\DocumentMetadata{} \documentclass[dvipsnames,12pt]{exam} % compiles with % latexmk -pdflatex=lualatex -pdf ans.tex \usepackage[top = 2cm, bottom = 3cm, left=1.5cm, right=1.5cm]{geometry} \usepackage{microtype} \usepackage{fontspec} \usepackage{amssymb} \usepackage{titlesec} \usepackage{multicol} \usepackage{braket} \usepackage{graphicx} \graphicspath{{./img/}} \usepackage{xcolor} \usepackage{cancel} \newcommand\Ccancel[2][black]{\renewcommand\CancelColor{\color{#1}}\cancel{#2}} \usepackage{amsmath} \usepackage{hyperref} \usepackage{eso-pic} \runningfooter{}{}{\thepage} \runningheader{}{}{\scriptsize Aayush Bajaj | z5362216} \hypersetup{ colorlinks = true, linkcolor = RedViolet, citecolor = gray } \titleformat{\section}{\normalfont\Large\bfseries}{{\color{RedViolet}\S}}{0.5em}{} \titleformat{\subsection}{\normalfont\large\bfseries}{{\large \color{RedViolet}\S\S}}{0.5em}{} \titleformat{\subsubsection}{\normalfont\bfseries}{{\color{RedViolet}\S\S\S}}{0.5em}{} \parindent 0pt %%% defs courtesy of Denis: \newcommand{\N}{{\mathbb{N}}} \newcommand{\C}{{\mathbb{C}}} \newcommand{\D}{{\mathbb{D}}} \newcommand{\F}{{\mathcal{F}}} \renewcommand{\P}{{\mathcal{P}}} %careful with this, it redefines the usual P! \newcommand{\R}{{\mathbb{R}}} \newcommand{\Q}{{\mathbb{Q}}} \newcommand{\T}{{\mathbb{T}}} \newcommand{\Z}{{\mathbb{Z}}} \newcommand{\ds}{\displaystyle} \newcommand{\st}{\,:\,} \renewcommand{\a}{{\mathbf a}} \newcommand{\x}{{\mathbf x}} \newcommand{\y}{{\mathbf y}} \newcommand{\norm}[1]{\Vert #1 \Vert} \renewcommand{\mod}[1]{\vert #1 \vert} \newcommand\vecx{\boldsymbol{x}} \newcommand\vecy{\boldsymbol{y}} \newcommand{\zero}{\boldsymbol{0}} \newcommand{\Arg}{\mathop{\mathrm{Arg}}} \newcommand{\cl}{\mathop{\mathrm{cl}}} \renewcommand{\Re}{\mathop{\mathrm{Re}}} %%% end defs \AddToShipoutPictureBG*{% % Note the asterisk (*) - this is important! \AtPageCenter{% \makebox(0,0){% \rotatebox{45}{\textcolor{gray!30}{\fontsize{200}{120}\selectfont FINAL}}% }% }% } \author{Aayush Bajaj | z5362216} \date{\today} \title{MATH3611 | Assignment 1} \begin{document} \maketitle \dotfill \tableofcontents \vspace{1cm} \begin{center} \includegraphics[width=0.2\textwidth]{logo.png} \end{center} \vspace{1cm} \hrule \newpage \section{Question 1} \label{question1} Prove that a non-empty set $S$ is infinite if and only if $|S| \geq |\N|$. \subsection{Proof} $[\implies]$ Assume $S$ is non-empty and infinite. Show that $|S| \geq |\N|$.\\ Since $S$ is infinite and non-empty we can choose an element $a_0 \in S \st S_1 = S \backslash \{a_0\}$. Note that $S_1$ is also non-empty because $S$ is not finite (its finiteness would contradict our assumption). We continue inductively with this reasoning:\\ \begin{centering}choose $a_1 \in S_1 \st S_2 = S_1 \backslash \{a_1\}$ (which is equal to $S\backslash\{a_0, a_1\}$)\\ $$\vdots$$ \end{centering} Generalising this \emph{Natural Number} to \emph{Set} mapping, we construct the following injective map $f: \N \to S$: \begin{equation} f(n) = a_n \in S\backslash\{a_0,\ldots, a_{n-1}\}, \qquad \forall n \in \N \end{equation} Thus by construction, each $a_n$ is reached by a unique $n \in \N$ and $$\N \hookrightarrow S \iff |\N| \leq |S| \iff |S| \geq |\N|$$ (by definitions 1.4.2 of cardinality in the course notes). $\square$ \bigskip $[\impliedby]$ Assume $|S| \geq |\N|$. Show that $S$ is infinite.\\ By our assumption we have $f: \N \hookrightarrow S$\footnote{definitions 1.4.2 and slide 25 ch1}.\\ Now suppose for contradiction that $S$ \emph{is finite} such that $S = \{s_0, ...,s_n\}$. Then our map must take each natural number and map it to an element of the finite set $S$; $f(i)\, \forall i \in \N$. However, this is clearly impossible since if $S$ had $n$ elements, then any injection $f: \N \to S$ would assign infinitely many $n \in \N$ to only $n$ elements of $S$, contradicting injectivity. Thus, no such injection can exist. Our assumption must have been false, and $S$ is indeed \emph{infinite}. $\square$ \newpage \section{Question 2} Prove that a set $S$ is Dedekind finite if and only if there exists some $n \in \N$ such that $S \sim \{0,1,\ldots,n\}$. \subsection{Dedekind Infinite Definition:} A set $S$ is Dedekind-infinite if there is a \textbf{bijection} from $S$ to a proper subset of itself. Otherwise it is Dedekind-finite. \subsection{Proof} $[\impliedby]$ Assume $S \sim \{0,1,\ldots,n\}, n\in\N$. Show that $S$ is Dedekind finite.\\ Suppose for contradiction that there is a bijection from $S$ to a proper subset of itself: \begin{equation} f: \set{0,\ldots, n} \to \set{0,\ldots,m}, \qquad(n > m \text{ by the proper subset construction}) \end{equation} Then $\underbrace{f(0),f(1),\ldots,f(n)}_{\text{n+1 elements}}$ which is more than the $m+1$ elements in the co-domain, and so by the Pigeonhole-principle our function cannot be injective. Thus, this voids our bijective assumption, and indeed no such mapping exists $\implies S$ is Dedekind finite. $\square$ \bigskip $[\implies]$ Assume $S$ is Dedekind finite. Show that $S \sim \set{0, \ldots, n}$.\\ \textbf{Contrapositive:} If $S$ is infinite, then $S$ is Dedekind infinite.\\ Assume $S$ is infinite. Show that $S$ is Dedekind infinite.\\ Since $S$ is infinite we can inductively construct an injective map $f: \N \to S$ as we did in \hyperref[question1]{Question 1}: $$f(n) = a_n \in S \backslash \set{a_0,\ldots,a_{n-1}}$$ Then we construct a bijective map $g:S \to S \backslash \set{a_0}$: \begin{align} g(a_n) &= a_{n+1}\quad \forall n \in \N\\ g(x) &= x, \quad x \in S \backslash \set{a_n: n\in \N} \end{align} Which is \textbf{injective} as $a_n = f(n)$ is injective $\forall n\in \N$ and our map is identical everywhere else.\\ Furthermore, this map is \textbf{surjective} since every element in the co-domain $S\backslash \set{a_0}$ is either \begin{itemize} \item $a_{n+1}$, which has a image $a_n$; or, \item not in the sequence and thus fixed by $g$ \end{itemize} Hence $g$ is a \textbf{bijection} from $S$ to a proper subset of itself $S \setminus \{s_0\} $, proving the \emph{contrapositive}, and therefore if \( S \) is Dedekind-finite, it must be finite. \square \newpage \section{Question 3} Recall that $\P(S)$ denotes the power set of the set $S$. \subsection{a)}\label{part3a} Prove that the map $f: \P(\N) \to [0,1]$ given by \begin{equation} f(S) = \sum_{j\in S} 10^{-j-1},\qquad S \in \P(\N) \end{equation} is well-defined and injective. \subsubsection{Proof} \textbf{An Equivalence}: For the remainder of this question we work with the equivalent summation from $j=[1,\infty)$: \begin{equation}\label{notation} \begin{split} \sum_{j\in