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§ Q1
Let (fn)

∞
n=2 ⊂ C[0, 1] be a sequence of piecewise linear functions, where n ∈ N and n ≥ 2, and each

function fn is defined by:

fn(x) =


1, for x ∈ [0, 1

2
− 1

n
],

linear, for x ∈ [1
2
− 1

n
, 1
2
+ 1

n
],

0, for x ∈ [1
2
+ 1

n
, 1]

(a) Show that the sequence (fn)
∞
n=2 is Cauchy in the d2 metric, where

d2(f, g) =

(∫ 1

0

|f(x)− g(x)|2 dx
) 1

2

, f, g ∈ C[0, 1]

(b) Show that the sequence (fn)
∞
n=2 is not Cauchy in the d∞ metric, where

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|, f, g ∈ C[0, 1]

Definition 1.1. A sequence {xn }∞n=0 in a metric space (X, d) is a Cauchy sequence if for every ε > 0,
there is a K(ε) such that d(xm, xn) < ε whenever m,n > K(ε).
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Figure 1: linear piece-wise for f4 and f8
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§§ a)
Proof. For m > n1:

d2(fn, fm)
2 =

∫ 1

0

|fn(x)− fm(x)|2 dx (1)

=

∫
Im,n

|fn(x)− fm(x)|2 dx (2)

where Im,n := [1
2
− 1

n
, 1
2
+ 1

n
] ∪ [1

2
− 1

m
, 1
2
+ 1

m
], i.e. the contributions when fn 6= fm.

Now, each fk takes values of 0 and 1 along the flat regions, and remains linear in between: 0 ≤ fk ≤ 1.
So |fn − fm|2 ≤ 1 and we have a bound for the integrand.

Next, by considering the maximal region of integration:

λ(Im,n) =
�
�
�1

2
+

1

n
− (

�
�
�1

2
− 1

n
) +

�
�
�1

2
+

1

m
− (

�
�
�1

2
− 1

m
) (3)

=
2

n
+

2

m
(4)

<
4

n
(m > n) (5)

We can formulate bounds on our squared metric:

d2(fn, fm)
2 ≤ 1× 4

n
=⇒ d2(fn, fm) ≤

2√
n

(6)

Fixing ε > 0 and K(ε) := d 8
ε2
e with m,n > K(ε):

2√
n
<

2√
K(ε)

< ε (7)

Thus, by the definition of a Cauchy sequence, fn is Cauchy in (C[0, 1], d2).

1the same argument applies for n > m by symmetry
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§§ b)
Proof. Contrariwise, we show that there exists an ε > 0 such that the Cauchy condition fails.
We accomplish this by picking m = 2n such that

z =
1

2
− 1

m

=
1

2
− 1

2n
=⇒ fm(z) = 1

fn(z) = linear

The gradient2 of the linear section is −n
2

and the equation for this segment becomes:

fn(z) = 1− n

2

(
z −

(
1

2
− 1

n

))
= 1− n

2

(
1

n
− 1

2n

)
=

3

4

Consequently, |fm(z)− fn(z)| = 1− 3
4
= 1

4
and

d∞(fn, fm) = sup
x∈[0,1]

|fn(x)− f2n(x)| ≥
1

4

But then with ε := 1
8

there is no choice of an index K that can satisfy our requirement d∞(fm, fn) <
1
8

for m,n > K(ε) because d∞(fm, fn) is already greater than 1
4
!

Thus (fn) is not Cauchy in (C[0, 1], d∞).

2by y2−y1

x2−x1
= 1−0

1/2−1/n−(1/2+1/n)
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§ Question 2
Show that `2 is a vector space; that is, if x, y ∈ `2, then x+ y ∈ `2 and λx ∈ `2 for any λ ∈ R. You may
assume, without proof, the triangle inequality for the norm || · ||2 on Rn for any n ∈ N.

Lemma 2.1.

