzweT5izujgPP/ywrr32Wn3ve98LdyoXpbu7Ww6HI/jYzL+LL1gsFt1+++264YYbVFNTE+50Ltl0/B1J5v/s4NJ1dXXpyJEjuu666yRJfr9fVqtV0vT5Ox+P6dQnjmW6nsfGaya2v7W1VYODg4qJiZn2f9/T3Zf115F67j6/jznf9773PaWnp+vrX/+6Tp06NaW5fdk5IdLPGV98vpOSkkb829atW5WRkaGysjINDg6GIbvhLnRdEOn97z//8z/roYceGvXfIu3nPJ6/2Uj+eUfy+SKSzNSxe6R93kIpkj+XoTDdvnOI9PFBqEy37/QuZFa4E8BZmZmZGhgYGBHfv3+/7HZ7GDIKnQu1raamRg6HQ36/X/fcc4+uvvrqYKUb4fPOO+/I4XDo448/1ooVK5SWlqb09PRwp4Vz8NmZrAaKHgABAABJREFU/r6sXwgEAnrooYf0/PPPR+SdiJdiOveJwHj09vaqqKhIL730UrhTwTiYcax7qX3M17/+dT311FOSpG9/+9t65pln9Pzzz0963tPBhT7flZWVmj9/vgKBgB555BH96Ec/0ubNm8OQ5e+Y9bqgr69PLS0tqq2tHfFvkfhzNjPOF2fNhLH7xYzRzfZ5m2nXIWYcw+DLmbXvvhgUNiJEW1vbhJ6fkJCg3t5eGYYhi8Uij8cTsSfZ8bTNarXqwQcf1OHDh013orTb7cMqvB6PR8uWLQtjRpfuiwr2ggULdPfdd+sXv/iFqU+Co/2OIvXzMl5f/I7M/NnBhV3o3GkYhoqKinT33XcP23TSarUG7/wy89/5dO4TL9Z07GsmYjqex8cSCAR03333qbS0VDfffLMMw5j2f99md6lj3XCcuy+mjznXlVdeGfzvP/mTP5nyL6m+7JwYqeeM8z/f51uwYIEkafbs2SoqKhp1g/GpdqHrgkjuf19//XX90R/9kWbPnj3i3yLx5zyev9lI/Hmb4XwxVWbC2H2iY3QpMj9vFzLTrkOm+/d155sp11TT7Tu9C2EpKpOyWCzKzs5WU1OTpLN3b+fn54c5q4kZGBiQ1+uVJP32t7/VG2+8odTU1DBnNXHLli3Tr371K3k8Hp06dUpvvPGG7rrrrnCnddFOnz6tkydPSpJOnTqln/zkJ6b8vZzLbrcrKipKR44c0eDgoGpra033eTnXdPns4OKVlZVpzpw5+s53vjMsnpeXp127dkmSdu/ebeq/84mYDn3il5lufc1ETbfz+FgMw9CGDRt0xx13BNfcngl/39PVePvrSDt3j9XHnOvcdfRff/31KR+HfNk5MRLPGaN9vs/3xc91aGhIDQ0NYR/ffdl1QSSfny60DFWk/Zyl8f3NRuLP2wzni0gwk8fukfh5C6VI/FyGwnT9zmEmXFNNx+/0LmiqdyvHxD3yyCPG/Pnzjcsvv9xwOBzGP//zPxuGYRj//u//blx33XVGcnKysWnTJmNwcDDMmU7MqVOnjOuuu85IS0szlixZYpSUlBhDQ0PhTuuivP7664bL5TJSUlKMH//4x+FO55J0dnYa6enpRnp6upGammrs2LEj3ClN2J133mkkJiYaMTExhsPhMFpaWoz33nvPWLJkiZGcnGyUl5eHO8UJOb8977zzzrT57GDiurq6DEnGkiVLjIyMDCMjI8P4l3/5F8MwDOPTTz81brvtNiMlJcW49957jc8++yzM2YbedO0Tx2M69TVfZrqdx8fr7bffNiwWS/CznZGRYRw5cmRG/H1PRxca6z711FPG66+/bhhGZJ27L9THnJvzunXrjKVLlxppaWlGYWGh0dPTM+W5jnZOXLVqleHxeAzDMCLunDHW5/vRRx81Dh8+bBiGYeTk5BhpaWlGamqq8eijjxr9/f1hzXms64Jzc47E85PP5zO+8pWvGIFAIBiLtJ/zRPq5SPl5n5/zwYMHTXO+CKeZMnYfa4weCZ+3UJlJ1yHT6fu68033a6rp8J3eRFgMwzDCW1oBAAAAAAAAAAAYH5aiAgAAAAAAAAAApkFhAwAAAAAAAAAAmAaFDQAAAAAAAAAAYBoUNgAAAAAAAAAAgGlQ2AAAAAAAAAAAAKZBYQMAAAAAAAAAAJgGhQ0AAAAAAAAAAGAaFDYAAAAAAAAAAIBpUNgAAAAAAAAAAACmQWEDAAAAAAAAAACYBoUNAAAAAAAAAABgGhQ2AAAAAAAAAACAaVDYAAAAAAAAAAAApkFhAwAAAAAAAAAAmAaFDQAAAAAAAAAAYBoUNgAAAAAAAAAAgGlQ2AAAAAAAAAAAAKZBYQMIkbvvvluPP/74iHhfX5/mzJmjmpoa3XPPPbLb7bJYLGpraxv2vDfeeENpaWmKi4tTfHy8/vAP/1Dt7e1TlD0AYCpdap9xrr/4i7+QxWJRfX395CUMAAibS+0zDhw4IIvFoiuuuCJ4jPZ6AADzC8V1xkcffaQHHnhANptNNptNd9111xRkDkwchQ0gRB599FG98sorCgQCw+J79uzRggULtGLFCq1cuXLML54yMzO1f/9+nThxQp9++qlyc3N1//33T0HmAICpdql9xhfef/997d27VwsWLJjEbAEA4RSKPsNqterUqVPBY+fOnZOcNQAgHC61zzh9+rRycnKUkZGhrq4ueb1e/dVf/dUUZA5MHIUNIETuuecezZo1a0Tn8I//+I/6kz/5E1155ZX60z/9Uy1btmzU/3/BggXBL6YMw1BUVJSOHz+uM2fOTHbqAIApdql9hiQNDg5q48aN2rlzp/6//+//m+SMAQDhEoo+AwAwM1xqn/FP//RPSkxM1He+8x3NnTtXs2bN0g033DAFmQMTR2EDCJHLL79c69ev1z/8wz8EYx988IF+/vOfa8OGDeN6jf/8z/+UzWbT7NmztWXLFpWVlenyyy+fpIwBAOESij7j+9//vtLT03X77bdPUpYAgEgQij7j1KlTstvtWrhwof74j/9YHo9nkrIFAITTpfYZzc3NWrhwoVatWqX4+Hhdf/312rdv3yRmDFw8ChtACD366KN688031dXVJUn6h3/4B911111yOBzj+v+/+tWvyufzyefz6W//9m+VlZU1mekCAMLoUvqM//iP/9DOnTv1/PPPT3aaAIAIcCl9xjXXXKO2tjZ1dXXp5z//uQzDUH5+voaGhiY7bQBAGFxKn9Hb26v/83/+j/7n//yf+uSTT/TUU09p9erVcrvdk502MGEUNoAQWrJkiZYtW6b/9b/+lwYGBrR79249+uijE36duXPn6k//9E/1ta99TR9++OEkZAoACLdL6TMee+wx/dVf/ZXi4+MnOUsAQCS4lD5j/vz5Wrp0qaKiojR//ny9+OKLev/99/Xv//7vk5w1ACAcLqXPuOKKK3TzzTfrvvvu0+WXX6777rtP119/vfbv3z/JWQMTR2EDCLFHH31U//RP/6TGxkYNDQ0pPz//ol7HMAz19/fr+PHjoU0QABAxLrbP+H//7//piSeeUGJiohITE9XV1aWioiJ985vfnOSMAQDhEqrrDIvFEuLMAACR5mL7jIyMjEnODAgdChtAiD300EP6r//6L33zm99UUVHRsD0y+vv71d/fL0n67W9/q/7+/uAU8NraWrndbg0NDcnn82nLli36vd/7PV133XVhaQcAYPJdbJ/R1dWltra24GG32/X9739fTz/9dFjaAQCYfBfbZ7z11lv68MMPZRiGenp69PWvf12pqalyuVxhaQcAYPJdbJ9RVFSkX/ziF8GCSGNjo37xi1/orrvuCks7gAuhsAGE2Ny5c/Xggw/q+PHjI6b6xcTEKCYmRpJ04403KiYmRgcPHpQkHT9+XH/4h3+ouXPnavHixTp+/Lj+9V//VVardcrbAACYGhfbZyxcuHDYERUVpYSEBMXFxU15GwAAU+Ni+4xf/vKXuu2223TFFVdo6dKlGhgYUGNjo6Kioqa8DQCAqXGxfUZKSopee+01ffvb31ZsbKy+853v6H//7/+tlJSUKW8D8GUshmEY4U4CAAAAAAAAAABgPJixAQAAAAAAAAAATIPCBgAAAAAAAAAAMA0KGwAAAAAAAAAAwDQobAAAAAAAAAAAANOgsAEAAAAAAAAAAEyDwgYAAAAAAAAAADCNWeFOYLINDQ2pu7tbc+fOlcViCXc6ABCxDMPQyZMnZbfbddllM7PuTZ8BAOMzVX2Gz+fTihUrNDAwoIGBAW3ZskWbNm3S8uXL9V//9V+aPXu2JOm9995TTEyMvF6vHnjgAX300UdKS0vTK6+8otmzZ6u/v18PP/yw2tvbtXDhQtXV1SkxMVGGYejrX/+63nzzTdlsNr366qtKSUkZV270GQAwPlxn0GcAwHhNpM+wGIZhTFFeYfHRRx8pKSkp3GkAgGl0dXVp4cKF4U4jLOgzAGBiJrvPGBwcVCAQ0Jw5c3T69GktXbpUP//5z1VYWKidO3dq6dKlw56/detWLVq0SI8//viw/965c6eOHz+uF154Ydh/NzY26p/+6Z/02muvDfvv8aDPAICJ4TqDPgMAxms8fca0n7Exd+5cSWd/GLGxsWHOBgAiV19fn5KSkoLnzZmIPgMAxmeq+oyoqCjNmTNHkhQIBGQYhi50X1ZDQ4MOHz4sSVq3bp1KSkr0+OOPq6GhQc8//3wwfuONN+qFF15QQ0OD1q9fL0nKzc3VY489JsMwxnU3LX0GAIwP1xn0GQAwXhPpM6Z9YeOLi5LY2Fg6DwAYh5k8NZo+AwAmZir6DJ/Pp9tvv10dHR16/vnnlZiYKEl6+OGHFRUVpfXr1+vJJ5+UJPn9flmtVkmSw+GQx+ORJHV3d8vhcEiSbDabfD7fiLjFYlFcXJx6enqC73GuQCCgQCAQfHzy5ElJ9BkAMF5cZ9BnAMB4jafPmJmLGwIAJt3999+vuLg4rV69Ohg7dOiQUlNT5XQ6tW3btmC8s7NTWVlZcjqdKi4uDt6N6/V6lZOTI5fLpYKCAvX390uS+vv7VVBQIJfLpZycHHm9Xkln12IsLi6W0+lUVlaWOjs7p7DFAIDJYLPZ9P777+vDDz/UK6+8ok8++UQ1NTU6cuSIDhw4oNdff11NTU2TnkdlZaWsVmvwYEkRAAAAIHwobAAAJsWWLVv08ssvD4tt3rxZe/bs0bFjx7Rv3z61t7dLkkpKSlRRUSG32y2v1xv8gqqqqkqFhYXq6OhQcnKyqqurJUnV1dVKTk5WR0eHCgsLVVVVJUlqamqS1+uV2+1WRUWFSkpKprDFAIDJdOWVVyojI0Nvv/12cJaF1WrVgw8+GFx+ymq1yu/3S5I8Ho/sdrskyW63B2dv+Hw+2Wy2EXHDMHTixAklJCSM+v5lZWXy+/3Bo6ura9LaCgAAAODCKGwAACbF8uXLh62J2N3drYGBAaWnpysqKkpr1qxRY2OjDMNQS0uLcnNzJZ1d+3zv3r2SNGzt84nGc3Nz1dLScsG12AEAke2TTz4JLvnk9/t18OBBXX311cGZer/97W/1xhtvKDU1VZKUl5enXbt2SZJ2796t/Pz8UeN5eXkj4k1NTbrpppvGnPYeHR0dXEKEpUQAAACA8Jr2e2wAACLDueuYS2fXPm9ublZPT4/i4+ODXySduyb6ZK6VLo1cL72vry+ELQYAXKrf/OY3wQ29DcPQN77xDSUnJ+u2227TmTNnNDg4qPz8/OCyh2VlZVq9erV27NihpUuX6rvf/a4kadOmTVq7dq2cTqccDodee+01SWcLG42NjUpJSZHNZlNtbW3Y2goAAABg/ChsAABmrMrKSj3zzDPhTgMAMIZly5apra1tRLy1tXXU58+bN0/Nzc0j4jExMaqvrx8Rv+yyy/Tiiy9eapoAAAAAphhLUQEApsS565hLv1v7PCEhQb29vcElo85dE30y10qXWC8dAAAAAADAjChsAACmhN1uV1RUlI4cOaLBwUHV1tYqPz9fFotF2dnZwQ3Da2pqxlwTPZRrpUuslw4AAAAAAGBGLEUFAJgUK1as0Pvvv6/Tp09r4cKFqqur086dO7V27Vr19/dr/fr1SktLkyRt375da9as0ZYtW3TnnXcGNxJnrXQAAAAAAACcz2J8sfbHNNXX1xdcyoQ7cQFgbJwv+RkAwHhxvuRnAADjxfmSnwEAjNdEzpfM2AAmaFFp06jx41W5U5wJAACRhT4SwHTAuQwAEOnoqwD22AAAAAAAAAAAACZCYQMAAAAAAAAAAJgGhQ0AAAAAAAAAAGAaFDYAAAAAAAAAAIBpUNgAAAAAAAAAAACmQWEDAAAAAAAAAACYBoUNAAAAAAAAAABgGhQ2AAAAAAAAAACAacwKdwJAJFpU2hTuFAAAAAAAAAAAowjJjA2fz6esrCxlZmZq6dKleumllyRJhw4dUmpqqpxOp7Zt2xZ8fmdnp7KysuR0OlVcXCzDMCRJXq9XOTk5crlcKigoUH9/vySpv79fBQUFcrlcysnJkdfrDUXaAAAAAAAAAADAZEJS2Jg7d64OHjyotrY2/exnP9Nzzz2nnp4ebd68WXv27NGxY8e0b98+tbe3S5JKSkpUUVEht9str9erpqazd8dXVVWpsLBQHR0dSk5OVnV1tSSpurpaycnJ6ujoUGFhoaqqqkKRNgAAAAAAAAAAMJmQLEUVFRWlOXPmSJICgYAMw9Dp06c1MDCg9PR0SdKaNWvU2NiopUuXqqWlRXV1dZKkdevWae/evcrLy1NDQ4MOHz4cjJeUlOjxxx9XQ0ODnn/++WD8xhtv1AsvvBCK1AEAAAAAMxDLzwIAAJhXyDYP9/l8ysjI0MKFC/Xnf/7n+vTTT+VwOIL/7nA45PF41NPTo/j4eFkslmFxSfL7/bJarSPi3d3dwdey2Wzy+Xxj5hEIBNTX1zfsAAAAAAAAAAAA00PIChs2m03vv/++PvzwQ73yyisaHBwM1UtPSGVlpaxWa/BISkoKSx4AAAAAAAAAACD0QlbY+MKVV16pjIwMHTt2LDjjQpI8Ho/sdrsSEhLU29sb3DD8i7gkWa1W+f3+EXG73R58LZ/PJ5vNNub7l5WVye/3B4+urq5QNxEAAAAAAAAAAIRJSAobn3zyiU6ePCnp7HJSBw8e1LXXXquoqCgdOXJEg4ODqq2tVX5+viwWi7Kzs4MbhtfU1Cg/P1+SlJeXp127dkmSdu/ePWY8Ly9vzFyio6MVGxs77AAAAAAAAAAAANNDSAobv/nNb3TrrbcqIyNDt956q77xjW8oLS1NO3fu1Nq1a7V48WKtXLlSaWlpkqTt27ervLxcKSkpiouLU25urqSzsy3q6urkdDrldru1ceNGSdKmTZvkdrvldDpVV1en0tLSUKQNAAAAAAAAAABMZlYoXmTZsmVqa2sbEc/OztbRo0dHxF0ul1pbW0fE582bp+bm5hHxmJgY1dfXhyJVAAAAAAAAAABgYiHfYwMAAAAAAAAAAGCyUNgAAAAAAAAAAACmEZKlqAAAAAAAmM4WlTaNGj9elTvFmQAAAIAZGwAAAAAiks/nU1ZWljIzM7V06VK99NJLkqRDhw4pNTVVTqdT27ZtCz6/s7NTWVlZcjqdKi4ulmEYkiSv16ucnBy5XC4VFBSov79fktTf36+CggK5XC7l5OTI6/VOfSMBAAAATBiFDQAAAAARae7cuTp48KDa2tr0s5/9TM8995x6enq0efNm7dmzR8eOHdO+ffvU3t4uSSopKVFFRYXcbre8Xq+ams7eYV9VVaXCwkJ1dHQoOTlZ1dXVkqTq6molJyero6NDhYWFqqqqCltbAQAAAIwfhQ0AAAAAESkqKkpz5syRJAUCARmGodOnT2tgYEDp6emKiorSmjVr1NjYKMMw1NLSotzcs8sCrVu3Tnv37pUkNTQ0aP369eOOAwAAAIhs7LEBAAAAIGL5fD7dfvvt6ujo0PPPP69PP/1UDocj+O8Oh0PNzc3q6elRfHy8LBZLMO7xeCRJfr9fVqt1RLy7uzv4WjabTT6fb8w8AoGAAoFA8HFfX19I24nJM9beGAAAADAvZmwAAAAAiFg2m03vv/++PvzwQ73yyisaHBwMSx6VlZWyWq3BIykpKSx5AAAAAKCwAQAAAMAErrzySmVkZOjYsWPBGReS5PF4ZLfblZCQoN7e3uCG4V/EJclqtcrv94+I2+324Gv5fD7ZbLYx37+srEx+vz94dHV1TUYzAQAAAIwDhQ0AAAAAEemTTz7RyZMnJZ1dTurgwYO69tprFRUVpSNHjmhwcFC1tbXKz8+XxWJRdnZ2cMPwmpoa5efnS5Ly8vK0a9cuSdLu3bvHjOfl5Y2ZS3R0tGJjY4cdAAAAAMKDwgYAAACAiPSb3/xGt956qzIyMnTrrbfqG9/4htLS0rRz506tXbtWixcv1sqVK5WWliZJ2r59u8rLy5WSkqK4uLjgRuJlZWWqq6uT0+mU2+3Wxo0bJUmbNm2S2+2W0+lUXV2dSktLw9ZWAAAAAOPH5uEAAAAAItKyZcvU1tY2Ip6dna2jR4+OiLtcLrW2to6Iz5s3T83NzSPiMTExqq+vD0WqAIAI8P3vf1/V1dUyDEMrVqzQ3/zN3+jw4cP62te+pkAgoKKiIj399NOSpM7OTj300EPy+XxasWKFfvjDH8piscjr9eqBBx7QRx99pLS0NL3yyiuaPXu2+vv79fDDD6u9vV0LFy5UXV2dEhMTw9xiAJi5mLEBAAAAAAAAU/vv//5v7dy5U62trWpvb1dra6t++tOfavPmzdqzZ4+OHTumffv2qb29XZJUUlKiiooKud1ueb3e4FKGVVVVKiwsVEdHh5KTk1VdXS1Jqq6uVnJysjo6OlRYWKiqqqqwtRUAQGEDAAAAAAAA08DAwID6+/t15swZnTlzRkNDQxoYGFB6erqioqK0Zs0aNTY2yjAMtbS0BJcsXLdunfbu3StJamho0Pr168cdBwCEB0tRASGyqLRp1PjxqtwpzgQAAAAAgJll3rx52rp1q7761a9q1qxZKi4uVnR0tBwOR/A5DodDzc3N6unpUXx8vCwWSzDu8XgkSX6/X1ardUS8u7s7+Fo2m00+n2/MXAKBgAKBQPBxX19fSNsKAGDGBgAAAAAAAEzuxIkTamxs1PHjx+XxeNTS0qLPPvssLLlUVlbKarUGj6SkpLDkAQDTGYUNAAAAAAAAmNqbb74pp9Op+Ph4xcTEKDc3VwcOHAjOuJAkj8cju92uhIQE9fb2yjCMYXFJslqt8vv9I+J2uz34Wj6fTzabbcxcysrK5Pf7g0dXV9dkNBkAZjQKGwAAAAAAADC1pKQktbS0qL+/X4ODgzpw4IAyMjIUFRWlI0eOaHBwULW1tcrPz5fFYlF2dnZww/Camhrl5+dLkvLy8rRr1y5J0u7du8eM5+XljZlLdHS0YmNjhx0AgNCisAEAAAAAAABTy87O1t13361rr71W6enpSklJ0T333KOdO3dq7dq1Wrx4sVauXKm0tDRJ0vbt21VeXq6UlBTFxcUFNxIvKytTXV2dnE6n3G63Nm7cKEnatGmT3G63nE6n6urqVFpaGra2AgDYPBwAEAbf//73VV1dLcMwtGLFCv3N3/yNDh8+rK997WsKBAIqKirS008/LUnq7OzUQw89JJ/PpxUrVuiHP/yhLBaLvF6vHnjgAX300UdKS0vTK6+8otmzZ6u/v18PP/yw2tvbtXDhQtXV1SkxMTHMLQYAAAAw2Z599lk9++yzw2LZ2dk6evToiOe6XC61traOiM+bN0/Nzc0j4jExMaqvrw9ZrgCAS8OMDQDAlPrv//5v7dy5U62trWpvb1dra6t++tOfavPmzdqzZ4+OHTumffv2qb29XZJUUlKiiooKud1ueb3e4HTxqqoqFRYWqqOjQ8nJyaqurpYkVVdXKzk5WR0dHSosLFRVVVXY2goAAAAAAIDQo7ABAJhyAwMD6u/v15kzZ3TmzBkNDQ1pYGBA6enpioqK0po1a9TY2CjDMNTS0hKcFr5u3Trt3btXktTQ0KD169ePOw4AAAAAAIDpgaWoMKMtKm0KdwrAjDNv3jxt3bpVX/3qVzVr1iwVFxcrOjpaDocj+ByHw6Hm5mb19PQoPj5eFoslGPd4PJIkv98vq9U6It7d3R18LZvNJp/PN2YugUBAgUAg+Livry+kbQUAAAAAAEDoMWMDADClTpw4ocbGRh0/flwej0ctLS367LPPwpJLZWWlrFZr8EhKSgpLHgAAAAAAABg/ChsAgCn15ptvyul0Kj4+XjExMcrNzdWBAweCMy4kyePxyG63KyEhQb29vTIMY1hckqxWq/x+/4i43W4PvpbP55PNZhszl7KyMvn9/uDR1dU1GU0GAAAAAABACFHYAABMqaSkJLW0tKi/v1+Dg4M6cOCAMjIyFBUVpSNHjmhwcFC1tbXKz8+XxWJRdnZ2cMPwmpoa5efnS5Ly8vK0a9cuSdLu3bvHjOfl5Y2ZS3R0tGJjY4cdAAAAAAAAiGwUNgAAUyo7O1t33323rr32WqWnpyslJUX33HOPdu7cqbVr12rx4sVauXKl0tLSJEnbt29XeXm5UlJSFBcXF9xIvKysTHV1dXI6nXK73dq4caMkadOmTXK73XI6naqrq1NpaWnY2goAAAAAAIDQY/NwAMCUe/bZZ/Xss88Oi2VnZ+vo0aMjnutyudTa2joiPm/ePDU3N4+Ix8TEqL6+PmS5AgAAAAAAILKEZMZGV1eXli9friVLlig9PV11dXWSpA0bNig5OVmZmZnKzMxUZ2enJKm/v18FBQVyuVzKycmR1+uVJBmGoeLiYjmdTmVlZQWfL0nbtm2T0+lUamqqDh06FIq0AQAAAAAAAACAyYSksDFr1izt2LFDH3zwgfbv368nnnhCp0+fliT97d/+rdra2tTW1qaUlBRJUnV1tZKTk9XR0aHCwkJVVVVJkpqamuT1euV2u1VRUaGSkhJJUnt7u/bt26df//rXqq2t1ebNm0ORNgAAAAAAAAAAMJmQFDYWLFigzMxMSdL8+fOVmJio3t7eMZ/f0NCg9evXS5LWrVunvXv3jojn5uaqpaVFhmFo7969Wrt2rWbNmqW0tDSdOXNG3d3doUgdAAAAAAAAAACYSMg3D29tbdXg4KCSkpIkSVu3blVGRobKyso0ODgoSeru7pbD4ZAk2Ww2+Xy+EXGLxaK4uDj19PQMi0uSw+EYs7ARCATU19c37AAAAAAAAAAAANNDSAsbvb29Kioq0osvvihJqqys1L/927/pZz/7mf7jP/5DP/rRj0L5dqOqrKyU1WoNHl8UWAAAAAAAAAAAgPmFrLARCAR03333qbS0VDfffLOks0tUWSwWzZ49W0VFRTp8+LAkyW63y+PxSJJ8Pp9sNtuIuGEYOnHihBISEobFJcnj8chut4+aR1lZmfx+f/Do6uoKVRMBAAAAAAAAAECYzQrFixiGoQ0bNuiOO+4I7pEhSR9//LEWLFigoaEhNTQ0KDU1VZKUl5enXbt2KSMjQ7t371ZeXl4w/vLLL+vee+9VU1OTbrrpJlksFuXl5emxxx7T5s2b9W//9m+6/PLLxyxsREdHKzo6OhTNAgAAAADgghaVNo0aP16VO8WZAAAAzBwhKWy8++67evXVV5Wenq76+npJ0q5du7RlyxZ5vV4NDQ0pOztbf/ZnfyZJ2rRpk9auXSun0ymHw6HXXntN0tnCRmNjo1JSUmSz2VRbWytJSk9P18qVK3X11Vdr9uzZ+vu///tQpA0AAAAAAAAAAEwmJIWNW265RUNDQyPiP/nJT0Z9fkxMTLAAcq7LLrssuD/H+SoqKlRRUXEpaQIAAAAAAAAAAJML6ebhAEZaVNo06gEAAIAL6+rq0vLly7VkyRKlp6errq5OkrRhwwYlJycrMzNTmZmZ6uzslCT19/eroKBALpdLOTk58nq9ks4unVtcXCyn06msrKzg8yVp27ZtcjqdSk1N1aFDh6a+kQAAAAAmjMIGAAAAgIg0a9Ys7dixQx988IH279+vJ554QqdPn5Yk/e3f/q3a2trU1tamlJQUSVJ1dbWSk5PV0dGhwsJCVVVVSZKamprk9XrldrtVUVGhkpISSVJ7e7v27dunX//616qtrdXmzZvD01AAAAAAE0JhAwAAAEBEWrBggTIzMyVJ8+fPV2Jionp7e8d8fkNDg9avXy9JWrdunfbu3Tsinpubq5aWFhmGob1792rt2rWaNWuW0tLSdObMGXV3d09uowAAAABcMgobAAAAACJea2urBgcHlZSUJEnaunWrMjIyVFZWpsHBQUlSd3e3HA6HJMlms8nn842IWywWxcXFqaenZ1hckhwOx5iFjUAgoL6+vmEHAAAAgPAIyebhAAAAADBZent7VVRUpJdeekmSVFlZqfnz5ysQCOiRRx7Rj370o0lfRqqyslLPPPPMpL4HAADApRhrT9fjVblTnAkw+ZixAQAAACBiBQIB3XfffSotLdXNN98s6ewSVRaLRbNnz1ZRUZEOHz4sSbLb7fJ4PJIkn88nm802Im4Yhk6cOKGEhIRhcUnyeDyy2+2j5lFWVia/3x88urq6JqvJAAAAAL4EhQ0AAAAAEckwDG3YsEF33HFHcI8MSfr4448lSUNDQ2poaFBqaqokKS8vT7t27ZIk7d69W3l5eSPiTU1Nuummm2SxWJSXl6c9e/ZoYGBA7e3tuvzyy8csbERHRys2NnbYAQAAACA8WIoKAAAAQER699139eqrryo9PV319fWSpF27dmnLli3yer0aGhpSdna2/uzP/kyStGnTJq1du1ZOp1MOh0OvvfaapLOFjcbGRqWkpMhms6m2tlaSlJ6erpUrV+rqq6/W7Nmz9fd///dhaScAAACAiaGwAQAAACAi3XLLLRoaGhoR/8lPfjLq82NiYoIFkHNddtllevHFF0f9fyoqKlRRUXEpaQIAAACYYixFBQAAAAAAAAAATIPCBgAAAAAAAAAAMA0KGwAAAAAAAAAAwDTYYwMAAAAAYHqLSpvCnQIAAACmCDM2AAAAAAAAAACAaVDYAAAAAAAAAAAApkFhAwAAAAAAAAAAmAaFDQAAAAAAAAAAYBoUNgAAAAAAAAAAgGlQ2AAAAAAAAAAAAKYxK9wJAAAAAAAw3SwqbRo1frwqd4ozAQAAmH6YsQEAAAAAAAAAAEyDGRtAmHAHFwAAAAAAAABMHDM2AAAAAAAAAACAaVDYAAAAAAAAAAAApkFhAwAAAAAAAKb34YcfKicnR0uWLFFaWppOnz6tQ4cOKTU1VU6nU9u2bQs+t7OzU1lZWXI6nSouLpZhGJIkr9ernJwcuVwuFRQUqL+/X5LU39+vgoICuVwu5eTkyOv1hqWNAICzKGwAAABgQhaVNo16AAAAhNOGDRu0bds2ffDBB2publZ0dLQ2b96sPXv26NixY9q3b5/a29slSSUlJaqoqJDb7ZbX61VT09mxTFVVlQoLC9XR0aHk5GRVV1dLkqqrq5WcnKyOjg4VFhaqqqoqbO0EALB5OGYIvmwBAAAAAGD6Onr0qC6//HLdeuutkqT4+Hh1d3drYGBA6enpkqQ1a9aosbFRS5cuVUtLi+rq6iRJ69at0969e5WXl6eGhgYdPnw4GC8pKdHjjz+uhoYGPf/888H4jTfeqBdeeCEMLQUASCGasdHV1aXly5dryZIlSk9PD3YMoZrWZxiGiouL5XQ6lZWVpc7OzlCkDQAAAAAAgGmgo6NDV1xxhfLz83XdddfpueeeU3d3txwOR/A5DodDHo9HPT09io+Pl8ViGRaXJL/fL6vVOiJ+7mvZbDb5fL4xcwkEAurr6xt2AABCKySFjVmzZmnHjh364IMPtH//fj3xxBM6ffp0yKb1NTU1yev1yu12q6KiQiUlJaFIGwAAAAAAANPAwMCA3n77bf3d3/2d3nvvPf3rv/6r3nrrrbDkUllZKavVGjySkpLCkgcATGchKWwsWLBAmZmZkqT58+crMTFRvb29amlpUW5urqTfTeuTpIaGBq1fv/6i4rm5uWppaQnO/gAAAAAAAMDM5nA4lJWVpaSkJEVHR+vuu+/WZ599FpxxIUkej0d2u10JCQnq7e0Nfrf0RVySrFar/H7/iLjdbg++ls/nk81mGzOXsrIy+f3+4NHV1TUZTQaAGS3km4e3trZqcHBQMTExIZvWd27cYrEoLi5OPT09o74/0/0AIPJ9+OGHysnJ0ZIlS5SWlqbTp0/r0KFDSk1NldPp1LZt24LPDdWyhgAAAACmrxtuuEGffvqpTpw4oaGhIR08eFDXX3+9oqKidOTIEQ0ODqq2tlb5+fmyWCzKzs4OrixSU1Oj/Px8SVJeXp527dolSdq9e/eY8by8vDFziY6OVmxs7LADABBaIS1s9Pb2qqioSC+++GIoX3ZCmO4HAJFvw4YN2rZtmz744AM1NzcrOjpamzdv1p49e3Ts2DHt27dP7e3tkhSyZQ0BAAAATF+zZs3Sc889p9tuu03p6elyuVzKy8vTzp07tXbtWi1evFgrV65UWlqaJGn79u0qLy9XSkqK4uLigiuOlJWVqa6uTk6nU263Wxs3bpQkbdq0SW63W06nU3V1dSotLQ1bWwEA0qxQvVAgENB9992n0tJS3XzzzTIMIzitz2KxjDqtz2q1jjqtLzExcdi0vi/iWVlZMgxDJ06cUEJCwqh5lJWV6cknnww+7uvro7gBABHk6NGjuvzyy3XrrbdKkuLj49Xd3a2BgQGlp6dLktasWaPGxkYtXbpULS0tqqurk/S7ZQrz8vLU0NCgw4cPB+MlJSV6/PHH1dDQoOeffz4Yv/HGG/XCCy+EoaUAAAAAptKqVau0atWqYbHs7GwdPXp0xHNdLpdaW1tHxOfNm6fm5uYR8ZiYGNXX14csVwDApQnJjA3DMLRhwwbdcccdwb0wQjmt79x4U1OTbrrppuASV+djuh8ARLaOjg5dccUVys/P13XXXafnnntu2JKD0u+WKezp6QnZsoajYflCAAAAAAAA8wnJjI13331Xr776qtLT04PV6127dmn79u1as2aNtmzZojvvvHPYtL7Vq1drx44dWrp0qb773e9KOjutb+3atXI6nXI4HHrttdcknS1sNDY2KiUlRTabTbW1taFIGwAQBgMDA3r77bfV1tamr3zlK1q5cqUuv/zysORSWVmpZ555JizvDQAAAAAAgIsTksLGLbfcoqGhoVH/LRTT+i677LKw7tsBAAgdh8OhrKys4DKBd999tz777LPgjAtJwWUKExISQras4WhYvhAAIltXV5fWr1+vTz/9VLNmzdJTTz2lBx54QJ2dnXrooYfk8/m0YsUK/fCHP5TFYpHX69UDDzygjz76SGlpaXrllVc0e/Zs9ff36+GHH1Z7e7sWLlyouro6JSYmyjAMff3rX9ebb74pm82mV199VSkpKeFuNgAAAIAvEdLNwwEA+DI33HCDPv30U504cUJDQ0M6ePCgrr/+ekVFRenIkSMaHBxUbW2t8vPzQ7qs4WhYvhAAItusWbO0Y8cOffDBB9q/f7+eeOIJnT59WiUlJaqoqJDb7ZbX6w32E1VVVSosLFRHR4eSk5NVXV0tSaqurlZycrI6OjpUWFioqqoqSWeXufV6vXK73aqoqFBJSUnY2goAAABg/ChsAACm1KxZs/Tcc8/ptttuU3p6ulwul/Ly8rRz506tXbtWixcv1sqVK5WWliZJ2r59u8rLy5WSkqK4uLhhyxrW1dXJ6XTK7XZr48aNks4ua+h2u+V0OlVXV6fS0tKwtRUAcGkWLFigzMxMSdL8+fOVmJio3t5etbS0BPuDdevWae/evZKkhoaG4J5/E43n5uaqpaVFhmFMWfsAAAAAXJyQLEUFAMBErFq1SqtWrRoWy87O1tGjR0c81+VyhWRZQwCAubW2tmpwcFAxMTGKj4+XxWKRdHaJwy+WM/xiicLz493d3XI4HJIkm80mn883Im6xWBQXF6eenh4lJiaOeP9AIKBAIBB83NfXNzkNBQAA+P9bVNoU7hSAiMWMDQAAAAARrbe3V0VFRWHdd6+yslJWqzV4sCcTAAAAED4UNgAAAABErEAgoPvuu0+lpaW6+eablZCQoN7e3uCSUR6PR3a7XZJktVrl9/tHxO12e3D2hs/nk81mGxE3DEMnTpxQQkLCqHmUlZXJ7/cHj66urklrMwAAAIALYykqAAAAABHJMAxt2LBBd9xxR3AvDIvFouzsbDU1NSkvL081NTUqKiqSJOXl5WnXrl16/PHHtXv3buXn5w+LZ2RkaPfu3crLywvGX375Zd17771qamrSTTfdFFzi6nzR0dGKjo6eglbjy7AsBwAAAJixAQAAACAivfvuu3r11VdVX1+vzMxMZWZmqr29Xdu3b1d5eblSUlIUFxcX3Ei8rKxMdXV1cjqdcrvd2rhxoyRp06ZNcrvdcjqdqqurU2lpqaSzhY34+HilpKSovLxcVVVVYWsrAAAAgPFjxgYAAACAiHTLLbdoaGho1H9rbW0dEZs3b56am5tHxGNiYlRfXz8iftlll4V13w4AAAAAF4cZGwAAAAAAAAAAwDSYsQEAAIBJNdZ6+Mercqc4EwAAAADAdMCMDQAAAAAAAAAAYBoUNgAAAAAAAAAAgGlQ2AAAAAAAAAAAAKZBYQMAAAAAAAAAAJgGhQ0AAAAAAAAAAGAaFDYAAAAAAAAAAIBpUNgAAAAAAAAAAACmMSvcCQAYblFp06jx41W5U5wJAAAAAAAAAEQeZmwAAAAAAAAAAADTYMYGppWxZjsAAAAAAAAAAKYHZmwAAAAAAAAAAADToLABAAAAAAAAAABMg8IGAAAAAAAAAAAwDQobAAAAAAAAAADANChsAAAAAAAAAAAA06CwAQAAAAAAAAAATIPCBgAAAAAAAAAAMI2QFDbuv/9+xcXFafXq1cHY8uXLdc011ygzM1OZmZn6/PPPJUler1c5OTlyuVwqKChQf3+/JKm/v18FBQVyuVzKycmR1+uVJBmGoeLiYjmdTmVlZamzszMUKQMAAAAAAAAAABMKSWFjy5Ytevnll0fEX3vtNbW1tamtrU0xMTGSpKqqKhUWFqqjo0PJycmqrq6WJFVXVys5OVkdHR0qLCxUVVWVJKmpqUler1dut1sVFRUqKSkJRcoAAAAAAAAAAMCEQlLYWL58uebOnTuu5zY0NGj9+vWSpHXr1mnv3r3jjufm5qqlpUWGYYQibQAAAAAAAAAAYDKTusfGww8/rGuvvVbf+973gjG/3y+r1SpJcjgc8ng8kqTu7m45HA5Jks1mk8/nGxG3WCyKi4tTT0/PmO8ZCATU19c37AAAAAAAAAAAANPDpBU2ampqdOTIER04cECvv/66mpqaJuuthqmsrJTVag0eSUlJU/K+AAAAAAAAAABg8k1aYeOLWRZWq1UPPvigDh8+HHzs9/slSR6PR3a7XZJkt9uDszd8Pp9sNtuIuGEYOnHihBISEsZ837KyMvn9/uDR1dU1Ke0DAAAAAAAAAABTb1IKGwMDA/J6vZKk3/72t3rjjTeUmpoqScrLy9OuXbskSbt371Z+fv6o8by8vBHxpqYm3XTTTbJYLGO+d3R0tGJjY4cdAAAAAMzp/vvvV1xcnFavXh2MLV++XNdcc40yMzOVmZmpzz//XJLk9XqVk5Mjl8ulgoIC9ff3S5L6+/tVUFAgl8ulnJyc4LWKYRgqLi6W0+lUVlaWOjs7p76BAAAAACYsJIWNFStW6IEHHtC+ffu0cOFC/exnP9Ndd92l9PR0XXvttVq6dGnwQqSsrEx1dXVyOp1yu93auHGjJGnTpk1yu91yOp2qq6tTaWmppLOFjfj4eKWkpKi8vFxVVVWhSBkAAACACWzZskUvv/zyiPhrr72mtrY2tbW1KSYmRpJUVVWlwsJCdXR0KDk5WdXV1ZKk6upqJScnq6OjQ4WFhcFriqamJnm9XrndblVUVKikpGTqGgYAAADgos0KxYu8+eabI2Ktra2jPnfevHlqbm4eEY+JiVF9ff2I+GWXXaYXX3zxknMEAAAAYD7Lly/XgQMHxvXchoaG4BK469atU0lJiR5//HE1NDTo+eefD8ZvvPFGvfDCC2poaND69eslSbm5uXrsscdkGMYFZ4gDAAAACL+QFDYAAAAAYCo9/PDDioqK0vr16/Xkk09Kkvx+v6xWq6Sze/59sVdfd3d3cA9Am80mn883Im6xWBQXF6eenh4lJiaOeL9AIKBAIBB83NfXN2ltw/S2qLRp1PjxqtwpzgQAAMC8Jm3zcAAAAACYDDU1NTpy5IgOHDig119/XU1No39RHEqVlZWyWq3BIykpadLfEwAAAMDoKGwAAAAAMJUvZllYrVY9+OCDweWnrFar/H6/JMnj8chut0uS7HZ7cPaGz+eTzWYbETcMQydOnFBCQsKo71lWVia/3x88urq6Jq19AICL99lnn+mqq67S1q1bJUmHDh1SamqqnE6ntm3bFnxeZ2ensrKy5HQ6VVxcLMMwJEler1c5OTlyuVwqKChQf3+/JKm/v18FBQVyuVzKycmR1+ud+sYBAIIobAAAAAAwjYGBgeCXSb/97W/1xhtvKDU1VZKUl5enXbt2SZJ2796t/Pz8UeN5eXkj4k1NTbrpppvG3F8jOjpasbGxww4AQOR59tlnlZ2dHXy8efNm7dmzR8eOHdO+ffvU3t4uSSopKVFFRYXcbre8Xm9w9l9VVZUKCwvV0dGh5ORkVVdXS5Kqq6uVnJysjo4OFRYWqqqqauobBwAIorABAAAAIGKtWLFCDzzwgPbt26eFCxfqZz/7me666y6lp6fr2muv1dKlS7V69WpJZ2dV1NXVyel0yu12a+PGjZKkTZs2ye12y+l0qq6uTqWlpZLOFjbi4+OVkpKi8vJyvqQCAJPr6OjQr3/9a61atUrS2b2UBgYGlJ6erqioKK1Zs0aNjY0yDEMtLS3KzT27t826deu0d+9eSVJDQ4PWr18/7jgAIDzYPBwAEBafffaZfv/3f18PPPCAXnjhBR06dEhf+9rXFAgEVFRUpKefflrS2SniDz30kHw+n1asWKEf/vCHslgs8nq9euCBB/TRRx8pLS1Nr7zyimbPnq3+/n49/PDDam9v18KFC1VXVzfqJrAAAHN48803R8RaW1tHfe68efPU3Nw8Ih4TE6P6+voR8csuu0wvvvjiJecIAIgMW7du1fPPP6+WlhZJZwsbXyxfKJ1dyrC5uVk9PT2Kj48PztJzOBzBpQn9fr+sVuuI+LmvZbPZ5PP5xswjEAgoEAgEH/f19YWukQAASczYAACECVPEAQAAAITK66+/rsWLF2vx4sXhTkWVlZWyWq3BIykpKdwpAcC0Q2EDADDlmCIOAAAAIJR++tOfqra2VosWLdLWrVv10ksvad++fcEZF5Lk8Xhkt9uVkJCg3t7e4IbhX8QlyWq1yu/3j4jb7fbga/l8PtlstjFzKSsrk9/vDx5dXV2T0WQAmNEobAAAptzWrVtVWVkZfDzaFHGPxzMlU8T7+vqGHQAAAADMp7KyUl1dXTp+/LheeOEFbdq0SU8//bSioqJ05MgRDQ4Oqra2Vvn5+bJYLMrOzg7OBq+pqVF+fr6ks/sv7dq1S5K0e/fuMeN5eXlj5hIdHa3Y2NhhBwAgtChsAACmFFPEAQAAAEyVnTt3au3atVq8eLFWrlyptLQ0SdL27dtVXl6ulJQUxcXFBWeJl5WVqa6uTk6nU263Wxs3bpQkbdq0SW63W06nU3V1dSotLQ1bmwAAbB4Ok1pU2hTuFABcpC+miNfV1enUqVM6c+aMYmNjv3SKuMViGXWKuNVqHXWKeGJi4rimiD/55JPBx319fRQ3AAAAAJPbsGFD8L+zs7N19OjREc9xuVxqbW0dEZ83b56am5tHxGNiYlRfXx/KNAEAl4AZGwCAKcUUcQAAAAAAAFwKChsAgIjAFHEAAAAAAACMB0tRASYx1vJbx6typzgTIHSYIg4AAMbC8rMAAAAYCzM2AAAAAAAAAACAaVDYAAAAAAAAAAAApkFhAwAAAAAAAAAAmAaFDQAAAAAAAAAAYBoUNgAAAAAAAAAAgGlQ2AAAAAAAAAAAAKZBYQMAAAAAAAAAAJgGhQ0AAAAAAAAAAGAaFDYAAAAAAAAAAIBpUNgAAAAAAAAAAACmQWEDAAAAAAAAAACYBoUNAAAAAAAAAABgGhQ2AAAAAAAAAACAaVDYAAAAAAAAAAAAphGSwsb999+vuLg4rV69Ohg7dOiQUlNT5XQ6tW3btmC8s7NTWVlZcjqdKi4ulmEYkiSv16ucnBy5XC4VFBSov79fktTf36+CggK5XC7l5OTI6/WGImUAAAAAAAAAAGBCISlsbNmyRS+//PKw2ObNm7Vnzx4dO3ZM+/btU3t7uySppKREFRUVcrvd8nq9ampqkiRVVVWpsLBQHR0dSk5OVnV1tSSpurpaycnJ6ujoUGFhoaqqqkKRMgAAAAAAAAAAMKGQFDaWL1+uuXPnBh93d3drYGBA6enpioqK0po1a9TY2CjDMNTS0qLc3FxJ0rp167R3715JUkNDg9avXz/uOAAAAAAAAAAAmHkmZY+N7u5uORyO4GOHwyGPx6Oenh7Fx8fLYrEMi0uS3++X1WodET/3tWw2m3w+3wXfOxAIqK+vb9gBAAAAAAAAAACmh2m3eXhlZaWsVmvwSEpKCndKAAAAAC4S+/kBAAAAON+kFDbsdntwxoUkeTwe2e12JSQkqLe3N3iB8UVckqxWq/x+/4j4ua/l8/lks9ku+N5lZWXy+/3Bo6urK9TNAwAAADBF2M8PAAAAwPkmrbARFRWlI0eOaHBwULW1tcrPz5fFYlF2dnbwAqOmpkb5+fmSpLy8PO3atUuStHv37jHjeXl5F3zv6OhoxcbGDjsAAAAAmBP7+QEAAAA4X0gKGytWrNADDzygffv2aeHChXrvvfe0c+dOrV27VosXL9bKlSuVlpYmSdq+fbvKy8uVkpKiuLi44IVHWVmZ6urq5HQ65Xa7tXHjRknSpk2b5Ha75XQ6VVdXp9LS0lCkDAAAAMCEwrWfH3v5AQAAAJFjVihe5M033xw1fvTo0RExl8ul1tbWEfF58+apubl5RDwmJkb19fWXnCMAAAAAXKzKyko988wz4U4DAAAAgEJU2AAmy6LSpnCnAAAAgAgynv38LBbLqPv5Wa3WUffzS0xM/NL9/MrKyvTkk08GH/f19SkpKWlyGgkAAADggiZljw0AAAAAmAzh2s+PvfwAAACAyEFhAwAAAEDEYj8/AAAAAOdjKSoAAAAAEYv9/AAAAACcjxkbAAAAAAAAAADANChsAAAAAAAAAAAA06CwAQAAAAAAAAAATIPCBgAAAAAAAAAAMA02DwcAAMCoFpU2hTsFAAAAAABGoLABAAAAAAgLCqgAAAC4GBQ2AJMb62LweFXuFGcCAAAAAAAAAJOPwgYAAAAAAAAATFPcFIvpiM3DAQAAAAAAAACAaTBjAwAAAAAAAADChD2ngIljxgYAAAAAAABMraurS8uXL9eSJUuUnp6uuro6SVJnZ6eysrLkdDpVXFwswzAkSV6vVzk5OXK5XCooKFB/f78kqb+/XwUFBXK5XMrJyZHX65UkGYah4uJiOZ1OZWVlqbOzMzwNBQBIorABAAAAAAAAk5s1a5Z27NihDz74QPv379cTTzyh06dPq6SkRBUVFXK73fJ6vWpqOntnfFVVlQoLC9XR0aHk5GRVV1dLkqqrq5WcnKyOjg4VFhaqqqpKktTU1CSv1yu3262KigqVlJSEra0AAAobAIApxp1UAAAAIy0qbRr1ADA+CxYsUGZmpiRp/vz5SkxMVG9vr1paWpSbe3aD5HXr1mnv3r2SpIaGBq1fv/6i4rm5uWppaQleswAAph6FDQDAlOJOKgAAAACTqbW1VYODg4qJiVF8fLwsFoskyeFwyOPxSJL8fr+sVuuIeHd3txwOhyTJZrPJ5/ONiFssFsXFxamnp2fU9w8EAurr6xt2AABCi8IGAGBKcScVAAAAgMnS29uroqIivfjii2HLobKyUlarNXgkJSWFLRcAmK4obAAAwoY7qQAAAACESiAQ0H333afS0lLdfPPNSkhIUG9vb/BGJ4/HI7vdLkmyWq3y+/0j4na7PXjN4fP5ZLPZRsQNw9CJEyeUkJAwah5lZWXy+/3Bo6ura9LaDAAzFYUNAEBYcCcVAAAAgFAxDEMbNmzQHXfcEZzBbbFYlJ2dHVzmtqamRvn5+ZKkvLw87dq1S5K0e/fuMeN5eXkj4k1NTbrpppuCN2adLzo6WrGxscMOAEBoUdgAAEw57qQCAAAAEErvvvuuXn31VdXX1yszM1OZmZlqb2/X9u3bVV5erpSUFMXFxQWXvy0rK1NdXZ2cTqfcbrc2btwoSdq0aZPcbrecTqfq6upUWloq6WxhIz4+XikpKSovLw/u8QcACI9Z4U4AADCzfNmdVHl5eaqpqVFRUZGk390Z9fjjj496J1VGRsaIO6lefvll3XvvveO6kyo6OnoKWg0AAABgMt1yyy0aGhoa9d9aW1tHxObNm6fm5uYR8ZiYGNXX14+IX3bZZWGdbQ4AGI7CBiLCotKmcKcAYIp8cSdVenp68IJh165d2r59u9asWaMtW7bozjvvHHYn1erVq7Vjxw4tXbpU3/3udyWdvZNq7dq1cjqdcjgceu211ySdLWw0NjYqJSVFNptNtbW1YWknAAAAAAAAJgeFDQDAlOJOKgAAAAAAAFwK9tgAAAAAAAAAAACmwYwNAAAAhMVYS1Eer8qd4kwAAAAAAGYy6TM2Fi1apPT0dGVmZionJ0eS1NnZqaysLDmdThUXF8swDEmS1+tVTk6OXC6XCgoK1N/fL0nq7+9XQUGBXC6XcnJy5PV6JzttAAAAAAAAAAAQgaZkKaqWlha1tbXprbfekiSVlJSooqJCbrdbXq9XTU1n79arqqpSYWGhOjo6lJycrOrqaklSdXW1kpOT1dHRocLCQlVVVU1F2gAAAACAEFhU2jTqAQAAAFyMKd9jwzAMtbS0KDf37BID69at0969eyVJDQ0NWr9+/bjjAAAAAGYuZocDAAAAM9OkFzYsFotuv/123XDDDaqpqVFPT4/i4+NlsVgkSQ6HQx6PR5Lk9/tltVpHxLu7u+VwOCRJNptNPp9vzPcLBALq6+sbdgAAAACYnpgdDgAAAMw8k17YeOedd9Ta2qqGhgY999xz+uCDDyb1/SorK2W1WoNHUlLSpL4fAAAAgMjA7HAAAABgZpj0wsYXMy0WLFigu+++W52dnert7Q1OCfd4PLLb7ZIkq9Uqv98/Im6324OzN3w+n2w225jvV1ZWJr/fHzy6uromq2kAAAAAwmgqZ4czMxwAAACIHJNa2Dh9+rROnjwpSTp16pR+8pOfaOnSpcrOzg5OCa+pqVF+fr4kKS8vT7t27ZIk7d69e8x4Xl7emO8ZHR2t2NjYYQcAAACA6WcqZ4czMxwAAACIHJNa2Pjkk090yy23KCMjQ9nZ2SoqKtINN9yg7du3q7y8XCkpKYqLiwtOFS8rK1NdXZ2cTqfcbrc2btwoSdq0aZPcbrecTqfq6upUWlo6mWkDAAAAMIGpnB3OzHAAAAAgcsyazBdPTk7W+++/PyLucrnU2to6Ij5v3jw1NzePiMfExKi+vn4yUgSmrUWlTaPGj1flTnEmAAAAoXf69GkNDQ1p7ty5wdnhDz74YHB2eF5enmpqalRUVCTpd7PAH3/88VFnh2dkZFxwdnh0dLSio6OnrH0AAAAAxjbpe2wAAAAAQKgxOxwAAACYuSZ1xgYAAAAATAZmhwMAAAAzFzM2AAAAAAAAAACAaVDYAAAAAAAAAAAApkFhAwAAAAAAAAAAmAZ7bGBKLSptCncKAAAAAAAAAAATo7ABAAAAAAgJbmQCAADAVGApKgAAAAAAAAAAYBoUNgAAAAAAAAAAgGmwFBUAAAAAABFqrOW9jlflTnEmAAAAkYPCBgAAAAAAAABMMvaiAkKHwgYAAMAMxwUWAAAAAMBM2GMDAAAAAAAAAACYBjM2gBmGNXoBAAAAAAAAmBmFDQAAAADAhLCEHQAAAMKJwgYAAAAiCrMLAQAAAAAXQmEDAAAAAAAAAGYYbiiCmbF5OAAAAAAAAAAAMA1mbGBSsOYuAAAAAAAAAGAyUNgAIInphwAAAAAAAADMgcIGAAAAAGBUzMSOXNyYBAAAZjL22AAAAAAAAAAAAKbBjA0AF8SdYAAAAAAAAAAiCYUNAACAGYIlZQAAAAAA0wGFDQAAAAAAAAAIEW4oAiYfhQ1cEk7UMxdLVAEAAAAAAAAIBzYPBwAAAAAAAAAApsGMDQAAAACY4ZiJPX0wsxoAAMwEpipsNDY26lvf+paGhoZUUlKijRs3hjulGYMLHYwXF1KIFPQZmMmma79NH4PJQp8BABgv+gwAiAymKWwMDAzoySef1FtvvSWr1arrr79e999/vxISEsKdGgAgwtBnYKaYrgUMYCrNtD6D8wYAXLyZ1mcAQCQzTWHj0KFDSk1NlcPhkCStWrVK+/fv19q1a8Oc2fTChQ4mC3fZYirRZwAAxmu69hmM63E+xuPApZuufQYu3nTtb+kzYAamKWx0d3cHOw5Jcjgc8ng8I54XCAQUCASCj/1+vySpr69v8pOMQEvL/2+4UwAu6KvfrBs1/qtn7priTPDFedIwjDBncunoM2BW9NsXZ6y+ZKLoe8aPPiNy+gzOG7hUEz2Hcq7ERNFnRE6fgYtHf3sW3+Fgsk2kzzBNYWO8Kisr9cwzz4yIJyUlhSEbABfLuiPcGcxcJ0+elNVqDXcaU4I+A8C56Hsmjj6DPgMzD+dKXCz6DPoMTF/0DQi18fQZpils2O32YVVwj8ejZcuWjXheWVmZnnzyyeDjoaEh9fb2KiEhQRaLZczX7+vrU1JSkrq6uhQbGxva5CeZWXM3a94SuYeDWfOWzJO7YRg6efKk7HZ7uFO5ZJPRZ5jl9zge06Ut06UdEm2JVNOlLZPRDvqM8V9nXCoz/h2aMWfJnHmT89Qg50tDnzG9rzPIP7zIP7zIP/Qm0meYprCxbNky/epXv5LH45HVatUbb7yhp556asTzoqOjFR0dPSxms9nG/T6xsbER84ucKLPmbta8JXIPB7PmLZkj9+lyB9Vk9hlm+D2O13Rpy3Rph0RbItV0aUuo20GfMbHrjEtlxr9DM+YsmTNvcp4a5Hzx6DOm/3UG+YcX+YcX+YfWePsM0xQ2Zs2apb/+679WTk6OhoaG9O1vf1sJCQnhTgsAEIHoMwAA40WfAQAYL/oMAIgcpilsSNI999yje+65J9xpAABMgD4DADBe9BkAgPGizwCAyHBZuBOIFNHR0SovLx8xVdAMzJq7WfOWyD0czJq3ZO7c8TvT6fc4XdoyXdoh0ZZINV3aMl3aMVOZ8fdnxpwlc+ZNzlODnDGZzP67Iv/wIv/wIv/wshiGYYQ7CQAAAAAAAAAAgPFgxgYAAAAAAAAAADANChsAAAAAAAAAAMA0KGycp6enR/fee6+uueYaLVmyRJ2dneFOaUKGhoZ04403avXq1eFOZVw+++wzrVq1Stdcc41SU1P1gx/8INwpjUtjY6OuvvpquVwuVVdXhzudcenq6tLy5cu1ZMkSpaenq66uLtwpTdhnn32mq666Slu3bg13KhPy4YcfKicnR0uWLFFaWppOnz4d7pQwARc6T3m9XuXk5MjlcqmgoED9/f1hzPTLbd68WVdeeaWysrKGxTds2KDk5GRlZmYqMzPTFH3fWG3p7OxUVlaWnE6niouLZbYVN5cvX65rrrkm+Lv4/PPPw53ShJixfxzLokWLlJ6erszMTOXk5IQ7nQm5//77FRcXN2w8eOjQIaWmpsrpdGrbtm1hzA6XwkxjfbON8812/jLz2N5sY3qzjuW///3vKzU1VUuWLNGf/dmfmW5MNFOYfXw+ncbkZhyHm63vOp8Zx9tmH2ePlr8Z//aDDAzzx3/8x0ZNTY1hGIZx+vRp49SpU2HOaGJefPFF48EHHzQKCwvDncq4nD592jhw4IBhGIZx8uRJ4+qrrzY6OjrCnNWFnTlzxnC5XMZHH31knDx50li8eLHh9XrDndaX6u7uNn75y18ahmEYH3/8sWG320339/0Xf/EXxoMPPmh861vfCncqE3LbbbcZBw8eNAzDMHp6eowzZ86EOSNMxIXOU9/61reMH/zgByP+O1K98847xs9//nPj+uuvHxZ/5JFHjL1794Ypq4szVlsKCwuDbTn3v83i9ttvN9rb28OdxkUxa/84lquuuso4efJkuNO4KG+99ZbR0NAwbDyYlZVlvP/++8bAwIBx4403GkeOHAljhrhYZhrrm2mcb8bzl5nH9mYb05txLP/pp58aycnJxueff24MDAwYN998s9HS0hLutDAKs4/Pp9OY3GzjcDP2Xecz43jb7OPs0fI329/+uZixcQ6/36+f//znevjhhyVJc+bM0e/93u+FOavx6+3tVW1trR577LFwpzJuc+bM0e233y5JuuKKK3T11Vfr448/DnNWF/ZFJdbhcOiKK67QqlWrtH///nCn9aUWLFigzMxMSdL8+fOVmJio3t7e8CY1AR0dHfr1r3+tVatWhTuVCTl69Kguv/xy3XrrrZKk+Ph4zZo1K8xZYSIudJ5qaGjQ+vXrJUnr1q3T3r17w5bnePzBH/yBEhISwp1GSIzWFsMw1NLSotzcXEnm+J1MJ2btH6ej5cuXa+7cucHH3d3dGhgYUHp6uqKiorRmzRo1NjaGMUNcDLON9c00zjfj+cusY3uzjenNPJYfGBhQf3+/zpw5ozNnzugrX/lKuFPCKMw+PmdMHj5m7LumA7OPs8/P3+wobJzjww8/VGJiov74j/9Y1157rb75zW9qYGAg3GmN21/+5V/qqaeeUlRUVLhTuShdXV06cuSIrrvuunCnckHd3d1yOBzBxw6HQx6PJ4wZTVxra6sGBweVlJQU7lTGbevWraqsrAx3GhPW0dGhK664Qvn5+bruuuv03HPPhTslXILzz1N+v19Wq1WSOc8F59q6dasyMjJUVlamwcHBcKdzUXp6ehQfHy+LxSLJvL+Thx9+WNdee62+973vhTuVCZkO/eO5LBaLbr/9dt1www2qqakJdzqXZLr9bmYqM4/1I32cb/bPiJnG9mYb05t1LD9v3jxt3bpVX/3qV2W327VixQqlpKSEOy1MkFnH52Yek5tpHG72vkuaHuPt6fB7kMz1t38uc9xqEGKZmZmjFiz+7u/+TocOHdLOnTuVnp6uoqIi/eM//qM2bdoUhixHN1buP/7xj3XixAktX75cBw4cmPrEvsRYee/fv192u12BQEAPPfSQnn/+eVPNkjGj3t5eFRUV6aWXXgp3KuP2+uuva/HixVq8eLFaWlrCnc6EDAwM6O2331ZbW5u+8pWvaOXKlbrhhhv0h3/4h+FODeeZLuepL2vHaCorKzV//nwFAgE98sgj+tGPfqTNmzdPdqpf6mLaYgYXaldNTY0cDof8fr/uueceXX311cG73TC13nnnHTkcDn388cdasWKF0tLSlJ6eHu60MM2Zcaw/XfpPszLT2N6MY3qzjuVPnDihxsZGHT9+XDExMVq1apUOHjyo2267LdypzUhmH59PpzE54/DIwng7Mpj5b39GFjba2tpGjX/88cf6H//jfwSn9N57770Rd+EwVu4//OEP9fbbb2vRokXq7+/XyZMn9dhjj+nFF1+c2gTHMFbe0tlpikVFRbr77rtNsRGi3W4fVn31eDxatmxZGDMav0AgoPvuu0+lpaW6+eabw53OuP30pz9VbW2t6urqdOrUKZ05c0axsbF6+umnw53al3I4HMrKygreQXf33Xerra0t4i+GZqKLOU9ZrdbgrA2PxxMRA/sLtWMsCxYskCTNnj1bRUVFEbMB6UTbkpCQoN7eXhmGIYvFEjG/k/ONp11Wq1UPPvigDh8+bJpBpZn7x9F8cefVggULdPfdd+sXv/iFaS+0RvvdROJnA+Yc60+Hcb5Zz19mG9ubcUxv1rH8m2++KafTqfj4eElSbm6ufvrTn1LYCBOzj8+n05h8Oo3Dzdp3nWs6jLenwzj7i9+DWf72z8VSVOdYsGCBvvKVr+jDDz+UJB04cEC///u/H+asxufrX/+6PB6Pjh8/rtraWq1atSoiLnTGo6ysTHPmzNF3vvOdcKcyLsuWLdOvfvUreTwenTp1Sm+88YbuuuuucKf1pQzD0IYNG3THHXcE9wQwi8rKSnV1den48eN64YUXtGnTpoi+ADrXDTfcoE8//VQnTpzQ0NCQDh48aJrzCn5nrPNUXl6edu3aJUnavXu38vPzw5HeJftizfOhoSE1NDQoNTU1zBldHIvFouzsbDU1NUk6e+eJmX4nAwMD8nq9kqTf/va3euONN0z1uzBr/zia06dP6+TJk5KkU6dO6Sc/+Ympfhfns9vtioqK0pEjRzQ4OKja2lpTfTZg3rG+Wcb5Zjx/mXFsb8YxvVnH8klJSWppaVF/f78GBwd14MABXX311eFOCxNg5vG5GcfkZhyHm7HvOtd0GW+bfZxtxr/9YcK2bXmEOnz4sHHttdcaS5cuNdatW2f09/eHO6UJe+utt4btbh/Jurq6DEnGkiVLjIyMDCMjI8P4l3/5l3Cn9aVef/11w+VyGSkpKcaPf/zjcKczLm+//bZhsViCP+eMjAzjyJEj4U5rwv7xH//R+Na3vhXuNCZk3759xtKlS43U1FTjm9/8ZrjTwQRd6Dz16aefGrfddpuRkpJi3HvvvcZnn30W5mwv7JFHHjHmz59vXH755YbD4TD++Z//2TAMw8jJyTHS0tKM1NRU49FHHzVF3zdWW/793//duO6664zk5GRj06ZNxuDgYJgzHb9Tp04Z1113nZGWlmYsWbLEKCkpMYaGhsKd1oSYsX8cTWdnp5Genm6kp6cbqampxo4dO8Kd0oTceeedRmJiohETE2M4HA6jpaXFeO+994wlS5YYycnJRnl5ebhTxCUwy1jfbON8s52/zD62N9OY3qxj+b/4i78wrrnmGmPJkiXGN77xDdONKWYKs4/Pp8uY3KzjcLP1Xecy63jb7OPs8/N/5513TPm3/wWLYRhGmGsrAAAAAAAAAAAA48JSVAAAAAAAAAAAwDQobAAAAAAAAAAAANOgsAEAAAAAAAAAAEyDwgYAAAAAAAAAADANChsAAAAAAAAAAMA0KGwAAAAAAAAAAADToLABAAAAAAAAAABMg8IGAAAAAAAAAAAwDQobAAAAAAAAAADANChsAAAAAAAAAAAA06CwAQAAAAAAAAAATIPCBgAAAAAAAAAAMA0KGwAAAAAAAAAAwDQobAAAAAAAAAAAANOgsAEAAAAAAAAAAEyDwgYAAAAAAAAAADANChsAAAAAAAAAAMA0KGwAIXL33Xfr8ccfHxHv6+vTnDlzVFNTo3vuuUd2u10Wi0VtbW3DnldcXKwrrrgieMyZM0cWi0W/+MUvpqgFAICpcql9hiQ9++yzuuqqqxQbG6trr71W+/fvn4LMAQBT7VL7jIGBAf3lX/6lkpKSFBsbq/vvv1+ffvrpFGUPAJhKX9ZnNDU16bbbblNcXJy+8pWvaPXq1froo4+GPbe+vl4ul0tz5szRLbfcol//+tdTlT4wIRQ2gBB59NFH9corrygQCAyL79mzRwsWLNCKFSu0cuVK1dfXj/r//+hHP9KpU6eCx/+PvfuPiqu+9/3/mkAWooYZfsSamVBTmIk2CQQtKum3atC0TcJQDUQNLaTpMbjwpKdRmx7gthqMVcg1p829zTmnJ8XaGmLw4Do38iPea20VbdGmUjUYlzkznMTSwVMdyAwx6UwD7O8fWU5FwJJkwrDJ87HWXivzZrN5f0b4vGW/+ezPgw8+qPnz5+uqq66ahOwBAJPpbGvG3r17tW3bNrW2tioYDOree+/VqlWr1N/fPwnZAwAm09nWjEceeURtbW165ZVX9Kc//UlWq1WlpaWTkDkAYLL9rZoRCARUWVmpnp4eHT58WElJSbrtttsi5x06dEhf+9rX9MMf/lD9/f268cYbdfPNN2twcHCyhwL8TTQ2gCj5yle+ovj4+FG/UDz22GP6u7/7O33qU5/S3//93+uaa66Z0PUeffRR/d3f/d05yBQAEGtnWzP+67/+S1dffbWysrJksVhUVlamkydP6r/+678mIXsAwGQ625rxf/7P/9G3vvUtORwOJSYm6oEHHtAvfvELHTly5NwnDwCYVH+rZnzta19TQUGBLr74Yl100UW6++679dvf/jbSuGhoaFB+fr7cbrcuuOAC3XfffXrvvff00ksvxWA0wCejsQFEycyZM1VWVqaf/vSnkdhbb72lV199VevWrTuta7388svyeDyn/XkAAHM425px++2367//+7/12muvaWhoSI899pjmzp2rRYsWncOsAQCxcLY1Y3h4WIZhjHgtSQcOHIh6rgCA2DrdmtHe3q7Pfvazio+Pl3SqNuTk5Iy43oIFC6gZmJLiY50AMJ3ccccdysrKUk9Pj9LT0/XTn/5UX/7yl+VwOE7rOvX19XK73frUpz51jjIFAMTa2dSMSy65RAUFBcrNzZXFYtFFF12k//iP/9AFF1wwCZkDACbb2dSMgoIC/a//9b/0xS9+USkpKbr//vtlsVg0MDAwCZkDACbbRGvGa6+9pvvuu09NTU2R2AcffCCbzTbiPJvNpmPHjk1G6sBpYcUGEEULFizQNddco5///OcaHBxUQ0OD7rjjjtO6xgcffKB///d/P+3PAwCYy9nUjC1btmjfvn36z//8T/3lL3/R008/rdtvv33MTcYBAOZ3NjWjurpay5Yt03XXXaf58+crJydHF198sVJTU89x1gCAWJhIzejq6tKKFSu0Y8cOffGLX4zEL774YgWDwRHnBoNBzZo1a1JyB04HjQ0gyu644w797Gc/U2trq4aHh1VYWHhan9/Y2KikpCStWLHiHGUIAJgqzrRmvPbaa7r11luVmZmpGTNmaOnSpVq8eLGee+65c5wxACBWzrRmXHDBBfrBD36gd955R729vVq5cqX+8pe/6Nprrz3HGQMAYuWTakZXV5eWLVum2tpalZaWjvi87OzsEX8sdfLkSb311lvKysqarNSBCaOxAUTZh889v+eee7R27VrNnDkz8rFQKKRQKCRJ+stf/qJQKBR5xu2HHn30Ua1bt05xcXGTmjcAYPKdac1YsmSJnnrqKb3zzjsyDEO/+c1vtH///hHPwwUATC9nWjPefffdSL3weDy64447dO+99yolJSUm4wAAnHvj1YyDBw9q2bJl+v73v69vfOMboz6vtLRUv/rVr7Rv3z6Fw2E99NBDSktL0/XXXz/ZQwD+JhobQJTNmjVLt912m44cOTJqqV9iYqISExMlSddee60SExP14osvRj7+1ltv6be//S2PoQKA88SZ1ox//Md/1E033aQvfOELSkpK0je+8Q09/PDDWrZs2aSPAQAwOc60ZvzhD3/QjTfeqIsuukjLli2T2+3WQw89NOn5AwAmz3g1Y9u2bXr//fd1zz336OKLL44cf/jDHyRJl19+uRoaGrRx40bZbDb94he/UHNzc2RzcWAqsRiGYcQ6CQAAAAAAAAAAgIlgxQYAAAAAAAAAADANGhsAAAAAAAAAAMA0aGwAAAAAAAAAAADToLEBAAAAAAAAAABMg8YGAAAAAAAAAAAwDRobAAAAAAAAAADANGhsAAAAAAAAAAAA04iPdQLn2vDwsHp7ezVr1ixZLJZYpwMAU5ZhGDp27JjsdrtmzDg/+97UDACYGGoGNQMAJoqaQc0AgIk6nZox7Rsbvb29Sk9Pj3UaAGAaPT09mjt3bqzTiAlqBgCcHmoGNQMAJoqaQc0AgImaSM2Y9o2NWbNmSTr1ZiQlJcU4GwCYugYGBpSenh6ZN89H1AwAmBhqBjUDACaKmkHNAICJOp2aMe0bGx8u8UtKSqJ4AMAEnM9Lo6kZAHB6qBnUDACYKGoGNQMAJmoiNeP8fLghAAAAAAAATGnVqlVKTk7W6tWrI7G+vj7dfPPNuuKKK7RgwQJ1d3dLkrq7u5Wbmyun06mKigoZhiFJ8vv9ys/Pl8vlUlFRkUKhkCQpFAqpqKhILpdL+fn58vv9kk49972iokJOp1O5ubmR6wMAYoPGBgAAAAAAAExj48aNevzxx0fFbr/9dr399tt69dVXdemll0qSKisrVVNTI6/XK7/fr7a2NklSXV2diouL5fF4lJGRofr6eklSfX29MjIy5PF4VFxcrLq6OklSW1ub/H6/vF6vampqVFlZOYkjBgB8HI0NAAAAAAAAmMbSpUtHPH89GAzq1Vdf1Ve/+lVJ0oUXXqiLLrpIhmGoo6NDBQUFkqTS0lK1tLRIkpqbm1VWVnZG8YKCAnV0dERWfwAAJh+NDQAAAAAAAJjW4cOHlZaWpq997Wu68sordc8992hwcFB9fX1KSUmJPKvd4XDI5/NJOtUMsVqto+K9vb1yOBySJJvNpkAgMCpusViUnJysvr6+MfMJh8MaGBgYcQAAoovGBgAAAAAAAExrcHBQ+/fv13e+8x11dnbq/fff12OPPRazfGpra2W1WiNHenp6zHIBgOmKxgYAAAAAAABMy+Fw6DOf+YxycnI0Y8YM3XzzzXr99deVmpqq/v7+yCOjfD6f7Ha7JMlqtSoYDI6K2+32yOqNQCAgm802Km4Yho4eParU1NQx86murlYwGIwcPT0952zsAHC+orEBAAAAAAAA05ozZ44uueQSHT58WJL0wgsv6LOf/awsFovy8vIiG4bv3r1bhYWFkiS3261du3ZJkhoaGsaNu93uUfG2tjYtWbIk8oirj0tISFBSUtKIAwAQXRZjmu90NDAwEOnCU0gAYHzMl7wHADBRzJe8BwAwUedivly2bJneeOMNHT9+XCkpKWpqatLMmTN155136uTJk8rJyVF9fb0SEhLk8Xi0Zs0aBQIB3XTTTfrxj3+sGTNm6P3339fq1avl8/m0aNEi7dmzR4mJifrzn/+skpISvfnmm3I4HHrqqac0e/ZsDQ8Pq6KiQr/85S9ls9nU2Ngol8sVs/cAAKaj05kvaWwAiKl5VW1jxo/UFUxyJmC+5D0AzhZz+vmD+ZL3ANMfczqihfmS9wDTHzUD0XI68yWPogIAAAAAAAAAAKZBYwMAAAAAAAAAAJgGjQ0AAAAAAAAAAGAaNDYAAAAAAAAAAIBp0NgAAAAAAAAAAACmQWMDAAAAAAAAAACYBo0NAAAAAAAAAABgGvGxTgAAAAAAAMTGvKq2WKcAAABw2lixAQAAAAAAAAAATIPGBgAAAAAAAAAAMA0aGwAAAAAAAAAAwDRobAAAAAAAAAAAANOgsQEAAAAAAAAAAEyDxgYAAAAAAAAAADANGhsAAAAAAAAAAMA04mOdAAAAAKa3eVVtY8aP1BVMciYAAAAAgOmAFRsAAAAAAAAAAMA0aGwAAAAAAAAAAADToLEBAAAAAAAAAABMg8YGAAAAgCntxIkTuuyyy7Rp0yZJ0v79+7Vw4UI5nU5t2bIlcl53d7dyc3PldDpVUVEhwzAkSX6/X/n5+XK5XCoqKlIoFJIkhUIhFRUVyeVyKT8/X36/f/IHBwAAAOC00dgAAAAAMKU99NBDysvLi7zesGGD9uzZo0OHDmnfvn3q6uqSJFVWVqqmpkZer1d+v19tbac2rq+rq1NxcbE8Ho8yMjJUX18vSaqvr1dGRoY8Ho+Ki4tVV1c3+YMDAAAAcNpobAAAAACYsjwej95++22tWLFCktTb26vBwUFlZ2crLi5Oa9asUWtrqwzDUEdHhwoKCiRJpaWlamlpkSQ1NzerrKxswnEAwNS2atUqJScna/Xq1SPiw8PDuvbaa0fEo7WazzAMVVRUyOl0Kjc3V93d3ZM0WgDAWE6rsTFW4TjXy8ApHAAwPfFYEQDARGzatEm1tbWR1729vXI4HJHXDodDPp9PfX19SklJkcViGRGXpGAwKKvVOir+0WvZbDYFAoFx8wiHwxoYGBhxAABiY+PGjXr88cdHxR999FHNmzdvRCxaq/na2trk9/vl9XpVU1OjysrKcztIAMAnOq3GxliF41wvA6dwAMD0xGNFAAB/y9NPP6358+dr/vz5sU5FtbW1slqtkSM9PT3WKQHAeWvp0qWaNWvWiFh/f78aGxt15513RmLRXM330XhBQYE6Ojoif3QFAJh8p9XY+HjhmIxl4BQOAJh+eKwIAGAiXnnlFTU2NmrevHnatGmTfvKTn2jfvn2RFReS5PP5ZLfblZqaqv7+/sjvCh/GJclqtSoYDI6K2+32yLUCgYBsNtu4uVRXVysYDEaOnp6eczFkAMAZ+u53v6v77rtPcXFxkVg0V/N9NG6xWJScnKy+vr4xc2GVHwCce2e1x8ZkLAM/ncIhUTwAwAx4rAgAYCJqa2vV09OjI0eOaNu2bSovL9f999+vuLg4HThwQENDQ2psbFRhYaEsFovy8vIiK/t2796twsJCSZLb7dauXbskSQ0NDePG3W73uLkkJCQoKSlpxAEAmBpee+01HT16VEuXLo11KpJY5QcAk2HabR5O8QCAqY3HigAAztaOHTtUUlKi+fPna/ny5crKypIkbd26VZs3b1ZmZqaSk5MjK/6qq6vV1NQkp9Mpr9er9evXS5LKy8vl9XrldDrV1NSkqqqqmI0JAHDmXnnlFb300kuaN2+e1qxZo2eeeUZ33nlnVFfzfTRuGIaOHj2q1NTUMfNhlR8AnHvxZ/PJH53UpbGXgVssljELh9VqHbNwpKWljVk4cnNz/2bhkE4Vj3vvvTfyemBggBtVADCFfPhYkaamJn3wwQc6efKkkpKSznk9GQs1Azgz86raYp0CzkPr1q2L/DsvL08HDx4cdY7L5VJnZ+eo+OzZs9Xe3j4qnpiYqL1790YzTQBADNx111266667JEkvvPCCduzYoZ07d0pSZDWf2+3W7t27tXbtWkl/XbX3zW9+c8zVfIsXLx6xms/tduvxxx/XzTffrLa2Ni1ZsiSysvzjEhISlJCQcK6HDQDntbNasWG328/5MvCPxv9W4ZBYIg4AUx2PFQEAAABwNpYtW6Zbb71V+/bt09y5c/Xyyy+Pe260VvO53W6lpKQoMzNTmzdvVl1d3bkfKABgXBbjNHbiXrZsmd544w0dP35cKSkpampqksVi0R133KFQKKSysjLV1NRIOrUx7Jo1axQIBHTTTTfpxz/+sWbMmKH3339fq1evls/n06JFi7Rnzx4lJibqz3/+s0pKSvTmm2/K4XDoqaee0uzZszU8PKyKigr98pe/lM1mU2Njo1wu14QHODAwEPmrXm5YAVPPeH/1e6SuYJIzQSzmy5/97Gd68803tW3bNr3yyivntJ5MBDUDmJhordhgrjcv5kveA0wfpzunM3fjdDFf8h5g+uPeDqLldObL03oU1XPPPTdm/FwuA58xY0Zk+SAAYHrhsSIAAAAAAAA4XdNu83AAAAAAAAAAADB90dgAAAAAAAAAAACmQWMDAAAAAAAAAACYBo0NAAAAAAAAAABgGjQ2AAAAAAAAAACAadDYAAAAAAAAAAAApkFjAwAAAAAAAAAAmAaNDQAAAAAAAAAAYBo0NgAAAAAAAAAAgGnQ2AAAAAAAAAAAAKZBYwMAAAAAAAAAAJgGjQ0AAAAAAAAAAGAaNDYAAAAAAAAAAIBpxMc6AQAAAAAAYA7zqtrGjB+pK5jkTAAAwPmMFRsAAAAAAAAAAMA0aGwAAAAAAAAAAADToLEBAAAAAAAAAABMg8YGAAAAAAAAAAAwDRobAAAAAAAAAADANGhsAAAAAAAAwDRWrVql5ORkrV69WpJ04sQJrVixQldccYUWLlyoH/3oR5Fz/X6/8vPz5XK5VFRUpFAoJEkKhUIqKiqSy+VSfn6+/H6/JMkwDFVUVMjpdCo3N1fd3d2Ra23ZskVOp1MLFy7U/v37J3HEAICPo7EBAAAAAAAA09i4caMef/zxEbGqqiq9/fbb+u1vf6t//ud/ltfrlSTV1dWpuLhYHo9HGRkZqq+vlyTV19crIyNDHo9HxcXFqqurkyS1tbXJ7/fL6/WqpqZGlZWVkqSuri7t27dPb7/9thobG7Vhw4ZJHDEA4ONobAAAAAAAAMA0li5dqlmzZkVeX3jhhbrhhhskSRdffLEuv/xyvfvuu5Kk5uZmlZWVSZJKS0vV0tIy4XhBQYE6OjpkGIZaWlpUUlKi+Ph4ZWVl6eTJk+rt7Z2cAQMmNa+qbcwDiAYaGwAAAAAAAJgWenp6dODAAV111VWSpGAwKKvVKklyOBzy+XySpN7eXjkcDkmSzWZTIBAYFbdYLEpOTlZfX9+I+IfXGq+xEQ6HNTAwMOIAAEQXjQ0AAAAAAACYXjgc1u23365HHnlEF110UczyqK2tldVqjRzp6ekxywUApisaGwAAAAAAADA1wzC0du1arVy5MrKpuCRZrVYFg0FJks/nk91ulyTZ7fbI6o1AICCbzTYqbhiGjh49qtTU1BHxj1/r46qrqxUMBiNHT09P1McLAOc7GhsAAAAAAAAwterqal144YX63ve+NyLudru1a9cuSVJDQ4MKCwvHjLvd7lHxtrY2LVmyRBaLRW63W3v27NHg4KC6uro0c+bMcRsbCQkJSkpKGnEAAKIrPtYJAAAAAAAAABO1bNkyvfHGGzp+/Ljmzp2rPXv2aOvWrVqwYIFycnIkSVu3btWXv/xlVVdXa/Xq1dq+fbsWLVqkBx98UJJUXl6ukpISOZ1OORwOPfXUU5JONTZaW1uVmZkpm82mxsZGSVJ2draWL1+uyy+/XBdccIEeffTRmIwdAHAKjQ0AAAAAAACYxnPPPTcqZhjGmOfOnj1b7e3to+KJiYnau3fvqPiMGTO0c+fOMa9VU1Ojmpqa08oVAHBu8CgqAAAAAAAAAABgGjQ2AAAAAAAAAACAadDYAAAAAAAAAAAApkFjAwAAAAAAAAAAmEbUGhs//OEPtXDhQi1YsEDf+ta3ZBiG9u/fr4ULF8rpdGrLli2Rc7u7u5Wbmyun06mKiorIBk9+v1/5+flyuVwqKipSKBSSJIVCIRUVFcnlcik/P19+vz9aaQMAAAAAAAAAABOJSmPj/fff144dO9TZ2amuri51dnbqlVde0YYNG7Rnzx4dOnRI+/btU1dXlySpsrJSNTU18nq98vv9amtrkyTV1dWpuLhYHo9HGRkZqq+vlyTV19crIyNDHo9HxcXFqquri0baAAAAAAAAAADAZKK2YmNwcFChUEgnT57UyZMnNTw8rMHBQWVnZysuLk5r1qxRa2urDMNQR0eHCgoKJEmlpaVqaWmRJDU3N6usrGzCcQAAAAAAAAAAcH6Jj8ZFZs+erU2bNunTn/604uPjVVFRoYSEBDkcjsg5DodD7e3t6uvrU0pKiiwWSyTu8/kkScFgUFardVS8t7c3ci2bzaZAIDBuLuFwWOFwOPJ6YGAgGkMEAAAAAMC05lW1xToFAACAqInKio2jR4+qtbVVR44ckc/nU0dHh06cOBGNS5+22tpaWa3WyJGenh6TPAAAAAAAAAAAQPRFpbHx3HPPyel0KiUlRYmJiSooKNALL7wQWXEhST6fT3a7Xampqerv749sGP5hXJKsVquCweCouN1uj1wrEAjIZrONm0t1dbWCwWDk6OnpicYQAQAAAAAAAADAFBCVxkZ6ero6OjoUCoU0NDSkF154QYsXL1ZcXJwOHDigoaEhNTY2qrCwUBaLRXl5eZENw3fv3q3CwkJJktvt1q5duyRJDQ0N48bdbve4uSQkJCgpKWnEAQAAgKlnXlXbmAcAAAAAAJ8kKo2NvLw8rVy5UldeeaWys7OVmZmpr3zlK9qxY4dKSko0f/58LV++XFlZWZKkrVu3avPmzcrMzFRycnJkI/Hq6mo1NTXJ6XTK6/Vq/fr1kqTy8nJ5vV45nU41NTWpqqoqGmkDAAAAAAAAAACTicrm4ZL00EMP6aGHHhoRy8vL08GDB0ed63K51NnZOSo+e/Zstbe3j4onJiZq79690UoVAAAAgAkEAgEtW7ZMg4ODGhwc1MaNG1VeXq79+/frG9/4hsLhsNauXav7779fktTd3a3bb7898nn/+q//KovFIr/fr1tvvVV//OMflZWVpSeeeEIXXHCBQqGQvvrVr6qrq0tz585VU1OT0tLSYjxqAAAAAH9LVFZsAMDfwuNGAADA6Zo1a5ZefPFFvf766/rtb3+rhx9+WH19fdqwYYP27NmjQ4cOad++ferq6pIkVVZWqqamRl6vV36/P/L427q6OhUXF8vj8SgjI0P19fWSpPr6emVkZMjj8ai4uFh1dXUxGysAAACAiaOxAQAAAGBKiouL04UXXihJCofDMgxDx48f1+DgoLKzsxUXF6c1a9aotbVVhmGoo6Mj8pjb0tJStbS0SJKam5tVVlY24TgAAACAqY3GBgBgUgUCAeXm5ionJ0eLFi3ST37yE0nS/v37tXDhQjmdTm3ZsiVyfnd3t3Jzc+V0OlVRUSHDMCRJfr9f+fn5crlcKioqUigUkiSFQiEVFRXJ5XIpPz9ffr9/8gcJAIiaQCCgxYsXa+7cufrOd76j9957Tw6HI/Jxh8Mhn8+nvr4+paSkyGKxjIhLUjAYlNVqHRXv7e2NXMtmsykQCIybRzgc1sDAwIgDAAAAQGzQ2AAATCoeKwIAOB02m01vvPGGDh8+rCeeeEJDQ0MxyaO2tlZWqzVypKenxyQPAAAAADQ2AACTjMeKAADOxKc+9SktXrxYhw4diqy4kCSfzye73a7U1FT19/dHVvZ9GJckq9WqYDA4Km632yPXCgQCstls43796upqBYPByNHT03MuhgkAAABgAmhsAAAmHY8VAQBMxJ/+9CcdO3ZM0ql5/8UXX9SVV16puLg4HThwQENDQ2psbFRhYaEsFovy8vIiK/t2796twsJCSZLb7dauXbskSQ0NDePG3W73uLkkJCQoKSlpxAEAAAAgNmhsAAAmHY8VAQBMxDvvvKPrrrtOixcv1nXXXad/+Id/UFZWlnbs2KGSkhLNnz9fy5cvV1ZWliRp69at2rx5szIzM5WcnBxZ8VddXa2mpiY5nU55vV6tX79eklReXi6v1yun06mmpiZVVVXFbKwAAAAAJi4+1gkAAM5fp/NYEYvFMuZjRaxW65iPFUlLS5vQY0XuvffeyOuBgQGaG8BHzKtqi3UKOM9dc801ev3110fF8/LydPDgwVFxl8ulzs7OUfHZs2ervb19VDwxMVF79+6NRqoAAAAAJhErNgAAk4rHigAAAAA4G6tWrVJycrJWr14die3fv18LFy6U0+nUli1bIvHu7m7l5ubK6XSqoqIisheT3+9Xfn6+XC6XioqKFAqFJEmhUEhFRUVyuVzKz8+X3++XJBmGoYqKCjmdTuXm5qq7u3sSRwwA+DgaGwCAScVjRQAAAACcjY0bN+rxxx8fEduwYYP27NmjQ4cOad++ferq6pIkVVZWqqamRl6vV36/P/JHU3V1dSouLpbH41FGRobq6+slSfX19crIyJDH41FxcbHq6uokSW1tbfL7/fJ6vaqpqVFlZeUkjhgA8HE8igoAMKl4rAgAAACAs7F06VK98MILkde9vb0aHBxUdna2JGnNmjVqbW3VokWL1NHRoaamJklSaWmpWlpa5Ha71dzcrN/97neReGVlpb75zW+qublZjzzySCR+7bXXatu2bWpublZZWZkkqaCgQHfeeWfkkbkAgMnHig0AAAAAAACYVm9vrxwOR+S1w+GQz+dTX1+fUlJSIs2HD+OSIvv1fTz+0WvZbDYFAoFRcYvFouTkZPX19Y2ZTzgc1sDAwIgDABBdNDYAAAAAAACAKKmtrZXVao0c6enpsU4JAKYdGhsAAAAAAAAwLbvdHllxIUk+n092u12pqanq7++PbBj+YVySrFargsHgqPhHrxUIBGSz2UbFDcPQ0aNHlZqaOmY+1dXVCgaDkaOnpyf6gwaA8xyNDQAAAAAAAJiW3W5XXFycDhw4oKGhITU2NqqwsFAWi0V5eXmRDcN3796twsJCSZLb7dauXbskSQ0NDePG3W73qHhbW5uWLFky7v4aCQkJSkpKGnEAAKKLzcMBAAAAAABgGsuWLdMbb7yh48ePa+7cuWpqatKOHTtUUlKiUCiksrIyZWVlSZK2bt2qNWvWaOPGjbrppptUUFAg6dSqitWrV2v79u1atGiRHnzwQUlSeXm5SkpK5HQ65XA49NRTT0k61dhobW1VZmambDabGhsbYzN4AIAkGhsAAAAAAAAwkeeee27M+MGDB0fFXC6XOjs7R8Vnz56t9vb2UfHExETt3bt3VHzGjBnauXPn6ScLADgneBQVAAAAAAAAAAAwDRobAAAAAAAAAADANGhsAAAAAAAAAAAA06CxAQAAAAAAAAAATIPGBgAAAAAAAAAAMA0aGwAAAAAAAAAAwDRobAAAAAAAAAAAANOgsQEAAAAAAAAAAEyDxgYAAAAAAAAAADANGhsAAAAAAAAAAMA04mOdAAAAAAAAMLd5VW1jxo/UFUxyJgAA4HzAig0AAAAAAAAAAGAaNDYAAAAAAAAAAIBp0NgAAAAAAAAAAACmQWMDAAAAAAAAAACYBo0NAAAAAAAAAABgGlFrbBw+fFj5+flasGCBsrKydPz4ce3fv18LFy6U0+nUli1bIud2d3crNzdXTqdTFRUVMgxDkuT3+5Wfny+Xy6WioiKFQiFJUigUUlFRkVwul/Lz8+X3+6OVNgAAAAAAAAAAMJGoNTbWrVunLVu26K233lJ7e7sSEhK0YcMG7dmzR4cOHdK+ffvU1dUlSaqsrFRNTY28Xq/8fr/a2tokSXV1dSouLpbH41FGRobq6+slSfX19crIyJDH41FxcbHq6uqilTYAAAAAAAAAADCRqDQ2Dh48qJkzZ+q6666TJKWkpOi9997T4OCgsrOzFRcXpzVr1qi1tVWGYaijo0MFBQWSpNLSUrW0tEiSmpubVVZWNuE4AAAAAAAAAAA4v8RH4yIej0cXX3yxCgsL5fP5tHr1an3pS1+Sw+GInONwONTe3q6+vj6lpKTIYrFE4j6fT5IUDAZltVpHxXt7eyPXstlsCgQC4+YSDocVDocjrwcGBqIxRAAAAAAAAAAAMAVEpbExODiol156Sa+//rouueQSLV++XDNnzozGpU9bbW2tHnjggZh8bQDRM6+qbcz4kbqCSc4EAAAAAAAAwFQSlUdRORwO5ebmKj09XQkJCVq5cqVOnDgRWXEhST6fT3a7Xampqerv749sGP5hXJKsVquCweCouN1uj1wrEAjIZrONm0t1dbWCwWDk6OnpicYQAQAAAAAAMIX98Ic/1MKFC7VgwQJ961vfkmEY2r9/vxYuXCin06ktW7ZEzu3u7lZubq6cTqcqKioi96n8fr/y8/PlcrlUVFSkUCgkSQqFQioqKpLL5VJ+fr78fn9MxggAOCUqjY2rr75a7733no4eParh4WG9+OKL+tznPqe4uDgdOHBAQ0NDamxsVGFhoSwWi/Ly8iIbhu/evVuFhYWSJLfbrV27dkmSGhoaxo273e5xc0lISFBSUtKIAwAAAAAAANPX+++/rx07dqizs1NdXV3q7OzUK6+8og0bNmjPnj06dOiQ9u3bp66uLklSZWWlampq5PV65ff7I/ep6urqVFxcLI/Ho4yMDNXX10uS6uvrlZGRIY/Ho+LiYtXV1cVsrACAKDU24uPj9fDDD+v6669Xdna2XC6X3G63duzYoZKSEs2fP1/Lly9XVlaWJGnr1q3avHmzMjMzlZycHNlIvLq6Wk1NTXI6nfJ6vVq/fr0kqby8XF6vV06nU01NTaqqqopG2gAAAAAAAJgmBgcHFQqFdPLkSZ08eVLDw8MaHBxUdna24uLitGbNGrW2tsowDHV0dETuR5WWlqqlpUWS1NzcrLKysgnHAQCxEZU9NiRpxYoVWrFixYhYXl6eDh48OOpcl8ulzs7OUfHZs2ervb19VDwxMVF79+6NVqoAAAAAAACYRmbPnq1Nmzbp05/+tOLj41VRUaGEhAQ5HI7IOQ6HQ+3t7err61NKSoosFksk/uEj0IPBoKxW66h4b29v5Fo2m02BQGDcXMLhsMLhcOT1wMBAVMcKAIjSig0AAAAAAAAgVo4eParW1lYdOXJEPp9PHR0dOnHiRExyqa2tldVqjRzp6ekxyQMApjMaGwAAAAAAADC15557Tk6nUykpKUpMTFRBQYFeeOGFyIoLSfL5fLLb7UpNTVV/f39kw/AP45JktVoVDAZHxe12e+RagUBANptt3Fyqq6sVDAYjR09Pz7kYMgCc12hsAAAAAAAAwNTS09PV0dGhUCikoaEhvfDCC1q8eLHi4uJ04MABDQ0NqbGxUYWFhbJYLMrLy4tsGL57924VFhZKktxut3bt2iVJamhoGDfudrvHzSUhIUFJSUkjDgBAdNHYAAAAAAAAgKnl5eVp5cqVuvLKK5Wdna3MzEx95Stf0Y4dO1RSUqL58+dr+fLlysrKkiRt3bpVmzdvVmZmppKTkyMbiVdXV6upqUlOp1Ner1fr16+XJJWXl8vr9crpdKqpqUlVVVUxGysAIIqbhwMAAAAAAACx8tBDD+mhhx4aEcvLy9PBgwdHnetyudTZ2TkqPnv2bLW3t4+KJyYmau/evVHLFQBwdlixAQAAAAAAAAAATIPGBgAAAAAAAAAAMA0eRQUAAIApZV5V25jxI3UFk5wJAJjPeHMoAADAdMKKDQAAAAAAAAAAYBo0NgAAAAAAAAAAgGnQ2AAAAAAwJfX09Gjp0qVasGCBsrOz1dTUJEnq7u5Wbm6unE6nKioqZBiGJMnv9ys/P18ul0tFRUUKhUKSpFAopKKiIrlcLuXn58vv90uSDMNQRUWFnE6ncnNz1d3dHZuBAgAAADgtNDYAAJOKm1QAgImKj4/X9u3b9dZbb+nZZ5/V3XffrePHj6uyslI1NTXyer3y+/1qazu1p0BdXZ2Ki4vl8XiUkZGh+vp6SVJ9fb0yMjLk8XhUXFysuro6SVJbW5v8fr+8Xq9qampUWVkZs7ECAAAAmDgaGwCAScVNKgDARM2ZM0c5OTmSpEsvvVRpaWnq7+9XR0eHCgpObSZfWlqqlpYWSVJzc7PKysrOKF5QUKCOjo5IYx0AAADA1EVjAwAwqbhJBQA4E52dnRoaGlJiYqJSUlJksVgkSQ6HQz6fT5IUDAZltVpHxXt7e+VwOCRJNptNgUBgVNxisSg5OVl9fX1jfv1wOKyBgYERBwAAAIDYoLEBAIgZblIBACaiv79fa9eu1c6dO2OWQ21traxWa+RIT0+PWS4AAADA+Y7GBgAgJrhJBQCYiHA4rFtuuUVVVVX6/Oc/r9TUVPX390dW4/l8PtntdkmS1WpVMBgcFbfb7ZHGeCAQkM1mGxU3DENHjx5VamrqmHlUV1crGAxGjp6ennM2ZgAAAACfjMYGAGDScZMKADARhmFo3bp1uvHGGyOPGbRYLMrLy4vsxbR7924VFhZKktxut3bt2iVJamhoGDfudrtHxdva2rRkyZLI6sGPS0hIUFJS0ogDAAAAQGzQ2AAATCpuUgEAJuo3v/mNnnzySe3du1c5OTnKyclRV1eXtm7dqs2bNyszM1PJycmRPZqqq6vV1NQkp9Mpr9er9evXS5LKy8vl9XrldDrV1NSkqqoqSadqRkpKijIzM7V582bV1dXFbKwAAAAAJi4+1gkAAM4vH96kys7O1t69eyVJu3bt0tatW7VmzRpt3LhRN91004ibVKtXr9b27du1aNEiPfjgg5JO3aQqKSmR0+mUw+HQU089JenUTarW1lZlZmbKZrOpsbExJuMEAJy9L3zhCxoeHh7zY52dnaNis2fPVnt7+6h4YmJipOZ81IwZM2L6SEQAAAAAZ4bGBgBgUnGTCgAAAAAAAGeDxgYAAMB5bl5VW6xTAAAAAABgwthjAwAAAAAAAAAAmAaNDQAAAAAAAAAAYBo0NgAAAAAAAAAAgGnQ2AAAAAAAAAAAAKZBYwMAAAAAAACmd/jwYeXn52vBggXKysrS8ePHtX//fi1cuFBOp1NbtmyJnNvd3a3c3Fw5nU5VVFTIMAxJkt/vV35+vlwul4qKihQKhSRJoVBIRUVFcrlcys/Pl9/vj8kYAQCn0NgAAAAAAACA6a1bt05btmzRW2+9pfb2diUkJGjDhg3as2ePDh06pH379qmrq0uSVFlZqZqaGnm9Xvn9frW1tUmS6urqVFxcLI/Ho4yMDNXX10uS6uvrlZGRIY/Ho+LiYtXV1cVsnAAAGhsAAAAAAOAcmVfVNuYBRNvBgwc1c+ZMXXfddZKklJQUvffeexocHFR2drbi4uK0Zs0atba2yjAMdXR0qKCgQJJUWlqqlpYWSVJzc7PKysomHAcAxEZ8rBMAAAAAAAAAzobH49HFF1+swsJC+Xw+rV69Wl/60pfkcDgi5zgcDrW3t6uvr08pKSmyWCyRuM/nkyQFg0FZrdZR8d7e3si1bDabAoHAuLmEw2GFw+HI64GBgaiOFQBAYwMAAAAAAAAmNzg4qJdeekmvv/66LrnkEi1fvlwzZ86MSS61tbV64IEHYvK1AeB8waOoAAAAAAAAYGoOh0O5ublKT09XQkKCVq5cqRMnTkRWXEiSz+eT3W5Xamqq+vv7IxuGfxiXJKvVqmAwOCput9sj1woEArLZbOPmUl1drWAwGDl6enrOxZAB4LxGYwMAAAAAAACmdvXVV+u9997T0aNHNTw8rBdffFGf+9znFBcXpwMHDmhoaEiNjY0qLCyUxWJRXl5eZMPw3bt3q7CwUJLkdru1a9cuSVJDQ8O4cbfbPW4uCQkJSkpKGnEAAKIrqo2NEydO6LLLLtOmTZskSfv379fChQvldDq1ZcuWyHnd3d3Kzc2V0+lURUVFpEPu9/uVn58vl8uloqIihUIhSVIoFFJRUZFcLpfy8/Pl9/ujmTYAAAAAAABMLD4+Xg8//LCuv/56ZWdny+Vyye12a8eOHSopKdH8+fO1fPlyZWVlSZK2bt2qzZs3KzMzU8nJyZGNxKurq9XU1CSn0ymv16v169dLksrLy+X1euV0OtXU1KSqqqqYjRUAEOXGxkMPPaS8vLzI6w0bNmjPnj06dOiQ9u3bp66uLklSZWWlampq5PV65ff7Ix3yuro6FRcXy+PxKCMjQ/X19ZKk+vp6ZWRkyOPxqLi4WHV1ddFMGwAAAAAAACa3YsUKdXV16c0339QPfvADSVJeXp4OHjyo7u5u1dTURM51uVzq7OxUd3e3du7cqRkzTt0imz17ttrb2+X1erV3714lJiZKkhITE7V37155vV61t7dr9uzZkz4+AMBfRa2x4fF49Pbbb2vFihWSpN7eXg0ODio7O1txcXFas2aNWltbZRiGOjo6Ip3w0tJStbS0SJKam5tVVlY24TgAAAAAAAAAADi/RK2xsWnTJtXW1kZe9/b2yuFwRF47HA75fD719fUpJSVFFotlRFySgsGgrFbrqPhHr2Wz2RQIBMbNIxwOa2BgYMQBAAAAAAAAAACmh6g0Np5++mnNnz9f8+fPj8blzkptba2sVmvkSE9Pj3VKAAAAAAAAAAAgSuKjcZFXXnlFjY2Nampq0gcffKCTJ08qKSkpsuJCknw+n+x2u1JTU9Xf3y/DMGSxWCJxSbJarZFVGx+N2+12+Xw+paWlKRAIyGazjZtLdXW17r333sjrgYEBmhsAAAAAAAAAAEwTUVmxUVtbq56eHh05ckTbtm1TeXm57r//fsXFxenAgQMaGhpSY2OjCgsLZbFYlJeXF9kwfPfu3SosLJQkud1u7dq1S5LU0NAwbtztdo+bS0JCgpKSkkYcAAAAAAAAAABgeojaHhtj2bFjh0pKSjR//nwtX75cWVlZkqStW7dq8+bNyszMVHJycmQj8erqajU1NcnpdMrr9Wr9+vWSpPLycnm9XjmdTjU1Namqqupcpg0AAAAAAAAAAKaoqDyK6qPWrVsX+XdeXp4OHjw46hyXy6XOzs5R8dmzZ6u9vX1UPDExUXv37o1mmgAAAAAAAAAAwITO6YoNAAAAAAAAAACAaKKxAQAAAAAAAAAATIPGBgAAAAAAAAAAMI2o77EBAAAAAADOrXlVbbFOAQAAIGZYsQEAAAAAAAAAAEyDxgYAAAAAAAAAADANGhsAAAAAAAAAAMA0aGwAAAAAAAAAAADToLEBAAAAAAAAAABMg8YGAAAAAAAAAAAwDRobAAAAAAAAAADANOJjnQAAAAAwEfOq2saMH6krmORMAAAAAACxxIoNAAAAAAAAAABgGjQ2AAAAAAAAAACAadDYAAAAAAAAwLRw4sQJXXbZZdq0aZMkaf/+/Vq4cKGcTqe2bNkSOa+7u1u5ublyOp2qqKiQYRiSJL/fr/z8fLlcLhUVFSkUCkmSQqGQioqK5HK5lJ+fL7/fP/mDAwBE0NgAAAAAAADAtPDQQw8pLy8v8nrDhg3as2ePDh06pH379qmrq0uSVFlZqZqaGnm9Xvn9frW1ndrLq66uTsXFxfJ4PMrIyFB9fb0kqb6+XhkZGfJ4PCouLlZdXd3kDw4AEEFjAwAAAAAAAKbn8Xj09ttva8WKFZKk3t5eDQ4OKjs7W3FxcVqzZo1aW1tlGIY6OjpUUFAgSSotLVVLS4skqbm5WWVlZROOAwBig8YGAAAAAAAATG/Tpk2qra2NvO7t7ZXD4Yi8djgc8vl86uvrU0pKiiwWy4i4JAWDQVmt1lHxj17LZrMpEAiMm0c4HNbAwMCIAwAQXTQ2AAAAAAAAYGpPP/205s+fr/nz58c6FdXW1spqtUaO9PT0WKcEANNOfKwTAAAAAAAA55d5VW1jxo/UFUxyJpguXnnlFTU2NqqpqUkffPCBTp48qaSkpMiKC0ny+Xyy2+1KTU1Vf3+/DMOQxWKJxCXJarVGVm18NG632+Xz+ZSWlqZAICCbzTZuLtXV1br33nsjrwcGBmhuAECUsWIDAAAAAAAAplZbW6uenh4dOXJE27ZtU3l5ue6//37FxcXpwIEDGhoaUmNjowoLC2WxWJSXlxfZMHz37t0qLCyUJLndbu3atUuS1NDQMG7c7XaPm0tCQoKSkpJGHACA6KKxAQAAAGDKWrVqlZKTk7V69epIbP/+/Vq4cKGcTqe2bNkSiXd3dys3N1dOp1MVFRUyDEOS5Pf7lZ+fL5fLpaKiIoVCIUlSKBRSUVGRXC6X8vPz5ff7J3dwAIBzbseOHSopKdH8+fO1fPlyZWVlSZK2bt2qzZs3KzMzU8nJyZGNxKurq9XU1CSn0ymv16v169dLksrLy+X1euV0OtXU1KSqqqqYjQkAQGMDABAD3KQCAEzUxo0b9fjjj4+IbdiwQXv27NGhQ4e0b98+dXV1SZIqKytVU1Mjr9crv98f+Uvcuro6FRcXy+PxKCMjQ/X19ZKk+vp6ZWRkyOPxqLi4WHV1dZM7OADAObFu3Tpt27ZNkpSXl6eDBw+qu7tbNTU1kXNcLpc6OzvV3d2tnTt3asaMU7fIZs+erfb2dnm9Xu3du1eJiYmSpMTERO3du1der1ft7e2aPXv2pI8LAPBXNDYAAJOOm1QAgIlaunSpZs2aFXnd29urwcFBZWdnKy4uTmvWrFFra6sMw1BHR0fkL25LS0vV0tIiSWpublZZWdmE4wAAAACmNhobAIBJx00qAMCZ6u3tlcPhiLx2OBzy+Xzq6+tTSkqKLBbLiLikyCawH49/9Fo2m02BQGDcrxsOhzUwMDDiAAAAABAbNDYAADHHTSoAwFRXW1srq9UaOdLT02OdEgAAAHDeorEBADhvcZMKAMzHbrdHmtmS5PP5ZLfblZqaqv7+/sheTB/GJclqtSoYDI6Kf/RagUBANptt3K9bXV2tYDAYOXp6es7F8AAAAABMAI0NAEDMcZMKmBzzqtrGPAAzsdvtiouL04EDBzQ0NKTGxkYVFhbKYrEoLy8vshfT7t27VVhYKElyu93atWuXJKmhoWHcuNvtHvfrJiQkKCkpacQBAAAAIDZobAAAYo6bVACA8Sxbtky33nqr9u3bp7lz5+rll1/Wjh07VFJSovnz52v58uXKysqSJG3dulWbN29WZmamkpOTI3s0VVdXq6mpSU6nU16vV+vXr5cklZeXy+v1yul0qqmpSVVVVTEbJwAAAICJi491AgCA88+yZcv0xhtv6Pjx45o7d66ampoiN6lCoZDKyspG3KRas2aNNm7cqJtuumnETarVq1dr+/btWrRokR588EFJp25SlZSUyOl0yuFw6KmnnorZOAEAZ++5554bM37w4MFRMZfLpc7OzlHx2bNnq729fVQ8MTFRe/fuPescgXOJlXUAAACj0dgAAEw6blIBAAAAAADgTPEoKgAAAAAAAAAAYBpRaWz09PRo6dKlWrBggbKzs9XU1CRJ6u7uVm5urpxOpyoqKiKbv/r9fuXn58vlcqmoqEihUEiSFAqFVFRUJJfLpfz8fPn9fkmSYRiqqKiQ0+lUbm6uuru7o5E2AAAAAAAAAAAwmag0NuLj47V9+3a99dZbevbZZ3X33Xfr+PHjqqysVE1Njbxer/x+f2Tz17q6OhUXF8vj8SgjI0P19fWSpPr6emVkZMjj8ai4uFh1dXWSpLa2Nvn9fnm9XtXU1KiysjIaaQMAAAAAAAAAAJOJSmNjzpw5ysnJkSRdeumlSktLU39/vzo6OiKbvJaWlqqlpUWS1NzcrLKysjOKFxQUqKOjI7L6AwAAAAAAAAAAnD+ivnl4Z2enhoaGlJiYqJSUFFksFkmSw+GQz+eTJAWDQVmt1lHx3t5eORwOSZLNZlMgEBgVt1gsSk5OVl9fn9LS0kZ9/XA4rHA4HHk9MDAQ7SECAAAAAAAAAIAYierm4f39/Vq7dq127twZzcueltraWlmt1siRnp4es1wAAAAAAAAAAEB0RW3FRjgc1i233KKqqip9/vOfl2EY6u/vl2EYslgs8vl8stvtkiSr1RpZtfHRuN1ul8/nU1pamgKBgGw224h4bm6uDMPQ0aNHlZqaOmYe1dXVuvfeeyOvBwYGaG4AAABMY/Oq2saMH6krmORMAAAAAACTISorNgzD0Lp163TjjTdG9sKwWCzKy8uLbBi+e/duFRYWSpLcbrd27dolSWpoaBg37na7R8Xb2tq0ZMmSyCOuPi4hIUFJSUkjDgAAAAAAAAAAMD1EpbHxm9/8Rk8++aT27t2rnJwc5eTkqKurS1u3btXmzZuVmZmp5OTkyEbi1dXVampqktPplNfr1fr16yVJ5eXl8nq9cjqdampqUlVVlaRTjY2UlBRlZmZq8+bNqquri0baAAAAAAAAAADAZKLyKKovfOELGh4eHvNjnZ2do2KzZ89We3v7qHhiYqL27t07Kj5jxoyY7tsBAAAAAAAAAACmhqhuHg4AAAAAAAAAAHAuRW3zcACYDGwQCwAAAAAAAJzfWLEBAAAAAAAAAABMg8YGAAAAAAAxNq+qbcwDwMT09PRo6dKlWrBggbKzs9XU1CRJ6u7uVm5urpxOpyoqKmQYhiTJ7/crPz9fLpdLRUVFCoVCkqRQKKSioiK5XC7l5+fL7/dLkgzDUEVFhZxOp3Jzc9Xd3R2bgQIAJNHYAAAAAAAAUwQNHpyp+Ph4bd++XW+99ZaeffZZ3X333Tp+/LgqKytVU1Mjr9crv9+vtrZT3091dXUqLi6Wx+NRRkaG6uvrJUn19fXKyMiQx+NRcXGx6urqJEltbW3y+/3yer2qqalRZWVlzMYKAKCxAQAAAAAAAJObM2eOcnJyJEmXXnqp0tLS1N/fr46ODhUUnNqTsbS0VC0tLZKk5uZmlZWVnVG8oKBAHR0dkdUfAIDJx+bhAAAAAAAAmDY6Ozs1NDSkxMREpaSkyGKxSJIcDod8Pp8kKRgMymq1jor39vbK4XBIkmw2mwKBwKi4xWJRcnKy+vr6lJaWNurrh8NhhcPhyOuBgYFzM1AAOI/R2AAAAJhmeGQHAAA4X/X392vt2rX6yU9+ErMcamtr9cADD8Ts6wPA+YBHUQEAAAAAAMD0wuGwbrnlFlVVVenzn/+8UlNT1d/fH3lklM/nk91ulyRZrVYFg8FRcbvdHlm9EQgEZLPZRsUNw9DRo0eVmpo6Zh7V1dUKBoORo6en55yNGQDOVzQ2AAAAAAAAYGqGYWjdunW68cYbI3thWCwW5eXlRTYM3717twoLCyVJbrdbu3btkiQ1NDSMG3e73aPibW1tWrJkSeQRVx+XkJCgpKSkEQcAILpobAAAAAAAAMDUfvOb3+jJJ5/U3r17lZOTo5ycHHV1dWnr1q3avHmzMjMzlZycHNlIvLq6Wk1NTXI6nfJ6vVq/fr0kqby8XF6vV06nU01NTaqqqpJ0qrGRkpKizMxMbd68WXV1dTEbKwCAPTYAAAAwTY2318iRuoJJzgQAAJxrX/jCFzQ8PDzmxzo7O0fFZs+erfb29lHxxMRE7d27d1R8xowZ2rlz51nnCQCIDlZsAAAAAAAAAAAA06CxAQAAAAAAAAAATIPGBgAAAAAAAAAAMA0aGwAAAAAAAAAAwDTYPBwAAAAAgEkyr6ot1ikAAACYHo0NAAAAk+LmGADgfDFezTtSVzDJmQAAgKmAxgaAqOImGwAAAAAAAIBziT02AAAAAAAAAACAabBiAwAAAOcVHmcCAAAAAObGig0AAAAAAAAAAGAaNDYAAAAAAAAAAIBp0NgAAAAAAAAAAACmwR4bAAAAU9x4e0IAAAAAAHA+orEBAAAAAECU0ZQGAAA4d3gUFQAAAAAAAAAAMA1WbACYFsb7i7gjdQWTnAkAAACAycLvAQAAnJ9YsQEAAAAAAAAAAEyDFRsAAACA+KtfAAAAADALGhsAAABTBBvNAoD5MHdPTTSrAQCY3mhsAAAAAAAAAAAmBc1nRAONDQAAAAAAcF7gZhoAANODqRobra2t+va3v63h4WFVVlZq/fr1sU4JwBTHLy7nL2oGAGCiqBmYCB45Nb2d7n9ffp84f1EzAGBqME1jY3BwUPfee6+ef/55Wa1Wfe5zn9OqVauUmpoa69QAAFMMNQNTHTfHzIUm+fRGzQAATBQ1A+c7fo/BVGKaxsb+/fu1cOFCORwOSdKKFSv07LPPqqSkJMaZATAjblJNb9QMAMBEUTPOX9ycwdlghcf5iZoBAFOHaRobvb29kcIhSQ6HQz6fb9R54XBY4XA48joYDEqSBgYGzn2SQAws2vz/Tuv8Nx/4clSuM119+p6mc3r98d7/qeDDedIwjBhncvaoGdPbmcxXp/uzx5yIiaBmUDMkasbZ+qT5lv9vxXQSzZoxlevDWKgZ1AzEnllqZ7TmSrPNk/ir06kZpmlsTFRtba0eeOCBUfH09PQYZANMPdbtsc7g/GaG9//YsWOyWq2xTmNSUDPOH2b42QM+zgzft9QMasa5ZIafASAWzPqzQc2gZgCTxazzJP5qIjXDNI0Nu90+ogvu8/l0zTXXjDqvurpa9957b+T18PCw+vv7lZqaKovFctpfd2BgQOnp6erp6VFSUtKZJT+JyPfcIt9zx0y5StMzX8MwdOzYMdnt9knOLvqiWTPM8N/aDDlK5sjTDDlK5sjTDDlK5shzKuZIzTj73zMm21T8Ppooco8Nco+N6Zg7NcN8NSNazPz9HA2M//wev8R7cCbjP52aYZrGxjXXXKM333xTPp9PVqtVzzzzjO67775R5yUkJCghIWFEzGaznfXXT0pKMtU3IPmeW+R77pgpV2n65Ttd/oLqXNQMM/y3NkOOkjnyNEOOkjnyNEOOkjnynGo5UjOi83vGZJtq30eng9xjg9xjY7rlTs0wZ82IFjN/P0cD4z+/xy/xHpzu+CdaM0zT2IiPj9c//dM/KT8/X8PDw/rHf/xHpaamxjotAMAURM0AAEwUNQMAMFHUDACYOkzT2JCkr3zlK/rKV74S6zQAACZAzQAATBQ1AwAwUdQMAJgaZsQ6gakuISFBmzdvHrWEcKoi33OLfM8dM+Uqke/5xAzvnRlylMyRpxlylMyRpxlylMyRpxlyxNRn5u8jco8Nco8Ncsd0cr5/TzD+83v8Eu/BuR6/xTAM45xcGQAAAAAAAAAAIMpYsQEAAAAAAAAAAEyDxgYAAAAAAAAAADANGhvjOHHihFasWKErrrhCCxcu1I9+9KPIx2pqajR37lzl5OQoJydHL730UgwzPeWT8vX7/crPz5fL5VJRUZFCoVAMM/2rDRs26FOf+pRyc3NHxNetW6eMjIzI+9vd3R2jDEcaL9/u7m7l5ubK6XSqoqJCU+3pbkuXLtUVV1wReT///Oc/xzqlMbW2turyyy+Xy+VSfX19rNP5m+bNm6fs7Gzl5OQoPz8/1umMsmrVKiUnJ2v16tWR2P79+7Vw4UI5nU5t2bIlhtmZgxl/5vfs2aOsrCwtWrRIa9asUTgcjnVKo/T19enmm2/WFVdcoQULFkyZOX4sw8PDuvbaa0f8HE0Vn1T3p4qpPq/39PRo6dKlWrBggbKzs9XU1BTrlMZ14sQJXXbZZdq0aVOsU8E0YKZ5eCxTeW4ejxnm7LFM9Xl8PGaa38dj1nn/8OHDys/P14IFC5SVlaXjx4/HOiXE2Fhz9lT+fSpazHiP7lwwax05U+PVn/Phe/6jPl7Dzum9KANjOn78uPHCCy8YhmEYx44dMy6//HLD4/EYhmEYmzdvNn70ox/FMr1RPinfb3/725F8P/rvWPv1r39tvPrqq8bnPve5EfGvf/3rRktLS4yyGt94+RYXF0fy/ei/p4obbrjB6OrqinUan+jkyZOGy+Uy/vjHPxrHjh0z5s+fb/j9/lin9Ykuu+wy49ixY7FOY1zPP/+80dzcbBQXF0diubm5xhtvvGEMDg4a1157rXHgwIEYZjj1me1nfnh42JgzZ07kZ+f22283nnjiiRhnNdrXvvY1Y/fu3YZhnKpdH3zwQYwzGt/OnTuN2267bcTP0VTxSXV/KjDDvN7b22u89tprhmEYxrvvvmvY7fYp+/34P/7H/zBuu+0249vf/nasU8E0YKZ5eCxTeW4ez1Sfs8dihnl8PGaa38dj1nn/+uuvN1588UXDMAyjr6/POHnyZIwzQqyNNWdP1d+nosmM9+iizcx15EyNV3/Oh+/5j/p4DTuX96JYsTGOCy+8UDfccIMk6eKLL9bll1+ud999N8ZZje+T8m1ublZZWZkkqbS0VC0tLTHL86P+v//v/1Nqamqs05iwsfI1DEMdHR0qKCiQNLXeXzP5sHvrcDh08cUXa8WKFXr22WdjnZapLV26VLNmzYq87u3t1eDgoLKzsxUXF6c1a9aotbU1hhlOfWb8mTcMQydOnNDQ0JCOHz+uOXPmxDqlEYLBoF599VV99atflXSqdl100UUxzmps/f39amxs1J133hnrVMY01f8/xQzz+pw5c5STkyNJuvTSS5WWlqb+/v7YJjUGj8ejt99+WytWrIh1KpgGzDQPj2Wqz83jmepz9ljMMI+Pxyzz+3jMOu8fPHhQM2fO1HXXXSdJSklJUXx8fIyzQiyNNWdP9d+nosWM9+iizcx15EyNV3/Oh+/5D328hp3re1E0Niagp6dHBw4c0FVXXRWJ/eAHP1B2drbuuusuffDBBzHMbrSP5xsMBmW1WiVJDodDPp8vlulNyKZNm7R48WJVV1draGgo1umMq6+vTykpKbJYLJKm7vv71a9+VVdeeaV+8IMfxDqVMfX29srhcEReT9X38aMsFotuuOEGXX311dq9e3es0/mbzPgeT0VT+WfeYrFox44dWrRokex2u2bNmqWlS5fGOq0RDh8+rLS0NH3ta1/TlVdeqXvuuUeDg4OxTmtM3/3ud3XfffcpLi4u1qn8TWP9f0qsmW3O6ezs1NDQkNLT02OdyiibNm1SbW1trNPANGGmeXgsZpqbxzMV5+yxmG0eH89Unt/HY9Z53+Px6OKLL1ZhYaGuuuoqPfzww7FOCTE21pw9lX+fOlemwz26MzFd6siZ+rD+JCYmnlff8x+vYef6++C8b5/n5OSM+T/zzz77rOx2u8LhsG6//XY98sgjkb9muuuuu3TfffdJkv7xH/9RDzzwgB555JEpm28s/a18x1JbW6tLL71U4XBYX//61/XjH/9YGzZsONepSjqzfKeCT8p79+7dcjgcCgaD+spXvqLLL7880inGmfv1r38th8Ohd999V8uWLVNWVpays7NjnRZOkxl/5sfLua2tTTt37lRXV5ccDodKS0vV0NCg0tLSKZPjv/zLv2j//v3asWOHsrOztXbtWj322GMqLy+f9Byl8fP8t3/7Nx09elRLly7VCy+8MPmJfYTZ6r4Z9ff3a+3atfrJT34S61RGefrppzV//nzNnz9fHR0dsU4HJmKWeXgsZpibx8OcPbVM5fl9PGae9wcHB/XSSy/p9ddf1yWXXKLly5fr6quv1he/+MVYp4ZzyMxzdjQw72MsZqw/0RCLGnbeNzZef/31cT9mGIbWrl2rlStXjtjo6FOf+lTk33/3d383aTfdpTPL12q1RjrCPp9vUm/WfVK+4/nw0SkXXHCB1q5dO6mbvZ1uvqmpqerv75dhGLJYLJP+/n5oInlbrVbddttt+t3vfjflGht2u31Ex9bn8+maa66JYUZ/24cd5zlz5mjlypX6/e9/P6UbG2O9x1P1xv1kMuPP/Hg5/+53v1N8fLw+/elPS5KKior0/PPPx6SxMV6O7777rj7zmc9ElufefPPNMf1FZ7w8//Vf/1UvvfSS5s2bp1AopGPHjunOO+/Uzp07JzdBnVndnwrMMq+Hw2Hdcsstqqqq0uc///lYpzPKK6+8osbGRjU1NemDDz7QyZMnlZSUpPvvvz/WqWGKM8s8PBYzzM3jMeucPRazzOPjmerz+3jMPO87HA7l5uZGVsesXLlSr7/+Oo2Nae505+x/+7d/i/nvU9Fktnt0k8nsdeRMfbz+GIYxrb7nP8l4Nexc3oviUVSfoLq6WhdeeKG+973vjYh/9HmoTz/9tBYuXDjZqY1pvHzdbrd27dolSWpoaFBhYWEs0puwD9/f4eFhNTc3T5n3dywWi0V5eXlqa2uTJO3evXtKvb+Dg4Py+/2SpL/85S965plnpuT7ec011+jNN9+Uz+fTBx98oGeeeUZf/vKXY53WuI4fP65jx45Jkj744AP96le/mpLv60fZ7XbFxcXpwIEDGhoaUmNj45T6XjWLqfwz73A4dODAAR09elSS9Mtf/lKXX355jLMaac6cObrkkkt0+PBhSdILL7ygz372szHOarS77rpLPp9PR44cUWNjo1asWDGlbpx9aLy6PxWYYV43DEPr1q3TjTfeGHnO8VRTW1urnp4eHTlyRNu2bVN5ebkpbm5h6jLLPDwWs8zN45nKc/ZYzDCPj8cM8/t4zDzvX3311Xrvvfd09OhRDQ8P68UXXzTN/ILoG2/Onsq/T0XbdLlHd6bMXEfO1Fj153z6nh+vhp3Te1FR24Z8munp6TEkGQsWLDAWL15sLF682Pi///f/GoZhGKWlpcaiRYuMrKwso7i42Ojr64txtp+c73vvvWdcf/31RmZmpnHzzTcbJ06ciHG2p3z96183Lr30UmPmzJmGw+Ew/v3f/90wDMPIz883srKyjIULFxp33HGHEQqFYpzpKePl+5//+Z/GVVddZWRkZBjl5eXG0NBQjDP9qw8++MC46qqrjKysLGPBggVGZWWlMTw8HOu0xvT0008bLpfLyMzMNP7t3/4t1ul8ou7ubiM7O9vIzs42Fi5caGzfvj3WKY1y0003GWlpaUZiYqLhcDiMjo4O4+WXXzYWLFhgZGRkGJs3b451ilOeGX/md+zYYVxxxRXGokWLjDVr1hh//vOfY53SKL/73e+MK6+80li0aJFRWlo6Zeb48Tz//PNGcXFxrNMY5ZPq/lQx1ef1l156ybBYLJH3b/HixcaBAwdinda4HnvsMePb3/52rNPANGC2eXgsU3VuHo8Z5uyxTPV5fDxmm9/HY8Z5f9++fcaiRYuMhQsXGvfcc0+s08EU8fE5eyr/PhUtZrxHdy6YtY6cqfHqz/nwPf9xH61h5/JelMUwDCN6bRIAAAAAAAAAAIBzh0dRAQAAAAAAAAAA06CxAQAAAAAAAAAATIPGBgAAAAAAAAAAMA0aGwAAAAAAAAAAwDRobAAAAAAAAAAAANOgsQEAAAAAAAAAAEyDxgYAAAAAAAAAADANGhsAAAAAAAAAAMA0aGwAAAAAAAAAAADToLEBAAAAAAAAAABMg8YGAAAAAAAAAAAwDRobAAAAAAAAAADANGhsAAAAAAAAAAAA06CxAQAAAAAAAAAATIPGBgAAAAAAAAAAMA0aGwAAAAAAAAAAwDRobAAAAAAAAAAAANOgsQFEycqVK/XNb35zVHxgYEAXXnih2tradP311ys5OVmXXHKJVq9erT/+8Y+R89588019+ctfVlpamiwWiwKBwCRmDwCYTGdbM37+85/rmmuukdVq1Zw5c3THHXdQNwBgmjrbmvHMM88oKytLycnJSklJ0Re/+EV1dXVN5hAAAJPkbGvGR/2P//E/ZLFYtHfv3nOcNXBmaGwAUXLHHXfoiSeeUDgcHhHfs2eP5syZo0AgoMrKSvX09Ojw4cNKSkrSbbfdFjlv5syZuu222/Szn/1skjMHAEy2s60ZJ06c0P/8n/9Tf/rTn3Tw4EG9++67+vu///vJHgYAYBKcbc3IycnRs88+q6NHj+q9995TQUGBVq1aNdnDAABMgrOtGR9644031NLSojlz5kxW6sBpsxiGYcQ6CWA6OHnypBwOh370ox/p9ttvj8Tz8vJUWFio7373uyPOP3DggK688kqFw2HFx8dH4keOHNFnPvMZHT16VDabbbLSBwBMomjVjA81Nzfrm9/8pv7whz+c89wBAJMrmjXj5MmT+vGPf6x77rlHf/7znzVz5sxJGQMAYHJEo2YMDQ0pLy9P27Zt09e//nVt375dt9xyy2QOA5gQVmwAUTJz5kyVlZXppz/9aST21ltv6dVXX9W6detGnd/e3q7PfvazY96gAgBMb9GuGe3t7crOzj5X6QIAYigaNeMPf/iDbDabLrjgAm3cuFHV1dU0NQBgGopGzfjhD3+o7Oxs3XDDDZORMnDGuKMKRNEdd9yhrKws9fT0KD09XT/96U/15S9/WQ6HY8R5r732mu677z41NTXFKFMAQKxFq2Y888wzqq+v169//evJSBsAEANnWzM+/elPKxAI6NixY/r5z3+u9PT0yUwfADCJzqZm/Nd//Zd27Nih3//+95OdNnDaWLEBRNGCBQt0zTXX6Oc//7kGBwfV0NCgO+64Y8Q5XV1dWrFihXbs2KEvfvGLMcoUABBr0agZv/rVr1RaWqr/+I//UFZW1mSlDgCYZNH6PWPWrFn6+7//e33jG9/Q4cOHJyN1AMAkO5uaceedd+r73/++UlJSJjtt4LTR2ACi7I477tDPfvYztba2anh4WIWFhZGPdXV1admyZaqtrVVpaWkMswQATAVnUzN+9atfafXq1XriiSd00003TWbaAIAYiNbvGYZhKBQK6ciRI+c4YwBArJxpzfjlL3+pu+++W2lpaUpLS1NPT4/Wrl2re+65Z7KHAPxNbB4ORNmxY8c0Z84czZ49W8XFxdq2bZsk6eDBg7rxxhv1/e9/X+Xl5aM+zzAMhcNhvfPOO7riiiv03//937JarUpISJDFYpnsYQAAJsGZ1owXXnhBq1atUkNDgwoKCiY7bQBADJxpzWhsbFRubq4yMjI0MDCg733ve3ryySfl9XpltVonexgAgElwpjXjj3/844jXS5YsUU1NjYqKipScnDwpuQMTxYoNIMpmzZql2267TUeOHBmx1G/btm16//33dc899+jiiy+OHH/4wx8kSe+8844SExN1xRVXSJIuvfRSJSYm6p133onJOAAA596Z1owHHnhAAwMDuv3220d8HAAwfZ1pzThy5Ii++MUvatasWZo/f76OHDmiX/ziFzQ1AGAaO9OaMXfu3BFHXFycUlNTaWpgSmLFBgAAAAAAAAAAMA1WbAAAAAAAAAAAANOgsQEAAAAAAAAAAEyDxgYAAAAAAAAAADANGhsAAAAAAAAAAMA0aGwAAAAAAAAAAADToLEBAAAAAAAAAABMg8YGAAAAAAAAAAAwjfhYJ3CuDQ8Pq7e3V7NmzZLFYol1OgAwZRmGoWPHjslut2vGjPOz703NAICJoWZQMwBgoqgZ1AwAmKjTqRnTvrHR29ur9PT0WKcBAKbR09OjuXPnxjqNmKBmAMDpoWZQMwBgoqgZ1AwAmKiJ1Ixp39iYNWuWpFNvRlJSUoyzAYCpa2BgQOnp6ZF583xEzQCAiaFmUDMAYKKoGdQMAJio06kZ076x8eESv6SkJIoHAEzA+bw0mpoBAKeHmkHNAICJomZQMwBgoiZSM87PhxsCAAAAAAAAAABTorEBAAAAAAAAAABMg8YGAAAAAAAAAAAwDRobAAAAAAAAAADANGhsAAAAAAAAAAAA0zitxsaqVauUnJys1atXR2J9fX26+eabdcUVV2jBggXq7u6WJHV3dys3N1dOp1MVFRUyDEOS5Pf7lZ+fL5fLpaKiIoVCIUlSKBRSUVGRXC6X8vPz5ff7JUmGYaiiokJOp1O5ubmR6wMAAAAAAAAAgPPPaTU2Nm7cqMcff3xU7Pbbb9fbb7+tV199VZdeeqkkqbKyUjU1NfJ6vfL7/Wpra5Mk1dXVqbi4WB6PRxkZGaqvr5ck1dfXKyMjQx6PR8XFxaqrq5MktbW1ye/3y+v1qqamRpWVlWc9aABAbB0+fFj5+flasGCBsrKydPz4ce3fv18LFy6U0+nUli1bIudGq1EOAAAAAACA6eG0GhtLly7VrFmzIq+DwaBeffVVffWrX5UkXXjhhbroootkGIY6OjpUUFAgSSotLVVLS4skqbm5WWVlZWcULygoUEdHR+SmFgDAnNatW6ctW7borbfeUnt7uxISErRhwwbt2bNHhw4d0r59+9TV1SUpeo1yAAAAAAAATA/xZ/PJhw8fVlpamr72ta/prbfe0tKlS/XII48oEAgoJSVFFotFkuRwOOTz+SSdaoZYrdZR8d7eXjkcDkmSzWZTIBAYFbdYLEpOTlZfX5/S0tLGzCkcDiscDkdeDwwMnM0QgSlvXlXbmPEjdQWTnAkwMQcPHtTMmTN13XXXSZJSUlLU29urwcFBZWdnS5LWrFmj1tZWLVq0SB0dHWpqapL018a32+1Wc3Ozfve730XilZWV+uY3v6nm5mY98sgjkfi1116rbdu2xWCkQPQw1wMAzhfUPADTGXMcED1ntXn44OCg9u/fr+985zvq7OzU+++/r8ceeyxauZ2R2tpaWa3WyJGenh7TfAAAI3k8Hl188cUqLCzUVVddpYcffnhEE1v6a+O7r68vao3ysYTDYQ0MDIw4AAAAAAAAMLWdVWPD4XDoM5/5jHJycjRjxgzdfPPNev3115Wamqr+/v7II6N8Pp/sdrskyWq1KhgMjorb7fbITalAICCbzTYqbhiGjh49qtTU1HFzqq6uVjAYjBw9PT1nM0QAQJQNDg7qpZde0r/8y7/o5Zdf1i9+8Qs9//zzMcmFZjgATA09PT1aunSpFixYoOzs7MhKvXXr1ikjI0M5OTnKyclRd3e3pPH3UzIMQxUVFXI6ncrNzY2cL0lbtmyR0+nUwoULtX///ki8vr5eLpdLl19+uVpbWydx1AAAAADO1Fk1NubMmaNLLrlEhw8fliS98MIL+uxnPyuLxaK8vLzIc9B3796twsJCSZLb7dauXbskSQ0NDePG3W73qHhbW5uWLFkS+cvdsSQkJCgpKWnEAQCYOhwOh3Jzc5Wenq6EhAStXLlSJ06ciDSxpb82vqPZKB8LzXAAmBri4+O1fft2vfXWW3r22Wd199136/jx45Kk//2//7def/11vf7668rMzJQ0/n5KbW1t8vv98nq9qqmpUWVlpSSpq6tL+/bt09tvv63GxkZt2LBBktTX16dHHnlEv//97/X888/r3nvv1eDgYAzeAQAAAACn47QaG8uWLdOtt96qffv2ae7cuXr55Zf1wx/+UMXFxcrKytLAwIDKy8slSVu3btXmzZuVmZmp5OTkyEbi1dXVampqktPplNfr1fr16yVJ5eXl8nq9cjqdampqUlVVlaRTjY2UlBRlZmZq8+bNbAILACZ39dVX67333tPRo0c1PDysF198UZ/73OcUFxenAwcOaGhoSI2NjSosLIxqo3wsNMMBYGqYM2eOcnJyJEmXXnqp0tLS1N/fP+75zc3NKisrk/TX/Zc+Hi8oKFBHR4cMw1BLS4tKSkoUHx+vrKwsnTx5Ur29vfp//+//aeXKlZo1a5bsdrsWLFgQ2b8JAAAAwNR1WpuHP/fcc2PGf//734+KuVwudXZ2jorPnj1b7e3to+KJiYnau3fvqPiMGTO0c+fO00kTADCFxcfH6+GHH9b1118vwzD0pS99SW63W2lpaSopKVEoFFJZWZmysrIknWqUr1mzRhs3btRNN900olG+evVqbd++XYsWLdKDDz4o6VSjvKSkRE6nUw6HQ0899VTMxgoAOH2dnZ0aGhqKPB5w06ZN+u53v6uVK1fq+9//vuLi4sbdT+mjcYvFouTkZPX19am3t1dLly6NfA2Hw6He3t5x93gaSzgcVjgcjrxmXyYAAAAgdk6rsQEAQDSsWLFCK1asGBHLy8vTwYMHR50brUY5AGDq6+/v19q1a/WTn/xE0qm9kC699FKFw2F9/etf149//OPIY6QmW21trR544IGYfG0AAAAAI53VHhsAAAAAEA3hcFi33HKLqqqq9PnPf17SqUdUWSwWXXDBBVq7dm3kMVHj7af00bhhGDp69KhSU1NHxKW/7s00Xnws7MsEAAAATB00NgAAAADElGEYWrdunW688cbIHhmS9O6770qShoeH1dzcrIULF0oafz+lj8bb2tq0ZMkSWSwWud1u7dmzR4ODg+rq6tLMmTNlt9v1pS99Sfv27dOxY8fU29urgwcP6pprrhkzR/ZlAgAAAKYOHkUFAAAAIKZ+85vf6Mknn1R2dnbkcYK7du3Sxo0b5ff7NTw8rLy8PH3rW9+SNP5+Sm63W62trcrMzJTNZlNjY6MkKTs7W8uXL9fll1+uCy64QI8++qgkKS0tTd/+9rd15ZVXasaMGfqnf/onxcfzKxIAAAAw1fF/7QAAAABi6gtf+IKGh4dHxX/1q1+Nef54+ynNmDFDO3fuHPNzampqVFNTMyp+55136s477zytfAEAAADEFo+iAgAAAAAAAAAApkFjAwAAAAAAAAAAmAaNDQAAAAAAAAAAYBo0NgAAAAAAAAAAgGnQ2AAAAAAAAAAAAKZBYwMAAAAAAAAAAJgGjQ0AAAAAAABMCydOnNBll12mTZs2SZL279+vhQsXyul0asuWLZHzuru7lZubK6fTqYqKChmGIUny+/3Kz8+Xy+VSUVGRQqGQJCkUCqmoqEgul0v5+fny+/2TPzgAQASNDQAAAAAAAEwLDz30kPLy8iKvN2zYoD179ujQoUPat2+furq6JEmVlZWqqamR1+uV3+9XW1ubJKmurk7FxcXyeDzKyMhQfX29JKm+vl4ZGRnyeDwqLi5WXV3d5A8OABBBYwMAAAAAAACm5/F49Pbbb2vFihWSpN7eXg0ODio7O1txcXFas2aNWltbZRiGOjo6VFBQIEkqLS1VS0uLJKm5uVllZWUTjgMAYiM+1gkAAADglHlVbbFOAQAAwLQ2bdqkRx55RB0dHZJONTYcDkfk4w6HQ+3t7err61NKSoosFksk7vP5JEnBYFBWq3VU/KPXstlsCgQC4+YRDocVDocjrwcGBqI3SACAJFZsAAAAAAAAwOSefvppzZ8/X/Pnz491KqqtrZXVao0c6enpsU4JAKYdVmwAAAAAAADA1F555RU1NjaqqalJH3zwgU6ePKmkpKTIigtJ8vl8stvtSk1NVX9/vwzDkMViicQlyWq1RlZtfDRut9vl8/mUlpamQCAgm802bi7V1dW69957I68HBgZobgBAlLFiAwAAAAAAAKZWW1urnp4eHTlyRNu2bVN5ebnuv/9+xcXF6cCBAxoaGlJjY6MKCwtlsViUl5cX2TB89+7dKiwslCS53W7t2rVLktTQ0DBu3O12j5tLQkKCkpKSRhwAgOhixQYAAIBJjbcnx5G6gknOBAAAYGrasWOHSkpKFAqFVFZWpqysLEnS1q1btWbNGm3cuFE33XRTZCPx6upqrV69Wtu3b9eiRYv04IMPSpLKy8tVUlIip9Mph8Ohp556KmZjAgDQ2AAAAAAAAMA0sm7dusi/8/LydPDgwVHnuFwudXZ2jorPnj1b7e3to+KJiYnau3dvNNMEAJyF03oU1apVq5ScnKzVq1ePiA8PD+vaa68dEe/u7lZubq6cTqcqKipkGIYkye/3Kz8/Xy6XS0VFRQqFQpKkUCikoqIiuVwu5efny+/3S5IMw1BFRYWcTqdyc3PV3d19VgMGAAAAAAAAAADmdVqNjY0bN+rxxx8fFX/00Uc1b968EbHKykrV1NTI6/XK7/dHnltYV1en4uJieTweZWRkqL6+XpJUX1+vjIwMeTweFRcXq66uTpLU1tYmv98vr9ermpoaVVZWnsk4AQAAAAAAAADANHBajY2lS5dq1qxZI2L9/f1qbGzUnXfeGYkZhqGOjo7I8wlLS0vV0tIiSWpublZZWdkZxQsKCtTR0RFZ/QEAAAAAAAAAAM4vZ73Hxne/+13dd999I2J9fX1KSUmRxWKRJDkcDvl8PklSMBiU1WodFe/t7ZXD4ZAk2Ww2BQKBUXGLxaLk5GT19fUpLS1tzHzC4bDC4XDk9cDAwNkOEQAAAAAAAAAATBGntWLj41577TUdPXpUS5cujVI6Z6+2tlZWqzVypKenxzolAAAAAAAAAAAQJWfV2HjllVf00ksvad68eVqzZo2eeeYZ3XnnnUpNTVV/f3/kkVE+n092u12SZLVaFQwGR8Xtdntk9UYgEJDNZhsVNwxDR48eVWpq6rg5VVdXKxgMRo6enp6zGSIAAAAAAAAAAJhCzqqxcdddd8nn8+nIkSNqbGzUihUrtHPnTlksFuXl5UU2DN+9e7cKCwslSW63W7t27ZIkNTQ0jBt3u92j4m1tbVqyZEnkEVdjSUhIUFJS0ogDAAAAAAAAAABMD6fV2Fi2bJluvfVW7du3T3PnztXLL7887rlbt27V5s2blZmZqeTk5MhG4tXV1WpqapLT6ZTX69X69eslSeXl5fJ6vXI6nWpqalJVVZWkU42NlJQUZWZmavPmzaqrqzvTsQIAAAAAAAAAAJM7rc3Dn3vuuXE/tnTp0hF7bbhcLnV2do46b/bs2Wpvbx8VT0xM1N69e0fFZ8yYoZ07d55OmgAAAAAAAAAAYJo6q0dRAQAAAAAAAAAATCYaGwAAAAAAAAAAwDRobAAAJt28efOUnZ2tnJwc5efnS5K6u7uVm5srp9OpiooKGYYhSfL7/crPz5fL5VJRUZFCoZAkKRQKqaioSC6XS/n5+fL7/ZIkwzBUUVEhp9Op3NxcdXd3x2aQAAAAAAAAOCdobAAAYqKjo0Ovv/66nn/+eUlSZWWlampq5PV65ff71dbWJkmqq6tTcXGxPB6PMjIyVF9fL0mqr69XRkaGPB6PiouLVVdXJ0lqa2uT3++X1+tVTU2NKisrYzNAAAAAAAAAnBM0NgAAMWcYhjo6OlRQUCBJKi0tVUtLiySpublZZWVlZxQvKChQR0dHZPUHAAAAAAAAzI/GBgBg0lksFt1www26+uqrtXv3bvX19SklJUUWi0WS5HA45PP5JEnBYFBWq3VUvLe3Vw6HQ5Jks9kUCARGxS0Wi5KTk9XX1zdmHuFwWAMDAyMOAAAAAAAATG3xsU4AAHD++fWvfy2Hw6F3331Xy5YtU3p6ekzyqK2t1QMPPBCTrw0AAAAAAIAzw4oNAMCk+3BFxZw5c7Ry5Up1d3erv78/8sgon88nu90uSbJarQoGg6Pidrs9snojEAjIZrONihuGoaNHjyo1NXXMPKqrqxUMBiNHT0/PuRkwAAAAAAAAoobGBgBgUh0/flzHjh2TJH3wwQf61a9+pUWLFikvLy+yYfju3btVWFgoSXK73dq1a5ckqaGhYdy42+0eFW9ra9OSJUsij7j6uISEBCUlJY04AAAAAAAAMLXxKCoAwKT605/+pFWrVkmShoaGVF5erquvvlpbt27VmjVrtHHjRt10002RjcSrq6u1evVqbd++XYsWLdKDDz4oSSovL1dJSYmcTqccDoeeeuopSacaG62trcrMzJTNZlNjY2NsBgoAAAAAAIBzgsYGAGBSZWRk6I033hgVd7lc6uzsHBWfPXu22tvbR8UTExO1d+/eUfEZM2Zo586dUckVAAAAAAAAUw+PogIAAAAAAAAAAKZBYwMAAABATPX09Gjp0qVasGCBsrOz1dTUJEnq7u5Wbm6unE6nKioqZBiGJMnv9ys/P18ul0tFRUUKhUKSpFAopKKiIrlcLuXn58vv90uSDMNQRUWFnE6ncnNz1d3dHfnaW7ZskdPp1MKFC7V///5JHjkAAACAM0FjAwAAAEBMxcfHa/v27Xrrrbf07LPP6u6779bx48dVWVmpmpoaeb1e+f1+tbW1SZLq6upUXFwsj8ejjIwM1dfXS5Lq6+uVkZEhj8ej4uJi1dXVSZLa2trk9/vl9XpVU1OjyspKSVJXV5f27dunt99+W42NjdqwYUNs3gAAAAAAp4XGBgAAAICYmjNnjnJyciRJl156qdLS0tTf36+Ojg4VFBRIkkpLS9XS0iJJam5uVllZ2RnFCwoK1NHRIcMw1NLSopKSEsXHxysrK0snT55Ub2/vpI0bAAAAwJmhsQEAAABgyujs7NTQ0JASExOVkpIii8UiSXI4HPL5fJKkYDAoq9U6Kt7b2yuHwyFJstlsCgQCo+IWi0XJycnq6+sbEf/wWuM1NsLhsAYGBkYcAAAAAGKDxgYAAACAKaG/v19r167Vzp07Y53KKLW1tbJarZEjPT091ikBAAAA5y0aGwAAAABiLhwO65ZbblFVVZU+//nPKzU1Vf39/ZENw30+n+x2uyTJarUqGAyOitvt9sjqjUAgIJvNNipuGIaOHj2q1NTUEfGPX+vjqqurFQwGI0dPT0/03wQAAAAAE0JjAwAAAEBMGYahdevW6cYbb4zshWGxWJSXlxfZMHz37t0qLCyUJLndbu3atUuS1NDQMG7c7XaPire1tWnJkiWyWCxyu93as2ePBgcH1dXVpZkzZ47b2EhISFBSUtKIAwAAAEBsxMc6AQAAAADnt9/85jd68sknlZ2drb1790qSdu3apa1bt2rNmjXauHGjbrrppshG4tXV1Vq9erW2b9+uRYsW6cEHH5QklZeXq6SkRE6nUw6HQ0899ZSkU42N1tZWZWZmymazqbGxUZKUnZ2t5cuX6/LLL9cFF1ygRx99dPIHDwAAAOC0nVZjY9WqVXrhhRd000036amnntKJEydUXFysw4cPKy4uThUVFfqHf/gHSZLf79ett96qP/7xj8rKytITTzyhCy64QKFQSF/96lfV1dWluXPnqqmpSWlpaTIMQ3fddZeee+452Ww2Pfnkk8rMzJQkbdmyRY8//rgSEhL02GOP6Zprron+OwEAAAAgJr7whS9oeHh4zI91dnaOis2ePVvt7e2j4omJiZHGyEfNmDFj3H07ampqVFNTc1r5AgAAAIit03oU1caNG/X444+PiFVVVentt9/Wb3/7W/3zP/+zvF6vJKmurk7FxcXyeDzKyMhQfX29JKm+vl4ZGRnyeDwqLi5WXV2dpFNLwv1+v7xer2pqalRZWSlJ6urq0r59+/T222+rsbFRGzZsOOtBAwAAAAAAAAAAczqtxsbSpUs1a9asyOsLL7xQN9xwgyTp4osv1uWXX653331XktTc3Bx5Pm5paalaWlomHC8oKFBHR4cMw1BLS4tKSkoUHx+vrKwsnTx5Ur29vWczZgAAAAAAAAAAYFJR2zy8p6dHBw4c0FVXXSVJCgaDslqtkiSHwyGfzydJ6u3tlcPhkCTZbDYFAoFRcYvFouTkZPX19Y2If3itT2pshMNhDQwMjDgAAAAAAAAAAMD0EJXGRjgc1u23365HHnlEF110UTQuecZqa2tltVojR3p6ekzzAQAAAAAAAAAA0XPWjQ3DMLR27VqtXLlSq1evjsStVquCwaAkyefzyW63S5Lsdntk9UYgEJDNZhsVNwxDR48eVWpq6oj4x681lurqagWDwcjR09NztkMEAAAAAAAAAABTxFk3Nqqrq3XhhRfqe9/73oi42+3Wrl27JEkNDQ0qLCwcM+52u0fF29ratGTJElksFrndbu3Zs0eDg4Pq6urSzJkzP7GxkZCQoKSkpBEHAAAAAAAAAACYHuJP5+Rly5bpjTfe0PHjxzV37lzt2bNHW7du1YIFC5STkyNJ2rp1q7785S+rurpaq1ev1vbt27Vo0SI9+OCDkqTy8nKVlJTI6XTK4XDoqaeeknSqsdHa2qrMzEzZbDY1NjZKkrKzs7V8+XJdfvnluuCCC/Too49GcfgAAAAAAAAAAMBMTqux8dxzz42KGYYx5rmzZ89We3v7qHhiYqL27t07Kj5jxgzt3LlzzGvV1NSopqbmdFIFAAAAAAAAAADTUFQ2DwcAAAAAAAAAAJgMp7ViA0DszKtqi3UKAAAAAAAAABBzrNgAAAAAAAAAAACmQWMDAAAAAAAAAACYBo0NAAAAAAAAAABgGjQ2AAAAAAAAAACAadDYAAAAAAAAgOkFAgHl5uYqJydHixYt0k9+8hNJ0v79+7Vw4UI5nU5t2bIlcn53d7dyc3PldDpVUVEhwzAkSX6/X/n5+XK5XCoqKlIoFJIkhUIhFRUVyeVyKT8/X36/f/IHCQCQRGMDAAAAAAAA08CsWbP04osv6vXXX9dvf/tbPfzww+rr69OGDRu0Z88eHTp0SPv27VNXV5ckqbKyUjU1NfJ6vfL7/Wpra5Mk1dXVqbi4WB6PRxkZGaqvr5ck1dfXKyMjQx6PR8XFxaqrq4vZWAHgfBcf6wQAAADON/Oq2mKdAgAAwLQTFxenCy+8UJIUDodlGIaOHz+uwcFBZWdnS5LWrFmj1tZWLVq0SB0dHWpqapIklZaWqqWlRW63W83Nzfrd734XiVdWVuqb3/ymmpub9cgjj0Ti1157rbZt2xaDkQIAWLEBAAAAAACAaSEQCGjx4sWaO3euvvOd7+i9996Tw+GIfNzhcMjn86mvr08pKSmyWCwj4pIUDAZltVpHxXt7eyPXstlsCgQCY+YQDoc1MDAw4gAARBeNDQAAAAAAAEwLNptNb7zxhg4fPqwnnnhCQ0NDk55DbW2trFZr5EhPT5/0HABguqOxAQCIiRMnTuiyyy7Tpk2bJLGhHwAAAIDo+dSnPqXFixfr0KFDkRUXkuTz+WS325Wamqr+/v7I7xcfxiXJarUqGAyOitvt9si1AoGAbDbbmF+7urpawWAwcvT09JyrYQLAeYvGBgAgJh566CHl5eVFXrOhHwAAAICz8ac//UnHjh2TdOpxUi+++KKuvPJKxcXF6cCBAxoaGlJjY6MKCwtlsViUl5cX+f1i9+7dKiwslCS53W7t2rVLktTQ0DBu3O12j5lHQkKCkpKSRhwAgOiisQEAmHQej0dvv/22VqxYIenUs2o/3NAvLi4usqGfYRjq6OhQQUGBpL9u6CdJzc3NKisrm3AcOJ/Mq2ob8wAAAJjO3nnnHV133XVavHixrrvuOv3DP/yDsrKytGPHDpWUlGj+/Plavny5srKyJElbt27V5s2blZmZqeTk5MjvHdXV1WpqapLT6ZTX69X69ev1/7N3/1Ftn/fd/18y+CZkMRJgN7FkWh+Q7MyYH25oitMkhcRr7CB6x0BSkxnPu2t66HEaZ6k74N5WE2cN+CTLfFbfZ51Dtt3B1GR4uwkgZ8vxaUzakMYZLTZ1Fg+xuKPQJRVYwnYqxeDP9w9//VmIIPEPGSH8fJxznWO9UT56XxK5LqS3ruuSpMrKSnm9XjmdTrW2tqqmpiZqfQWA6118tBMAAFx/tm/frqefflrd3d2SJh/CJ104oK+rq+uaHugnXTjULxQKmbc51A8AAACIXbfffrt6e3vD4vn5+Tp+/HhY3OVyqaenJyy+aNEidXV1hcUTExPV1tYWiVQBAFeJFRsAgBn10ksvadmyZVq2bFm0U+FQPwAAAAAAgBjEig0AwIz66U9/qpaWFrW2turMmTM6d+6ckpKSPvVAP4vFMuWBflardcoD/RYuXPiJB/pJF5aYP/744+btsbExihsAAAAAAACzHIUNAMCMqq+vV319vSTp7//+7/WLX/xC3/3ud9Xe3q5jx44pMzNTLS0teu655yYd6Od2u9Xc3KxNmzZJ+u+D+x555JEpD/TLycn5xAP9pAuH+iUkJFz7TgMAAAAArhucbwdce2xFBQCYFTjQDwAAAAAAAJeCFRsAgKjZvHmz+W8O9AMAAAAAAMCluKwVG+vXr1dycrLKysrM2JEjR5SZmSmn06mdO3ea8YGBAeXl5cnpdKqqqkqGYUiSfD6fCgsL5XK5VFJSomAwKEkKBoMqKSmRy+VSYWGhfD6fJMkwDFVVVcnpdCovL08DAwNX3WkAAAAAAAAAABCbLquwsW3bNr3wwguTYlu3btX+/ft14sQJHTx4UH19fZKk6upq1dXVyev1yufzyeO5sLdcQ0ODSktL1d/fr/T0dDU2NkqSGhsblZ6erv7+fpWWlqqhoUGS5PF45PP55PV6VVdXp+rq6qvuNAAAAAAAAAAAiE2XVdgoKCjQggULzNvDw8MaHx9Xdna24uLitGHDBnV2dsowDHV3d5v7oG/cuFEdHR2SpPb2dlVUVFxRvKioSN3d3ebqDwAAAAAAAAAAcH25qsPDh4eH5XA4zNsOh0NDQ0MaGRlRSkqKLBbLpLgkBQIBWa3WsPhHr2Wz2eT3+8PiFotFycnJGhkZmTanUCiksbGxSQ0AAAAAAAAAAMwNV1XYmI3q6+tltVrNlpaWFu2UAAAAAAAAAABAhFxVYcNut5srLiRpaGhIdrtdqampGh0dNbeMuhiXJKvVqkAgEBb/6LX8fr9sNltY3DAMnTp1SqmpqdPmVFtbq0AgYLbBwcGr6SIAAAAAAAAAAJhFrrqwERcXp2PHjmliYkItLS0qLi6WxWJRfn6+eWB4c3OziouLJUlut1tNTU2SpH379k0bd7vdYXGPx6PVq1ebW1xNJSEhQUlJSZMaAAAAAAAAAACYG+Iv585r1qzR0aNHdfbsWS1ZskStra3as2ePysvLFQwGVVFRoaysLEnSrl27tGHDBm3btk333nuveZB4bW2tysrKtHv3bq1cuVJPPvmkJKmyslLl5eVyOp1yOBw6cOCApAuFjc7OTmVkZMhms6mlpSWS/QcAAAAAAAAAADHksgobhw4dmjJ+/PjxsJjL5VJPT09YfNGiRerq6gqLJyYmqq2tLSw+b9487d2793LSBAAAAAAAAICYtrTGM2X8ZEPRDGcCzD5z7vBwAAAAALFl/fr1Sk5OVllZmRkrKCjQrbfeqtzcXOXm5uq3v/2tJMnn86mwsFAul0slJSUKBoOSpGAwqJKSErlcLhUWFsrn80m6cE5fVVWVnE6n8vLyNDAwYD7Gzp075XQ6lZmZqSNHjsxgjwEAAABcDQobAAAAAKJq27ZteuGFF8LiBw4cUG9vr3p7e5WYmChJamhoUGlpqfr7+5Wenq7GxkZJUmNjo9LT09Xf36/S0lI1NDRIunBOn8/nk9frVV1dnaqrqyVJfX19OnjwoN555x21tLRo69atM9RbAAAAAFeLwgYAAACAqCooKNCCBQsu6b7t7e2qqKiQJG3cuFEdHR2XHC8qKlJ3d7cMw1BHR4fKy8sVHx+vrKwsnTt3TsPDw5HuGgAAAIBrgMIGAAAAgFnp4Ycf1qpVq/Tss8+asUAgIKvVKklyOBwaGhqSJA0PD8vhcEiSbDab/H5/WNxisSg5OVkjIyOT4hev9UmFjVAopLGxsUkNAAAAQHRQ2AAAAAAw6zQ3N+vYsWM6fPiwXnrpJXk8Ux+eOVPq6+tltVrNlpaWFtV8AAAAgOsZhQ0AAAAAs87F1RRWq1UPPfSQ3nrrLfN2IBCQJA0NDclut0uS7Ha7uXrD7/fLZrOFxQ3D0KlTp5Samjop/vFrTaW2tlaBQMBsg4ODke0wAAAAgEtGYQMAAADArDI+Pi6fzydJ+vDDD/Xyyy8rMzNTkuR2u9XU1CRJ2rdvn4qLi6eMu93usLjH49Hq1atlsVjkdru1f/9+jY+Pq6+vT/Pnz//EwkZCQoKSkpImNQAAAADRER/tBAAAAABc39asWaOjR4/q7NmzWrJkiV588UU9+uijOnfunCYmJlRcXKyysjJJF1ZOlJWVaffu3Vq5cqWefPJJSVJlZaXKy8vldDrlcDh04MABSRcKG52dncrIyJDNZlNLS4skKTs7W2vXrtXy5ct1ww036Pnnn49O5wEAAABcNgobAAAAAKLq0KFDYbGenp4p77to0SJ1dXWFxRMTE9XW1hYWnzdvnvbu3Tvlterq6lRXV3dZuQIAAMxWS2umPpPsZEPRDGcCXHtsRQUAAAAAAAAAAGIGhQ0AAAAAAAAAABAzKGwAAAAAAAAAAICYQWEDAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYAAAAAAAAAAAAMSM+2gkAAAAAAAAAwGy1tMYzZfxkQ9EMZwLgIlZsAAAAAAAAAACAmMGKDQAAAAAAAACIEdOtIAGuJ6zYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkRK2z85V/+pTIzM7VixQo9+uijMgxDR44cUWZmppxOp3bu3Gned2BgQHl5eXI6naqqqpJhGJIkn8+nwsJCuVwulZSUKBgMSpKCwaBKSkrkcrlUWFgon88XqbQBAAAAAAAAAEAMiUhh4ze/+Y327Nmjnp4e9fX1qaenRz/96U+1detW7d+/XydOnNDBgwfV19cnSaqurlZdXZ28Xq98Pp88ngv7wjU0NKi0tFT9/f1KT09XY2OjJKmxsVHp6enq7+9XaWmpGhoaIpE2ACAK/H6/8vLylJubq5UrV+q5556TJIrhAAAAAAAAuCQRW7ExPj6uYDCoc+fO6dy5czp//rzGx8eVnZ2tuLg4bdiwQZ2dnTIMQ93d3SoqKpIkbdy4UR0dHZKk9vZ2VVRUXHIcABB7FixYoNdee029vb1688039dRTT2lkZIRiOAAAAAAAAC5JRAobixYt0vbt2/XZz35Wdrtda9asUUJCghwOh3kfh8OhoaEhjYyMKCUlRRaLZVJckgKBgKxWa1h8eHjYvJbNZpPf7582l1AopLGxsUkNADB7xMXF6cYbb5R0Ycw2DENnz56lGA4AAAAAAIBLEpHCxqlTp9TZ2amTJ09qaGhI3d3d+uCDDyJx6ctWX18vq9VqtrS0tKjkAQCYnt/vV05OjpYsWaLvfOc7ev/99ymGAwAAAAAA4JJEpLBx6NAhOZ1OpaSkKDExUUVFRTp8+LD5IZMkDQ0NyW63KzU1VaOjo+Ye6RfjkmS1WhUIBMLidrvdvJbf75fNZps2l9raWgUCAbMNDg5GoosAgAiy2Ww6evSo3n33Xf3whz/UxMREVPKgGA4AAAAAABB7IlLYSEtLU3d3t4LBoCYmJnT48GHl5OQoLi5Ox44d08TEhFpaWlRcXCyLxaL8/Hxzj/Tm5mYVFxdLktxut5qamiRJ+/btmzbudrunzSUhIUFJSUmTGgBgdrr55puVk5OjEydOUAwHAAAAAADAJYlIYSM/P1/333+/Vq1apezsbGVkZOirX/2q9uzZo/Lyci1btkxr165VVlaWJGnXrl3asWOHMjIylJycbO6dXltbq9bWVjmdTnm9Xm3ZskWSVFlZKa/XK6fTqdbWVtXU1EQibQBAFLz33ns6ffq0pAvbSb322mtatWoVxXAAAAAAAABckvhIXeh73/uevve9702K5efn6/jx42H3dblc6unpCYsvWrRIXV1dYfHExES1tbVFKlUAQBT98pe/1De+8Q0ZhiHDMPStb31LWVlZZjE8GAyqoqJiUjF8w4YN2rZtm+69995JxfCysjLt3r1bK1eu1JNPPinpQjG8vLxcTqdTDodDBw4ciFpfAQAAAAAAEHkRK2wAAHApbr/9dvX29obFKYYDAAAAAADgUkRkKyoAAAAAAAAgWgYHB1VQUKAVK1YoOztbra2tkqSBgQHl5eXJ6XSqqqrKPL/P5/OpsLBQLpdLJSUlCgaDkqRgMKiSkhK5XC4VFhbK5/NJkgzDUFVVlZxOp/Ly8jQwMBCdjgIAJFHYAAAAAAAAQIyLj4/X7t279fbbb+uVV17RY489prNnz6q6ulp1dXXyer3y+Xzm+X0NDQ0qLS1Vf3+/0tPT1djYKElqbGxUenq6+vv7VVpaqoaGBkmSx+ORz+eT1+tVXV2dqquro9ZXAACFDQAAAAAAAMS4xYsXKzc3V5J0yy23aOHChRodHVV3d7d5Tt/GjRvV0dEhSWpvb1dFRcUVxYuKitTd3W2u/gAAzDzO2AAAAAAAAMCc0dPTo4mJCSUmJiolJUUWi0WS5HA4NDQ0JEkKBAKyWq1h8eHhYTkcDkmSzWaT3+8Pi1ssFiUnJ2tkZEQLFy4Me/xQKKRQKGTeHhsbuzYdBYDrGCs2AAAAAAAAMCeMjo5q06ZN2rt3b9RyqK+vl9VqNVtaWlrUcgGAuYrCBgAAAAAAAGJeKBTSAw88oJqaGt1xxx1KTU3V6OiouWXU0NCQ7Ha7JMlqtSoQCITF7Xa7uXrD7/fLZrOFxQ3D0KlTp5SamjplHrW1tQoEAmYbHBy8Zn0GgOsVhQ0AAAAAAADENMMwtHnzZt1zzz3mWRgWi0X5+fnmgeHNzc0qLi6WJLndbjU1NUmS9u3bN23c7XaHxT0ej1avXm1ucfVxCQkJSkpKmtQAAJFFYQMAAAAAAAAx7fXXX9eLL76otrY25ebmKjc3V319fdq1a5d27NihjIwMJScnmweJ19bWqrW1VU6nU16vV1u2bJEkVVZWyuv1yul0qrW1VTU1NZIuFDZSUlKUkZGhHTt2qKGhIWp9BQBweDgAAAAAAABi3J133qnz589P+bOenp6w2KJFi9TV1RUWT0xMVFtbW1h83rx5UT23AwAwGSs2AAAAAAAAAABAzKCwAQAAAAAAAAAAYgZbUQEAAAAAAABAlCyt8UQ7BSDmsGIDAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYAAAAAAAAAAAAMYPCBgAAAICoW79+vZKTk1VWVmbGjhw5oszMTDmdTu3cudOMDwwMKC8vT06nU1VVVTIMQ5Lk8/lUWFgol8ulkpISBYNBSVIwGFRJSYlcLpcKCwvl8/kkSYZhqKqqSk6nU3l5eRoYGJjBHgMAAAC4UhQ2AAAAAETdtm3b9MILL0yKbd26Vfv379eJEyd08OBB9fX1SZKqq6tVV1cnr9crn88nj+fCgZsNDQ0qLS1Vf3+/0tPT1djYKElqbGxUenq6+vv7VVpaqoaGBkmSx+ORz+eT1+tVXV2dqqurZ7DHAAAAAK4UhQ0AAAAAUVdQUKAFCxaYt4eHhzU+Pq7s7GzFxcVpw4YN6uzslGEY6u7uVlFRkSRp48aN6ujokCS1t7eroqLiiuJFRUXq7u42V38AAAAAmL0obAAAAACYdYaHh+VwOMzbDodDQ0NDGhkZUUpKiiwWy6S4JAUCAVmt1rD4R69ls9nk9/vD4haLRcnJyRoZGZkyn1AopLGxsUkNAAAAQHRErLDx7rvvqrCwUCtWrFBWVpbOnj17zffEBQAAAICZUF9fL6vVara0tLRopwQAAABctyJW2Ni8ebN27typt99+W11dXUpISLjme+ICAAAAmJvsdru54kKShoaGZLfblZqaqtHRUfPLURfjkmS1WhUIBMLiH72W3++XzWYLixuGoVOnTik1NXXKfGpraxUIBMw2ODgY+U4DAAAAuCQRKWwcP35c8+fP11133SVJSklJ0fvvv3/N98QFAAAAMDfZ7XbFxcXp2LFjmpiYUEtLi4qLi2WxWJSfn29+Oaq5uVnFxcWSJLfbraamJknSvn37po273e6wuMfj0erVq80trj4uISFBSUlJkxoAAACA6IiPxEX6+/t10003qbi4WENDQyorK9NXvvKVsD1xu7q6Iron7lRCoZBCoZB5m71vAQAAgNlvzZo1Onr0qM6ePaslS5aotbVVe/bsUXl5uYLBoCoqKpSVlSVJ2rVrlzZs2KBt27bp3nvvNb80VVtbq7KyMu3evVsrV67Uk08+KUmqrKxUeXm5nE6nHA6HDhw4IOlCYaOzs1MZGRmy2WxqaWmJTucBAAAAXJaIFDbGx8f14x//WL29vfrMZz6jtWvXav78+ZG49GWrr6/XE088EZXHBgAAAHBlDh06NGX8+PHjYTGXy6Wenp6w+KJFi9TV1RUWT0xMVFtbW1h83rx52rt37+UnCwAAACCqIrIVlcPhUF5entLS0pSQkKD7779fH3zwwTXfE3cq7H0LAAAAAAAAAMDcFZHCxhe+8AW9//77OnXqlM6fP6/XXntNt9122zXfE3cq7H0LAAAAAAAAAMDcFZHCRnx8vJ566indfffdys7OlsvlktvtNvfEXbZsmdauXTtpT9wdO3YoIyNDycnJk/bEbW1tldPplNfr1ZYtWyRd2BPX6/XK6XSqtbVVNTU1kUgbAAAAAAAAAADEmIicsSFJ69at07p16ybF8vPzr+meuAAAAAAAAAAQDUtrPNFOAbhuRWTFBgAAAAAAAAAAwEygsAEAmFGDg4MqKCjQihUrlJ2drdbWVknSwMCA8vLy5HQ6VVVVJcMwJEk+n0+FhYVyuVwqKSlRMBiUJAWDQZWUlMjlcqmwsFA+n0+SZBiGqqqq5HQ6lZeXp4GBgeh0FAAAAAAAANcEhQ0AwIyKj4/X7t279fbbb+uVV17RY489prNnz6q6ulp1dXXyer3y+XzyeC4s6W1oaFBpaan6+/uVnp6uxsZGSVJjY6PS09PV39+v0tJSNTQ0SJI8Ho98Pp+8Xq/q6upUXV0dtb4CAAAAAAAg8ihsAABm1OLFi5WbmytJuuWWW7Rw4UKNjo6qu7tbRUVFkqSNGzeqo6NDktTe3q6KioorihcVFam7u9tc/QEAAAAAAIDYF7HDwwEAuFw9PT2amJhQYmKiUlJSZLFYJEkOh0NDQ0OSpEAgIKvVGhYfHh6Ww+GQJNlsNvn9/rC4xWJRcnKyRkZGtHDhwrDHD4VCCoVC5u2xsbFr01EAAAAAAABEDCs2AABRMTo6qk2bNmnv3r1Ry6G+vl5Wq9VsaWlpUcsFAAAAAAAAl4bCBgBgxoVCIT3wwAOqqanRHXfcodTUVI2OjppbRg0NDclut0uSrFarAoFAWNxut5urN/x+v2w2W1jcMAydOnVKqampU+ZRW1urQCBgtsHBwWvWZwAAAAAAAEQGhQ0AwIwyDEObN2/WPffcY56FYbFYlJ+fbx4Y3tzcrOLiYkmS2+1WU1OTJGnfvn3Txt1ud1jc4/Fo9erV5hZXH5eQkKCkpKRJDQAAAAAAALMbhQ0AwIx6/fXX9eKLL6qtrU25ubnKzc1VX1+fdu3apR07digjI0PJycnmQeK1tbVqbW2V0+mU1+vVli1bJEmVlZXyer1yOp1qbW1VTU2NpAuFjZSUFGVkZGjHjh1qaGiIWl8BAAAAAAAQeRweDgCYUXfeeafOnz8/5c96enrCYosWLVJXV1dYPDExUW1tbWHxefPmRfXcDgAAAAAAAFxbrNgAAAAAAAAAAAAxg8IGAAAAAAAAAACIGRQ2AAAAAAAAAABAzOCMDQAAAAAAAADXvaU1nminAOASsWIDAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkUNgAAAAAAAAAAQMygsAEAAAAAAAAAAGJGRAsbH3zwgT73uc9p+/btkqQjR44oMzNTTqdTO3fuNO83MDCgvLw8OZ1OVVVVyTAMSZLP51NhYaFcLpdKSkoUDAYlScFgUCUlJXK5XCosLJTP54tk2gAAAAAAAAAAIEZEtLDxve99T/n5+ebtrVu3av/+/Tpx4oQOHjyovr4+SVJ1dbXq6urk9Xrl8/nk8XgkSQ0NDSotLVV/f7/S09PV2NgoSWpsbFR6err6+/tVWlqqhoaGSKYNAAAAAAAAAABiRMQKG/39/XrnnXe0bt06SdLw8LDGx8eVnZ2tuLg4bdiwQZ2dnTIMQ93d3SoqKpIkbdy4UR0dHZKk9vZ2VVRUXHIcAAAAAAAAAABcX+IjdaHt27fr6aefVnd3t6QLhQ2Hw2H+3OFwqKurSyMjI0pJSZHFYjHjQ0NDkqRAICCr1RoW/+i1bDab/H7/tHmEQiGFQiHz9tjYWKS6CAAAAAAAAAAxZWmNZ8r4yYaiGc4EiJyIrNh46aWXtGzZMi1btiwSl7sq9fX1slqtZktLS4t2SgAAAAAAAAAAIEIiUtj46U9/qpaWFi1dulTbt2/Xc889p4MHD5orLiRpaGhIdrtdqampGh0dNQ8MvxiXJKvVqkAgEBa32+3mtfx+v2w227S51NbWKhAImG1wcDASXQQAAAAAAMAstn79eiUnJ6usrMyMHTlyRJmZmXI6ndq5c6cZHxgYUF5enpxOp6qqqszPqXw+nwoLC+VyuVRSUqJgMChJCgaDKikpkcvlUmFhoXw+38x2DgAwSUQKG/X19RocHNTJkyf1zDPPqLKyUt/97ncVFxenY8eOaWJiQi0tLSouLpbFYlF+fr55YHhzc7OKi4slSW63W01NTZKkffv2TRt3u93T5pKQkKCkpKRJDQAAAAAAAHPbtm3b9MILL0yKbd26Vfv379eJEyd08OBB9fX1SZKqq6tVV1cnr9crn89nfk7V0NCg0tJS9ff3Kz09XY2NjZKkxsZGpaenq7+/X6WlpWpoaJjZzgEAJonY4eFT2bNnj8rLy7Vs2TKtXbtWWVlZkqRdu3Zpx44dysjIUHJysnmQeG1trVpbW+V0OuX1erVlyxZJUmVlpbxer5xOp1pbW1VTU3Mt0wYAAAAAAECMKSgo0IIFC8zbw8PDGh8fV3Z2tuLi4rRhwwZ1dnbKMAx1d3ebn0dt3LhRHR0dkqT29nZVVFRcchwAEB0ROzz8os2bN5v/zs/P1/Hjx8Pu43K51NPTExZftGiRurq6wuKJiYlqa2uLZJoAAAAAAACYw4aHh+VwOMzbDodDXV1dGhkZUUpKiiwWixm/uAV6IBCQ1WoNi3/0WjabTX6/f9rHDYVCCoVC5u2xsbGI9gsAcA0KGwAAAJidltZ4poyfbCia4UwAAADmrvr6ej3xxBPRTgMA5rRruhUVAAAAAAAAEA12u91ccSFJQ0NDstvtSk1N1ejoqHlg+MW4JFmtVgUCgbD4R6/l9/tls9mmfdza2loFAgGzDQ4OXovuAcB1jcIGAAAAAAAA5hy73a64uDgdO3ZMExMTamlpUXFxsSwWi/Lz880Dw5ubm1VcXCxJcrvdampqkiTt27dv2rjb7Z72cRMSEpSUlDSpAQAii8IGAAAAAAAAYt6aNWv04IMP6uDBg1qyZIneeOMN7dmzR+Xl5Vq2bJnWrl2rrKwsSdKuXbu0Y8cOZWRkKDk52TxIvLa2Vq2trXI6nfJ6vdqyZYskqbKyUl6vV06nU62traqpqYlaPwEAnLEBAAAAYBZbunSpkpKSNG/ePCUnJ+vVV1/VwMCAvva1r8nv92vNmjX667/+a1ksFvl8Pj344IP61a9+paysLP3whz/UDTfcoGAwqIcfflh9fX1asmSJWltbtXDhQhmGoW9+85s6dOiQbDabXnzxRWVkZES7ywCAK3To0KEp48ePHw+LuVwu9fT0hMUXLVqkrq6usHhiYqLa2tquOkcAQGSwYgMAAADArNbd3a3e3l69+uqrkqTq6mrV1dXJ6/XK5/OZW4k0NDSotLRU/f39Sk9PV2NjoySpsbFR6enp6u/vV2lpqRoaGiRJHo9HPp9PXq9XdXV1qq6ujk4HAQAAAFwWChsAAAAAYoZhGOru7ja3DNm4caM6OjokSe3t7aqoqLiieFFRkbq7u82DZAEAQOxYWuOZsgGYu9iKCgAAAMCsZbFY9OUvf1nz5s3TY489pvvuu08pKSmyWCySJIfDoaGhIUlSIBCQ1WoNiw8PD8vhcEiSbDab/H5/WNxisSg5OVkjIyNauHBhWB6hUEihUMi8PTY2dm06DAAAMEOmK/6cbCia4UyAy0dhAwAAAMCs9ZOf/EQOh0O//vWvtWbNGqWlpUUlj/r6ej3xxBNReWwAAAAAk7EVFQAAAIBZ6+KKisWLF+v+++/XwMCARkdHzS2jhoaGZLfbJUlWq1WBQCAsbrfbzdUbfr9fNpstLG4Yhk6dOqXU1NQp86itrVUgEDDb4ODgtekwAAAAgE9FYQMAAADArHT27FmdPn1aknTmzBn96Ec/0sqVK5Wfn28eGN7c3Kzi4mJJktvtVlNTkyRp375908bdbndY3OPxaPXq1eYWVx+XkJCgpKSkSQ0AAABAdFDYAADMuPXr1ys5OVllZWVm7MiRI8rMzJTT6dTOnTvN+MDAgPLy8uR0OlVVVWV+Q9fn86mwsFAul0slJSUKBoOSpGAwqJKSErlcLhUWFsrn881s5wAAEfPee+/pzjvvVE5OjvLz87Vp0yZ94Qtf0K5du7Rjxw5lZGQoOTnZPEi8trZWra2tcjqd8nq92rJliySpsrJSXq9XTqdTra2tqqmpkXShsJGSkqKMjAzt2LFDDQ0NUesrAAAAgEtHYQMAMOO2bdumF154YVJs69at2r9/v06cOKGDBw+qr69PklRdXa26ujp5vV75fD7zG7oNDQ0qLS1Vf3+/0tPT1djYKElqbGxUenq6+vv7VVpayodUABDD0tPTdfToUR09elS/+MUvtG3bNkmSy+VST0+PBgYGtHfvXs2bd+FtzaJFi9TV1SWv16u2tjYlJiZKkhITE9XW1iav16uuri4tWrRIkjRv3jzt3btXAwMD6unpkcvlik5HAQAAAFwWChsAgBlXUFCgBQsWmLeHh4c1Pj6u7OxsxcXFacOGDers7JRhGOru7ja/ibtx40Z1dHRIktrb21VRUXHJcQAAAAAAAMwN8dFOAACA4eFh83BY6cJBsV1dXRoZGVFKSoq537nD4TAPeQ0EArJarWHxj17LZrPJ7/dP+7ihUEihUMi8PTY2FtF+AUtrPNFOAQAAAACAOYfCBgDgulVfX68nnngi2mkAAAAAAK4BvmgEzF1sRQUAiDq73W6uuJCkoaEh2e12paamanR01Dww/GJckqxWqwKBQFj8o9fy+/2y2WzTPm5tba0CgYDZBgcHr0X3AAAAAAAAEEEUNgAAUWe32xUXF6djx45pYmJCLS0tKi4ulsViUX5+vnlgeHNzs4qLiyVJbrdbTU1NkqR9+/ZNG3e73dM+bkJCgpKSkiY1AAAAAAAAzG4UNgAAM27NmjV68MEHdfDgQS1ZskRvvPGG9uzZo/Lyci1btkxr165VVlaWJGnXrl3asWOHMjIylJycbB4kXltbq9bWVjmdTnm9Xm3ZskWSVFlZKa/XK6fTqdbWVtXU1EStnwAAAAAAAIg8ztgAAMy4Q4cOTRk/fvx4WMzlcqmnpycsvmjRInV1dYXFExMT1dbWdtU5AgAAAAAAYHaKyIqNwcFBFRQUaMWKFcrOzlZra6skaWBgQHl5eXI6naqqqjL3SPf5fCosLJTL5VJJSYmCwaAkKRgMqqSkRC6XS4WFhfL5fJIkwzBUVVUlp9OpvLw8DQwMRCJtAAAAAAAAAAAQYyJS2IiPj9fu3bv19ttv65VXXtFjjz2ms2fPqrq6WnV1dfJ6vfL5fOYe6Q0NDSotLVV/f7/S09PV2NgoSWpsbFR6err6+/tVWlqqhoYGSZLH45HP55PX61VdXZ2qq6sjkTYAAAAAAAAAAIgxESlsLF68WLm5uZKkW265RQsXLtTo6Ki6u7vNvdA3btyojo4OSVJ7e7sqKiquKF5UVKTu7m5z9QcAAAAAAAAAALh+RPyMjZ6eHk1MTCgxMVEpKSmyWCySJIfDoaGhIUlSIBCQ1WoNiw8PD8vhcEiSbDab/H5/WNxisSg5OVkjIyNauHBh2OOHQiGFQiHz9tjYWKS7CAAAAAAAAAAAoiQiKzYuGh0d1aZNm7R3795IXvay1NfXy2q1mi0tLS1quQAAAAAAAAAAgMiKWGEjFArpgQceUE1Nje644w6lpqZqdHTU3DJqaGhIdrtdkmS1WhUIBMLidrvdXL3h9/tls9nC4oZh6NSpU0pNTZ0yj9raWgUCAbMNDg5GqosAAAAAAAAAACDKIlLYMAxDmzdv1j333GOehWGxWJSfn28eGN7c3Kzi4mJJktvtVlNTkyRp375908bdbndY3OPxaPXq1eYWVx+XkJCgpKSkSQ0AAAAAAAAAAMwNETlj4/XXX9eLL76o7OxstbW1SZKampq0a9cubdiwQdu2bdO9995rHiReW1ursrIy7d69WytXrtSTTz4pSaqsrFR5ebmcTqccDocOHDgg6UJho7OzUxkZGbLZbGppaYlE2gAAAAAAAABixNIaT7RTADBLRKSwceedd+r8+fNT/qynpycstmjRInV1dYXFExMTzcLIR82bNy+q53YAAAAAAAAAAIDZIaKHhwMAAAAAAAAAAFxLEVmxAQAAAAAAAACIfdNt+XWyoWiGMwGmx4oNAAAAAAAAAAAQM1ixAQAAAAAAAGDW4JBwAJ+GwgYAAAAAAACAGUcBA8CVorABAAAAAABmFB9mAgCAq8EZGwAAAAAAAAAAIGZQ2AAAAAAAAAAAADGDwgYAAAAAAAAAAIgZFDYAAAAAAAAAAEDMoLABAAAAAAAAAABiBoUNAAAAAAAAAAAQM+KjnQAAAAAAAACA2Le0xjNl/GRD0QxnAmCuY8UGAAAAAAAAAACIGazYAAAAuErTfTMNAAAAAH8vA4g8ChsAAADXObYMAAAAAADEEraiAgAAAAAAAAAAMYPCBgAAAAAAAAAAiBkUNgAAAAAAAAAAQMygsAEAAAAAAAAAAGJGTBU2Ojs7tXz5crlcLjU2NkY7HWBWW1rjmbIB1wvmDADApWLOAABcKuYMAJgd4qOdwKUaHx/X448/rldffVVWq1W33Xab1q9fr9TU1GinBkQUxQfg6jFn4FphjAbmHuYMIDZMNwefbCia4UxwPWPOwPWOsRizScys2Dhy5IgyMzPlcDh00003ad26dXrllVeinRYAYBZizgAAXCrmDADApWLOAIDZI2ZWbAwPD8vhcJi3HQ6HhoaGwu4XCoUUCoXM24FAQJI0NjZ27ZMEIuB86INrev3P/lHrlPFfPHHfNX1czH4Xx0nDMKKcydVjzsDVWrnjX6KdwqzAnIHpMGcwZwBXK1Lve/h/cPZjzph7cwZ/K+Pj5srvNqLvcuaMmClsXKr6+no98cQTYfG0tLQoZAPEDuvuaGeA2eL06dOyWq3RTmNGMGcAV4Y5AxcxZzBnANHGnBQ7mDOYMzB3MRYj0i5lzoiZwobdbp9UBR8aGtLtt98edr/a2lo9/vjj5u3z589rdHRUqampslgsM5LrpRgbG1NaWpoGBweVlJQU7XSuCH2IvljPX4r9PsR6/tJ/9+E///M/ZbFYZLfbo53SVYuVOWMu/P5cCzwv0+O5mRrPy/Su1XNjGIZOnz7NnDHL3mfE2v8LsZavRM4zhZyvvZnMlznj0uaM2f47NNvzk8gxEmZ7fhI5RsJszu9y5oyYKWzcfvvt+sUvfqGhoSFZrVa9/PLL+rM/+7Ow+yUkJCghIWFSzGazzVCWly8pKWnW/QJdLvoQfbGevxT7fYj1/CXJarXGfB8uirU5Yy78/lwLPC/T47mZGs/L9K7FczNXvnUba3PGpYi1/xdiLV+JnGcKOV97M5Uvc8alzxmz/XdotucnkWMkzPb8JHKMhNma36XOGTFT2IiPj9df/MVfqLCwUOfPn9cf//EfKzU1NdppAQBmIeYMAMClYs4AAFwq5gwAmD1iprAhSV/96lf11a9+NdppAABiAHMGAOBSMWcAAC4VcwYAzA7zop3A9SohIUE7duwIW5oYS+hD9MV6/lLs9yHW85fmRh9iFc/91HhepsdzMzWel+nx3FxfYu31jrV8JXKeKeR87cVavteD2f6azPb8JHKMhNmen0SOkTDb87tUFsMwjGgnAQAAAAAAAAAAcClYsQEAAAAAAAAAAGIGhQ0AAAAAAAAAABAzKGwAAAAAAAAAAICYQWEjCu6++27l5ORoxYoV2rlzpxkfGBhQXl6enE6nqqqqNFuPP/nggw+0bt063XrrrcrMzNT3v/9982c+n0+FhYVyuVwqKSlRMBiMYqbT27p1q26++Wbl5eVNisfKa3BRZ2enli9fLpfLpcbGxminc0nWr1+v5ORklZWVmbEjR44oMzNTTqdz0v8Ts9Hg4KAKCgq0YsUKZWdnq7W1VVJs/e74/X7l5eUpNzdXK1eu1HPPPScptl6HuWCujEPXUkFBgW699Vbl5uYqNzdXv/3tb6OdUlTF4pg/U5YuXars7Gzl5uaqsLAw2ulETazPsbg658+f1xe/+MVJr/9snlNi7T1RrL4HisW/N2Jlvou1MXcuvI+5Xkw3Ps4GnzQWzibTjX3RNtvHt6nGtdlkunFsNpnu85bZ6IMPPtDnPvc5bd++PdqpXDkDMy4QCBiGYRjnzp0zvvjFLxo/+9nPDMMwjNLSUqOjoyPs37PN2bNnjcOHDxuGYRinT582li9fbvT39xuGYRjf/va3je9///th/55tfvKTnxj/+q//atx2222T4rHyGhjGhd8fl8tl/OpXvzJOnz5tLFu2zPD5fNFO61O9+uqrRnt7u1FaWmrG8vLyjKNHjxrj4+PGF7/4RePYsWNRzPCTDQ8PGz//+c8NwzCMX//614bdbjfOnDkTU7874+PjxtmzZw3DMIwzZ84YS5cuNXw+X0y9DnPBXBiHrrUvf/nLRl9fX7TTmBVidcyfKZ/73OeM06dPRzuNqIv1ORZXZ+/evcZDDz006fWfzXNKrL0nitX3QLH290YszXexNubOhfcx14vpxsfZ4JPGwtlkurEvmmJhfJtqXJtNphvHZpPpPm+Zjf73//7fxkMPPWR8+9vfjnYqV4wVG1GQlJQkSTp37pzOnTsni8UiwzDU3d2toqIiSdLGjRvV0dERzTSndeONN+rLX/6yJOmmm27S8uXL9etf/1qS1N7eroqKCkmzuw9f+tKXlJqaOikWS6+B9N/fBnI4HLrpppu0bt06vfLKK9FO61MVFBRowYIF5u3h4WGNj48rOztbcXFx2rBhgzo7O6OY4SdbvHixcnNzJUm33HKLFi5cqNHR0Zj63YmLi9ONN94oSQqFQjIMQ2fPno2p12EumAvjEGZOrI75mFmxPsfiyo2OjqqlpUXf+MY3zNhsn1Ni7T1RrL4HirW/N2Jpvou1MXcuvI+5Xkw1Ps4WnzQWziZTjX3RFgvj28fHtdlmunFsNpnq8xZjFq6E6+/v1zvvvKN169ZFO5WrQmEjSu644w595jOf0Zo1a5Sbm6uRkRGlpKSYE5bD4dDQ0FCUs/x0g4ODOnbsmD7/+c9LkgKBgKxWq6TY6cNFsfYaDA8Py+FwmLdne77TieV+9PT0aGJiQomJiTH1uyNdWB6Zk5OjJUuW6Dvf+Y7ef//9mH0d5pJYG4dmwsMPP6xVq1bp2WefjXYqURXLY+VMsFgs+vKXv6wvfOELam5ujnY6swa/N9ePP/mTP9Gf/dmfKS4uzozFwpwSq++JYv090Gx+nmN53Iql3GP5fcz14uPj42z08bEQnyyWxohYcHEcS0tLi3YqYT7+ecvChQujnVKY7du3q76+PtppXLX4aCcwV+Xm5mp8fDws/sorr8hut6u7u1unT59WWVmZfvGLX+iWW26JQpaf7NP6EAqF9LWvfU1PP/20fud3ficKGX6yT8sfuBqjo6PatGnTrN4v8ZPYbDYdPXpU7733nkpKSmbd3qNzBePQp/uk56i5uVkOh0OBQEBf/epXtXz5cvMbhcBH/eQnP5HD4dCvf/1rrVmzRllZWcrOzo52WkBETTde/s3f/I1OnTqlgoICHT58eOYT+wSx+J4oFt8D8fcGLkesv4+ZKy53fFy5cuWsym82jIWMfdev2T6OffzzlrKyMt18883RTsv00ksvadmyZVq2bJm6u7ujnc5VobBxjfT29n7qfRYsWKB7771X//zP/6xvf/vbGh0dlWEYslgsGhoaivpA/El9MAxDmzZt0v333z/pUCGr1Wp+YynafbiU1+CjUlNTZ91r8Ensdvuk6v7Q0JBuv/32KGZ0Zabqx2x+3qULywkfeOAB1dTU6I477pBhGDH1u/NRN998s3JycnTixImYex1iwVwfhyLhUp4jq9Wqhx56SG+99dZ1W9iYK2P+tXLx22+LFy/W/fffr5/97GcUNhSbcyymN914+dd//df68Y9/rKVLlyoYDOr06dP6xje+ob/5m7+J+pwSi++JYvE90Fz6eyOW57tYGHPn0vuYWHe54+NMFzauZCycaZc79kVbLI9vs8nHx7HZ7OLnLT/+8Y9n1YHsP/3pT9XS0qLW1ladOXNG586dU1JSkr773e9GO7XLxlZUMywQCOg3v/mNpAv/M/7Lv/yLbr31VlksFuXn58vj8UiSmpubVVxcHM1UP1Ftba1uvPFG/emf/umkuNvtVlNTkyRp3759s7oPHxdrr8Htt9+uX/ziFxoaGtKZM2f08ssv67777ot2WpfNbrcrLi5Ox44d08TEhFpaWmb1824YhjZv3qx77rnH3Es51n533nvvPZ0+fVrShTHptdde06pVq2LqdZirYu136VoaHx+Xz+eTJH344Yd6+eWXlZmZGeWsomeujPnXwtmzZ80x7cyZM/rRj350Xf+ufFSszbG4Mt/85jc1NDSkkydPqqWlRevWrdPevXtn9ZwSq++J5sp7oNn8PMfyfDfbx9y58D7mejDd+DibTDcW4pPF8vg2W0w1js02U33esnz58ihnNVl9fb0GBwd18uRJPfPMM6qsrIzJooYkacaOKYdhGIZx8uRJ47bbbjOysrKMzMxM44knnjB/9u///u/G5z//eSM9Pd2orKw0JiYmopjp9AYHBw1JxooVK4ycnBwjJyfH+Od//mfDMAzj/fffN+6++24jIyPD+J//838aH3zwQZSzndof/MEfGLfccosxf/58w+FwGP/wD/9gGEbsvAYXvfTSS4bL5TIyMjKMv/mbv4l2Opfk3nvvNRYuXGgkJiYaDofD6O7uNt544w1jxYoVRnp6urFjx45op/iJfvzjHxsWi8X83c/JyTGOHTsWU787b775ppGTk2NkZ2cbWVlZxg9+8APDMIyYeh3mgrkyDl0rZ86cMT7/+c8bWVlZxooVK4zq6mrj/Pnz0U4rqmJxzJ8JAwMDRnZ2tpGdnW1kZmYau3fvjnZKURPrcyyu3quvvmqUlpaat2frnBKL74li9T1QLP69ESvzXayNuXPhfcz14JPGx9ngk8bC2WS6sS/aZvv4NtW4NptMN47NJtN93jJb/d3f/Z3x7W9/O9ppXDGLYczCo9kBAAAAAAAAAACmwFZUAAAAAAAAAAAgZlDYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkUNgAAAAAAAAAAQMygsAEAAAAAAAAAAGIGhQ0AAAAAAAAAABAzKGwAAAAAAAAAAICYQWEDAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkUNgAAAAAAAAAAQMygsAEAAAAAAAAAAGIGhQ0AAAAAAAAAABAzKGwAAAAAAAAAAICYQWEDAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYACLk/vvv1yOPPBIWHxsb04033iiPx6O7775bycnJ+sxnPqOysjL96le/Mu93+PBhWSwW3XTTTWab6noAgNh3tXOGJP3qV7/Sgw8+KJvNJpvNpvvuu2+m0gcAzKCrnTOqqqomvce48cYbZbFY9LOf/WwmuwEAmAGReJ/xve99T5/73OeUlJSkVatW6ZVXXpmp9IHLQmEDiJCvf/3r+uEPf6hQKDQpvn//fi1evFh+v1/V1dUaHBzUu+++q6SkJD300EOT7mu1WnXmzBmz7dmzZya7AACYIVc7Z5w9e1aFhYXKycnR4OCgfD6f/vzP/3ymuwEAmAFXO2f84Ac/mPQe48knn9SyZcv0+c9/fqa7AgC4xq52zmhra9Mzzzyjzs5OBQIBPf7441q/fr1GR0dnuivAp7IYhmFEOwlgLjh37pwcDoe+//3v62tf+5oZz8/PV3Fxsf7kT/5k0v2PHTumVatWKRQKKT4+XocPH9YDDzwgv98/w5kDAGba1c4Z/+f//B/t27dPb7zxxkynDgCYYVc7Z3zcihUr9Ad/8Aeqrq6+5rkDAGbW1c4Zzz77rP75n/950iqN//E//oe6u7uVl5c3Y/0ALgUrNoAImT9/vioqKvS3f/u3Zuztt9/Wv/7rv2rz5s1h9+/q6tLv/u7vTnqzcebMGdntdi1ZskS///u/r6GhoZlIHQAww652zujq6tKSJUu0bt06paSk6LbbbtPBgwdnKn0AwAyKxPuMi9544w319/dP+d8BAGLf1c4ZX/va1/Rf//Vf+vnPf66JiQn93d/9nZYsWaKVK1fOVBeASxb+lw6AK/b1r39dWVlZGhwcVFpamv72b/9W9913nxwOx6T7/fznP9ef/dmfqbW11Yzdeuut6u3t1e/+7u/qN7/5jR5//HEVFxfrX//1XzVvHjVIAJhrrmbOGB0d1auvvqp//Md/VHt7uzwej8rKynTs2DE5nc6Z7goA4Bq7mjnjoxobG+V2u3XzzTfPRNoAgCi4mjnjM5/5jIqKipSXlyeLxaLf+Z3f0T/90z/phhtumOluAJ+KT0uBCFqxYoVuv/12/d//+381Pj6uffv26etf//qk+/T19WndunXas2ePfu/3fs+M33LLLVq5cqXi4uJ0yy23aO/evTp69Kj+/d//faa7AQCYAVczZ9x0002644479MADD2j+/Pl64IEHdNttt3GwHwDMUVczZ1x05swZ/cM//EPYfwcAmFuuZs7YuXOnDh48qH//93/Xhx9+qJdeeklf+9rX1NvbO8O9AD4dhQ0gwr7+9a/r7//+79XZ2anz58+ruLjY/FlfX5/WrFmj+vp6bdy48ROvY7FYrnWqAIAou9I5IycnZ6ZTBQBE2dW+z2hpaVFSUpLWrVs3UykDAKLkSueMn//853rwwQeVkZGhefPmqaCgQDk5OTp06NBMdwH4VBQ2gAi7uB/hH/3RH2nTpk2aP3++JOn48eNas2aN/vzP/1x/+Id/GPbfvfrqq3r33XdlGIZGRkb0zW9+U5mZmXK5XDPdBQDADLnSOWPTpk362c9+Zr5R6ezs1M9+9jPdd999M90FAMAMudI546Lnn39emzdvVlxc3EylDACIkiudM1avXq0DBw7ol7/8pQzD0Ouvv64jR44oNzd3hnsAfDoKG0CELViwQA899IbNbOQAAFKrSURBVJBOnjw5aanfM888o9/85jf6oz/6I910001m+8///E9JF6rid999t2666SatXLlS4+Pj6uzs5I0HAMxhVzpnZGRk6MCBA/rjP/5jJSUl6U//9E/1j//4j8rIyIhWVwAA19iVzhnShYNj33zzTbahAoDrxJXOGX/8x3+se++9V3feeaeSkpL0h3/4h3rqqae0Zs2aaHUFmJbFMAwj2kkAAAAAAAAAAABcClZsAAAAAAAAAACAmEFhAwAAAAAAAAAAxAwKGwAAAAAAAAAAIGZQ2AAAAAAAAAAAADGDwgYAAAAAAAAAAIgZESts/OVf/qUyMzO1YsUKPfroozIMQ0eOHFFmZqacTqd27txp3ndgYEB5eXlyOp2qqqqSYRiSJJ/Pp8LCQrlcLpWUlCgYDEqSgsGgSkpK5HK5VFhYKJ/PF6m0AQAAAAAAAABADLEYF6sKV+E3v/mN8vPzdfz4cc2fP1933323nnnmGT366KN6/vnnlZmZqS996Ut67rnnlJWVpbKyMm3evFlut3vSv7dv366lS5fqkUcemfTvPXv26OTJk3rmmWcm/ftSnD9/XsPDw1qwYIEsFsvVdhUA5izDMHT69GnZ7XbNm3d9LuhjzgCAS8OcwZwBAJeKOYM5AwAu1WXNGUYEvP/++8ZnP/tZ49SpU8Zvf/tb4wtf+ILxk5/8xMjNzTXv85d/+ZfGU089ZZw/f95YvHixcf78ecMwDOP//b//Z3zjG98wDMMwXC6X4ff7DcMwjJ///OfGV77yFcMwDOP3fu/3jN7eXsMwDOPUqVPGsmXLLjm3wcFBQxKNRqPRLrENDg5GYmqIScwZNBqNdnmNOSP6rwGNRqPFSmPOiP5rQKPRaLHSLmXOiFcELFq0SNu3b9dnP/tZxcfHq6qqSgkJCXI4HOZ9HA6Hurq6NDIyopSUFLNC7XA4NDQ0JEkKBAKyWq1h8eHhYfNaNptNfr9/2lxCoZBCoZB52/j/F6QMDg4qKSkpEt0FgDlpbGxMaWlpWrBgQbRTiZqLfWfOAIBPxpzBnAEAl4o5gzkDAC7V5cwZESlsnDp1Sp2dnTp58qQSExO1bt06rV27NhKXvmz19fV64oknwuJJSUlMHgBwCa7npdEX+86cAQCXhjmDOQMALhVzBnMGAFyqS5kzIrK54aFDh+R0OpWSkqLExEQVFRXp8OHD5ooLSRoaGpLdbldqaqpGR0fNlRQX45JktVoVCATC4na73byW3++XzWabNpfa2loFAgGzDQ4ORqKLAAAAAAAAAABgFohIYSMtLU3d3d0KBoOamJjQ4cOHlZOTo7i4OB07dkwTExNqaWlRcXGxLBaL8vPz5fF4JEnNzc0qLi6WJLndbjU1NUmS9u3bN23c7XZPm0tCQoJZAacSDgAAAAAAAADA3BKRwkZ+fr7uv/9+rVq1StnZ2crIyNBXv/pV7dmzR+Xl5Vq2bJnWrl2rrKwsSdKuXbu0Y8cOZWRkKDk5WUVFRZIurLZobW2V0+mU1+vVli1bJEmVlZXyer1yOp1qbW1VTU1NJNIGAAAAAAAAAAAxxmJc3BNqjhobGzO3uGL1BgBMj/GS5wAALhXjJc8BAFwqxkueAwC4VJczXkZkxQYAAAAAAAAAAMBMoLABAAAAAAAAAABiBoUNAAAAAAAAAAAQMyhsAAAAAAAAAACAmEFhAwAAAAAAAAAAxIz4aCcA4NpYWuOZMn6yoWiGMwGA6xdjMQBcv5gDACD2MHYDsYMVGwAAAAAAAAAAIGZQ2AAAAAAAAAAAADGDwgYAAAAAAAAAAIgZnLEBxLjp9n8EAAAAAAAAgLmIFRsAAAAAAAAAACBmUNgAAAAAAAAAAAAxg8IGAAAAAAAAAACIGRQ2AAAAAAAAAABAzKCwAQCYUX6/X3l5ecrNzdXKlSv13HPPSZIKCgp06623Kjc3V7m5ufrtb38rSfL5fCosLJTL5VJJSYmCwaAkKRgMqqSkRC6XS4WFhfL5fJIkwzBUVVUlp9OpvLw8DQwMRKejAAAAAAAAuCYobAAAZtSCBQv02muvqbe3V2+++aaeeuopjYyMSJIOHDig3t5e9fb2KjExUZLU0NCg0tJS9ff3Kz09XY2NjZKkxsZGpaenq7+/X6WlpWpoaJAkeTwe+Xw+eb1e1dXVqbq6OjodBQAAAAAAwDVBYQMAMKPi4uJ04403SpJCoZAMw5BhGNPev729XRUVFZKkjRs3qqOj45LjRUVF6u7u/sTrAwAAAAAAILZQ2AAAzDi/36+cnBwtWbJE3/nOd7Rw4UJJ0sMPP6xVq1bp2WefNe8bCARktVolSQ6HQ0NDQ5Kk4eFhORwOSZLNZpPf7w+LWywWJScnmytCPi4UCmlsbGxSAwAAAAAAwOxGYQMAMONsNpuOHj2qd999Vz/84Q/13nvvqbm5WceOHdPhw4f10ksvyePxXPM86uvrZbVazZaWlnbNHxMAAAAAAABXh8IGACBqbr75ZuXk5OjHP/6xucrCarXqoYce0ltvvWXeDgQCkqShoSHZ7XZJkt1uN1dv+P1+2Wy2sLhhGDp16pRSU1OnfPza2loFAgGzDQ4OXrO+AgAAAAAAIDIobAAAZtR7772n06dPS7qwzdRrr72m5cuXy+fzSZI+/PBDvfzyy8rMzJQkud1uNTU1SZL27dun4uLiKeNutzss7vF4tHr1alkslilzSUhIUFJS0qQGAAAAAACA2S0ihY0TJ04oNzfXbImJiWpra9PAwIDy8vLkdDpVVVVlHt7q8/lUWFgol8ulkpISBYNBSVIwGFRJSYlcLpcKCwvND7kMw1BVVZWcTqfy8vI0MDAQibQBAFHwy1/+UnfddZdycnJ011136Vvf+pbS09N13333KTs7W6tWrdLKlStVVlYm6cKqitbWVjmdTnm9Xm3ZskWSVFlZKa/XK6fTqdbWVtXU1Ei6UNhISUlRRkaGduzYoYaGhqj1FQAAAEBkDQ4OqqCgQCtWrFB2drZaW1slSZs3b1Z6err52dTFz46u5LOmnTt3yul0KjMzU0eOHDHjjY2NcrlcWr58uTo7O2ew1wCAj4uPxEWWL1+u3t5eSdKZM2e0dOlS/d7v/Z7+4A/+QHV1dXK73SorK5PH45Hb7VZDQ4NKS0v1yCOPaPv27WpsbNQjjzyixsZGpaen65/+6Z+0Z88eNTQ06JlnnpHH45HP55PX61VnZ6eqq6t14MCBSKQOAJhht99+uzlnfFRPT8+U91+0aJG6urrC4heL6B83b9487d2792rTBAAAADALxcfHa/fu3crNzdV//dd/6bbbbtP9998vSfqrv/orcyX3RZf7WVNfX58OHjyod955R//2b/+m//W//pfeeustjYyM6Omnn9bPfvYznT59WgUFBVq7dq3i4yPy0RoA4DJFfCuq9vZ23XvvvbrxxhvV3d2toqIiSdLGjRvV0dFh3qeiouKK4kVFReru7jZXfwAAAAAAAOD6sHjxYuXm5kqSbrnlFi1cuFCjo6PT3v9yP2vq6OhQeXm54uPjlZWVpXPnzml4eFj/8i//ovvvv18LFiyQ3W7XihUrzHMBAQAzL+KFjX/4h3/Q1772NY2MjCglJcXc19zhcJiHuQYCAVmt1rD48PCweXiszWaT3+8Pi1ssFiUnJ2tkZGTKxw+FQhobG5vUAAAAAAAAMLf09PRoYmJCaWlpkqTt27crJydHtbW1mpiYkHT5nzV9NC5d+NxqeHh4yvjFz7M+js+mAODai2hhY2xsTN3d3eYSwGior6+X1Wo128XJDQAAAAAAAHPD6OioNm3aZG5DW19fr3/7t3/Tm2++qf/4j//QD37wg6jlxmdTAHDtRbSw8dJLL+krX/mKbrjhBqWmpmp0dNTcMmpoaEh2u12SZLVaFQgEwuJ2u92sdvv9ftlstrC4YRg6deqUUlNTp8yhtrZWgUDAbIODg5HsIgAAAAAAAKIoFArpgQceUE1Nje644w5JF7aoslgsuuGGG7Rp0yZzm6jL/azpo3Hpvz+3mi4+FT6bAoBrL6KFjYvbUEkXlvHl5+fL4/FIkpqbm1VcXCxJcrvdampqkiTt27dv2vjFA58+Gvd4PFq9erW5xdXHJSQkKCkpaVIDAAAAAABA7DMMQ5s3b9Y999xjnpEhSb/+9a8lSefPn1d7e7syMzMlXf5nTW63W/v379f4+Lj6+vo0f/582e12feUrX9HBgwd1+vRpDQ8P6/jx47r99tunzJHPpgDg2ouP1IUCgYCOHDmif/zHfzRju3bt0oYNG7Rt2zbde++95kHitbW1Kisr0+7du7Vy5Uo9+eSTkqTKykqVl5fL6XTK4XDowIEDki5MNp2dncrIyJDNZlNLS0uk0gYAAAAAAECMeP311/Xiiy8qOztbbW1tkqSmpiZt27ZNPp9P58+fV35+vh599FFJl/9ZU3Z2ttauXavly5frhhtu0PPPPy9JWrhwob797W9r1apVmjdvnv7iL/5C8fER+1gNAHCZLMbFvaLmqLGxMXPrKyrkmIuW1ngu6/4nG4quUSaIdYyXPAeIvOnGaMZixDrGS54DfDrmAOACxkueg1jC2A1E1+WMlxHdigoAAAAAAAAAAOBaorABAAAAAAAAAABiBoUNAAAAAAAAAAAQMyhsAAAAAAAAAACAmEFhAwAAAAAAAAAAxAwKGwAAAACianBwUAUFBVqxYoWys7PV2toqSRoYGFBeXp6cTqeqqqpkGIYkyefzqbCwUC6XSyUlJQoGg5KkYDCokpISuVwuFRYWyufzSZIMw1BVVZWcTqfy8vI0MDBgPvbOnTvldDqVmZmpI0eOzHDPAQAAAFwJChsAAAAfs7TGM2UDcG3Ex8dr9+7devvtt/XKK6/oscce09mzZ1VdXa26ujp5vV75fD55PBf+P2xoaFBpaan6+/uVnp6uxsZGSVJjY6PS09PV39+v0tJSNTQ0SJI8Ho98Pp+8Xq/q6upUXV0tSerr69PBgwf1zjvvqKWlRVu3bo3OEwAAAADgslDYAAAAABBVixcvVm5uriTplltu0cKFCzU6Oqru7m4VFRVJkjZu3KiOjg5JUnt7uyoqKq4oXlRUpO7ubhmGoY6ODpWXlys+Pl5ZWVk6d+6choeHZ6zfAAAAAK4MhQ0AAAAAs0ZPT48mJiaUmJiolJQUWSwWSZLD4dDQ0JAkKRAIyGq1hsWHh4flcDgkSTabTX6/PyxusViUnJyskZGRSfGL15qusBEKhTQ2NjapAQAAAIgOChsAAAAAZoXR0VFt2rRJe/fujXYqYerr62W1Ws2WlpYW7ZQAAACA6xaFDQAAAABRFwqF9MADD6impkZ33HGHUlNTNTo6ah4YPjQ0JLvdLkmyWq0KBAJhcbvdbq7e8Pv9stlsYXHDMHTq1CmlpqZOin/8Wh9XW1urQCBgtsHBwcg/CQAAAAAuCYUNAAAAAFFlGIY2b96se+65xzwLw2KxKD8/3zwwvLm5WcXFxZIkt9utpqYmSdK+ffumjbvd7rC4x+PR6tWrZbFY5Ha7tX//fo2Pj6uvr0/z58+ftrCRkJCgpKSkSQ0AAABAdMRHOwEAAAAA17fXX39dL774orKzs9XW1iZJampq0q5du7RhwwZt27ZN9957r3mQeG1trcrKyrR7926tXLlSTz75pCSpsrJS5eXlcjqdcjgcOnDggKQLhY3Ozk5lZGTIZrOppaVFkpSdna21a9dq+fLluuGGG/T888/PfOcBAAAAXDYKGwAAAACi6s4779T58+en/FlPT09YbNGiRerq6gqLJyYmmoWRj5o3b96053bU1dWprq7usvIFAAAAEF1sRQUAAAAAAAAAAGIGhQ0AwIzy+/3Ky8tTbm6uVq5cqeeee06SdOTIEWVmZsrpdGrnzp3m/QcGBpSXlyen06mqqirzEFmfz6fCwkK5XC6VlJQoGAxKkoLBoEpKSuRyuVRYWCifzzfznQQAAAAAAMA1Q2EDADCjFixYoNdee029vb1688039dRTT2lkZERbt27V/v37deLECR08eFB9fX2SpOrqatXV1cnr9crn85mHyDY0NKi0tFT9/f1KT09XY2OjJKmxsVHp6enq7+9XaWmpGhoaotZXAAAAAAAARB6FDQDAjIqLi9ONN94oSQqFQjIMQ2fPntX4+Liys7MVFxenDRs2qLOzU4ZhqLu72zwsduPGjero6JAktbe3q6Ki4pLjAAAAAAAAmBsobAAAZpzf71dOTo6WLFmi73znO3r//fflcDjMnzscDg0NDWlkZEQpKSmyWCyT4pIUCARktVrD4sPDw+a1bDab/H7/tHmEQiGNjY1NagAAAAAAAJjdKGwAAGaczWbT0aNH9e677+qHP/yhJiYmopJHfX29rFar2dLS0qKSBwAAAAAAAC4dhQ0AQNTcfPPNysnJ0YkTJ8wVF5I0NDQku92u1NRUjY6OmgeGX4xLktVqVSAQCIvb7XbzWn6/XzabbdrHr62tVSAQMNvg4OC16CYAAAAAAAAiKD7aCQAAri/vvfeebrzxRi1YsECBQECvvfaavvnNbyouLk7Hjh1TZmamWlpa9Nxzz8lisSg/P18ej0dut1vNzc3atGmTJMntdqupqUmPPPKI9u3bp+Li4knxnJwc7du3T263e9pcEhISlJCQMCP9xuy0tMYT7RQAAAAAAMBlitiKjXfffVeFhYVasWKFsrKydPbsWR05ckSZmZlyOp3auXOned+BgQHl5eXJ6XSqqqrK/Cauz+dTYWGhXC6XSkpKFAwGJUnBYFAlJSVyuVwqLCyUz+eLVNoAgBn2y1/+UnfddZdycnJ011136Vvf+paysrK0Z88elZeXa9myZVq7dq2ysrIkSbt27dKOHTuUkZGh5ORk8yDx2tpatba2yul0yuv1asuWLZKkyspKeb1eOZ1Otba2qqamJmp9xdyztMYzZQMAAAAAADMnYis2Nm/erD//8z/XXXfdpdHRUSUkJGjr1q3av3+/MjMz9aUvfUnr169XVlaWqqurVVdXJ7fbrbKyMvObuA0NDSotLdUjjzyi7du3q7GxUY888ogaGxuVnp6uf/qnf9KePXvU0NCgZ555JlKpAwBm0O23367e3t6weH5+vo4fPx4Wd7lc6unpCYsvWrRIXV1dYfHExES1tbVFIlUAAAAAAADMQhFZsXH8+HHNnz9fd911lyQpJSVF77//vsbHx5Wdna24uDht2LBBnZ2dMgxD3d3d5jduN27cqI6ODklSe3u7KioqLjkOAAAAAAAAAACuLxFZsdHf36+bbrpJxcXFGhoaUllZmb7yla/I4XCY93E4HOrq6tLIyIhSUlJksVjM+MVDXgOBgKxWa1h8eHjYvJbNZpPf7582l1AopFAoZN4eGxuLRBcBAAAAAAAAAMAsEJHCxvj4uH784x+rt7dXn/nMZ7R27VrNnz8/Epe+bPX19XriiSei8tgAAAAAAAAAAODaishWVA6HQ3l5eUpLS1NCQoLuv/9+ffDBB+aKC0kaGhqS3W5XamqqRkdHzQPDL8YlyWq1KhAIhMXtdrt5Lb/fL5vNNm0utbW1CgQCZhscHIxEFwEAAAAAAAAAwCwQkcLGF77wBb3//vs6deqUzp8/r9dee0233Xab4uLidOzYMU1MTKilpUXFxcWyWCzKz8+Xx+ORJDU3N6u4uFiS5Ha71dTUJEnat2/ftHG32z1tLgkJCUpKSprUAAAAAAAAAADA3BCRwkZ8fLyeeuop3X333crOzpbL5ZLb7daePXtUXl6uZcuWae3atcrKypIk7dq1Szt27FBGRoaSk5PNg8Rra2vV2toqp9Mpr9erLVu2SJIqKyvl9XrldDrV2tqqmpqaSKQNAAAAAAAAAABiTETO2JCkdevWad26dZNi+fn5On78eNh9XS6Xenp6wuKLFi1SV1dXWDwxMVFtbW2RShUAAAAAAAAAAMSoiKzYAAAAAAAAAAAAmAkUNgAAAAAAAAAAQMygsAEAAAAAAICYMDg4qIKCAq1YsULZ2dlqbW2VJA0MDCgvL09Op1NVVVUyDEOS5PP5VFhYKJfLpZKSEgWDQUlSMBhUSUmJXC6XCgsL5fP5JEmGYaiqqkpOp1N5eXkaGBgwH3vnzp1yOp3KzMzUkSNHZrjnAICPorABAAAAAACAmBAfH6/du3fr7bff1iuvvKLHHntMZ8+eVXV1terq6uT1euXz+eTxeCRJDQ0NKi0tVX9/v9LT09XY2ChJamxsVHp6uvr7+1VaWqqGhgZJksfjkc/nk9frVV1dnaqrqyVJfX19OnjwoN555x21tLRo69at0XkCAACSKGwAAAAAAAAgRixevFi5ubmSpFtuuUULFy7U6Oiouru7VVRUJEnauHGjOjo6JEnt7e2qqKi4onhRUZG6u7tlGIY6OjpUXl6u+Ph4ZWVl6dy5cxoeHp6xfgMAJqOwAQAAAAAAgJjT09OjiYkJJSYmKiUlRRaLRZLkcDg0NDQkSQoEArJarWHx4eFhORwOSZLNZpPf7w+LWywWJScna2RkZFL84rWmK2yEQiGNjY1NagCAyKKwAQAAAAAAgJgyOjqqTZs2ae/evdFOJUx9fb2sVqvZ0tLSop0SAMw5FDYAAAAAAAAQM0KhkB544AHV1NTojjvuUGpqqkZHR80Dw4eGhmS32yVJVqtVgUAgLG63283VG36/XzabLSxuGIZOnTql1NTUSfGPX+vjamtrFQgEzDY4OBj5JwEArnMUNgAAAAAAABATDMPQ5s2bdc8995hnYVgsFuXn55sHhjc3N6u4uFiS5Ha71dTUJEnat2/ftHG32x0W93g8Wr16tSwWi9xut/bv36/x8XH19fVp/vz50xY2EhISlJSUNKkBACIrPtoJAAAAAAAAAJfi9ddf14svvqjs7Gy1tbVJkpqamrRr1y5t2LBB27Zt07333mseJF5bW6uysjLt3r1bK1eu1JNPPilJqqysVHl5uZxOpxwOhw4cOCDpQmGjs7NTGRkZstlsamlpkSRlZ2dr7dq1Wr58uW644QY9//zzM995AICJwgYAAAAAAABiwp133qnz589P+bOenp6w2KJFi9TV1RUWT0xMNAsjHzVv3rxpz+2oq6tTXV3dZeULALg22IoKAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkcHg4AAHCVltZ4op0CAAAAAADXDVZsAABm1ODgoAoKCrRixQplZ2ertbVVkrR582alp6crNzdXubm5GhgYkCQFg0GVlJTI5XKpsLBQPp9PkmQYhqqqquR0OpWXl2feX5J27twpp9OpzMxMHTlyZOY7CQAAAAAAgGuGwgYAYEbFx8dr9+7devvtt/XKK6/oscce09mzZyVJf/VXf6Xe3l719vYqIyNDktTY2Kj09HT19/ertLRUDQ0NkiSPxyOfzyev16u6ujpVV1dLkvr6+nTw4EG98847amlp0datW6PTUQAAAAAAAFwTFDYAADNq8eLFys3NlSTdcsstWrhwoUZHR6e9f3t7uyoqKiRJGzduVEdHR1i8qKhI3d3dMgxDHR0dKi8vV3x8vLKysnTu3DkNDw9f204BAAAAAABgxlDYAABETU9PjyYmJpSWliZJ2r59u3JyclRbW6uJiQlJ0vDwsBwOhyTJZrPJ7/eHxS0Wi5KTkzUyMjIpLkkOh2PawkYoFNLY2NikBgAAAAAAgNmNwgYAICpGR0e1adMm7d27V5JUX1+vf/u3f9Obb76p//iP/9APfvCDa55DfX29rFar2S4WWAAAAAAAADB7RaywsXTpUmVnZys3N1eFhYWSpIGBAeXl5cnpdKqqqkqGYUiSfD6fCgsL5XK5VFJSomAwKOnKDogFAMSeUCikBx54QDU1NbrjjjskXdiiymKx6IYbbtCmTZv01ltvSZLsdruGhoYkSX6/XzabLSxuGIZOnTql1NTUSXFJGhoakt1unzKP2tpaBQIBsw0ODl6rLgMAAAAAACBCIrpio7u7W729vXr11VclSdXV1aqrq5PX65XP55PH45EkNTQ0qLS0VP39/UpPT1djY6Okyz8gFgAQewzD0ObNm3XPPfeYZ2RI0q9//WtJ0vnz59Xe3q7MzExJktvtVlNTkyRp3759crvdYXGPx6PVq1fLYrHI7XZr//79Gh8fV19fn+bPnz9tYSMhIUFJSUmTGgAAAAAAAGa3a7YVlWEY6u7uVlFRkaTpD3y93PhHD4gFAMSe119/XS+++KLa2tqUm5ur3Nxc9fX16fd///eVnZ2t7OxsTUxM6NFHH5UkVVZWyuv1yul0qrW1VTU1NZIuFDZSUlKUkZGhHTt2mMXw7OxsrV27VsuXL9eGDRv0/e9/P2p9BQAAAAAAQOTFR+pCFotFX/7ylzVv3jw99thjuu+++5SSkiKLxSLpwuGtF7cGCQQCslqtYfHLPSB24cKFYXmEQiGFQiHzNgfBAsDscuedd+r8+fNh8R/96EdT3j8xMVFtbW1h8Xnz5pnnc3xcXV2d6urqriZNAMAMWr9+vQ4fPqx7771XBw4ckCQVFBTov/7rv3TDDTdIkt544w0lJibK5/PpwQcf1K9+9StlZWXphz/8oW644QYFg0E9/PDD6uvr05IlS9Ta2qqFCxfKMAx985vf1KFDh2Sz2fTiiy8qIyNDkrRz50698MILSkhI0N/93d/p9ttvj9pzAAAAAODSRWzFxk9+8hP19PSovb1dTz31lN5+++1IXfqycBAsAAAAEFu2bdumF154ISx+4MAB9fb2qre3V4mJiZIit61tX1+fDh48qHfeeUctLS3aunXrDPUWAAAAwNWKWGHj4oqKxYsX6/7779fAwIBGR0fNLaM+enir1WpVIBAIi1/uAbFT4SBYAAAAILYUFBRowYIFl3TfSG1r29HRofLycsXHxysrK0vnzp3T8PBwpLsGAAAA4BqISGHj7NmzOn36tCTpzJkz+tGPfqSVK1cqPz/fPDC8ublZxcXFksIPgp0u/mkHxE6Fg2ABAACAueHhhx/WqlWr9Oyzz5qxSG1r+9H4xWt9UmEjFAppbGxsUgMAAAAQHREpbLz33nu68847lZOTo/z8fG3atElf+MIXtGvXLu3YsUMZGRlKTk42DxKvra1Va2urnE6nvF6vtmzZIunyD4gFAAAAMDc1Nzfr2LFjOnz4sF566SXzC1PRwpa3AAAAwOwRkcPD09PTdfTo0bC4y+VST09PWHzRokXq6uoKi1/JAbEAAAAA5p6LqymsVqseeughvfXWWyoqKjK3tbVarVNua7tw4cIpt7XNy8ubtK3tR7e7lSZvkTuV2tpaPf744+btsbExihsAAABAlETsjA0AAAAAiITx8XH5fD5J0ocffqiXX35ZmZmZkiK3ra3b7db+/fs1Pj6uvr4+zZ8//xMLG2x5CwAAAMweEVmxAQAAAABXas2aNTp69KjOnj2rJUuW6MUXX9Sjjz6qc+fOaWJiQsXFxSorK5N0YeVEWVmZdu/erZUrV+rJJ5+UdGFb2/LycjmdTjkcDh04cEDShcJGZ2enMjIyZLPZ1NLSIknKzs7W2rVrtXz5ct1www16/vnno9N5AAAAAJeNwgYQI5bWRHdfaQAAgGvl0KFDYbGptrSVIrutbV1dnerq6i4rVwAAAADRx1ZUAAAAAAAAAAAgZrBiAwAAzHmsegMAAAAAYO6gsAFcZ6b7cO9kQ9EMZwIAAAAAAAAAl4+tqAAAAAAAAAAAQMygsAEAAAAAAAAAAGIGhQ0AAAAAAAAAABAzKGwAAAAAAAAAAICYQWEDAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkUNgAAAAAAAAAAQMygsAEAAAAAAICYsX79eiUnJ6usrMyMFRQU6NZbb1Vubq5yc3P129/+VpLk8/lUWFgol8ulkpISBYNBSVIwGFRJSYlcLpcKCwvl8/kkSYZhqKqqSk6nU3l5eRoYGDAfY+fOnXI6ncrMzNSRI0dmsMcAgI+jsAEAAAAAAICYsW3bNr3wwgth8QMHDqi3t1e9vb1KTEyUJDU0NKi0tFT9/f1KT09XY2OjJKmxsVHp6enq7+9XaWmpGhoaJEkej0c+n09er1d1dXWqrq6WJPX19engwYN655131NLSoq1bt85QbwEAU6GwAQCYUYODgyooKNCKFSuUnZ2t1tZWSdLAwIDy8vLkdDpVVVUlwzAkRfYbVgAAAABiX0FBgRYsWHBJ921vb1dFRYUkaePGjero6LjkeFFRkbq7u2UYhjo6OlReXq74+HhlZWXp3LlzGh4ejnTXAACXiMIGAGBGxcfHa/fu3Xr77bf1yiuv6LHHHtPZs2dVXV2turo6eb1e+Xw+eTweSZH7hhUAAACAue3hhx/WqlWr9Oyzz5qxQCAgq9UqSXI4HBoaGpIkDQ8Py+FwSJJsNpv8fn9Y3GKxKDk5WSMjI5PiF681XWEjFAppbGxsUgMARBaFDQDAjFq8eLFyc3MlSbfccosWLlyo0dFRdXd3q6ioSNLlf5PqUr5hBQAAAGDuam5u1rFjx3T48GG99NJL5heloqG+vl5Wq9VsaWlpUcsFAOYqChsAgKjp6enRxMSEEhMTlZKSIovFImnyN6ki9Q2rqfBNKgAAAGBuuPgewGq16qGHHtJbb71l3g4EApKkoaEh2e12SZLdbjffW/j9ftlstrC4YRg6deqUUlNTJ8U/fq2Pq62tVSAQMNvg4GDkOwwA1zkKGwCAqBgdHdWmTZu0d+/eqOXAN6kAAACA2Dc+Pm6euffhhx/q5ZdfVmZmpiTJ7XarqalJkrRv3z4VFxdPGXe73WFxj8ej1atXy2KxyO12a//+/RofH1dfX5/mz58/bWEjISFBSUlJkxoAILIiWtj44IMP9LnPfU7bt2+XJB05ckSZmZlyOp3auXOneb9IHRALAIhNoVBIDzzwgGpqanTHHXcoNTVVo6Oj5nzw0W8/ReobVlPhm1QAAABA7FmzZo0efPBBHTx4UEuWLNGbb76p++67T9nZ2Vq1apVWrlypsrIySRf+5m9tbZXT6ZTX69WWLVskSZWVlfJ6vXI6nWptbVVNTY2kC4WNlJQUZWRkaMeOHeZZftnZ2Vq7dq2WL1+uDRs26Pvf/350Og8AkBThwsb3vvc95efnm7e3bt2q/fv368SJEzp48KD6+vokKWIHxAIAYo9hGNq8ebPuuece8ywMi8Wi/Px8cz5obm6e9ptUV/oNq6nwTSoAAAAg9hw6dEi/+c1v9MEHH+hXv/qVvvSlL6mnp0fHjh3T8ePH1dDQYL4HWLRokbq6uuT1etXW1qbExERJUmJiotra2uT1etXV1aVFixZJkubNm6e9e/dqYGBAPT09crlc5uPW1dVpYGBAx48fn/T5FwBg5kWssNHf36933nlH69atk3Rhj/Px8XFlZ2crLi5OGzZsUGdnpwzDiNgBsQCA2PP666/rxRdfVFtbm3Jzc5Wbm6u+vj7t2rVLO3bsUEZGhpKTk815IlLfsAIAAAAAAMDcEB+pC23fvl1PP/20uru7JU0+vFW6cIhTV1eXRkZGInZA7FRCoZBCoZB5m4NgAWB2ufPOO3X+/Pkpf9bT0xMWu/gNq4+7+A2rj7v4DSsAAAAAAADMTRFZsfHSSy9p2bJlWrZsWSQud1U4CBYAAAAAAAAAgLkrIis2fvrTn6qlpUWtra06c+aMzp07p6SkJHPFhfTfB75+9IBYi8Uy5QGxVqt1ygNiFy5cOOmA2KnU1tbq8ccfN2+PjY1R3AAAAAAAAAAAYI6IyIqN+vp6DQ4O6uTJk3rmmWdUWVmp7373u4qLi9OxY8c0MTGhlpYWFRcXR/SA2KlwECwAAAAAAAAAAHNXxA4Pn8qePXtUXl6uZcuWae3atcrKypKkiB0QCwAAAAAAAAAAri8ROzz8os2bN5v/zs/P1/Hjx8Pu43K5InJALAAAAAAAAAAAuL5c0xUbAAAAAAAAAAAAkURhAwAAAAAAAAAAxAwKGwAAAAAAAAAAIGZQ2AAAAAAAAAAAADGDwgYAAAAAAAAAAIgZFDYAAAAAAAAAAEDMoLABAAAAAAAAAABiBoUNAAAAAAAAAAAQMyhsAAAAAAAAAACAmEFhAwAAAAAAAAAAxAwKGwAAAAAAAAAAIGZQ2AAAAAAAAAAAADGDwgYAAACAqFu/fr2Sk5NVVlZmxo4cOaLMzEw5nU7t3LnTjA8MDCgvL09Op1NVVVUyDEOS5PP5VFhYKJfLpZKSEgWDQUlSMBhUSUmJXC6XCgsL5fP5JEmGYaiqqkpOp1N5eXkaGBiYwR4DAAAAuFIUNgAAAABE3bZt2/TCCy9Mim3dulX79+/XiRMndPDgQfX19UmSqqurVVdXJ6/XK5/PJ4/HI0lqaGhQaWmp+vv7lZ6ersbGRklSY2Oj0tPT1d/fr9LSUjU0NEiSPB6PfD6fvF6v6urqVF1dPYM9BgAAAHClKGwAAAAAiLqCggItWLDAvD08PKzx8XFlZ2crLi5OGzZsUGdnpwzDUHd3t4qKiiRJGzduVEdHhySpvb1dFRUVVxQvKipSd3e3ufoDAAAAwOwVH+0EAAAArjdLazxTxk82FM1wJsDsNTw8LIfDYd52OBzq6urSyMiIUlJSZLFYzPjQ0JAkKRAIyGq1hsU/ei2bzSa/3x8Wt1gsSk5O1sjIiBYuXBiWTygUUigUMm+PjY1FuMcAAAAALhUrNgAAAADgU9TX18tqtZotLS0t2ikBAAAA1y0KGwAAAABmHbvdbq64kKShoSHZ7XalpqZqdHTU3DLqYlySrFarAoFAWPyj1/L7/bLZbGFxwzB06tQppaamTplPbW2tAoGA2QYHByPfaQAAAACXhMIGAGBGrV+/XsnJySorKzNjBQUFuvXWW5Wbm6vc3Fz99re/lST5fD4VFhbK5XKppKREwWBQkhQMBlVSUiKXy6XCwkL5fD5JFz6UqqqqktPpVF5engYGBma+gwCAiLDb7YqLi9OxY8c0MTGhlpYWFRcXy2KxKD8/3zwwvLm5WcXFxZIkt9utpqYmSdK+ffumjbvd7rC4x+PR6tWrzS2uPi4hIUFJSUmTGgAAAIDooLABAJhR27Zt0wsvvBAWP3DggHp7e9Xb26vExERJUkNDg0pLS9Xf36/09HQ1NjZKkhobG5Wenq7+/n6VlpaqoaFB0oUPpXw+n7xer+rq6lRdXT1zHQMAXJU1a9bowQcf1MGDB7VkyRK98cYb2rNnj8rLy7Vs2TKtXbtWWVlZkqRdu3Zpx44dysjIUHJysnmQeG1trVpbW+V0OuX1erVlyxZJUmVlpbxer5xOp1pbW1VTUyPpQmEjJSVFGRkZ2rFjhzmfAAAAAJjdODwcADCjCgoKdPjw4Uu6b3t7u9566y1J0saNG1VdXa1HHnlE7e3tevrpp834F7/4RT3zzDNqb29XRUWFJKmoqEjf+MY3ZBjGtN++BQDMHocOHZoyfvz48bCYy+VST09PWHzRokXq6uoKiycmJqqtrS0sPm/ePO3du/fykwUAAAAQVRFZseH3+5WXl6fc3FytXLlSzz33nCTpyJEjyszMlNPp1M6dO837DwwMKC8vT06nU1VVVeb+uJe75QgAYO54+OGHtWrVKj377LNmLBAIyGq1SpIcDoe5D/rw8LAcDockyWazye/3h8UtFouSk5M1MjIy7WOGQiGNjY1NagAAAAAAAJjdIlLYWLBggV577TX19vbqzTff1FNPPaWRkRFt3bpV+/fv14kTJ3Tw4EH19fVJkqqrq1VXVyev1yufz2fuj3u5W44AAOaG5uZmHTt2TIcPH9ZLL71kzgvXWn19vaxWq9nS0tJm5HEBAAAAAABw5SJS2IiLi9ONN94o6cK3Xw3D0NmzZzU+Pq7s7GzFxcVpw4YN6uzslGEY6u7uNvfB3bhxozo6OiRp0hYilxIHAMwNF1dZWK1WPfTQQ+b2U1arVYFAQJI0NDQku90u6cKBshdXb/j9ftlstrC4YRg6deqUUlNTp33c2tpaBQIBsw0ODl6T/gEAAAAAACByInZ4uN/vV05OjpYsWaLvfOc7ev/9980PqqT/3kJkZGREKSkp5n7nH91a5HK3HJkK24oAQGwZHx83txj88MMP9fLLLyszM1PShUNdm5qaJEn79u1TcXHxlHG32x0W93g8Wr169Seer5GQkKCkpKRJDQAAAAAAALNbxA4Pt9lsOnr0qN577z2VlJQoLy8vUpe+LPX19XriiSei8tgAgE+3Zs0aHT16VGfPntWSJUv04osv6tFHH9W5c+c0MTGh4uJilZWVSbqwoqKsrEy7d+/WypUr9eSTT0qSKisrVV5eLqfTKYfDoQMHDki6UNjo7OxURkaGbDabWlpaotZPAAAAAAAAXBsRK2xcdPPNNysnJ0cnTpwwV1xI/72FSGpqqkZHR2UYhiwWy6StRS5uOWK1WqfccmThwoWTthyZSm1trR5//HHz9tjYGHumA8AscujQobBYT0/PlPddtGiRurq6wuKJiYlqa2sLi8+bN0979+696hwBAAAAAAAwe0VkK6r33ntPp0+flnRhO6nXXntNq1atUlxcnI4dO6aJiQm1tLSouLhYFotF+fn55sGwzc3N024t8mlbjkyFbUUAAAAAAADmrvXr1ys5Odlc6S1JR44cUWZmppxOp3bu3GnGBwYGlJeXJ6fTqaqqKhmGIUny+XwqLCyUy+VSSUmJgsGgJCkYDKqkpEQul0uFhYXmtrmGYaiqqkpOp1N5eXkaGBiYwR4DAD4uIoWNX/7yl7rrrruUk5Oju+66S9/61reUlZWlPXv2qLy8XMuWLdPatWuVlZUlSdq1a5d27NihjIwMJScnmweJ19bWqrW1VU6nU16vV1u2bJF0YcsRr9crp9Op1tZW1dTURCJtAAAAAAAAxJht27bphRdemBTbunWr9u/frxMnTujgwYPq6+uTJFVXV6uurk5er1c+n8/8om1DQ4NKS0vV39+v9PR0NTY2SpIaGxuVnp6u/v5+lZaWqqGhQdKFM/x8Pp+8Xq/q6upUXV09gz0GAHxcRLaiuv3229Xb2xsWz8/P1/Hjx8PiLpdrym1HLnfLEQAAAAAAAFxfCgoKdPjwYfP28PCwxsfHlZ2dLUnasGGDOjs7tXLlSnV3d6u1tVWStHHjRnV0dMjtdqu9vV1vvfWWGa+urtYjjzyi9vZ2Pf3002b8i1/8op555hm1t7eroqJCklRUVKRvfOMb5jbrAICZF5EVGwAAAAAAAEA0DA8Py+FwmLcdDoeGhoY0MjKilJQUs/hwMS7JPOP14/GPXstms8nv94fFLRaLkpOTNTIyMmU+oVBIY2NjkxoAILIobAAAAAAAAAARUl9fL6vVara0tLRopwQAcw6FDQAAAAAAAMQsu91urriQpKGhIdntdqWmpmp0dNQ8MPxiXJKsVqsCgUBY/KPX8vv9stlsYXHDMHTq1CmlpqZOmU9tba0CgYDZBgcHI99pALjOUdgAAAAAAABAzLLb7YqLi9OxY8c0MTGhlpYWFRcXy2KxKD8/3zwwvLm5WcXFxZIkt9utpqYmSdK+ffumjbvd7rC4x+PR6tWrpz1fIyEhQUlJSZMaACCyInJ4OAAAQLQtrfFEOwUAAADMgDVr1ujo0aM6e/aslixZotbWVu3Zs0fl5eUKBoOqqKhQVlaWJGnXrl3asGGDtm3bpnvvvVdFRUWSLqyqKCsr0+7du7Vy5Uo9+eSTkqTKykqVl5fL6XTK4XDowIEDki4UNjo7O5WRkSGbzaaWlpbodB4AIInCBgAAAAAAAGLIoUOHpowfP348LOZyudTT0xMWX7Rokbq6usLiiYmJamtrC4vPmzdPe/fuvfxkAQDXBFtRAQAAAAAAAACAmMGKDQAAgFliuu20TjYUzXAmAAAAAADMXqzYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkUNgAAAAAAAAAAQMygsAEAAAAAAAAAAGIGhQ0AAAAAAAAAABAzKGwAAAAAAAAAAICYQWEDAAAAAAAAAADEDAobAAAAAAAAAAAgZlDYAAAAAAAAAAAAMYPCBgAAAAAAAAAAiBkUNgAAAAAAAAAAQMygsAEAmHHr169XcnKyysrKzNiRI0eUmZkpp9OpnTt3mvGBgQHl5eXJ6XSqqqpKhmFIknw+nwoLC+VyuVRSUqJgMChJCgaDKikpkcvlUmFhoXw+38x2DgAAAAAAANcUhQ0AwIzbtm2bXnjhhUmxrVu3av/+/Tpx4oQOHjyovr4+SVJ1dbXq6urk9Xrl8/nk8XgkSQ0NDSotLVV/f7/S09PV2NgoSWpsbFR6err6+/tVWlqqhoaGme0cAAAAAAAArqmIFDYGBwf/v/buPrbK+v7/+OtQllonPS0tk55DZ9cbMfRWbRk6M6g0c9BWhaKCgWqmTTCasB/bhCYzFP2jJWaGRJM517+EbmhdAqXVfYmBMVnJdGzc6BLXdllSTwnmtPb0xvVsbT+/PwhnLeecUuD0nHNdfT6SK+F8roue9+c613m/z3V9rhutWbNGK1asUFFRkVpbWyVF7ixbY4y2b9+u3NxclZaWqqenJxJhAwBiZM2aNVq0aFHgdV9fn8bHx1VUVKSEhARt3rxZ7e3tMsaos7NTlZWVkqStW7fq6NGjkqS2tjZt27Zt1u0AAAAAAACwh4gMbCxcuFD79+/X3//+dx07dkw//vGPNTo6GrGzbDs6OuT1etXd3a2Ghgbt2rUrEmEDAOJEX1+f3G534LXb7ZbH41F/f78WL14sh8MxrV2SfD6fnE5nUPvUv5WSkqLBwcGw7+v3+zU0NDRtAgAAAAAAQHyLyMBGRkaGSkpKJElLly5Venq6BgYGInaW7dT2yspKdXZ2Bq7+AADgRjU2NsrpdAamzMzMWIcEXJes3R0hJwAAAAAA7GxhpP/gmTNnNDExoaSkpIidZTu13eFwKDU1Vf39/UpPTw96f7/fL7/fH3jN2bcAEP9cLlegFkiSx+ORy+VSWlqaBgYGZIyRw+EItEuS0+kM1JOp7Vf+Vnp6ugYHB5WSkhL2fevr67Vz587A66GhIQY3EJcYrAAAAAAA4H8i+vDwgYEB1dbW6q233orkn70unH0LANbjcrmUkJCg8+fPa2JiQocOHVJ1dbUcDodWrVoVuJVhS0uLqqurJUlVVVU6cOCAJOngwYNh26uqqsK+b2JiopKTk6dNAAAAAAAAiG8RG9jw+/169NFHtXv3bt1///3TzrKVFPIs26vbp56xO/Us26ntxhh99dVXSktLCxlHfX29fD5fYOrt7Y1UFwEAEVJRUaHHHntM77//vpYtW6bTp0/rjTfe0JYtW3TnnXfqhz/8oQoLCyVJ+/bt0549e5STk6PU1NTALQ7r6+vV2tqq3NxcdXd369lnn5Uk1dXVqbu7W7m5uWptbdXu3btj1k8AAAAAAABEXkRuRWWM0dNPP60HH3ww8CyMqWfZVlVVqaWlRbW1tZL+dzbtCy+8EPIs2+Li4mln2VZVVentt9/WI488oo6ODt13332BW1xdLTExUYmJiZHoFgBgjnz44Ych2z/77LOgtry8PJ05cyaofcmSJTp58mRQe1JSkg4fPnzTMQIAAAAAACA+ReSKjT/96U965513dPjwYZWUlKikpEQXLlyI2Fm2VVVVWrx4sXJycrRnzx41NTVFImwAAAAAAAAAAGAxEbli44EHHtDk5GTIeZE4y3bBggUxfW4HAAAAAAAAAACIDxEZ2AAAAIiWrN0dsQ4BAAAAAADEUMQeHg4AAAAAAAAAADDXGNgAAAAAELeysrJUVFSkkpISlZeXS5J6enpUWlqq3Nxcbd++XcYYSZLX61V5ebny8vK0ceNGjY2NSZLGxsa0ceNG5eXlqby8XF6vV5JkjNH27duVm5ur0tJS9fT0xKaTAAAAAK4LAxsAAAAA4lpnZ6fOnj2rEydOSJJ27dqlhoYGdXd3y+v1qqPj8i3qmpqaVFNTo66uLmVnZ6u5uVmS1NzcrOzsbHV1dammpkZNTU2SpI6ODnm9XnV3d6uhoUG7du2KTQcBAAAAXBcGNgAAAGwma3dHyAmwA2OMOjs7VVlZKUnaunWrjh49Kklqa2vTtm3bbqi9srJSnZ2dgas/AAAAAMQvBjYAAAAAxC2Hw6HVq1errKxMLS0t6u/v1+LFi+VwOCRJbrdbHo9HkuTz+eR0OoPa+/r65Ha7JUkpKSkaHBwManc4HEpNTVV/f3/IOPx+v4aGhqZNAAAAAGJjYawDAAAAAIBwTp06JbfbrYsXL6qiokKZmZkxiaOxsVF79+6NyXsDAAAAmI4rNgAAAADErStXVGRkZGj9+vXq6enRwMBA4JZRHo9HLpdLkuR0OuXz+YLaXS5X4OqNwcFBpaSkBLUbY/TVV18pLS0tZBz19fXy+XyBqbe3d246DAAAAOCaGNgAAAAAEJdGR0c1PDwsSRoZGdHx48dVUFCgVatWBR4Y3tLSourqaklSVVWVDhw4IEk6ePBg2Paqqqqg9o6ODt13332BW1xdLTExUcnJydMmAAAAALHBragAAAAAxKVLly5pw4YNkqSJiQnV1dWprKxM+/bt0+bNm7Vjxw6tXbs28CDx+vp6bdq0Sfv371dBQYFeeeUVSVJdXZ22bNmi3Nxcud1uvffee5IuD2y0t7crJydHKSkpOnToUGw6CgAAAOC6MLABAAAAIC5lZ2fr3LlzQe15eXk6c+ZMUPuSJUt08uTJoPakpCQdPnw4qH3BggV66623IhIrACA+ZGVlKTk5WQsWLFBqaqpOnDihnp4ePfHEExocHFRFRYV++ctfyuFwyOv16rHHHtMXX3yhwsJC/eY3v9Ett9yisbExPfnkk7pw4YKWLVum1tZWpaenyxij5557Th9++KFSUlL0zjvvKCcnJ9ZdBoB5iVtRAXEma3dHyAkAAAAAAFxbZ2enzp49qxMnTkiSdu3apYaGBnV3d8vr9QZuZ9jU1KSamhp1dXUpOztbzc3NkqTm5mZlZ2erq6tLNTU1ampqknT5toVer1fd3d1qaGjQrl27YtNBAAADGwAAAAAARAsnMgHRZYxRZ2dn4LaFW7du1dGjRyVJbW1t2rZt2w21V1ZWqrOzU8aYqPYHAHAZAxsAAAAAAACwBYfDodWrV6usrEwtLS3q7+/X4sWL5XA4JElut1sej0eS5PP55HQ6g9r7+vrkdrslSSkpKRocHAxqdzgcSk1NVX9/f1AMfr9fQ0ND0yYAQGTxjA0AAIB5LtyZwv9qqoxyJAAAADfn1KlTcrvdunjxoioqKpSZmRn1GBobG7V3796ovy8AzCdcsQEAAAAAAABbuHJFRUZGhtavX6+enh4NDAwEbhnl8XjkcrkkSU6nUz6fL6jd5XIFrt4YHBxUSkpKULsxRl999ZXS0tKCYqivr5fP5wtMvb29c9dhAJinGNgAAAAAAACA5Y2Ojmp4eFiSNDIyouPHj6ugoECrVq0KPDC8paVF1dXVkqSqqiodOHBAknTw4MGw7VVVVUHtHR0duu+++wK3uJoqMTFRycnJ0yYAQGRxKyoAAIB5gofTAgAAO7t06ZI2bNggSZqYmFBdXZ3Kysq0b98+bd68WTt27NDatWsDDxKvr6/Xpk2btH//fhUUFOiVV16RJNXV1WnLli3Kzc2V2+3We++9J+nywEZ7e7tycnKUkpKiQ4cOxaajAAAGNgAAAAAAAGB92dnZOnfuXFB7Xl6ezpw5E9S+ZMkSnTx5Mqg9KSlJhw8fDmpfsGCB3nrrrYjECgC4OdyKCgAAAAAAAAAAWAYDGwAAAAAAAAAAwDIY2AAAxI2srCwVFRWppKRE5eXlkqSenh6VlpYqNzdX27dvlzFGkuT1elVeXq68vDxt3LhRY2NjkqSxsTFt3LhReXl5Ki8vl9frjVl/AAAAAAAAEHkRGdjYsGGDUlNTtWnTpkDbxx9/rPz8fOXm5urll18OtHOACgAwk87OTp09e1YnTpyQJO3atUsNDQ3q7u6W1+tVR8flhx83NTWppqZGXV1dys7OVnNzsySpublZ2dnZ6urqUk1NjZqammLWFwAAAAAAAEReRAY2duzYobfffnta2/PPP6/f/va3+vzzz/X+++/rwoULkjhABcSrrN0dIScglowx6uzsVGVlpSRp69atOnr0qCSpra1N27Ztm3U7AAAAAAAA7CEiAxtr1qzRokWLAq/7+vo0Pj6uoqIiJSQkaPPmzWpvb+cAFQBgRg6HQ6tXr1ZZWZlaWlrU39+vxYsXy+FwSJLcbrc8Ho8kyefzyel0BrX39fXJ7XZLklJSUjQ4OBj2/fx+v4aGhqZNAAAAAAAAiG8L5+KPTj2oJF0+4HTy5Mk5P0AlXT5I5ff7A685SAUA1nHq1Cm53W5dvHhRFRUVyszMnNP3a2xs1N69e+f0PQAAAAAAABBZtnt4eGNjo5xOZ2Ca64NiAIDIuTKQnZGRofXr16unp0cDAwOB5zF5PB65XC5JktPplM/nC2p3uVyBwfHBwUGlpKSEfb/6+nr5fL7A1NvbO1ddAwAAAAAAQITMyRUbUw8qSf874JSWlhY4QOVwOEIeoHI6nSEPUKWnp1/zAJV0+SDVzp07A6+HhoYY3AAACxgdHdXk5KQWLVqkkZERHT9+XI8//rhWrVqljo4OVVVVqaWlRbW1tZKkqqoqHThwQC+88IIOHjyo6urqae3FxcU6ePCgqqqqwr5nYmKiEhMTo9I/XD+e8wMAAAAAAEKZkys2XC6XEhISdP78eU1MTOjQoUOqrq6Ww+EIHKCSpJaWlqADUZJCHqC60j7TASrp8kGq5OTkaRMAIP5dunRJDzzwgIqLi7Vq1SrV1taqrKxM+/bt0549e5STk6PU1NTAc5rq6+vV2tqq3NxcdXd369lnn5Uk1dXVqbu7W7m5uWptbdXu3btj2S0AAAAAAABEWESu2KioqNC5c+c0OjqqZcuWqbW1VW+88Ya2bNmisbExbdu2TYWFhZKkffv2afPmzdqxY4fWrl077QDVpk2btH//fhUUFOiVV16RdPkA1ZYtW5Sbmyu326333nsvEiEDAOJMdna2zp07F9Sel5enM2fOBLUvWbJEJ0+eDGpPSkrS4cOH5yJEAAAAAAAAxIGIDGx8+OGHIds/++yzoDYOUAEAAAAAAAAAgBtlu4eHAwAAAAAAAAAA+2JgAwAAAAAAAAAAWEZEbkUFAAAA+8na3RGy/V9NlVGOBAAAAACA/+GKDQAAAAAAAAAAYBkMbAAAAAAAAAAAAMtgYAMAAAAAAAAAAFgGAxsAAAAAAAAAAMAyGNgAAAAAAAAAAACWsTDWAQAAgPkta3dHrEMAAAAAAAAWwhUbAAAAAAAAAADAMrhiA4gRzlAGAAAAAAAAgOvHFRsAAAAAAAAAAMAyGNgAAAAAAAAAAACWwcAGAAAAAAAAAACwDAY2AAAAAAAAAACAZfDwcAAAEBVZuztiHQIAAAAAALABrtgAAAAAAAAAAACWwRUbAGYU7gzrfzVVRjkSAAAAAAAAAOCKDQAAAAAAAAAAYCEMbAAAAAAAAAAAAMvgVlTAHONhuQDmG/Ke/XGbQgAAAMwn/P4F4o+lrthob2/X8uXLlZeXp+bm5liHAwCIY9QMAMBsUTMAALNFzQCA+GCZKzbGx8e1c+dOnThxQk6nU/fee682bNigtLS0WIcGAIgz1AwAwGxRM3CzuFIRmD+oGfZB7gaszzIDGx9//LHy8/PldrslSevWrdOxY8e0ZcuWGEcGXDbfiiKXYSKeUTOA2LjeWkjNQDygZgAAZouaAQDxwzIDG319fYHCIUlut1sejydoOb/fL7/fH3jt8/kkSUNDQ3MfJOaFgj3/F+sQ4hrfNeu68tkZY2Icyc2jZkQH+RA3i++adVEzqBnz0VzXvW//v9aQ7Z/ufWhO3xeYa9QMakY8mvR/HZG/w2cKRNb11AzLDGzMVmNjo/bu3RvUnpmZGYNogPnHuT/WEeBmDQ8Py+l0xjqMqKBmALFFzbA+agY1A3OPXAm7oGZQM+yIHA3MjdnUDMsMbLhcrmmj4B6PRytXrgxarr6+Xjt37gy8npyc1MDAgNLS0uRwOG46jqGhIWVmZqq3t1fJyck3/ffmCnFGnlViJc7Is0qsNxunMUbDw8NyuVxzEF10xUvNiAarbJ8zoQ/xww79oA/RQc2ITc2wwrZxM+ifddm5bxL9u1nUDGvuZ1zN7t+DUOgzfbareO7z9dQMywxsrFy5Up9++qk8Ho+cTqc++OADvfTSS0HLJSYmKjExcVpbSkpKxONJTk6Ouw8+FOKMPKvESpyRZ5VYbyZOu5xBFW81Ixqssn3OhD7EDzv0gz7MPWpG7GpGvG8bN4v+WZed+ybRv5tBzbDufsbV7P49CIU+zw/0OX7MtmZYZmBj4cKF+sUvfqHy8nJNTk7qxRdfVFpaWqzDAgDEIWoGAGC2qBkAgNmiZgBA/LDMwIYkPfzww3r44YdjHQYAwAKoGQCA2aJmAABmi5oBAPFhQawDsJrExETt2bMn6JLCeEOckWeVWIkz8qwSq1XiRGTZ4XOnD/HDDv2gD7Azu28b9M+67Nw3if4B0vzcTujz/ECfrcthjDGxDgIAAAAAAAAAAGA2uGIDAAAAAAAAAABYBgMbAAAAAAAAAADAMhjYAAAAAAAAAAAAlsHARhjPP/+8br/9dpWWlk5r7+npUWlpqXJzc7V9+3aFekSJ1+tVeXm58vLytHHjRo2Njc15vMPDwyopKQlMTqdT+/fvD1quoaFBy5YtCyz30UcfzXlsoaxZs0Z33XVXII5///vfQcvEYj1O9fXXX2vdunW66667lJ+fr9dffz3kcrFcp+3t7Vq+fLny8vLU3NwcNP/jjz9Wfn6+cnNz9fLLL0ctrql6e3u1Zs0arVixQkVFRWptbQ1a5umnn1Z2dnZgHfb09MQg0suysrJUVFSkkpISlZeXB82fTQ6Ya59//vm073tSUpIOHz48bZl4WqeYe7PNV/EuXO21gmvlYyvYsGGDUlNTtWnTpliHckNmU2+sYHBwUKWlpSopKVFBQYF+/etfxzokxIGZ8nysfzNHys3sf1mBHerEVKFqRjzse0RKuJpih+0xXJ2x0+eHyLJ7fg7Hbnk7HLvn81DsnOPDsW3uNwjp1KlT5i9/+Yu59957p7XX1NSYo0ePBv17qp/85Cfm9ddfD/p3tExOTppvf/vb5p///GfQvD179kQ9nlBWr15tLly4MOMysV6Po6Oj5g9/+IMxxpjh4WGzfPly09XVFbRcrNbpf//7X5OXl2e++OILMzw8bO68807j9XqnLVNaWmrOnTtnxsfHzXe/+11z/vz5qMfZ19dn/va3vxljjLl48aJxuVxmZGRk2jJPPfVUyO9SLNxxxx1meHg47PzZ5IBoGh4eNmlpaXG9TjH3Zpuv4l242hvvZpOPreDEiROmra3N1NTUxDqUGzKbemMF4+PjZnR01BhjzMjIiMnKyrLk9oTIminPx/o3c6TczP5XvLNLnZgqVM2Ih32PSAlXU+ywPYarM3b6/BBZds7P4dgxb4dj93weip1zfDh2zf1csRHG9773PaWlpU1rM8aos7NTlZWVkqStW7fq6NGjQf+3ra1N27Ztm3GZuXT69GktXbpU3/nOd6L6vpEW6/V46623avXq1ZKk2267TcuXL9fFixejGsNMroyqut1u3XbbbVq3bp2OHTsWmN/X16fx8XEVFRUpISFBmzdvVnt7e9TjzMjIUElJiSRp6dKlSk9P18DAQNTjiITZ5oBoamtr09q1a/XNb34zpnEgtuI9X81WqNprBdfKx1axZs0aLVq0KNZh3DC71JuEhATdeuutkiS/3y9jjK3OFsONmSnPx/o3c6TczP5XvLNLnZjq6poRL/sekRKupthhewxVZ0ZHR231+SGy7Jyfw7Fj3g7H7vk8FDvn+HDsmvsZ2LgO/f39Wrx4sRwOhyTJ7XbL4/EELefz+eR0OmdcZi69++67euKJJ8LOf+2111RUVKTnnntOIyMjUYxsuieffFJ33323XnvttZDzY70ep+rt7dX58+d1zz33hJwfi3Xa19cnt9sdeH31OrrW/Fg4c+aMJiYmlJmZGTTvpz/9qYqLi1VfX6+JiYkYRHeZw+HQ6tWrVVZWppaWlmnzZpsDommm73u8rFNE17XyFSIvHvPtfDdTvbGCwcFBFRcXa9myZfrZz36m9PT0WIeEOHJ1no+n38yRFo+/vW7EfKgTdu7jlZqSlJRki+1RCq4zX375pW0/P8wNu+TncOyc065lvvXdjjk+HDvm/oWxDiCWSkpKND4+HtR+7NgxuVyuGER0bdeK2Rij3/3udzp9+nTI///cc8/ppZdekiS9+OKL2rt3r1599dWox9rS0iK32y2fz6eHH35Yy5cvD4yKRtu11qnf79cTTzyhV199NeRZ8dFcp1Y2MDCg2trakPcKb2xs1NKlS+X3+/XUU0/pzTff1PPPPx+DKKVTp07J7Xbr4sWLqqioUGFhoYqKimISy7UMDQ2ps7NThw4dCpoXT+sUkXOz+SoeWLH2wlpmqjdWkZKSonPnzunSpUvauHGjNm3apNtvvz3WYSEK7JDnZ0INgNXYoaaEcnWdseLzzRBZ5GfMR3bN8eHYMffP64GNs2fPXtfyaWlpGhgYkDFGDodDHo8nZIJ3Op2BM6fCLXOjrhXzqVOndMcdd2jZsmUh50/dKf7Rj340pwc6Z7N+nU6nHn/8cX3yySdBAxtzuR5nG6cxRrW1tVq/fn3Yh6lGc51O5XK5po2kejwerVy5csb5sfpB4vf79eijj2r37t26//77g+ZnZGRIkm655RbV1tbG9IGvV0arMzIytH79ev31r38NDGzMNgdEy5EjR/SDH/xAt9xyS9C8eFqniJybzVfx4HprrxVcKx8jeq5Vb6zm9ttvV3FxsT766KO4/l4jcm4kz0frN3MkzNX+V7ybD3UinvY9IuXqmmKMscX2ONWVOvP555/b7vPD9Zmv+Tmc+ZC3w7FjPg9lPuT4cOyU+7kV1XVwOBxatWqVOjo6JEktLS2qrq4OWq6qqkoHDhyQJB08eDDkMnPlWrehmnrP9SNHjig/Pz8aYU0zPj4ur9crSfrPf/6jDz74IGQcsVyPV9TX1+vWW2/Vz3/+87DLxGqdrly5Up9++qk8Ho9GRkb0wQcf6KGHHgrMd7lcSkhI0Pnz5zUxMaFDhw7FZB0aY/T000/rwQcfDNz/+WpX1uHk5KTa2tpisl1K0ujoqIaHhyVJIyMjOn78+LRYZpsDomWm73u8rFNEz2zyFebGtfIxomM29cYKLl26FKhFPp9Pf/zjH7V8+fIYR4V4EC7Px8Nv5rkSb7+9btR8qBPxsu8RKaFqil22x1B15u6777bV54e5Z5fvQzjzIW+HY7d8Hoqdc3w4ts390XtOubU89dRTZunSpeYb3/iGcbvd5t133zXGGPOPf/zD3HPPPSY7O9vU1dWZiYkJY4wxL730kjly5Igxxpgvv/zSfP/73zc5OTnmkUceMV9//XVUYp6YmDBut9v09fVNa58a29atW01BQYEpLCw0NTU1pr+/PyqxTTUyMmLuueceU1hYaFasWGF27dplJicng2KN1Xq8ore310gyK1asMMXFxaa4uNj8/ve/D4ozluv0yJEjJi8vz+Tk5Jhf/epXxhhj1q1bZzwejzHGmNOnT5sVK1aY7Oxss2fPnqjFNdVHH31kHA5HYB0WFxeb8+fPm2eeecZ88sknxhhjysvLTWFhocnPzzfPPPOMGRsbi0msPT09pqioyBQVFZn8/Hyzf/9+Y4yZFmu4HBBtg4OD5lvf+pbx+/2Btnhcp4iOmfKVlYSrvVYQKh9bzdq1a016erpJSkoybrfbdHZ2xjqk6xKu3ljNn//8Z1NcXGyKiopMYWGhefPNN2MdEuLATHk+1r+ZI+V697+sxg51YqpQNSMe9j0iJVxNscP2GK7O2OnzQ2TZPT+HY7e8HY7d83kods7x4dg19zuMMSbGYysAAAAAAAAAAACzwq2oAAAAAAAAAACAZTCwAQAAAAAAAAAALIOBDQAAAAAAAAAAYBkMbAAAAAAAAAAAAMtgYAMAAAAAAAAAAFgGAxsAAAAAAAAAAMAyGNgAAAAAAAAAAACWwcAGAAAAAAAAAACwDAY2AAAAAAAAAACAZTCwAQAAAAAAAAAALIOBDQAAAAAAAAAAYBn/H6LBBxkZluA0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n_features = len(pca_features)\n", "n_cols = 4\n", "n_rows = int(np.ceil(n_features / n_cols))\n", "\n", "fig, axes = plt.subplots(n_rows, n_cols, figsize = (4*n_cols, 3*n_rows))\n", "axes = axes.flatten()\n", "\n", "for i, col in enumerate(pca_features):\n", " axes[i].hist(df[col], bins=50)\n", " axes[i].set_title(col, fontsize=9)\n", " axes[i].tick_params(axis=\"both\", which=\"both\", labelsize=7)\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "91c309fd-72c9-4215-bfd2-0a609cbe7a42", "metadata": {}, "source": [ "### Model Training" ] }, { "cell_type": "code", "execution_count": 35, "id": "ce9bb5a3-8f49-4ed4-b8a9-ce5aaa671977", "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.metrics import (\n", " classification_report,\n", " confusion_matrix,\n", " roc_auc_score,\n", " average_precision_score, #AUPRC\n", " precision_recall_curve\n", ")" ] }, { "cell_type": "code", "execution_count": 36, "id": "2f7f91aa-e90e-434e-8b1e-50dd5b3b6db7", "metadata": {}, "outputs": [], "source": [ "from xgboost import XGBClassifier" ] }, { "cell_type": "code", "execution_count": 37, "id": "0cf2285c-2ea7-438d-99e7-a2e6138351b2", "metadata": {}, "outputs": [], "source": [ "X = df.drop(columns=[\"Class\"]) # this is what we are trying to predict\n", "y = df[\"Class\"]" ] }, { "cell_type": "code", "execution_count": 38, "id": "ab6f711f-52b1-4914-a200-a91a633ac209", "metadata": {}, "outputs": [], "source": [ "# we need to scale time and amount with a standard scaler, the rest are already standardised by pca\n", "cols_to_scale = [\"Time\", \"Amount\"]\n", "other_cols = [c for c in X.columns if c not in cols_to_scale]\n", "\n", "preprocessor = ColumnTransformer(\n", " transformers=[\n", " (\"scale\", StandardScaler(), cols_to_scale),\n", " (\"pass\", \"passthrough\", other_cols),\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 39, "id": "a4d22181-37de-4b6b-bd04-a6f94d08d049", "metadata": {}, "outputs": [], "source": [ "# stratification:\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X, y,\n", " test_size = 0.2,\n", " stratify=y,\n", " random_state=101\n", ")" ] }, { "cell_type": "code", "execution_count": 40, "id": "07655146-6dbd-4463-b361-9800735c6292", "metadata": {}, "outputs": [], "source": [ "# for model eval:\n", "def evaluate_model(name, model, X_test, y_test):\n", " y_pred = model.predict(X_test)\n", " if hasattr(model, \"predict_proba\"):\n", " y_score = model.predict_proba(X_test)[:, 1]\n", " else:\n", " y_score = model.decision_function(X_test)\n", "\n", " auprc = average_precision_score(y_test, y_score)\n", " roc_auc = roc_auc_score(y_test, y_score)\n", "\n", " print(f\"\\n=== {name} ===\")\n", " print(f\"AUPRC: {auprc:.4f}\")\n", " print(f\"ROC AUC: {roc_auc:.4f}\")\n", " print(\"Confusion Matrix (grain of salt):\")\n", " print(confusion_matrix(y_test, y_pred))\n", " print(\"\\nClassification report:\")\n", " print(classification_report(y_test, y_pred, digits = 4))\n", "\n", " return y_score\n", " " ] }, { "cell_type": "markdown", "id": "a64de8d5-c6fb-4478-8e11-8066ec8a168f", "metadata": {}, "source": [ "#### Logistic Regression:" ] }, { "cell_type": "code", "execution_count": 43, "id": "92f218c0-664a-4634-92f1-96876e5d9e26", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "=== Logistic Regression (balanced) ===\n", "AUPRC: 0.7552\n", "ROC AUC: 0.9880\n", "Confusion Matrix (grain of salt):\n", "[[55463 1401]\n", " [ 7 91]]\n", "\n", "Classification report:\n", " precision recall f1-score support\n", "\n", " 0 0.9999 0.9754 0.9875 56864\n", " 1 0.0610 0.9286 0.1145 98\n", "\n", " accuracy 0.9753 56962\n", " macro avg 0.5304 0.9520 0.5510 56962\n", "weighted avg 0.9983 0.9753 0.9860 56962\n", "\n" ] } ], "source": [ "log_reg = LogisticRegression(\n", " max_iter=1000,\n", " class_weight = \"balanced\", \n", " n_jobs=-1 # multi-threaded\n", ")\n", "\n", "pipe_lr = Pipeline(\n", " steps = [\n", " (\"prep\", preprocessor),\n", " (\"model\", log_reg)\n", " ]\n", ")\n", "\n", "pipe_lr.fit(X_train, y_train)\n", "y_score_lr = evaluate_model(\"Logistic Regression (balanced)\", pipe_lr, X_test, y_test)\n" ] }, { "cell_type": "code", "execution_count": 51, "id": "7ca52f17-4dfb-4b31-b3b8-0d31c61866e0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "=== Logistic Regression (unbalanced) ===\n", "AUPRC: 0.7861\n", "ROC AUC: 0.9795\n", "Confusion Matrix (grain of salt):\n", "[[56856 8]\n", " [ 38 60]]\n", "\n", "Classification report:\n", " precision recall f1-score support\n", "\n", " 0 0.9993 0.9999 0.9996 56864\n", " 1 0.8824 0.6122 0.7229 98\n", "\n", " accuracy 0.9992 56962\n", " macro avg 0.9408 0.8061 0.8612 56962\n", "weighted avg 0.9991 0.9992 0.9991 56962\n", "\n" ] } ], "source": [ "log_reg = LogisticRegression(\n", " max_iter=1000,\n", " #class_weight = \"balanced\", \n", " n_jobs=-1 # multi-threaded\n", ")\n", "\n", "pipe_lr = Pipeline(\n", " steps = [\n", " (\"prep\", preprocessor),\n", " (\"model\", log_reg)\n", " ]\n", ")\n", "\n", "pipe_lr.fit(X_train, y_train)\n", "y_score_lr = evaluate_model(\"Logistic Regression (unbalanced)\", pipe_lr, X_test, y_test)\n" ] }, { "cell_type": "code", "execution_count": 44, "id": "d0fe82ac-a4a8-4948-8404-02bbbbfd8f72", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.float64(577.2868020304569)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "neg, pos = np.bincount(y_train)\n", "scale_pos_weight = neg / pos\n", "scale_pos_weight" ] }, { "cell_type": "code", "execution_count": 