1 Questions

Q1: Let $\{f_n\}_{n=2}^{\infty} \subset C[0,1]$ be a sequence of piecewise linear functions, where $n \in \mathbb{N}$ and $n \geq 2$, and each function f_n is defined by:

$$f_n(x) = \begin{cases} 1, & \text{for } x \in \left[0, \frac{1}{2} - \frac{1}{n}\right], \\ \text{linear,} & \text{for } x \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}\right], \\ 0, & \text{for } x \in \left[\frac{1}{2} + \frac{1}{n}, 1\right] \end{cases}$$

• Show that the sequence $\{f_n\}_{n=2}^{\infty}$ is Cauchy in the d_2 metric, where

$$d_2(f,g) = \left(\int_0^1 |f(x) - g(x)|^2 dx\right)^{1/2}, \quad f, g \in C[0,1].$$

• Show that the sequence $\{f_n\}_{n=2}^{\infty}$ is not Cauchy in the d_{∞} metric, where

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|, \quad f,g \in C[0,1].$$

Q2: Show that ℓ^2 is a vector space; that is, if $x, y \in \ell^2$, then $x + y \in \ell^2$ and $\lambda x \in \ell^2$ for any $\lambda \in \mathbb{R}$. You may assume, without proof, the triangle inequality for the norm $\|\cdot\|_2$ on \mathbb{R}^n for any $n \in \mathbb{N}$.

Q3: Show that the subset c_{00} is dense in the metric space ℓ^2 .