\DocumentMetadata{} \documentclass[dvipsnames,12pt]{exam} % compiles with % latexmk -pdflatex=lualatex -pdf new.tex \usepackage[top = 2cm, bottom = 3cm, left=1.5cm, right=1.5cm]{geometry} \usepackage{microtype} \usepackage{fontspec} \usepackage{amssymb} \usepackage{titlesec} \usepackage{multicol} \usepackage{enumitem} \usepackage{braket} \usepackage{graphicx} \usepackage{tikz} \usepackage{pgfplots} \usepgfplotslibrary{fillbetween} \usetikzlibrary{intersections} \graphicspath{{./img/}} \usepackage{xcolor} \usepackage{cancel} \newcommand\Ccancel[2][black]{\renewcommand\CancelColor{\color{#1}}\cancel{#2}} \usepackage{amsmath} \usepackage{hyperref} \usepackage{eso-pic} \runningfooter{}{}{\thepage} \runningheader{}{}{\scriptsize Aayush Bajaj | z5362216} \hypersetup{ colorlinks = true, linkcolor = RedViolet, citecolor = gray } \titleformat{\section}{\normalfont\Large\bfseries}{{\color{RedViolet}\S}}{0.5em}{} \titleformat{\subsection}{\normalfont\large\bfseries}{{\large \color{RedViolet}\S\S}}{0.5em}{} \titleformat{\subsubsection}{\normalfont\bfseries}{{\color{RedViolet}\S\S\S}}{0.5em}{} \parindent 0pt %%% defs courtesy of Denis: \newcommand{\N}{{\mathbb{N}}} \newcommand{\C}{{\mathbb{C}}} \newcommand{\D}{{\mathbb{D}}} \newcommand{\F}{{\mathcal{F}}} \renewcommand{\P}{{\mathcal{P}}} %careful with this, it redefines the usual P! \newcommand{\R}{{\mathbb{R}}} \newcommand{\Q}{{\mathbb{Q}}} \newcommand{\T}{{\mathbb{T}}} \newcommand{\Z}{{\mathbb{Z}}} \newcommand{\ds}{\displaystyle} \newcommand{\st}{\,:\,} \renewcommand{\a}{{\mathbf a}} \newcommand{\x}{{\mathbf x}} \newcommand{\y}{{\mathbf y}} \newcommand{\norm}[1]{\Vert #1 \Vert} \renewcommand{\mod}[1]{\vert #1 \vert} \newcommand\vecx{\boldsymbol{x}} \newcommand\vecy{\boldsymbol{y}} \newcommand{\zero}{\boldsymbol{0}} \newcommand{\Arg}{\mathop{\mathrm{Arg}}} \newcommand{\cl}{\mathop{\mathrm{cl}}} \renewcommand{\Re}{\mathop{\mathrm{Re}}} %%% end defs %% theorems \usepackage{amsthm} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}{Corollary}[theorem] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{prop}{Proposition} \newtheorem*{notation}{Notation} \theoremstyle{definition} \newtheorem{definition}{Definition}[section] %%%%% \AddToShipoutPictureBG*{% % Note the asterisk (*) - this is important! \AtPageCenter{% \makebox(0,0){% \rotatebox{45}{\textcolor{gray!30}{\fontsize{200}{120}\selectfont FINAL}}% }% }% } \author{Aayush Bajaj | z5362216} \date{\today} \title{MATH3611 | Assignment 2} \begin{document} \maketitle \dotfill \tableofcontents \vspace{1cm} \begin{center} \includegraphics[width=0.2\textwidth]{logo.png} \end{center} \vspace{1cm} \hrule \newpage \section{Q1} \label{question1} Let $(f_n)^\infty_{n=2} \subset C[0,1]$ be a sequence of piecewise linear functions, where $n\in\mathbb{N}$ and $n\geq 2$, and each function $f_n$ is defined by: $$ f_n(x) = \begin{cases} 1, & \text{for } x\in[0,\frac{1}{2}- \frac{1}{n}],\\ \text{linear}, & \text{for } x\in[\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}],\\ 0, & \text{for } x\in[\frac{1}{2}+ \frac{1}{n}, 1] \end{cases} $$ \begin{enumerate}[label=(\alph*)] \item Show that the sequence $(f_n)^\infty_{n=2}$ is Cauchy in the $d_2$ metric, where $$d_2(f,g) = \left ( \int_0^1 | f(x) - g(x) |^2 \,\mathrm{d} x \right )^\frac{1}{2} , f, g \in C[0,1]$$ \item Show that the sequence $(f_n)^\infty_{n=2}$ is not Cauchy in the $d_\infty$ metric, where $$d_\infty(f,g) = \sup_{x\in[0,1]}|f(x)-g(x)|, f, g \in C[0,1]$$ \end{enumerate} \begin{definition}\label{definition} A sequence $\set{x_n}^\infty_{n=0}$ in a metric space $(X, d)$ is a Cauchy sequence if for every $\epsilon > 0$, there is a $K(\epsilon)$ such that $d(x_m, x_n) < \epsilon$ whenever $m, n > K(\epsilon)$. \end{definition} \begin{figure}[ht] \begin{center} \begin{tikzpicture} \begin{axis}[ axis lines=middle, grid = major, width=12cm, height=8cm, grid style={dashed, gray!30}, xmin=0, xmax=1, ymin=0, ymax=1.1, xlabel=$x$, ylabel=$y$, tick align=outside, xtick ={0,.25,.375,.5,.625,.75,1}, xticklabels={0,0.25,0.375,0.5,0.625,0.75,1}, ytick={0,0.5,1}, legend style={at={(0.05,0.95)},anchor=south west}, samples=400 ] % f_4 \addplot[blue,very thick,domain=0:1] { x <= 0.25 ? 1 : (x <= 0.75 ? 1 - 2*(x-0.25) : 0) }; \addlegendentry{$f_{4}$} % f_8 \addplot[red,dashed,very thick,domain=0:1] { x <= 0.375 ? 1 : (x <= 0.625 ? 1 - 4*(x-0.375) : 0) }; \addlegendentry{$f_{8}$} \addplot[name path=four,domain=0:1,draw=none] { x <= 0.25 ? 1 : (x <= 0.75 ? 1 - 2*(x-0.25) : 0) }; \addplot[name path=eight,domain=0:1,draw=none] { x <= 0.375 ? 1 : (x <= 0.625 ? 1 - 4*(x-0.375) : 0) }; \addplot[red!15] fill between[ of=four and eight, soft clip={domain=0.25:0.75} ]; \end{axis} \end{tikzpicture} \caption{linear piece-wise for $f_4$ and $f_8$} \end{center} \end{figure} \newpage \subsection{a)} \begin{proof} For $m > n$\footnote{the same argument applies for $n > m$ by symmetry}: \begin{align} d_2(f_n, f_m)^2 &= \int^1_0 | f_n(x) - f_m(x) | ^2 \, \mathrm{d}x \\ &= \int_{I_{m,n}} | f_n(x) - f_m(x) | ^2 \, \mathrm{d}x \end{align} where $I_{m,n} := [\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}] \cup [\frac{1}{2}-\frac{1}{m}, \frac{1}{2}+\frac{1}{m}]$, i.e. the contributions when $f_n \neq f_m$.\\ Now, each $f_k$ takes values of 0 and 1 along the flat regions, and remains linear in between: $0 \leq f_k \leq 1$. So $|f_n - f_m |^2 \leq 1$ and we have a bound for the integrand.\\ Next, by considering the maximal region of integration: \begin{align} \lambda(I_{m,n}) &= \Ccancel[RedViolet]{\frac{1}{2}}+\frac{1}{n} - (\Ccancel[RedViolet]{\frac{1}{2}}-\frac{1}{n}) + \Ccancel[RedViolet]{\frac{1}{2}}+\frac{1}{m} - (\Ccancel[RedViolet]{\frac{1}{2}}-\frac{1}{m}) \\ &= \frac{2}{n} + \frac{2}{m} \\ &< \frac{4}{n}\quad(m > n) \end{align} We can formulate bounds on our squared metric: \begin{equation} d_2(f_n, f_m)^2 \leq 1\times \frac{4}{n} \implies d_2(f_n, f_m) \leq \frac{2}{\sqrt{n}} \end{equation} Fixing $\epsilon > 0$ and $K(\epsilon) := \lceil\frac{8}{\epsilon^2}\rceil$ with $m, n > K(\epsilon)$: \begin{equation} \frac{2}{\sqrt{n}} < \frac{2}{\sqrt{K(\epsilon)}} < \epsilon \end{equation} Thus, by the \hyperref[definition]{definition} of a Cauchy sequence, $f_n$ is Cauchy in $(C[0,1], d_2)$. \end{proof} \newpage \subsection{b)} \begin{proof} Contrariwise, we show that there exists an $\epsilon > 0$ such that the \hyperref[definition]{Cauchy condition} fails. We accomplish this by picking $m = 2n$ such that \begin{align*} z &= \frac{1}{2}-\frac{1}{m}\\ &= \frac{1}{2}-\frac{1}{2n} \\ \implies f_m(z) &= 1 \\ f_n(z) &= \text{linear} \end{align*} The gradient\footnote{by $\frac{y_2-y_1}{x_2-x_1} = \frac{1-0}{1/2 - 1/n - (1/2 + 1/n)}$} of the linear section is $-\frac{n}{2}$ and the equation for this segment becomes: \begin{equation*} f_n(z) = 1 - \frac{n}{2}\left(z - \left(\frac{1}{2}-\frac{1}{n}\right)\right) = 1- \frac{n}{2}\left(\frac{1}{n} - \frac{1}{2n}\right) = \frac{3}{4} \end{equation*} Consequently, $|f_m(z) - f_n(z)| = 1- \frac{3}{4} = \frac{1}{4}$ and $$d_\infty(f_n, f_m) = \sup_{x\in[0,1]} |f_n(x) -f_{2n}(x)| \geq \frac{1}{4}$$ But then with $\epsilon := \frac{1}{8}$ there is \textbf{no} choice of an index $K$ that can satisfy our requirement $d_\infty(f_m, f_n) < \frac{1}{8}$ for $m,n > K(\epsilon)$ because $d_\infty(f_m, f_n)$ is already greater than $\frac{1}{4}$! Thus $(f_n)$ is not Cauchy in $(C[0,1],d_\infty)$. \end{proof} \newpage \enlargethispage{1cm} \section{Question 2} Show that $\ell^2$ is a vector space; that is, if $x, y \in \ell^2$, then $x + y \in \ell^2$ and $\lambda x \in \ell^2$ for any $\lambda \in \mathbb{R}$. You may assume, without proof, the triangle inequality for the norm $||\cdot||_2$ on $\R^n$ for any $n\in \N$. \begin{lemma}\label{lemm1} \begin{align*} (a-b)^2 &\geq 0 \\ \implies a^2 - 2ab + b^2 &\geq 0 \\ \implies 2ab &\leq a^2 + b^2 \\ \implies a^2 + 2ab + b^2 &\leq 2a^2 + 2b^2 \quad\text{ by adding }a^2 + b^2 \text{ to both sides} \\ \implies (a+b)^2 &\leq 2a^2 + 2b^2 \end{align*} \end{lemma} \begin{lemma}[Triangle Inequality for Absolute Value]\label{lemm2} \begin{proof} \begin{align*} |a+b|^2 &= (a+b)^2 = a^2 + 2ab + b^2 \leq a^2 + 2|ab| + b^2 = (|a| + |b|)^2 \\ \implies |a+b| &\leq |a| + |b| \end{align*} \end{proof} \end{lemma} \begin{corollary} By \ref{lemm1} we have: \begin{align*} (a+b)^2 &\leq 2a^2 + 2b^2 \\ \implies (|a|+|b|)^2 &\leq 2|a|^2 + 2|b|^2 \end{align*} Which we can combine with \ref{lemm2}: \begin{align*} |a + b| &\leq |a| + |b|\\ |a + b|^2 &\leq (|a| + |b|)^2\\ \end{align*} To produce \begin{equation}\label{result1} |a + b|^2 \leq (|a| + |b|)^2 \leq 2|a|^2 + 2|b|^2\\ \end{equation} \end{corollary} \begin{notation} \begin{align} \ell^2 &= \set{\set{x_n}^\infty_{n=1} \subset \R \mid \sum^\infty_{n=1} |x_n|^2 < \infty}\label{l2} \\ \norm{x}_2 &= \left( \sum_{k=1}^\infty |x_k|^2 \right)^{1/2} \label{norm} \end{align} \end{notation} \newpage \begin{proof} \textbf{Closure under addition:} Let $x, y \in \ell^2$ such that $x = \set{x_n}^\infty_{n=1}$ and $y = \set{y_n}^\infty_{n=1}$. Then we apply \ref{result1} termwise: \begin{align*} \sum_{n=1}^\infty |x_n + y_ n |^2 &\leq 2\sum^\infty_{n=1} |x_n|^2 +2\sum^\infty_{n=1}|y_n|^2 \\ &= 2||x||_2^2 + 2||y||_2^2 \end{align*} By the comparison test, we have found $||x+y||_2^2 \leq 2||x||_2^2+2||y||_2^2$ and we know that $||x||_2^2 + ||y||_2^2$ converges by our assumption of both being in $\ell^2$ and hence being the sum of two finite real numbers.