49, "id": "e4b2ea03-41c7-47c0-b285-3e7bfa32b9b2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "=== XGBoost ===\n", "AUPRC: 0.8982\n", "ROC AUC: 0.9908\n", "Confusion Matrix (grain of salt):\n", "[[56847 17]\n", " [ 11 87]]\n", "\n", "Classification report:\n", " precision recall f1-score support\n", "\n", " 0 0.9998 0.9997 0.9998 56864\n", " 1 0.8365 0.8878 0.8614 98\n", "\n", " accuracy 0.9995 56962\n", " macro avg 0.9182 0.9437 0.9306 56962\n", "weighted avg 0.9995 0.9995 0.9995 56962\n", "\n" ] } ], "source": [ "xgb_clf = XGBClassifier(\n", " tree_method = \"auto\",\n", " #device=\"cuda\",\n", " #predictor=\"gpu_predictor\",\n", " max_depth=4,\n", " n_estimators=500,\n", " learning_rate=0.05,\n", " subsample=0.8,\n", " colsample_bytree=0.8,\n", " scale_pos_weight=scale_pos_weight,\n", " eval_metric=\"logloss\", #binary cross entropy\n", " random_state=101,\n", " n_jobs=-1\n", ")\n", "\n", "pipe_xgb = Pipeline(\n", " steps = [\n", " (\"prep\", preprocessor),\n", " (\"model\", xgb_clf)\n", " ]\n", ")\n", "\n", "pipe_xgb.fit(X_train, y_train)\n", "\n", "y_score_xgb = evaluate_model(\"XGBoost\", pipe_xgb, X_test, y_test)" ] }, { "cell_type": "markdown", "id": "974dc39d-9584-47c8-be46-091f5bb49443", "metadata": {}, "source": [ "### Comparisons" ] }, { "cell_type": "code", "execution_count": 53, "id": "4c847b8f-7260-44fb-8b47-9c6db136e8a3", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwUklEQVR4nO3deXhM1/8H8PfMZGayL2QVkQSxL6kQDVVbiKWWLpZSFNVNFKm2fFsULVpqqSqtUvxatbaqKGKJNbUmal8iESKLyL5PZs7vj2mGkcUkkkwS79fzzDOZM+fe+7nHJPNxzrnnSoQQAkRERET0RFJjB0BERERUXTBxIiIiIjIQEyciIiIiAzFxIiIiIjIQEyciIiIiAzFxIiIiIjIQEyciIiIiAzFxIiIiIjIQEyciIiIiAzFxIqJSk0gk+Pzzz0u1zZtvvgkPD48Kiac6iYqKgkQiwdq1a3Vln3/+OSQSifGCIiKDMXEiIiIiMpCJsQMgouonOzsbJial+/OxatUqaDSaCoqIiKhysMeJqAbTaDTIyckp9/2ampqWOnGSy+VQKpXlHktZ5OTkMIkrQn5+PvLy8owdBlGVxsSJqIormP9y9epVDB48GNbW1qhduzYmTpxYKCmSSCQIDAzEr7/+iubNm0OpVGLPnj0AgJiYGIwZMwZOTk5QKpVo3rw51qxZU+h4OTk5+Pzzz9GoUSOYmprCxcUFr7zyCiIiIvSO8+gcp/T0dEyaNAkeHh5QKpVwdHREjx49cO7cOV2douY4ZWZm4sMPP4SbmxuUSiUaN26MhQsXQghR5Hlt374dLVq00MVfcG4lCQkJgUQiwcaNG/HZZ5/B1dUV5ubmSEtLAwCcPHkSvXr1go2NDczNzdG5c2ccP3680H5iYmIwduxY1KlTB0qlEp6ennjvvfd0iUZSUhKmTJmCli1bwtLSEtbW1ujduzfOnz//xBhL4+TJk+jTpw/s7OxgYWGBVq1aYenSpbr3u3Tpgi5duhTa7vH2L5hrtXDhQixZsgQNGjSAUqlEWFgYTExMMGvWrEL7uHbtGiQSCb777jtdWUpKCiZNmqT7N2zYsCG++uorJqZUY3GojqiaGDx4MDw8PDBv3jz8888/+Pbbb5GcnIz169fr1Tt48CA2b96MwMBA2Nvbw8PDA/Hx8Xj++ed1CYiDgwP+/vtvjB07FmlpaZg0aRIAQK1W46WXXsKBAwcwdOhQTJw4Eenp6QgODsbFixfRoEGDImN79913sXXrVgQGBqJZs2Z48OABjh07hitXrqBNmzZFbiOEQP/+/XHo0CGMHTsW3t7e2Lt3Lz766CPExMRg8eLFevWPHTuG33//He+//z6srKzw7bff4tVXX0V0dDRq1679xPabM2cOFAoFpkyZgtzcXCgUChw8eBC9e/eGj48PZs6cCalUip9//hndunXD0aNH4evrCwC4d+8efH19kZKSgrfffhtNmjRBTEwMtm7diqysLCgUCty6dQvbt2/HoEGD4Onpifj4ePzwww/o3LkzLl++jDp16jwxxicJDg7GSy+9BBcXF0ycOBHOzs64cuUKdu7ciYkTJ5Zpnz///DNycnLw9ttvQ6lUwsXFBZ07d8bmzZsxc+ZMvbqbNm2CTCbDoEGDAABZWVno3LkzYmJi8M4776BevXo4ceIEpk2bhtjYWCxZsuRpT5mo6hFEVKXNnDlTABD9+/fXK3///fcFAHH+/HldGQAhlUrFpUuX9OqOHTtWuLi4iMTERL3yoUOHChsbG5GVlSWEEGLNmjUCgFi0aFGhODQajd5xZs6cqXttY2Mjxo8fX+J5jBo1Sri7u+teb9++XQAQX3zxhV691157TUgkEnHz5k294ykUCr2y8+fPCwBi2bJlJR730KFDAoCoX7++7jwLzsfLy0sEBATonVtWVpbw9PQUPXr00JWNHDlSSKVScfr06UL7L9g2JydHqNVqvfciIyOFUqkUs2fP1isDIH7++WddWcG/cUny8/OFp6encHd3F8nJyUXGIIQQnTt3Fp07dy60/ePtXxCHtbW1SEhI0Kv7ww8/CADiwoULeuXNmjUT3bp1072eM2eOsLCwENevX9erN3XqVCGTyUR0dHSJ50RUHXGojqiaGD9+vN7rCRMmAAB2796tV965c2c0a9ZM91oIgW3btqFfv34QQiAxMVH3CAgIQGpqqm5Ibdu2bbC3t9ft+1ElXS5va2uLkydP4t69ewafz+7duyGTyfDBBx/olX/44YcQQuDvv//WK/f399fr8WrVqhWsra1x69Ytg443atQomJmZ6V6Hh4fjxo0bGDZsGB48eKBrk8zMTHTv3h1HjhyBRqOBRqPB9u3b0a9fP7Rt27bQfgvaRalUQirV/klVq9V48OABLC0t0bhxY70hy7IKCwtDZGQkJk2aBFtb2yJjKItXX30VDg4OemWvvPIKTExMsGnTJl3ZxYsXcfnyZQwZMkRXtmXLFnTq1Al2dnZ6nyt/f3+o1WocOXKkzHERVVUcqiOqJry8vPReN2jQAFKpFFFRUXrlnp6eeq/v37+PlJQU/Pjjj/jxxx+L3HdCQgIAICIiAo0bNy71xO+vv/4ao0aNgpubG3x8fNCnTx+MHDkS9evXL3ab27dvo06dOrCystIrb9q0qe79R9WrV6/QPuzs7JCcnGxQjI+3y40bNwBoE6ripKamIi8vD2lpaWjRokWJ+9doNFi6dCm+//57REZGQq1W694zZCjxSQrmmD0pjtJ6vF0AwN7eHt27d8fmzZsxZ84cANphOhMTE7zyyiu6ejdu3MC///5bKPEqUPC5IqpJmDgRVVPF9TI82qsCQDdJ94033ig2SWjVqtVTxTJ48GB06tQJf/zxB/bt24cFCxbgq6++wu+//47evXs/1b4LyGSyIsvFYxPJi1NcuyxYsADe3t5FbmNpaYmkpCSD9j937lxMnz4dY8aMwZw5c1CrVi1IpVJMmjSpUidKSySSItvk0UTuUY+3S4GhQ4di9OjRCA8Ph7e3NzZv3ozu3bvD3t5eV0ej0aBHjx74+OOPi9xHo0aNynAGRFUbEyeiauLGjRt6vQM3b96ERqN54mrcDg4OsLKyglqthr+/f4l1GzRogJMnT0KlUkEul5cqPhcXF7z//vt4//33kZCQgDZt2uDLL78sNnFyd3fH/v37kZ6ertfrdPXqVd37Falg2M/a2rrEdnFwcIC1tTUuXrxY4v62bt2Krl27YvXq1XrlKSkpesnG08Z78eLFEuO1s7Mrcvjy8R68Jxk4cCDeeecd3XDd9evXMW3atEIxZWRkPPFzRVSTcI4TUTWxfPlyvdfLli0DgCf26MhkMrz66qvYtm1bkV/+9+/f1/386quvIjExUe9y8wLF9eyo1WqkpqbqlTk6OqJOnTrIzc0tNq4+ffpArVYXOtbixYshkUjKraeqOD4+PmjQoAEWLlyIjIyMQu8XtItUKsXAgQPx119/4cyZM4XqFbSLTCYr1EZbtmxBTExMucTbpk0beHp6YsmSJUhJSSkyBkCbzFy9elXv3/X8+fNFLrFQEltbWwQEBGDz5s3YuHEjFAoFBg4cqFdn8ODBCA0Nxd69ewttn5KSgvz8/FIdk6g6YI8TUTURGRmJ/v37o1evXggNDcUvv/yCYcOGoXXr1k/cdv78+Th06BDat2+PcePGoVmzZkhKSsK5c+ewf/9+3XDUyJEjsX79egQFBeHUqVPo1KkTMjMzsX//frz//vsYMGBAoX2np6ejbt26eO2119C6dWtYWlpi//79OH36NL755ptiY+rXrx+6du2KTz/9FFFRUWjdujX27duHP//8E5MmTSp26YPyIpVK8dNPP6F3795o3rw5Ro8eDVdXV8TExODQoUOwtrbGX3/9BUA7DLdv3z507twZb7/9Npo2bYrY2Fhs2bIFx44dg62tLV566SXMnj0bo0ePRocOHXDhwgX8+uuvJc7zKm28K1asQL9+/eDt7Y3Ro0fDxcUFV69exaVLl3TJy5gxY7Bo0SIEBARg7NixSEhIwMqVK9G8eXPd2lWGGjJkCN544w18//33CAgIKDQp/aOPPsKOHTvw0ksv4c0334SPjw8yMzNx4cIFbN26FVFRUeXS20ZUpRjtej4iMkjBpeqXL18Wr732mrCyshJ2dnYiMDBQZGdn69UFUOyyAPHx8WL8+PHCzc1NyOVy4ezsLLp37y5+/PFHvXpZWVni008/FZ6enrp6r732moiIiNA7TsFyBLm5ueKjjz4SrVu3FlZWVsLCwkK0bt1afP/993r7ffxyeCGESE9PF5MnTxZ16tQRcrlceHl5iQULFuhdXl/Sebm7u4tRo0aV1Hy65Qi2bNlS5PthYWHilVdeEbVr1xZKpVK4u7uLwYMHiwMHDujVu337thg5cqRwcHAQSqVS1K9fX4wfP17k5uYKIbTLEXz44YfCxcVFmJmZiY4dO4rQ0NBCywOUdTmCAseOHRM9evTQtXWrVq0KLcnwyy+/iPr16wuFQiG8vb3F3r17i12OYMGCBcUeKy0tTZiZmQkA4pdffimyTnp6upg2bZpo2LChUCgUwt7eXnTo0EEsXLhQ5OXlGXRORNWJRAgDZ1YSkVF8/vnnmDVrFu7fv8//vRMRGRnnOBEREREZiIkTERERkYGYOBEREREZiHOciIiIiAzEHiciIiIiAzFxIiIiIjLQM7cApkajwb1792BlZfVUdxQnIiKimkEIgfT0dNSpUwdSacl9Ss9c4nTv3j24ubkZOwwiIiKqYu7cuYO6deuWWOeZS5wKbiZ6584dWFtbl/v+VSoV9u3bh549e5b6JqlUdmx342C7Gw/b3jjY7sZR0e2elpYGNzc3vRuOF+eZS5wKhuesra0rLHEyNzeHtbU1f6kqEdvdONjuxsO2Nw62u3FUVrsbMoWHk8OJiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDGTUxOnIkSPo168f6tSpA4lEgu3btz9xm5CQELRp0wZKpRINGzbE2rVrKzxOIiIiIsDIiVNmZiZat26N5cuXG1Q/MjISffv2RdeuXREeHo5Jkybhrbfewt69eys4UiIiIiIjrxzeu3dv9O7d2+D6K1euhKenJ7755hsAQNOmTXHs2DEsXrwYAQEBFRUmEREREYBqdsuV0NBQ+Pv765UFBARg0qRJxW6Tm5uL3Nxc3eu0tDQA2uXbVSpVucZ3+1oYzLcNR1uNwP3wKeW6b9J2j9pZKKCQFe4olUHAPzsbslufQuDJS+ZT+WC7G0+VantTG+T3Xw44NjNuHJWg4HujvL8/qGQV3e6l2W+1Spzi4uLg5OSkV+bk5IS0tDRkZ2fDzMys0Dbz5s3DrFmzCpXv27cP5ubm5RpfzoPbGCISAAkAUa67pgIZRRdLAFgAQF4lxkJsdyOqUm2fCtzc+S2uO/c3diSVJjg42NghPJMqqt2zsrIMrlutEqeymDZtGoKCgnSvC+6A3LNnz3K/yW9WRiouXG2Cy5cuolnzFjCRycp1/8+yP8/HIvTWA7zaxhXD2rkVej9fnY+TJ0+iffv2MJHV+I91lcF2N56q0vbSE4shvf43GjXyQsMX+hgtjsqiUqkQHByMHj168Ca/laii271gNMoQ1eovnbOzM+Lj4/XK4uPjYW1tXWRvEwAolUoolcpC5XK5vNwb38bOHk3adsWthGw0aduVv1TlaFPcJZyPiMKLNg1h4tG40PtCpULKxUTI6vnChO1eadjuxlNl2v5fRwCATCqDrKLiEALQqAGh/u9Zo/9zwXuP/qzRPF1981qA2/OAtOhrqCriO4SerKLavTT7rFaJk5+fH3bv3q1XFhwcDD8/PyNFREREAICw9UDEgadMbB4te6S+seY+DN0ANOlrnGNTlWXUxCkjIwM3b97UvY6MjER4eDhq1aqFevXqYdq0aYiJicH69esBAO+++y6+++47fPzxxxgzZgwOHjyIzZs3Y9euXcY6BSKiZ5uVs/Y5JVr7MBaJDJDKHnmWah+FymTaXqSSyh5EADkpQNo9450PVVlGTZzOnDmDrl276l4XzEUaNWoU1q5di9jYWERHP/xF9PT0xK5duzB58mQsXboUdevWxU8//cSlCIiIjOWFyYCLN5Cf8zBJ0UtYikpSHq0jfSzpkRaxj+ISoYJ65bwk4eaRwOU/S64jBJCfB8jkgIRXlD5LjJo4denSBUIU3wVb1KrgXbp0QVhYWAVGRUREBpObAU1q6KTwg3OAIwsBTT6gUQEaNUzUKvRX50ES9t93l0cnYNRfTJ6eIdVqjhMREVGFq1Vf+5yTCiBV761C6VHUUUCVDSjKd3kbqrqYOBERET2q2wyg2UDtBHWpHJCaaIfkpDKoNBIcCDmC7p07Qr7cx9iRkhEwcSIiInqUVArU8S76PZUKuXJbwLx2ZUZEVYhRb/JLREREVJ0wcSIiIiIyEBMnIiIiIgMxcSIiIiIyECeHExERGYs6H8jP1i5poMp67DkHsPcC7NyNHSU9gokTERHR0zi9SrtIpurxBKio14/8nJ8NqPNK3rfCCphynetEVSFMnIiIiEpLIoN2OUwBBM8on33KzbUrscvNARNT4MENIC8dyE1j4lSFMHEiIiIqLbkZ0PMLIOqYNqkpSHjkZoCJmf5rvZ/NAbnpY6/NtInS47dtmWUHCA1w+idtoqbK1A7fNekDNOhmnPMmJk5ERERl0iFQ+6goMoX25slHFuiX39gLTLpQccelEjFxIiIiqor6LABuBGt7pRTm2nlR53/TPpPRMHEiIiKqitqM1D4KxF/SJk5kVEyc6JklhEBsag4uxKTiwt1UJKTn4L0uDeFpb2Hs0IiIqIpi4kTPhMeTpAsxqbgYk4oHmfqXAtuaK/C/Pk2NFCURkQE0aiAlGsjNAHLTAY0KcG2rnXROFY6JE9VIuflqXLibilNRSTgTlYzzd1IKJUkAIJNK4OVoCZVag4j7mcjL1xghWiKiUshOApa01C/zeRPot9Qo4TxrmDhRjZCRm4+rKRJc238TZ6JTcP5OCnIfS4IKkqRWdW3Q0tUGLVxt0NTFGqZyGb7Zdw3LDt40UvRERAaw8wRs62l7m2QKQGkFCKFNpFLuGDu6ZwYTJ6qWMnLz8U/EA5yIeIDTUUm4dC8VGiEDrtzS1altoUA7j1po51kLberZ6pIkIqJqSWEOfBCuHaozUWjLzm8E/njHqGE9a5g4UbVy9EYiTkUm4Vx0MlRqofdeLaXAi03qoH0De7TzqIUGDhaQPL6gHBFRdSaVaR9kNEycqFoJv5Oi+7leLXO84GWP9p618Fxda4QdP4g+fVpCLpcbL0AiImNQ52mH63JStbdokUiBuu2YZFUAJk5ULfRq4YzjNxPhYW+BFxs54EUve7jXfrhsgEqlQlglxJGWo4JcKoWZgn+MqHIJIZCWk4/76TmIT8tFbHImTsRK0PxBFho62xg7PDK2qKPAkhb6ZX0WAr7jjBNPDcbEiaqF5+vXRnBQ50o/bnxaDk5FJuFMVBJORSXjalwaLBQmOP5JN9iYs2eLnp4QAslZKiSk5yAhLRcJ6bmIT8vB/fRcXVn8f8+PX/AAyBD312VsGOdnlNipCnBpDcgttPexk8oBUxtt71NuGpB619jR1UhMnIgecT89F5tOR+NUZDJORyUhOimrUJ2M3HzcSc6CjTn/l08ly81XIy41B/dSchCXlq19Ts1BfFoOEtJzcf+/R57a8GUwrExN4GilhEwiwfWEDKRmqyrwDKjKc2wKfHwLgHh4o+C9nwKh3xk7shqLiRPRI3ZdiMWuC7G61xIJ0NTZGr6etdDOoxZm7riIxIzC60HRsycvX4P4tBzEpuYgNrUgKcrGvf9ex6XmlOqzYmcuh6OVKRytlY88K+FkbQpHq4dlBVeG7r90D2/9n3aAumAYLyEtB9kqNZrXsYFMygsjnhlc+LJSMXEiAtDIyQoAoDCRwruuLdp52qGdRy20cbeDtenDIbkvdl02VohUiQqGz+4kZeFucjZiUrJwL+VhQnQvNQeJGbkQ4sn7MpVLUcfGDM42pnCxMYOLjSmcrJVwsNI+O1qbwsFSCYWJtEyxXovLQNMZe5CjethrNaVnIwR28yrT/oioZEyciAD0a10H7T1rwcZcDqUJJ37XdEIIpGarcDc5W5cc3U3WPt/57zkrT/3E/ShMpHCxMYWLjenD5MjWDHUeSZJszeUVsixGHRszAEC+RiBfo83gTKQS5GtEkUPMRFQ+mDgR/cfRmt3dNUm+WoOYlGxEJmbi9oMsRD3IxJ2khwlSRm7+E/fhZK2Em505XO3M4GJjhjq2DxMiFxtT1LJQGG2tMC8nS3zcKh/e7fzgWssCjlamWHM8Egv2XtPVycrLR1xqDmRSid5VqERUdkyciKjaysvX4E5yFm4/yERU4n/PD7TPd5OzdT0xxbG3VMKtlhnq2pmjrp0Z3P57rmtnhjq2ZlV+pXlXC6Cdh12htct2X4jDnotxSMt5mByuG+OLzo0cyuW4Go1AUlaedpJ7Wi7i0rQT3uPTcpGQloO4tBxYmZpg1ci2sDLl1adUszBxIqIqTQiBe6k5iEjIwM2EDNxKzND1IMUkZ6Ok3EhpIoV7bXN41LaAe21z1Ktt8V+CZAZXW/Matx6X03+9pkX1pkUlZj4xcXp0knl8mnZZhLi0nIev03MQn6q9IvBJSSkAnIlKRtcmjgbFnpevwf2MXKRlq+DlaAkTWdnmfBFVNCZORFQl5OVrEPUgU5cgRdzPwM37Gbh1P7PE+UZmchnca5vD094C7rUt4FHbXPtsbw4nK1NIn6GrywZ414G9pQIyqQTO1qZwsjHFtG0XsOtCrHbCe2Ye7j0ywT0uNRuxKdorA+PStEslZKuePLcL0F5xWttCCSdr7ZV/D59NsSIkAtFJWRAQUKk1uP/f2lTxabm6BTwLlmQoeE7KfHgF4ojn3TFnYIsSjk5kPEyciKhSZeXl43p8Bm7Ep+Pm/QxEJGQi4n4GopOyoC6mF8NEKoF7bXM0dLREfQdLeNpbwOO/JMnBSsl7Ev5HLpOiS+PHenj+a5pZOy/j878MuyrUxkyuS4QcrUzhbPPw54JyBysl5MX0Cm08FY3oJGDChjBkGjDJ/nGRiZml3oaosjBxIqIKodEI3EnOwpXYdFyNS8O1uHRcjUtH1IPMYi/jt1SaoIGDBRo4WqKBgyUa/vfsXtu82C9pKpl7LXMA0LW5vaVCb2mERye7O9toe4yedm6Xq50Zzt9N1SVNcpkEjlbaZOthQqZdiqHgZydrUxy+noDJm84/1bGJKhoTJyJ6aqnZKkTcScPVOG2SdDUuHdfi0osdYrO3VKKR08PEqODZyZq9R+UtqEcj9GnpAmtTud4CmhVpwWut8UZ7d9hZKOBopYSducKgIVMp/+2pGmDiREQGE0IgNjUHF2JScTEmFRfupiA8SoaU0ENF1leYSNHIyRKNnazR1MUKTZyt0djZCg5WykqO/NllIpOihWvl3h7IQmmCDg3tK/WYRJWFiRMRFangarYLd/9Lkv5Llh5kPn4bEW0vgautmV5y1NTFCh61LXh1FBHVKEyciJ5SarYKcpkE5orq/euUmqVC+N0UhEUnI/xOCi7cLSpJAmRSCbwcLdHS1QbNXCyRHHkRbw7sgVpW5kaImoioclXvv/RERnL7QRZCIx5g3+U4nL2dDI/aFjjwYedqMz8nX63Btfh0hEWnICw6BeF3khFxv/CVTCZSCbycrNDS1RotXW3QwtUGTV2sdfNkVCoVdj+4yEUOqULkqzVISM9Fbr4GHrXNq83vF9VsTJyIymD8hnN6r28laq8Uq6p/19NzVDh7OxmnIpNw9nYy/r2bWuR6PR61zfFcPTt4u9mitZstmjhbVfnVs6nmORedDL95BxCflqNb4HT+Ky0x1LeecQMjAhMnolKxNpUjNjUHJlIJnq9fG34NauvdG6yqSMzIxZmoJJyMTMLpqCRcvpdWaIVtK6UJvOvZwtvNFs/Vs4W3mx1qWSiMEzARtAtqAkBWnrrQFZm3uLYTVRFMnIhK4fs32uBGfAb8GtSGjZkcSZl5VSJxik/LwYmIRJyKTMKpyKQih93q1TKHr2cttPOwQ5t6dmjgYPlMrapNVV+HBrWxelRb5OVr4GJrhjo2pvjhyC2sPhZp7NCIdJg4EZVCAwftekPGlp6jwslbSTh2MxHHbybiRkJGoTqNnay0iZJnLfh61IKzjakRIiUynFQqQfemTnplMib3VMUwcSKqBvLyNQiLTsbxm4k4djMR5++m6t2eRCIBWtSxgV+D2mjnoe1VsjXnsBsRUXlj4kRURcWkZOPg1QQcupqA0IgHhSZze9pboGPD2ujYwB5+DWozUSJ6TI5KjXsp2YhJyUZMsvY5MSMXLz9XF76etYwdHlVTRk+cli9fjgULFiAuLg6tW7fGsmXL4OvrW2z9JUuWYMWKFYiOjoa9vT1ee+01zJs3D6amHIag6k2tEQiLTsbBqwk4eDUBV+PS9d6vbaFAx4b2eKGhPTo0rI26dlw3iZ5tqdkqXUL0aIJ097/nxIzcIreLSMjE5nf9CpXn5WsQl5qDmJRsxKYW7DNH97O9pRI/Dveu4LOiqs6oidOmTZsQFBSElStXon379liyZAkCAgJw7do1ODo6Fqq/YcMGTJ06FWvWrEGHDh1w/fp1vPnmm5BIJFi0aJERzoDo6aRmqXD4xn0cvBKPw9fvIzlLpXtPKgHa1LNDt6aO6NLIEU2crTiZm55Z524nY8afF3WJUkxyNtJz85+4nblCBldbM7jamUGtETh6IxGxadlYfSwSsSnZuJeqTY7u/dcbVdwNqAHgenwGLsemF1+BnglGTZwWLVqEcePGYfTo0QCAlStXYteuXVizZg2mTp1aqP6JEyfQsWNHDBs2DADg4eGB119/HSdPnqzUuImexv30XOy9FIe/L8bin1tJenOVrE1N0KWxI7o1cUTnRg6w4/IA9IwrmBx+5nYyztxOLvS+nbkcrnZm2uTI1lz3c93/nm3N5bqFMw9dTcDRG4m4k5SNOTsvF3k8pYkUdWzNUMfWFHVszHQ/L9h7XZtYVdypUjVhtMQpLy8PZ8+exbRp03RlUqkU/v7+CA0NLXKbDh064JdffsGpU6fg6+uLW7duYffu3RgxYkRlhU1UJglpOdhzKQ67L8TiVGSS3ppKjZws0bWJI7o3cUKbera8txvRI15t44qIhAyYymUPEyQ7M9S11SY1FkrDv8baedZCx4a1kZmrhmtBcmRrBhcbM93rWhaKIlco/z4kAomFL16lZ5DREqfExESo1Wo4Oelfeurk5ISrV68Wuc2wYcOQmJiIF154AUII5Ofn491338X//ve/Yo+Tm5uL3NyH49xpaWkAtLeKUKlUxW1WZgX7rIh9U/GM1e6PHk+lUukNpcWl5WDvpXjsuRSPs9EpekMArVytEdDcCQHNneBe6+FcJaFRQ6UpvKJ3VcXPu/E8K23vbmeK5a+3LuZdUarzV0qBtaN8SqyTn1/08J/47xd469k7uBcjxbZ1ZxCXlgdfTzvMfKmpwTFUBqlGDRkAtUYDTQ35fFT05700+zX65PDSCAkJwdy5c/H999+jffv2uHnzJiZOnIg5c+Zg+vTpRW4zb948zJo1q1D5vn37YG5ecZNrg4ODK2zfVLzKbvcMFVDwa7T777+RnQ+EPZDgTKIUken6/2v1sBRoXVuD1rUEapsmAelJuPTPFVyq1IgrBj/vxsO2rxw5WTIAEmw5FwtACsQnAQCuJ2SgtYiEogrdmaj53Ug0BHArIgKXc3YbO5xyVVGf96ysLIPrGi1xsre3h0wmQ3x8vF55fHw8nJ2di9xm+vTpGDFiBN566y0AQMuWLZGZmYm3334bn376KaTSwkMc06ZNQ1BQkO51Wloa3Nzc0LNnT1hbW5fjGWmpVCoEBwejR48ekMt549PKYqx2T8rMw6dnQgAAfyW74MiNROQ/Mg7nU88WAc2d0Ku5E1xq4AKU/LwbD9u+cuW63MP28/fgYKFA9oN7aNuyMebuuQEACAgIgFkVypyk+0OB+0D9Bg3g0a2PscMpFxX9eS8YjTKE0RInhUIBHx8fHDhwAAMHDgQAaDQaHDhwAIGBgUVuk5WVVSg5ksm0H1ZRzKUQSqUSSqWyULlcLq/QPzYVvX8qWmW3u1z+8HN38Np9AEALV2sM9HbFS63qPDOrdfPzbjxs+8ox2Ncdg33doVKpsHv3XXRu66ZLnLT/BlUncYJUG4tMKoWshn02KurzXpp9GnWoLigoCKNGjULbtm3h6+uLJUuWIDMzU3eV3ciRI+Hq6op58+YBAPr164dFixbhueee0w3VTZ8+Hf369dMlUESVydZMjlZ1bZCclYd+rerg5edc4eVkZeywiIioghg1cRoyZAju37+PGTNmIC4uDt7e3tizZ49uwnh0dLReD9Nnn30GiUSCzz77DDExMXBwcEC/fv3w5ZdfGusU6BknlUqwI/AFY4dBRESVxOiTwwMDA4sdmgsJCdF7bWJigpkzZ2LmzJmVEBkRERGRPi4YQ0RERGQgo/c4ERERVWffh9xEXGoO7iRnIT4tF6/7uuHtFxsYOyyqIEyciIiISkn6yOriyw7e1Htv46k76N/aFXeSs3AnKQspWSr0beUCJ2vDrrLNUakRk5KNu8nZuJOUhbvJ2bibnIU7ydmIS83GwOdcMa131Vp081nCxImIiKiUzBQyBHZtiLO3k+FWywxudubIyVdj+aEI3ErMxPPzDujVv3k/A3NfbgkAyM1X415KDu4mZxWZHN1Pzy3qkDrbzt5l4mRETJyIiIjKYEpAY73X8Wk5+PHILajUAjKpBC42ppBIgDtJ2Th4JQGvxZ3A3eRsxKfnoJilB3UsFDK41TJHXTsz1LXTPgsBfLn7SgWeERmCiRMREVE5cLI2xcn/+SMzNx8uNqYwkUmx5cwdfLT1X8Sl5SAuLUdX10wuQ107s0eSI22C5PZfkmRrLi90s+GrcWlAzbqDSrXExImIiKic1LJQoJaFQve6T0sX3M/IhVQieSQ5MkMtC0WhxIiqByZOREREFcRCaYL3uzQ0dhhUjriOExEREZGBmDgRERERGYiJExEREZGBmDgRERERGYiTw4mIiGqy3HQg+TYgkwMOjZ9cn0rExImIiKgmCvs/7SPrwcOytw4CdX2MF1MNwKE6IiKimsS8tvY568EjSdN/a0YlRxolpJqEPU5EREQ1ie84wLoOoLAE7NwBW3dg03Ag8oixI6sRmDgRERHVJEoroPVQY0dRY3GojoiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDGT0xGn58uXw8PCAqakp2rdvj1OnTpVYPyUlBePHj4eLiwuUSiUaNWqE3bt3V1K0RERE9CwzMebBN23ahKCgIKxcuRLt27fHkiVLEBAQgGvXrsHR0bFQ/by8PPTo0QOOjo7YunUrXF1dcfv2bdja2lZ+8ERERPTMMWritGjRIowbNw6jR48GAKxcuRK7du3CmjVrMHXq1EL116xZg6SkJJw4cQJyuRwA4OHhUZkhExER0TPMaIlTXl4ezp49i2nTpunKpFIp/P39ERoaWuQ2O3bsgJ+fH8aPH48///wTDg4OGDZsGD755BPIZLIit8nNzUVubq7udVpaGgBApVJBpVKV4xlBt99Hn6lysN2Ng+1uPGx74zBmu+er8gEAQjw8fkZuPuJSc+BpbwGZVFLstjIhIAWQr1ZDVMPPTEW3e2n2W+bE6caNGzh06BASEhKg0Wj03psxY8YTt09MTIRarYaTk5NeuZOTE65evVrkNrdu3cLBgwcxfPhw7N69Gzdv3sT7778PlUqFmTNnFrnNvHnzMGvWrELl+/btg7m5+RPjLKvg4OAK2zcVj+1uHGx342HbG4cx2v1eJgCYIDUrF/0W7kFctgQpedpkyc1CoIOTBvHZEsRnA9n5Egyqr0ZdC+22HRIfwAFAeHg4Ym6bVnrs5aWi2j0rK8vgumVKnFatWoX33nsP9vb2cHZ2hkTyMMuVSCQGJU5lodFo4OjoiB9//BEymQw+Pj6IiYnBggULik2cpk2bhqCgIN3rtLQ0uLm5oWfPnrC2ti73GFUqFYKDg9GjRw/dcCJVPLa7cbDdjYdtbxzGbPfbD7Lw1b/HkC8kuJqq37t0J1OCTbf0R17Sbb3Qp4cXAED26yogA/D29kbr5n0qLebyUtHtXjAaZYgyJU5ffPEFvvzyS3zyySdl2RwAYG9vD5lMhvj4eL3y+Ph4ODs7F7mNi4sL5HK53rBc06ZNERcXh7y8PCgUikLbKJVKKJXKQuVyubxCP/QVvX8qGtvdONjuxsO2Nw5jtHtDZxt81rcp4lJz4OVkiYaOVlCaSDFu/RlIADRwtERDR0tcupeGU5FJgET6MMb/OjhMZDKgGn9eKqrdS7PPMiVOycnJGDRoUFk21VEoFPDx8cGBAwcwcOBAANoepQMHDiAwMLDIbTp27IgNGzZAo9FAKtWupHD9+nW4uLgUmTQRERHVJG91ql+oLHRad73XX+y8rE2cqEKUaR2nQYMGYd++fU998KCgIKxatQrr1q3DlStX8N577yEzM1N3ld3IkSP1Jo+/9957SEpKwsSJE3H9+nXs2rULc+fOxfjx4586FiIiIqInKVOPU8OGDTF9+nT8888/aNmyZaEurg8++MCg/QwZMgT379/HjBkzEBcXB29vb+zZs0c3YTw6OlrXswQAbm5u2Lt3LyZPnoxWrVrB1dUVEydOfKohQyIiIiJDlSlx+vHHH2FpaYnDhw/j8OHDeu9JJBKDEycACAwMLHZoLiQkpFCZn58f/vnnn1LFS0RERFQeypQ4RUZGlnccRERERFXeU9+rTggBIUR5xEJERERUpZU5cVq/fj1atmwJMzMzmJmZoVWrVvi///u/8oyNiIiIqEop01DdokWLMH36dAQGBqJjx44AgGPHjuHdd99FYmIiJk+eXK5BEhEREVUFZUqcli1bhhUrVmDkyJG6sv79+6N58+b4/PPPmTgRERFRjVSmobrY2Fh06NChUHmHDh0QGxv71EERERERVUVlSpwaNmyIzZs3FyrftGkTvLy8njooIiIioqqoTEN1s2bNwpAhQ3DkyBHdHKfjx4/jwIEDRSZURERERDVBmXqcXn31VZw8eRL29vbYvn07tm/fDnt7e5w6dQovv/xyecdIREREVCWUqccJAHx8fPDLL7+UZyxEREREVZrBiVNaWhqsra11P5ekoB4RERFRTWJw4mRnZ4fY2Fg4OjrC1tYWEomkUB0hBCQSCdRqdbkGSURERFQVGJw4HTx4ELVq1QIAHDp0qMICIiIiIqqqDE6cOnfuXOTPRERERM+KMl1Vt2fPHhw7dkz3evny5fD29sawYcOQnJxcbsERERERVSVlSpw++ugj3QTxCxcuICgoCH369EFkZCSCgoLKNUAiIiKiqqJMyxFERkaiWbNmAIBt27ahX79+mDt3Ls6dO4c+ffqUa4BEREREVUWZepwUCgWysrIAAPv370fPnj0BALVq1XriUgVERERE1VWZepxeeOEFBAUFoWPHjjh16hQ2bdoEALh+/Trq1q1brgESERERVRVl6nH67rvvYGJigq1bt2LFihVwdXUFAPz999/o1atXuQZIREREVFWUqcepXr162LlzZ6HyxYsXP3VARERERFUVb7lCREREZCDecoWIiIjIQLzlChEREZGBeMsVIiKiZ5EQ2uciRpCoeGWaHP7zzz/D0tISgwYN0ivfsmULsrKyMGrUqHIJjoiIiMrRlR3AzQNA4jXg/nXA1g14OwQwURo7smqjTMsRzJs3D/b29oXKHR0dMXfu3KcOioiIiMqR5L+v+8t/Auc3ADFngbx0IOEykHzbuLFVM2XqcYqOjoanp2ehcnd3d0RHRz91UERERFSO2r0FqHIAG1fAoQlg3wj4M1CbPFGplClxcnR0xL///gsPDw+98vPnz6N27drlERcRERGVl6b9tI9H7ZxklFCquzIN1b3++uv44IMPcOjQIajVaqjVahw8eBATJ07E0KFDyztGIiIioiqhTD1Oc+bMQVRUFLp37w4TE+0uNBoNRo4cyTlOREREVGOVKXFSKBTYtGkT5syZg/Pnz8PMzAwtW7aEu7t7ecdHREREVGWUKXEq4OHhASEEGjRooOt5IiIioqpBrRG4k5SFmwkZkEiAbk0ci7zzBxmuTNlOVlYWJkyYgHXr1gEArl+/jvr162PChAlwdXXF1KlTyzVIIiIiKp0NJ29jzfFI5OVrHpaNa48ODQovJ0SGK9Pk8GnTpuH8+fMICQmBqamprtzf3x+bNm0qt+CIiIiodOwsFACAtJx85OVroDSRQmGi/bpPzMgzZmg1Qpl6nLZv345Nmzbh+eef1+vya968OSIiIsotOCIiIiqdkX7ucLY2hY2ZHF5OlqhrZ44Rq0/iRMQDY4dWI5Qpcbp//z4cHR0LlWdmZnLslIiIyIisTOV41aeuscOosco0VNe2bVvs2rVL97ogWfrpp5/g5+dXPpERERERVTFl6nGaO3cuevfujcuXLyM/Px9Lly7F5cuXceLECRw+fLi8YyQiIiKqEsrU4/TCCy/g/PnzyM/PR8uWLbFv3z44OjoiNDQUPj4+5R0jERERUZVQ6h4nlUqFd955B9OnT8eqVasqIiYiIiKiKqnUPU5yuRzbtm2riFiIiIiIqrQyDdUNHDgQ27dvL+dQiIiIiKq2Mk0O9/LywuzZs3H8+HH4+PjAwsJC7/0PPvigXIIjIiIiqkrKlDitXr0atra2OHv2LM6ePav3nkQiKXXitHz5cixYsABxcXFo3bo1li1bBl9f3ydut3HjRrz++usYMGAAe8CIiIiowpUpcYqMjNT9LIQAgDIvfLlp0yYEBQVh5cqVaN++PZYsWYKAgABcu3atyEU2C0RFRWHKlCno1KlTmY5LREREVFplmuMEaHudWrRoAVNTU5iamqJFixb46aefSr2fRYsWYdy4cRg9ejSaNWuGlStXwtzcHGvWrCl2G7VajeHDh2PWrFmoX79+WU+BiIiIqFTK1OM0Y8YMLFq0CBMmTNCtFB4aGorJkycjOjoas2fPNmg/eXl5OHv2LKZNm6Yrk0ql8Pf3R2hoaLHbzZ49G46Ojhg7diyOHj1a4jFyc3ORm5ure52WlgZAu6yCSqUyKM7SKNhnReybisd2Nw62u/Gw7Y2jurZ7weiQOj9fF7sJAAkAVX4+UMXPp6LbvTT7LVPitGLFCqxatQqvv/66rqx///5o1aoVJkyYYHDilJiYCLVaDScnJ71yJycnXL16tchtjh07htWrVyM8PNygY8ybNw+zZs0qVL5v3z6Ym5sbtI+yCA4OrrB9U/HY7sbBdjcetr1xVLd2T0yUApAiPDwc0rthAIDeeXlQADhy5DAyTG8YNT5DVVS7Z2VlGVy3TImTSqVC27ZtC5X7+PggPz+/LLs0SHp6OkaMGIFVq1bB3t7eoG2mTZuGoKAg3eu0tDS4ubmhZ8+esLa2LvcYVSoVgoOD0aNHD8jl8nLfPxWN7W4cbHfjYdsbR3Vt943xZ3AjLQne3t7o08oFAGByVQFkZ+LFFzsD9l5GjrBkFd3uBaNRhihT4jRixAisWLECixYt0iv/8ccfMXz4cIP3Y29vD5lMhvj4eL3y+Ph4ODs7F6ofERGBqKgo9OvXT1em0WgAACYmJrh27RoaNGigt41SqYRSqSy0L7lcXqEf+orePxWN7W4cbHfjYdsbR3Vr94ILuGQmJoXilpuYANXkXCqq3UuzzzIlToB2cvi+ffvw/PPPAwBOnjyJ6OhojBw5Uq+H5/Hk6lEKhQI+Pj44cOAABg4cCECbCB04cACBgYGF6jdp0gQXLlzQK/vss8+Qnp6OpUuXws3NraynQ0RERPREZUqcLl68iDZt2gDQ9gIB2t4je3t7XLx4UVfPkCUKgoKCMGrUKLRt2xa+vr5YsmQJMjMzMXr0aADAyJEj4erqinnz5umu3nuUra0tABQqJyIiIipvZUqcDh06VG4BDBkyBPfv38eMGTMQFxcHb29v7NmzRzdhPDo6GlJpmVdNICIiIio3ZR6qK0+BgYFFDs0BQEhISInbrl27tvwDIiIiIioCu3KIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiI6BkkjB1ANWVi7ACIiIiocvx09BbWHIvEvZRs7M1TwU4C5OaroTR2YNUIEyciIqIazlyh/br/927qw8L/sqW4tFy4uxghqGqKiRMREVEN93GvxmjsbIlaFkq42prC1dYckp+MHVX1xMSJiIiohmvkZIWPAprolaUYJ5Rqj5PDiYiIiAzExImIiIjIQEyciIiIiAzExImIiIjIQFUicVq+fDk8PDxgamqK9u3b49SpU8XWXbVqFTp16gQ7OzvY2dnB39+/xPpERERE5cXoidOmTZsQFBSEmTNn4ty5c2jdujUCAgKQkJBQZP2QkBC8/vrrOHToEEJDQ+Hm5oaePXsiJiamkiMnIiKiZ43RE6dFixZh3LhxGD16NJo1a4aVK1fC3Nwca9asKbL+r7/+ivfffx/e3t5o0qQJfvrpJ2g0Ghw4cKCSIyciIqJnjVETp7y8PJw9exb+/v66MqlUCn9/f4SGhhq0j6ysLKhUKtSqVauiwiQiIiICYOQFMBMTE6FWq+Hk5KRX7uTkhKtXrxq0j08++QR16tTRS74elZubi9zcXN3rtLQ0AIBKpYJKpSpj5MUr2GdF7JuKx3Y3Dra78bDtjaMmtrtanV/lz6ei2700+63WK4fPnz8fGzduREhICExNTYusM2/ePMyaNatQ+b59+2Bubl5hsQUHB1fYvql4bHfjYLsbD9veOGpCu3cWACTA6dOnceFG9ZgnXFHtnpWVZXBdoyZO9vb2kMlkiI+P1yuPj