(a− b)2 ≥ 0

=⇒ a2 − 2ab+ b2 ≥ 0

=⇒ 2ab ≤ a2 + b2

=⇒ a2 + 2ab+ b2 ≤ 2a2 + 2b2 by adding a2 + b2 to both sides
=⇒ (a+ b)2 ≤ 2a2 + 2b2

Lemma 2.2 (Triangle Inequality for Absolute Value). Proof.

|a+ b|2 = (a+ b)2 = a2 + 2ab+ b2 ≤ a2 + 2|ab|+ b2 = (|a|+ |b|)2

=⇒ |a+ b| ≤ |a|+ |b|

Corollary 2.2.1. By 2.1 we have:

(a+ b)2 ≤ 2a2 + 2b2

=⇒ (|a|+ |b|)2 ≤ 2|a|2 + 2|b|2

Which we can combine with 2.2:

|a+ b| ≤ |a|+ |b|
|a+ b|2 ≤ (|a|+ |b|)2

To produce
|a+ b|2 ≤ (|a|+ |b|)2 ≤ 2|a|2 + 2|b|2 (8)

Notation.

`2 = { { xn }∞n=1 ⊂ R |
∞∑
n=1

| xn|2 < ∞} (9)

‖x‖2 =

(
∞∑
k=1

|xk|2
)1/2

(10)
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Proof. Closure under addition:
Let x, y ∈ `2 such that x = {xn }∞n=1 and y = { yn }∞n=1.
Then we apply 8 termwise:

∞∑
n=1

|xn + yn|2 ≤ 2
∞∑
n=1

|xn|2 + 2
∞∑
n=1

|yn|2

= 2||x||22 + 2||y||22

By the comparison test, we have found ||x + y||22 ≤ 2||x||22 + 2||y||22 and we know that ||x||22 + ||y||22
converges by our assumption of both being in `2 and hence being the sum of two finite real numbers.

Closure under scalar multiplication:
Let λ ∈ R and x ∈ `2:

∞∑
n=1

|λxn|2 = λ2

∞∑
n=1

|xn|2

= λ2‖x‖22

Which is finite because ‖x‖22 < ∞. Thus λx ∈ `2.
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§ Question 3
Show that the subset c00 is dense in the metric space `2.3

Proof. Let `2 be the space of square-summable sequences equipped with the 2-norm.

Let c00 = {{xn}∞n=1 ∈ `2 | xn = 0 for all but finitely many n} be the subset of sequences with only finitely
many non-zero terms.

Fix x = {xn }∞n=1 ∈ `2 and ε > 0. Since x ∈ `2, the series
∑∞

n=1 |xn|2 converges to a finite value. By the
definition of convergence for an infinite series4:

∞∑
n=p+1

|xn|2 < ε2 with δ as ε2

Construct xε = {x(ε)
n }

∞
n=1 ∈ c00 by defining

x(ε)
n =

{
xn if 1 ≤ n ≤ p,

0 if n ≥ p+ 1.

Thus, xε = (x1, x2, . . . , xp, 0, 0, . . .), which has finitely many non-zero terms and belongs to c00.
Computing the difference x− xε = {xn − x

(ε)
n }∞n=1 for each index n yields:

xn − x(ε)
n =

{
xn − xn = 0 if 1 ≤ n ≤ p,

xn − 0 = xn if n ≥ p+ 1.

So, x − xε = (0, 0, . . . , 0, xp+1, xp+2, . . .), where the first p terms are zero. Thus the `2-norm of the
difference becomes

‖x− xε‖2 =

(
∞∑
n=1

|xn − x(ε)
n |2
) 1

2

=

(
∞∑

n=p+1

|xn|2
) 1

2

< (ε2)
1
2 = ε,

since
∑∞

n=p+1 |xn|2 < ε2 by the choice of p.
In conclusion, for any x ∈ `2 and ε > 0, there exists xε ∈ c00 such that ‖x− xε‖2 < ε =⇒ c00 is dense in
`2.

3i.e. we wish to show that for x ∈ `2 and ε > 0, ∃xε ∈ c00 such that ‖x− xε‖2 < ε.
4we can make the tail of the series arbitrarily small. this follows because the partial sums sp =

∑p
n=1 |xn|2 converge to

S = ‖x‖22 and the remainder
∑∞

n=p+1 |xn|2 = S − sp can be made arbitrarily small for sufficiently large p.

∞∑
n=p+1

|xn|2 < δ
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