\\ \textbf{Closure under scalar multiplication:} Let $\lambda \in \R$ and $x\in\ell^2$: \begin{align*} \sum^\infty_{n=1}|\lambda x_n |^2 &= \lambda^2 \sum^\infty_{n=1} |x_n|^2 \\ &= \lambda^2 \norm{x}_2^2 \end{align*} Which is finite because $\norm{x}^2_2 < \infty$. Thus $\lambda x \in \ell^2$. \end{proof} \newpage \section{Question 3} Show that the subset $c_{00}$ is dense in the metric space $\ell^2$.\footnote{ i.e. we wish to show that for $x\in \ell^2$ and $\epsilon > 0, \; \exists x_\epsilon \in c_{00}$ such that $\norm{x-x_\epsilon}_2 < \epsilon$.} \begin{proof} Let \hyperref[l2]{$\ell^2$} be the space of square-summable sequences equipped with the \hyperref[norm]{2-norm}.\\ Let $c_{00} = \left\{ \{x_n\}_{n=1}^\infty \in \ell^2 \mid x_n = 0 \text{ for all but finitely many } n \right\}$ be the subset of sequences with only finitely many non-zero terms.\\ Fix $x = \set{x_n}_{n=1}^\infty \in \ell^2$ and $\epsilon > 0$. Since $x \in \ell^2$, the series $\sum^\infty_{n=1}|x_n|^2$ converges to a finite value. By the definition of convergence for an infinite series\footnote{we can make the tail of the series arbitrarily small. this follows because the partial sums $s_p = \sum_{n=1}^p |x_n|^2$ converge to $S=\norm{x}_2^2$ and the remainder $\sum_{n=p+1}^\infty |x_n|^2 = S - s_p$ can be made arbitrarily small for sufficiently large $p$. \[ \sum^\infty_{n=p+1}|x_n|^2 < \delta \]}: \[ \sum^\infty_{n=p+1}|x_n|^2 < \epsilon^2\quad\text{with }\delta\text{ as }\epsilon^2 \] Construct $x_\epsilon = \set{x_n^{(\epsilon)}}^\infty_{n=1} \in c_{00}$ by defining \[ x_n^{(\epsilon)} = \begin{cases} x_n & \text{if } 1 \leq n \leq p, \\ 0 & \text{if } n \geq p + 1. \end{cases} \] Thus, $x_\epsilon = (x_1, x_2, \ldots, x_p, 0, 0, \ldots)$, which has finitely many non-zero terms and belongs to $c_{00}$. Computing the difference $x - x_\epsilon = \{x_n - x_n^{(\epsilon)}\}_{n=1}^\infty$ for each index $n$ yields: \[ x_n - x_n^{(\epsilon)} = \begin{cases} x_n - x_n = 0 & \text{if } 1 \leq n \leq p, \\ x_n - 0 = x_n & \text{if } n \geq p + 1. \end{cases} \] So, $x - x_\epsilon = (0, 0, \ldots, 0, x_{p + 1}, x_{p + 2}, \ldots)$, where the first $p$ terms are zero. Thus the $\ell^2$-norm of the difference becomes \[ \norm{x-x_\epsilon}_2 = \left(\sum_{n=1}^\infty |x_n - x_n^{(\epsilon)}|^2 \right )^\frac{1}{2} = \left( \sum_{n=p+1}^\infty |x_n|^2 \right )^\frac{1}{2} < (\epsilon^2)^\frac{1}{2} = \epsilon, \] since $\sum_{n=p + 1}^\infty |x_n|^2 < \epsilon^2$ by the choice of $p$. In conclusion, for any $x \in \ell^2$ and $\epsilon > 0$, there exists $x_\epsilon \in c_{00}$ such that $\norm{x - x_\epsilon}_2 < \epsilon \implies c_{00}$ is dense in $\ell^2$. \end{proof} \end{document}