4+Hs7NzidsuXLgQ8+fPx/79+9GqVati602bNg1BQUG612lpaboJ5dbW1k93AkVQqVQIDg5Gjx49IJfLy33/VDS2u3Gw3Y2HbW8cNandM8O0z+3atYObV2vjBvMEFd3uBaNRhjBq4qRQKODj44MDBw5g4MCBAKCb6B0YGFjsdl9//TW+/PJL7N27F23bti3xGEqlEkqlslC5XC6v0A99Re+fisZ2Nw62u/Gw7Y2jJrW7TGZSbc6lotq9NPs0+lBdUFAQRo0ahbZt28LX1xdLlixBZmYmRo8eDQAYOXIkXF1dMW/ePADAV199hRkzZmDDhg3w8PBAXFwcAMDS0hKWlpZGOw8iIiKq+YyeOA0ZMgT379/HjBkzEBcXB29vb+zZs0c3YTw6OhpS6cOL/1asWIG8vDy89tprevuZOXMmPv/888oMnYiIiJ4xRk+cACAwMLDYobmQkBC911FRURUfEBEREVERjL4AJhEREVF1wcSJiIiIyEBVYqiOiIiIjOPojfs4khSF+xl5SMrMxQsNHdCrRclLAj3LmDgRERE9w34+HokIkad7/df5WCZOJWDiRERE9AxSmsiAfKB5HRs0tHWCqVyGP8PvIVulNnZoVRoTJyIiomeQmVwK5APf9rYHzKR4kBAD6b/HcBlexg6tSmPiRERE9Cz75RUAQG0AixVAjLAHMNaoIVVlvKqOiIjoWeTeUfsslQNWLlDV0vY02SPViEFVfexxIiIiehYN+QXIywAUloBEggd3bsJ5tY+xo6rymDgVQ61WQ6VSlXo7lUoFExMT5OTkQK3mBLvKwnY3DrY7UTUmkQBKK2NHUe0wcXqMEAJxcXFISUkp8/bOzs64c+cOJBJJ+QZHxWK7Gwfb3XiEELCysoIQwtihED1TmDg9piBpcnR0hLm5eam/DDQaDTIyMmBpaal3c2KqWGx342C7G4cQAhkZGcjNzUVCQgLq1q1r7JCInhlMnB6hVqt1SVPt2rXLtA+NRoO8vDyYmpryi6QSsd2Ng+1uPEqlEjk5OUhLS4NarYZMJjN2SETPBP6le0TBnCZzc3MjR0JE9GQKhQIAyjQfk4jKholTEThXg4iqA/6tIqp8TJyo2li9ejV69uxp7DCeWW+++SYGDhxY7nWpaCtXrkS/fv2MHQYRPYaJUw1RGV9UXbp0gUQigUQigampKRo1aoR58+ZVylU9OTk5mD59OmbOnFnhx6KiLV26FGvXri33usaUlJSE4cOHw9raGra2thg7diwyMjKKrR8VFaX7HXj8sWXLFl2906dPo3v37rC1tYWdnR0CAgJw/vx5vX0JIbBw4UI0atQISqUSrq6u+PLLL3XvjxkzBufOncPRo0fL/8SJqMyYOFGpjBs3DrGxsbh27RqmTZuGGTNmYOXKlRV+3K1bt8La2hodO3as8GOVRAiB/Px8o8ZQWuUVs42NDWxtbcu9rjENHz4cly5dQnBwMHbu3IkjR47g7bffLra+m5sbYmNj9R6zZs2CpaUlevfuDQDIyMhAr169UK9ePZw8eRLHjh2DlZUVAgIC9OYiTZw4ET/99BMWLlyIq1evYseOHfD19dW9r1AoMGzYMHz77bcV1wBERVBKVMCW0cD/vQKs6gZ87weEbzB2WFUGE6dnxOHDh+Hr6wulUgkXFxdMnTpV78s0PT0dw4cPh4WFBVxcXLB48WJ06dIFkyZN0tuPubk5nJ2d4e7ujtGjR6NVq1YIDg7WvZ+bm4spU6bA1dUVFhYWaN++PUJCQvT2sWrVKri5ucHc3Bwvv/wyFi1a9MQv2Y0bNxYatjh9+jR69OgBe3t72NnZoW/fvjh37pzu/WHDhmHIkCF626hUKtjb22P9+vUAtFeFzZs3D56enjAzM0Pr1q2xdetWXf2QkBBIJBL8/fff8PHxgVKpxLFjxxAREYEBAwbAyckJlpaWaNeuHfbv3693rNjYWPTt2xdmZmbw9PTEhg0b4OHhgSVLlujqpKSk4K233oKDgwOsra3RrVu3Qj0Tjyro8di4cSM6dOgAU1NTtGjRAocPH35izE86VwC4dOkSXnrpJVhbW8PKygqdOnVCREQEgMK9mlu3bkXr1q3h4uICBwcH+Pv7IzMzs8i6ubm5+OCDD+Do6AhTU1O88MILOH36dKGYDxw4gLZt28Lc3BwdOnTAtWvXim2Lp3XlyhXs2bMHP/30E9q3b48XXngBy5Ytw8aNG3Hv3r0it5HJZHB2dtZ7/PHHHxg8eDAsLS0BAFevXkVSUhJmz56Nxo0bo3nz5pg5cybi4+Nx+/Zt3bFXrFiBP//8E/3794enpyd8fHzQo0cPveP169cPO3bsQHZ2doW1A1EBITeHWvw3b+7S70DEASDmLJBwGTizxrjBVSFMnJ5ACIGsvPxSPbLz1KXepqhHeQ2BxcTEoE+fPmjXrh3Onz+PFStWYPXq1fjiiy90dYKCgnD8+HHs2LEDwcHBOHr0qF4SUlS7HD16FFevXtVd2QMAgYGBCA0NxcaNG/Hvv/9i0KBB6NWrF27cuAEAOH78ON59911MnDgR4eHh6NGjh97wRHGOHTuGtm3b6pWlp6dj1KhROHbsGE6cOIEGDRrgpZdeQnp6OgBtb8Jff/2lN/Syd+9eZGVl4eWXXwYAzJs3D+vXr8fKlStx6dIlTJ48GW+88YZeIgIAU6dOxfz583HlyhW0atUKGRkZ6NOnDw4cOICwsDD06tUL/fr1Q3R0tG6bkSNH4t69ewgJCcG2bdvw448/IiEhQW+/gwYNQkJCAv7++2+cPXsWbdq0Qffu3ZGUlFRie3z00Uf48MMPERYWBj8/P/Tr1w8PHjwoMeYnnWtMTAxefPFFKJVKHDx4EGfPnsWYMWOK7K2KjY3F66+/jtGjR+PkyZM4ePAgXnnllWI/sx9//DG2bduGdevW4dy5c2jYsCECAgIKneenn36Kb775BmfOnIGJiQnGjBlTYjs0b94clpaWxT4KeoGKEhoaCltbW73Plb+/P6RSKU6ePFnicQucPXsW4eHhGDv24Q1RGzdujNq1a2P16tXIy8tDdnY2Vq9ejaZNm8LDwwMA8Ndff6F+/frYuXMnPD094eHhgbfeeqtQe7Rt2xb5+fkGx0P0NISpHd5XTcQi1Wu41XY6LrT7ClcbjgMA5OXzzgAFuI7TE2Sr1Gg2Y69Rjn15dgDMFU//T/T999/Dzc0N3333HSQSCZo0aYJ79+7hk08+wYwZM5CZmYl169Zhw4YN6N69OwDg559/Rp06dYrc108//YS8vDyoVCqYmprigw8+AABER0fj559/RnR0tG7bKVOmYM+ePfj5558xd+5cLFu2DL1798aUKVMAAI0aNcKJEyewc+fOYuNPSUlBampqoXi6deum+1mj0WDJkiXw8PDA4cOH8dJLLyEgIAAWFhb4448/MGLECADAhg0b0L9/f1hZWSE3Nxdz587F/v374efnBwCoX78+jh07hh9++AGdO3fW7X/27Nl6vQG1atVC69atda/nzJmDP/74Azt27EBgYCCuXr2K/fv34/Tp07ov5p9++gleXl66bY4dO4ZTp04hISEBSqUSALBw4UJs374dW7duLXHIKDAwEK+++ioAYMWKFdizZw9Wr16Njz/+uMiYDTnX5cuXw8bGBhs3boRcLtf9+xQlNjYW+fn5ePnll2FnZwdra2u99nhUZmYmVqxYgbVr1+oSmVWrViE4OBirV6/GRx99pKv75Zdf6tp96tSp6Nu3L3JycmBqalrkvnfv3l3ipfhmZmbFvhcXFwdHR0e9MhMTE9SqVQtxcXHFbveogoSoQ4cOujIrKyuEhIRg4MCBmDNnDgDAy8sLe/fuhYmJ9vf51q1buH37NrZs2YL169dDrVZj8uTJeO2113Dw4EHdvszNzWFjY6PrqSKqaHs1vtgLX3x7TPvaX5qAnxTAnaQsNDBuaFUGE6dnwJUrV+Dn56d36XLHjh2RkZGBu3fvIjk5GSqVSm9+hY2NDRo3blxoX8OHD8enn36K5ORkzJw5Ex06dNB9aVy4cAFqtbrQl21ubq5uQdFr167pensK+Pr6lpg4FQxTPP7lGR8fj88++wwhISFISEiAWq1GVlaWrtfHxMQEgwcPxq+//ooRI0YgMzMTf/75JzZu3AgAuHnzJrKysgoNj+Tl5eG5557TK3u8tysjIwOff/45du3apUsisrOzdce+du0aTExM0KZNG902DRs2hJ2dne71+fPnkZGRUWix1ezsbN3wWHEKkp+C82zbti2uXLlSbMyGnGt4eDg6deqkS5pK0rp1a3Tv3h2tW7dGt27d0Lt3bwwePFjv/ApERERApVLpzU+Ty+Xw9fUtFHOrVq10P7u4uAAAEhISUK9evSLjcHd3f2KsFSU7OxsbNmzA9OnTC5WPHTsWHTt2xG+//Qa1Wo2FCxeib9++OH36NMzMzKDRaJCbm4v169frfl9Wr14NHx8fXLt2Te93z8zMDFlZWZV6bvRscrY2RdfGDrgcmwYrUzmsTE1QN9McyATyNby1TwEmTk9gJpfh8uwAg+trNBqkp6XDytrqqVdSNpNXvZWAbWxs0LBhQwDA5s2b0bBhQzz//PPw9/dHRkYGZDIZzp49W2gV44L5H2VRu3ZtSCQSJCcn65WPGjUKDx48wNKlS+Hm5gaVSoWAgADk5eXp6gwfPhydO3dGQkICgoODYWZmhl69egGAbghv165dcHV11dt3QQ9QAQsLC73XU6ZMQXBwMBYuXIiGDRvCzMwMr732mt6xnyQjIwMuLi6F5oABKJeJ1Y/GbMi5ltQ78ziZTIbg4GAcO3YMO3fuxPLlyzF9+nScPHkSnp6eZY750aStINHXaDTF1m/evHmJvTGdOnXC33//XeR7zs7OhYZO8/PzkZSUBGdn5yfGunXrVmRlZWHkyJF65Rs2bEBUVBRCQ0N1fwM2bNgAOzs7/Pnnnxg6dChcXFxgYmKi95+Mpk2bAtD23D6aOCUlJcHBweGJ8RA9LalUgp9H++qVhQffBo4bKaAqionTE0gkklINl2k0GuQrZDBXmFSZW1A0bdoU27ZtgxBC92V0/PhxWFlZoW7durCzs4NcLsfp06d1/7NPTU3F9evX8eKLLxa7X0tLS0ycOBFTpkxBWFgYnnvuOajVaiQkJKBTp05FbtO4cWO9ScEACr1+nEKhQLNmzXD58mW9dZyOHz+O77//Hn369IFGo8Hly5eRmJiot22HDh3g5uaGTZs24e+//8agQYN0X87NmjWDUqlEdHS03rCcIY4fP44333xT13uWkZGBqKgovfPMz89HWFgYfHx8AGh7fR5N/tq0aYO4uDiYmJjo5r4Y6p9//tH92+Tn5+Ps2bMIDAwstr4h59qqVSusW7cOKpXKoF4niUSCjh07omXLlvjiiy/g6emJP/74A0FBQXr1GjRoAIVCgePHj+t6iFQqFU6fPl3o4oPSepqhOj8/P6SkpODs2bO6f6ODBw9Co9Ggffv2Tzz26tWr0b9//0JJTVZWFqRSqV4Pb8HrgiSwY8eOyM/PR0REBBo00A6AXL9+HYB+L1pERARycnIK9YASkfEwcapBUlNTER4erldWu3ZtvP/++1iyZAkmTJiAwMBAXLt2DTNnzkRQUBCkUimsrKwwatQofPTRR6hVqxYcHR0xc+bMQn/8i/LOO+9gzpw52LZtG1577TUMHz4cI0eOxDfffIPnnnsO9+/fx4EDB9CqVSv07dsXEyZMwIsvvohFixahX79+OHjwIP7+++8nHicgIADHjh3T+6L18vLC//3f/6Ft27ZISUnBhx9+WOQX5bBhw7By5Upcv34dhw4d0pVbWVlhypQpmDx5MjQaDV544QWkpqbi+PHjsLa2xqhRo4qNx8vLC7///jv69esHiUSC6dOn6/WMNGnSBP7+/nj77bexYsUKyOVyXXwF5+rv7w8/Pz8MHDgQX3/9NRo1aoR79+5h165dePnllwsNDz5q+fLl8PLyQtOmTbF48WIkJyeXOJHakHMNDAzEsmXLMHToUEybNg02Njb4559/4OvrW2jY9uTJkzhw4AD8/f1hZmaGy5cv4/79+7pek0dZWFjgvffe032+6tWrh6+//hpZWVl6k6rL4mmG6po2bYpevXph3LhxWLlyJVQqFQIDAzF06FDdfLqYmBh0794d69ev1xvKvnnzJo4cOYLdu3cX2m+PHj3w0UcfYfz48ZgwYQI0Gg3mz58PExMTdO3aFYD2375NmzYYM2YMlixZAo1Gg/Hjx6NHjx56vVBHjx5F/fr1dckVkbHYaxKBxBuAKgtQZQN5mdpnVfbDMqUV0HIQYKJ48g6rM/GMSU1NFQBEampqofeys7PF5cuXRXZ2dpn3r1arRXJyslCr1U8TZqmNGjVKACj0GDt2rBBCiJCQENGuXTuhUCiEs7Oz+OSTT4RKpdJtn5aWJoYNGybMzc2Fs7OzWLRokfD19RVTp07V1encubOYOHFioWO/8847onnz5kKtVou8vDwxY8YM4eHhIeRyuXBxcREvv/yy+Pfff3X1f/zxR+Hq6irMzMzEwIEDxRdffCGcnZ1LPL9Lly4JMzMzkZKSois7d+6caNu2rTA1NRVeXl5i7dq1wt3dXSxevFhv28uXLwsAwt3dXWg0Gr33NBqNWLJkiWjcuLGQy+XCwcFBBAQEiMOHDwshhDh06JAAIJKTk/W2i4yMFF27dhVmZmbCzc1NfPfdd4Xa5969e6J3795CqVQKd3d3sWHDBuHo6ChWrlyp1+4TJkwQderUEXK5XLi5uYnhw4eL6OjoItshMjJSABAbNmwQvr6+QqFQiGbNmomDBw/q6hQX85POVQghzp8/L3r27CnMzc2FlZWV6NSpk4iIiBBCaD9jAwYM0LVpQECAcHBwEEqlUjRq1EgsW7ZMt59H6wqh/d2aMGGCsLe3F0qlUnTs2FGcOnWqxJjDwsIEABEZGVlkW5SHBw8eiNdff11YWloKa2trMXr0aJGenq57v6C9Dx06pLfdtGnThJubW7G/5/v27RMdO3YUNjY2ws7OTnTr1k2Ehobq1YmJiRGvvPKKsLS0FE5OTuLNN98UDx480KvTs2dPMW/evCKPoVarRXx8vLh06dJT/c2i0snLyxPbt28XeXl5xg6lUoTt+1WImdaGPy7+XiFxVHS7l5QbPE4iRCUs+1yFpKWlwcbGBqmpqbC2ttZ7LycnB5GRkfD09Cz2Kp4n0Wg0SEtLg7W1dZUZqiuLzMxMuLq64ptvvnnqXoEnGTduHK5evfrEFZIHDRqENm3aYNq0aYXeqw7tfvfuXbi5uWH//v26qxdLKyoqCp6enggLC4O3t3f5BlgG1aHdq6tLly6hW7duuH79OmxsbAq9r9FokJiYiMTERNSvX7/Mf7OodFQqFXbv3o0+ffoYNKRd3R05+y+8dgyAvSQNclMLQG4OyM3+e37k59hwID0WeGkx0LbkZUTKoqLbvaTc4HEcqiMAQFhYGK5evQpfX1+kpqZi9uzZAIABAwaU+7EWLlyIHj16wMLCAn///TfWrVuH77///onbLViwAH/99Ve5x1NRDh48iIyMDLRs2RKxsbH4+OOP4eHhUeK8MaICsbGxWL9+fZFJE1FlyTVzgl/uMni72WH7+BLu3LBxOHC1+KujaxImTqSzcOFCXLt2DQqFAj4+Pjh69Cjs7e3L/TinTp3C119/jfT0dNSvXx/ffvst3nrrrSdu5+HhgQkTJpR7PBVFpVLhf//7H27dugUrKyt06NABv/766zPxv1R6ev7+/sYOgeg/Jc9BfdYwcSIAwHPPPYezZ89WyrE2b95cKccxtoCAAAQEGL6UhSE8PDwq5abKRERlkpMGpMf9N2E8B7B0AixqP3m7aoSJExEREZWP/TO1jwIyJTD5ImDpWPw21QxncxIREdHT8XgBuiE9iRRQWGpfq3OBlOiStqx22ONERERET+f594A2IwGpCSBTABIJsKQVkFLz7rPIxImIiIiensLiyXVqAA7VERERERmIiRMRERGRgZg4UY1x48YN1KlTB+np6cYOhcrBypUr0a9fP2OHQUSkh4lTDaBWq9GhQwe88soreuWpqalwc3PDp59+qle+bds2dOvWDXZ2djAzM0Pjxo0xZswYhIWF6eqsXbsWEolE97C0tISPjw9+//33SjmnAl26dNG7sW9JZs+ejcDAQFhZWVVsUDVIdHQ0+vbtC3Nzczg6OuKjjz5Cfn5+idtcv34dAwYMgL29PWxtbdGrVy+9mycDwIEDB9ChQwdYWVnB2dkZn3zySaH97t27F88//zysrKzg4OCAV199FVFRUbr3x4wZg3Pnzj3xVjxERJWJiVMNIJPJsHbtWuzZswe//vqrrnzChAmoVasWZs58uKbGJ598giFDhsDb2xs7duzAtWvXsGHDBtSvX7/QPeCsra0RGxuL2NhYhIWFISAgAIMHD8a1a9cq7dwMFR0djb1792LUqFHGDqUQIcQTkxFjUKvV6Nu3L/Ly8nDixAmsW7cOa9euxYwZM0rc7qWXXkJ+fj4OHjyI06dPo0WLFujfvz/i4uIAAOfPn0efPn3Qq1cvhIWFYdOmTdixYwemTp2q20dkZCQGDBiAbt26ITw8HHv37kViYqJe8q9QKDBs2DB8++23FdMARERlUSG3Ga7CSroDcnZ2trh8+fJT3WlcrVaL5OTkYu+aXpGWLl0q7OzsxL1798T27duFXC4X4eHhuvdDQ0MFALF06dIit9doNLqff/75Z2FjY6P3vlqtFnK5XGzevFlXlpSUJEaMGCFsbW2FmZmZ6NWrl7h+/bredlu3bhXNmjUTCoVCuLu7i4ULF+q9v3z5ctGwYUOhVCqFo6OjePXVV4UQQowaNUoA0HtERkYWGfvXX38tnnvuOb12T0xMFEOHDhV16tQRZmZmokWLFmLDhg2693/44Qfh4uJS6N+qf//+YvTo0UUeJzIyUgAQv/32m/Dz8xNKpVI0b95chISE6OocOnRIABC7d+8Wbdq0EXK5XBw6dEio1Woxd+5c4eHhIUxNTUWrVq3Eli1b9PZ/8eJF0bdvX2FlZSUsLS3FCy+8IG7evFlkLE9r9+7dQiqViri4OF3ZihUrhLW1tcjNzS1ym/v37wsA4siRI0II7WciOjpaABDBwcFCCCGmTZsm2rZtq7fdjh07hKmpqUhLSxNCCLFlyxZhYmKi1/Y7duwQEolE7+7nhw8fFgqFQmRlZZXPSdcgarVaxMfHi0uXLj3V3ywqnby8PLF9+3a9z2lNtu9SnHD/ZKcY8N2x0m+8uKUQM62FuHP6qeOo6HYvKTd4HHucnkQIIC+zdA9VVum3KepRyltrTJgwAa1bt8aIESPw9ttvY8aMGWjdurXu/d9++w2WlpZ4//33i9xeIin+fkRqtRrr1q0DALRp00ZX/uabb+LMmTPYsWMHQkNDIYRAnz59oFKpAABnz57F4MGDMXToUFy4cAGff/45pk+fjrVr1wIAzpw5gw8++ACzZ8/GtWvXsGfPHt1NcJcuXQo/Pz+MGzdO1/Pl5uZWZHxHjx6Ft7e3XllOTg58fHywa9cuXLx4EW+//TZGjBiBU6dOAQAGDRqEBw8e6A0zJSUlYc+ePRg+fHixbQEAH330ET788EOEhYXBz88P/fr1w4MHD/TqTJ06FfPnz8eVK1fQqlUrzJs3D+vXr8fKlStx6dIlTJ48GW+88QYOHz4MAIiJicGLL74IpVKJgwcP4uzZsxgzZkyJvVWWlpYlPt59991itw0NDUXLli3h5OSkKwsICEBaWhouXbpU5Da1a9dG48aNsX79emRmZiI/Px9r166Fo6MjfHx8AAC5ubkwNTXV287MzAw5OTm62/r4+PhAKpXi559/hlqtRmpqKv7v//4P/v7+evfya9u2LfLz83Hy5Mliz4OIqDJxHacnUWUBc+sYXF0KwLa8jv2/e6VaF0MikWDFihVo2rQpWrZsqTc0AmjnptSvXx8mJg//2RctWqQ3NBMTE6O7G3tqaiosLS0BANnZ2ZDL5fjxxx/RoEEDANrJ2Dt27MDx48fRoUMHAMCvv/4KNzc3bN++HYMGDcKiRYvQvXt3TJ8+HQDQqFEjXL58GQsWLMCbb76J6OhoWFhY4KWXXoKVlRXc3d3x3HPPAQBsbGygUChgbm4OZ2fnEs89OjoaLVu21CtzdXXFlClTdK8nTJiAvXv3YvPmzfD19YWdnR169+6NDRs2oHv37gCArVu3wt7eHl27di3xeIGBgXj11VcBACtWrMCePXuwevVqfPzxx7o6s2fPRo8ePQBok4m5c+di//798PPzAwDUr18fx44dww8//IDOnTtj+fLlsLGxwcaNG3XJQ6NGjUqMIzw8vMT3ra2ti30vLi5OL2kCoHtdMOz2OIlEgv3792PgwIGwsrKCVCqFg4MDdu/eDTs7OwDa5GvJkiX47bffMHjwYMTFxWH27NkAgNjYWACAp6cn9u3bh8GDB+Odd96BWq2Gn58fdu/erXc8c3Nz2NjY4PbtmreIHhFVT+xxqmHWrFkDc3NzREZG4u7du0+sP2bMGISHh+OHH35AZmam3g1kraysEB4ejvDwcISFhWHu3Ll499138ddffwEArly5AhMTE7Rv3163TUGPxJUrV3R1OnbsqHfMjh074saNG1Cr1ejRowfc3d1Rv359jBgxAr/++iuysrJKfd7Z2dlQKpV6ZWq1GnPmzEHLli1Rq1YtWFpaYu/evYiOfrj8//Dhw7Ft2zbk5uYC0CZ+Q4cOhVRa8q9GQfIDACYmJmjbtq3unAu0bdtW9/PNmzeRlZWFHj166PUIrV+/HhEREQC0SVCnTp30elyepGHDhiU+HB3L9/5QQgiMHz8ejo6OOHr0KP755x/06dMHAwYM0CVFPXv2xIIFC/Duu+9CqVSiUaNG6NOnDwDo2jUuLg7jxo3DqFGjcPr0aRw+fBgKhQKvvfZaoZsYm5mZlekzQURUEdjj9CRyc23Pj4E0Gg3S0tNh/d//xp/62KVw4sQJLF68GPv27cMXX3yBsWPHYv/+/bohOC8vLxw7dgwqlUr35WxrawtbW9sikyypVIqGDRvqXrdq1Qr79u3DV199VW6XiVtZWeHcuXMICQnBvn37MGPGDHz++ec4ffo0bG1tDd6Pvb09UlJS9MoWLFiApUuXYsmSJWjZsiUsLCwwadIk5OXl6er069cPQgjs2rUL7dq1w9GjR7F48eJyOTcLi4e9hRkZGQCAXbt2wdXVVa9eQcJnZmZW6mMU9AgW54033sDKlSuLfM/Z2Vk3bFkgPj5e915RDh48iJ07dyI5ORnW1tbQaDT45ptvcOTIEaxbt07XyxkUFITJkycjNjYWdnZ2iIqKwrRp01C/fn0A0PWuff3117p9//LLL3Bzc8PJkyfx/PPP68qTkpLg4ODwhJYgoookhEC+WgO1EBBCe0cVpYnMsI1/6g7YeQJCDWg0QIOuQN9vAKEBNGptHWXJf8uqEiZOTyKRlG4ZeY0GkKu12zxt4lQKWVlZePPNN/Hee++ha9eu8PT0RMuWLbFy5Uq89957AIDXX38dy5Ytw/fff4+JEyeW6TgymQzZ2dkAgKZNm+rmnxQM1T148ADXrl1Ds2bNdHWOHz+ut4/jx4+jUaNGkMm0v3QmJibw9/eHv78/Zs6cCVtbWxw8eBCvvPIKFAoF1Gr1E+Py9vYudLXf8ePHMWDAALzxxhsAtEnt9evXdbEBgKmpKV555RX8+uuvuHnzJho3bqw3h6s4//zzj24uVn5+Ps6ePYvAwMBi6zdr1gxKpRLR0dHo3LlzkXVatWqFdevW6SW2T/I0Q3V+fn748ssvkZCQoOuZCg4OhrW1tV4bPaqg5+fx/xRIpVJoNBq9MolEgjp1tMPcv/32G9zc3HRtm5WVVWgfBZ+HR/cTERGBnJwc3fAtERnH+bupaPjp33plrrZm6NPSGRoBaIRAXGoOGjtbwVQug0YI9Icj6uK/YfbkyIcbhv2f9vE4zxe1c3uFBpDJgS7/A+q1L1zPyKpE4rR8+XIsWLAAcXFxaN26NZYtWwZfX99i62/ZsgXTp09HVFQUvLy88NVXX+mGAp5V06ZNgxAC8+fPBwB4eHhg4cKFmDJlCnr37g0PDw/4+fnhww8/xIcffojbt2/jlVdegZubG2JjY7F69WpIJBK9LzMhhG6uS3Z2NoKDg7F3717dnCgvLy8MGDAA48aNww8//AArKytMnToVrq6uGDBgAADgww8/RLt27TBnzhwMGTIEoaGh+O677/D9998DAHbu3Ilbt27hxRdfhJ2dHXbv3g2NRoPGjRvrzuPkyZOIioqCpaUlatWqVWRPXs+ePTFu3Dio1Wrd+15eXti6dStOnDgBOzs7LFq0CPHx8YWSguHDh+Oll17CpUuXdEnWkyxfvhxeXl5o2rQpFi9ejOTkZIwZM6bY+lZWVpgyZQomT54MjUaDF154AampqTh+/Disra0xatQoBAYGYtmyZRg6dCimTZsGGxsb/PPPP/D19dW1x+Me7REsrZ49e6JZs2YYMWIEvv76a8TFxeGzzz7D+PHjdb1gp06dwsiRI3HgwAG4urrCz88PdnZ2GDVqFGbMmAGlUonly5cjMjISffv21e17wYIF6NWrF6RSKX7//XfMnz8fmzdv1iVHffv2xeLFizF79my8/vrrSE9Px//+9z+9OW6AdtJ//fr1dfPqiKhyNXG2gqXSBBm5hS9SiUnJxqqjkXplf198OD9yGd5DS0kvLB76HFztLAGJFFgToO15KkrkEf3Xlk5VMnEy+nIEGzduFAqFQqxZs0ZcunRJjBs3Ttja2or4+Pgi6x8/flzIZDLx9ddfi8uXL4vPPvtMyOVyceHCBYOOVxOXIwgJCREymUwcPXq00Hs9e/YU3bp101tqYNOmTaJLly7CxsZGyOVyUbduXTFs2DDxzz//6Or8/PPPessAKJVK0ahRI/Hll1+K/Px8Xb2C5QhsbGyEmZmZCAgIKHY5ArlcLurVqycWLFige+/o0aOic+fOws7OTpiZmYlWrVqJTZs26d6/du2aeP7554WZmVmJyxHk5uYKFxcXsXv3bl3ZgwcPxIABA4SlpaVwdHQUn332mRg5cqQYMGCA3rZqtVq4uLgIACIiIqLEti5YjmDDhg3C19dXKBQK0axZM3Hw4EFdnYLlCJKTk/W21Wg0YsmSJaJx48ZCLpcLBwcHERAQIA4fPqyrc/78edGzZ09hbm4urKysRKdOnZ4Y09OIiooSvXv3FmZmZsLe3l58+OGHQqVSFTqXR9v99OnTomfPnqJWrVrCyspKtGvXTuzcuVNvv127dhU2NjbC1NRUtG/fXu/fpcBvv/0mnnvuOWFhYSEcHBxE//79xZUrV/Tq9OzZU8ybN698T7qG4HIExvGsLUcghBDZefniQUauSMnME6nZeeJucpZYsOeq+GLnJTF312Uxb/cVMXbtafH2+tNi8qYw8eHmcPHRlnDRbPrfwv2TnWLRvmsi5FqCOHI9QRy7Hi/+uXhTnLx8S5y6GiXOXL8jroXuFKpzvwnx7xYhLmwV4vd3tcsYbHm4LExVWo5AIkQpr3kvZ+3bt0e7du3w3XffAdB207u5uWHChAmFrgoDgCFDhiAzMxM7d+7UlT3//PPw9vYudi7Ho9LS0mBjY4PU1NRCwxg5OTmIjIyEp6dnocupDaXRaJCWlgZra+unn+NEBiuYaxMcHIx9+/ZV2HGioqLg6emJsLCwQssfPIsq8vN+6dIldOvWDdevX9dd6UkPaTQaJCYmIjExEfXr1y/z3ywqHZVKhd27d6NPnz6lupDjWdRlwSFEPTD8wg6P2tp5va+o/sIHeasBADfqvgpAQAiBhLRceI9eBMtaLuUea0m5weOMOlSXl5eHs2fP6q1YLZVK4e/vj9DQ0CK3CQ0NRVBQkF5ZQEAAtm/fXmT93Nxc3RVTgLZxAO2Hv2CtoQIqlQpCCGg0mkLzNQxVkIcW7IcqhxACo0ePRk5ODlJTUyvstisF/6ZP8xmpSSry8x4TE4O1a9fCysqKbV2ER9tepVLphkGpYhV8bzz+/UGFvd3JAxvP3IVGo50DpRH//a34b4K5RmiH+3Lztb/fBUnWbakcUGj34XV3m25/jQCc2tsCz7328eOHemql+fc0auKUmJgItVpd5FoyV69eLXKb4taeKW7dmXnz5mHWrFmFyvft2wdzc/2r1kxMTODs7IyMjAy9K6/KgjearXwmJiaYMGEChBC6BLm8FVwdl5mZWWHHqI4q4vNeMM+R7VyynJwcHDlypEre1qcmCw4ONnYIVZ4FgLFFr1msJykXSP6vf0MCIDevHb6LzYGtRPv3VkCCEaotAICYe/cQ+9h6b+WhNEueVInJ4RVp2rRpej1UaWlpcHNzQ8+ePYscqrtz5w4sLS3L3O0thEB6ejqsrKxKXImbyldltXuLFi0MusrvWcHPu/EIIfDgwQOYmprixRdf5FBdJVGpVAgODkaPHj04VFehBui9ylJ9i+DgYARUULuX5j9oRk2c7O3tIZPJdGvHFIiPjy92HRlnZ+dS1VcqlYUWRgQAuVxeqPHVarXuyrKyztcoGFJ4/Ao1qlhsd+NguxvPo21f1N8zqlhsc+OoqHYvzT6N+pdOoVDAx8cHBw4c0JVpNBocOHBAb2XmR/n5+enVB7RdpsXVJyIiIiovRh+qCwoKwqhRo9C2bVv4+vpiyZIlyMzMxOjRowEAI0eOhKurK+bNmwcAmDhxIjp37oxvvvkGffv2xcaNG3HmzBn8+OOP5RaTkS80JCIyCP9WEVU+oydOQ4YMwf379zFjxgzExcXB29sbe/bs0U0Aj46O1hsC6NChAzZs2IDPPvsM//vf/+Dl5YXt27ejRYsWTx1LQVddVlZWmW5/QURUmQouYuGQEVHlMXriBGjvNF/c7SpCQkIKlQ0aNAiDBg0q9zhkMhlsbW2RkJAAQHtn9tJOeNVoNMjLy0NOTg7nfFQitrtxsN2NQwiBjIwMJCYmwsHBgUsREFWiKpE4VSUFk8wLkqfSEkIgOzsbZmZmvMqoErHdjYPtbjxCCCQnJ6N58+bGDoXomcLE6TESiQQuLi5wdHQs0wJnKpUKR44cwYsvvsju80rEdjcOtrtx3bhxgwkrUSVj4lQMmUxWpu5vmUyG/Px8mJqa8oukErHdjYPtbjxcuZrIODgpgYiIiMhATJyIiIiIDMTEiYiIiMhAz9wcp4IF4yrqxqEqlQpZWVlIS0vjnI9KxHY3Dra78bDtjYPtbhwV3e4FOYEhi8o+c4lTwV3c3dwMuGUzERERPTPS09NhY2NTYh2JeMbW7NdoNLh3716F3c09LS0Nbm5uuHPnDqytrct9/1Q0trtxsN2Nh21vHGx346jodhdCID09HXXq1HniYr7PXI+TVCpF3bp1K/w41tbW/KUyAra7cbDdjYdtbxxsd+OoyHZ/Uk9TAU4OJyIiIjIQEyciIiIiAzFxKmdKpRIzZ86EUqk0dijPFLa7cbDdjYdtbxxsd+OoSu3+zE0OJyIiIior9jgRERERGYiJExEREZGBmDgRERERGYiJUxksX74cHh4eMDU1Rfv27XHq1KkS62/ZsgVNmjSBqakpWrZsid27d1dSpDVLadp91apV6NSpE+zs7GBnZwd/f/8n/jtR0Ur7eS+wceNGSCQSDBw4sGIDrMFK2/YpKSkYP348XFxcoFQq0ahRI/69KYPStvuSJUvQuHFjmJmZwc3NDZMnT0ZOTk4lRVszHDlyBP369UOdOnUgkUiwffv2J24TEhKCNm3aQKlUomHDhli7dm2FxwkAEFQqGzduFAqFQqxZs0ZcunRJjBs3Ttja2or4+Pgi6x8/flzIZDLx9ddfi8uXL4vPPvtMyOVyceHChUqOvHorbbsPGzZMLF++XISFhYkrV66IN998U9jY2Ii7d+9WcuTVW2nbvUBkZKRwdXUVnTp1EgMGDKicYGuY0rZ9bm6uaNu2rejTp484duyYiIyMFCEhISI8PLySI6/eStvuv/76q1AqleLXX38VkZGRYu/evcLFxUVMnjy5kiOv3nbv3i0+/fRT8fvvvwsA4o8//iix/q1bt4S5ubkICgoSly9fFsuWLRMymUzs2bOnwmNl4lRKvr6+Yvz48brXarVa1KlTR8ybN6/I+oMHDxZ9+/bVK2vfvr145513KjTOmqa07f64/Px8YWVlJdatW1dRIdZIZWn3/Px80aFDB/HTTz+JUaNGMXEqo9K2/YoVK0T9+vVFXl5eZYVYI5W23cePHy+6deumVxYUFCQ6duxYoXHWZIYkTh9//LFo3ry5XtmQIUNEQEBABUamxaG6UsjLy8PZs2fh7++vK5NKpfD390doaGiR24SGhurVB4CAgIBi61NhZWn3x2VlZUGlUqFWrVoVFWaNU9Z2nz17NhwdHTF27NjKCLNGKkvb79ixA35+fhg/fjycnJzQokULzJ07F2q1urLCrvbK0u4dOnTA2bNndcN5t27dwu7du9GnT59KiflZZczv1mfuXnVPIzExEWq1Gk5OTnrlTk5OuHr1apHbxMXFFVk/Li6uwuKsacrS7o/75JNPUKdOnUK/aFS8srT7sWPHsHr1aoSHh1dChDVXWdr+1q1bOHjwIIYPH47du3fj5s2beP/996FSqTBz5szKCLvaK0u7Dxs2DImJiXjhhRcghEB+fj7effdd/O9//6uMkJ9ZxX23pqWlITs7G2ZmZhV2bPY4UY03f/58bNy4EX/88QdMTU2NHU6NlZ6ejhEjRmDVqlWwt7c3djjPHI1GA0dHR/z444/w8fHBkCFD8Omnn2LlypXGDq1GCwkJwdy5c/H999/j3Llz+P3337Fr1y7MmTPH2KFRBWGPUynY29tDJpMhPj5erzw+Ph7Ozs5FbuPs7Fyq+lRYWdq9wMKFCzF//nzs378frVq1qsgwa5zStntERASioqLQr18/XZlGowEAmJiY4Nq1a2jQoEHFBl1DlOUz7+LiArlcDplMpitr2rQp4uLikJeXB4VCUaEx1wRlaffp06djxIgReOuttwAALVu2RGZmJt5++218+umnkErZP1ERivtutba2rtDeJoA9TqWiUCjg4+ODAwcO6Mo0Gg0OHDgAPz+/Irfx8/PTqw8AwcHBxdanwsrS7gDw9ddfY86cOdizZw/atm1bGaHWKKVt9yZNmuDChQsIDw/XPfr374+uXbsiPDwcbm5ulRl+tVaWz3zHjh1x8+ZNXbIKANevX4eLiwuTJgOVpd2zsrIKJUcFyavgHc0qjFG/Wyt8+nkNs3HjRqFUKsXatWvF5cuXxdtvvy1sbW1FXFycEEKIESNGiKlTp+rqHz9+XJiYmIiFCxeKK1euiJkzZ3I5gjIobbvPnz9fKBQKsXXrVhEbG6t7pKenG+sUqqXStvvjeFVd2ZW27aOjo4WVlZUIDAwU165dEzt37hSOjo7iiy++MNYpVEulbfeZM2cKKysr8dtvv4lbt26Jffv2iQYNGojBgwcb6xSqpfT0dBEWFibCwsIEALFo0SIRFhYmbt++LYQQYurUqWLEiBG6+gXLEXz00UfiypUrYvny5VyOoCpbtmyZqFevnlAoFMLX11f8888/uvc6d+4sRo0apVd/8+bNolGjRkKhUIjmzZuLXbt2VXLENUNp2t3d3V0AKPSYOXNm5QdezZX28/4oJk5Pp7Rtf+LECdG+fXuhVCpF/fr1xZdffiny8/MrOerqrzTtrlKpxOeffy4aNGggTE1NhZubm3j//fdFcnJy5QdejR06dKjIv9kFbT1q1CjRuXPnQtt4e3sLhUIh6tevL37++edKiVUiBPsSiYiIiAzBOU5EREREBmLiRERERGQgJk5EREREBmLiRERERGQgJk5EREREBmLiRERERGQgJk5EREREBmLiRERERGQgJk5ERAb6/PPP4e3trXv95ptvYuDAgUaLh4gqHxMnIiIiIgMxcSKiGiEvL8/YIRDRM4CJExFVS126dEFgYCAmTZoEe3t7BAQE4OLFi+jduzcsLS3h5OSEESNGIDExUbeNRqPB119/jYYNG0KpVKJevXr48ssvde9/8sknaNSoEczNzVG/fn1Mnz4dKpXKGKdHRFUUEyciqrbWrVsHhUKB48ePY/78+ejWrRuee+45nDlzBnv27EF8fDwGDx6sqz9t2jTMnz8f06dPx+XLl7FhwwY4OTnp3reyssLatWtx+fJlLF26FKtWrcLixYuNcWpEVEVJhBDC2EEQEZVWly5dkJaWhnPnzgEAvvjiCxw9ehR79+7V1bl79y7c3Nxw7do1uLi4wMHBAd999x3eeustg46xcOFCbNy4EWfOnAGgnRy+fft2hIeHA9BODk9JScH27dvL9dyIqOoyMXYARERl5ePjo/v5/PnzOHToECwtLQvVi4iIQEpKCnJzc9G9e/di97dp0yZ8++23iIiIQEZGBvLz82FtbV0hsRNR9cTEiYiqLQsLC93PGRkZ6NevH7766qtC9VxcXHDr1q0S9xUaGorhw4dj1qxZCAgIgI2NDTZu3Ihvvvmm3OMmouqLiRMR1Qht2rTBtm3b4OHhAROTwn/avLy8YGZmhgMHDhQ5VHfixAm4u7vj008/1ZXdvn27QmMmouqHk8OJqEYYP348kpKS8Prrr+P06dOIiIjA3r17MXr0aKjVapiamuKTTz7Bxx9/jPXr1yMiIgL//PMPVq9eDUCbWEVHR2Pjxo2IiIjAt99+iz/++MPIZ0VEVQ0TJyKqEerUqYPjx49DrVajZ8+eaNmyJSZNmgRbW1tIpdo/ddOnT8eHH36IGTNmoGnTphgyZAgSEhIAAP3798fkyZMRGBgIb29vnDhxAtOnTzfmKRFRFcSr6oiIiIgMxB4nIiIiIgMxcSIiIiIyEBMnIiIiIgMxcSIiIiIyEBMnIiIiIgMxcSIiIiIyEBMnIiIiIgMxcSIiIiIyEBMnIiIiIgMxcSIiIiIyEBMnIiIiIgMxcSIiIiIy0P8D+NF5GYyV8tUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "prec_lr, rec_lr, _ = precision_recall_curve(y_test, y_score_lr)\n", "prec_xgb, rec_xgb, _ = precision_recall_curve(y_test, y_score_xgb)\n", "\n", "ap_lr = average_precision_score(y_test, y_score_lr)\n", "ap_xgb = average_precision_score(y_test, y_score_xgb)\n", "\n", "plt.figure(figsize=(6,4))\n", "plt.plot(rec_lr, prec_lr, label=f\"LogReg (average precision = {ap_lr:.3f})\")\n", "plt.plot(rec_xgb, prec_xgb, label=f\"XGBoost (av prec = {ap_xgb:.3f})\")\n", "plt.xlabel(\"recall\")\n", "plt.ylabel(\"precision\")\n", "plt.title(\"precision recall curve\")\n", "plt.legend()\n", "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "53d73452-13cf-41fd-b1ea-17f0f5d40477", "metadata": {}, "source": [ "### Inference" ] }, { "cell_type": "code", "execution_count": 54, "id": "9d36b425-a1f3-46c9-84b5-bd061b9cea38", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.float32(1.2455843e-05)" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sample = X_test.iloc[[0]]\n", "fraud_prob = pipe_xgb.predict_proba(sample)[:, 1][0]\n", "fraud_prob" ] } ], "metadata": { "kernelspec": { "display_name": "pytorch kits", "language": "python", "name": "venv_name" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }