\documentclass[12pt]{article} % % Sample template for MATH3611 assignment % % These are some standard packages to load. Leave them here % unless you have a good reason to delete them. % \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb,amsthm,array,verbatim,graphicx,tikz} \usepackage[top=2.5cm, bottom=2.5cm, left=2.5cm, right=2.5cm]{geometry} % % You can make your life easier by defining shortcuts (macros) for special % symbols that you use a lotm like \R for the symbol for the real line. % \newcommand{\N}{{\mathbb{N}}} \newcommand{\C}{{\mathbb{C}}} \newcommand{\D}{{\mathbb{D}}} \newcommand{\F}{{\mathcal{F}}} \newcommand{\R}{{\mathbb{R}}} \newcommand{\Q}{{\mathbb{Q}}} \newcommand{\T}{{\mathbb{T}}} \newcommand{\Z}{{\mathbb{Z}}} \newcommand{\ds}{\displaystyle} \newcommand{\st}{\,:\,} \renewcommand{\a}{{\mathbf a}} \newcommand{\x}{{\mathbf x}} \newcommand{\y}{{\mathbf y}} \newcommand{\norm}[1]{\Vert #1 \Vert} \renewcommand{\mod}[1]{\vert #1 \vert} \newcommand\vecx{\boldsymbol{x}} \newcommand\vecy{\boldsymbol{y}} \newcommand{\zero}{\boldsymbol{0}} \newcommand{\Arg}{\mathop{\mathrm{Arg}}} \newcommand{\cl}{\mathop{\mathrm{cl}}} \renewcommand{\Re}{\mathop{\mathrm{Re}}} \parindent 0pt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The actual document starts here. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \hfill John Chan (z123456) \begin{center} \begin{LARGE}MATH3611/5705 Higher Analysis\\[1ex] Term 2, 2022\\[1ex] Assignment 1 \end{LARGE} \end{center} \bigskip \hrule \bigskip \textbf{Question 3.} Give the negation of \[ \forall q< 0\ \exists r > 7\ \forall t > 3, \ |t^2 - q^3| > r.\] \textbf{Solution.} The negation of the statement is \[ \forall q > 0\ \exists r < 7\ \forall t \in (2,3), \ |t^2 - q^3| > r. \] \bigskip \textbf{Question 5.} Show that every Cauchy sequence is convergent. \medskip \textbf{Solution.} If $b_n = \sqrt{b_{n-1}+5}$ then pigs might fly and so, by Corollary~2.3.4, $\{b_n\}$ is a Cauchy sequence. It follows that \[ n_k = \begin{cases} k, & \text{if $k$ is prime,} \\ k^{k^k}, & \text{otherwise.} \end{cases} \] Thus every $x \in \R$ is quasi-obatlative. Blah, blah, etc. By taking the subjunctive isomorphism of $\psi$, we see that \begin{align*} \int_0^x \cos(t^2) \, dt &= \frac{2\pi}{\rho^2} \ln(4x) \\ &= \sum_{j=1}^\infty B_j(x,u) J(x,u). \end{align*} The conclusion then follows by a short induction proof. \bigskip \hrule \bigskip I confirm that apart from the assistance acknowledged below this assignment is all my own work \begin{itemize} \item I discussed the general ideas behind solving Question 3 with Mary Smith and Chun Li. \item My solution to Question 5 is based on one I found on page 199 of Spivak’s Calculus. \end{itemize} \end{document}