S}10^{-j-1} = \sum_{j=1}^\infty a_j 10^{-j}, \quad S \in \P(\N)\\ \text{where } a_j = \begin{cases} 1 & \text{if } j \in S\\ 0 & \text{otherwise} \end{cases} \end{split} \end{equation} \textbf{Well-defined:} Since $j\in \N$, $j \geq 1 \implies 10^{-j} \leq 10^{-1}$. Furthermore, if we allow each $a_j$ to ``fire'' to obtain the maximum value of the summation then we get the geometric series: \begin{align} \sum_{j=1}^\infty 10^{-j} &= \frac{1}{10} + \frac{1}{10^2} + \cdots \\ &= \frac{\frac{1}{10}}{1-\frac{1}{10}} \qquad(\text{by } S_\infty = \frac{a}{1-r}) \\ &= \frac{1}{9} \end{align} Thus, for any $S\subseteq \N$, the sum $\sum_{j\in S} 10^{-j}$ is bounded above by $\frac{1}{9}$ and $[0,\frac{1}{9}] \subseteq [0,1]$. \bigskip \textbf{Injectivity:} Assume $f(S) = f(T)$. Show that $S = T$. In our \hyperref[notation]{notation}, we assume that: \begin{equation} \sum_{j=1}^\infty a_j 10^{-j} = \sum_{j=1}^\infty b_j 10^{-j} \end{equation} and then wish to show that $a_j = b_j \,\forall j \in \N$ which encode the sets $S$ and $T$ respectively. \textbf{Suppose not;} i.e. that there exists at least one $j$ such that $a_j \neq b_j$. Letting $j_0$ be the smallest such index we can have either $a_{j_0} = 1$ and $b_{j_0} = 0$ or vice-versa. But because this problem is symmetric, we shall just opt for this former choice. Then: \begin{align} \sum_{j=1}^{j_0 - 1} a_j 10^{-j} + a_{j_0} 10^{-j_0} + \sum_{j=j_0 + 1}^\infty a_j 10^{-j} &= \sum_{j=1}^{j_0 - 1} b_j 10^{-j} + b_{j_0} 10^{-j_0} + \sum_{j=j_0 + 1}^\infty b_j 10^{-j}\\ \implies \sum_{j=1}^{j_0 - 1} a_j 10^{-j} + {\color{RedViolet}{10^{-j_0}}} + \sum_{j=j_0 + 1}^\infty a_j 10^{-j} &= \sum_{j=1}^{j_0 - 1} b_j 10^{-j} + {\color{RedViolet}{0}} + \sum_{j=j_0 + 1}^\infty b_j 10^{-j}\\ \implies \Ccancel[RedViolet]{\sum_{j=1}^{j_0 - 1} a_j 10^{-j}} + {\color{RedViolet}{10^{-j_0}}} + \sum_{j=j_0 + 1}^\infty a_j 10^{-j} &= \Ccancel[RedViolet]{\sum_{j=1}^{j_0 - 1} b_j 10^{-j}} + \sum_{j=j_0 + 1}^\infty b_j 10^{-j}\\ \end{align} Here we simply substituted the differing values for $a_{j_0}$, $b_{j_0}$ and canceled the equivalent sums which are the $j$'s leading up to the first differing $j_0$. Thus we are left with: \begin{equation} 10^{-j_0} + \sum_{j=j_0 +1}^\infty a_j 10^{-j} = \sum_{j=j_0+1}^\infty b_j 10^{-j} \end{equation} But this can never hold true because at best the right-hand-side $=10^{-j_0 -1} + 10^{-j_0 -2} + \cdots = \frac{10^{-j_0}}{9}$ (by $S_\infty = \frac{a}{1-r}$), and the left-hand-side $\geq 10^{-j_0}$ ($\sum_{j=j_0+1}^\infty a_j 10^{-j} \geq 0$). Thus our assumption was false and there does not exist even one $j\in \N$ such that $a_j \neq b_j$.\\ To conclude, by producing a contradiction of the negation we have proved the original statement. $\square$ \newpage \subsection{b)} Use \ref{part3a}, or otherwise, to prove that $\N \not\sim [0,1]$. \subsubsection{Proof} By Cantor's Theorem\footnote{ch1, slide 23}: $S \not\sim \P(S)$ for any set. So $\N \not\sim \P(\N)$ and $|\P(\N)| > |\N|$, because we can inject $\N$ into $\P(\N)$ by $x \mapsto \set{x}$.\\ Hence \begin{equation} |\N| < |\P(\N)| \leq |[0,1]|, \quad\text{by the injectivity of $\P(\N)$ to $[0,1]$ in \ref{part3a}} \end{equation} And thus $N \not\sim [0,1]$. $\square$ \newpage \end{document}