\documentclass{article} \usepackage[top=2cm, bottom=3cm, left=1.5cm, right=1.5cm]{geometry} \usepackage{microtype} \usepackage{fontspec} \usepackage{titlesec} \usepackage{multicol} \usepackage{braket} \usepackage{graphicx} \graphicspath{{./img/}} \usepackage{xcolor} \usepackage{cancel} \usepackage{amssymb} \usepackage{amsmath} % Added for math symbols and \mathrm \newcommand{\N}{{\mathbb{N}}} \newcommand{\C}{{\mathbb{C}}} \newcommand{\D}{{\mathbb{D}}} \newcommand{\F}{{\mathcal{F}}} \renewcommand{\P}{{\mathcal{P}}} %careful with this, it redefines the usual P! \newcommand{\R}{{\mathbb{R}}} \newcommand{\Q}{{\mathbb{Q}}} \newcommand{\T}{{\mathbb{T}}} \newcommand{\Z}{{\mathbb{Z}}} \newcommand{\ds}{\displaystyle} \newcommand{\st}{\,:\,} \renewcommand{\a}{{\mathbf a}} \newcommand{\x}{{\mathbf x}} \newcommand{\y}{{\mathbf y}} \newcommand{\norm}[1]{\Vert #1 \Vert} \newcommand\vecx{\boldsymbol{x}} \newcommand\vecy{\boldsymbol{y}} \newcommand{\zero}{\boldsymbol{0}} \newcommand{\Arg}{\mathop{\mathrm{Arg}}} \newcommand{\cl}{\mathop{\mathrm{cl}}} \renewcommand{\Re}{\mathop{\mathrm{Re}}} \begin{document} \section{Questions} \textbf{Q1:} Let $\{f_n\}_{n=2}^\infty \subset C[0,1]$ be a sequence of piecewise linear functions, where $n\in\mathbb{N}$ and $n\geq 2$, and each function $f_n$ is defined by: \[ f_n(x) = \begin{cases} 1, & \text{for } x \in \left[0, \frac{1}{2} - \frac{1}{n} \right], \\ \text{linear}, & \text{for } x \in \left[ \frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n} \right], \\ 0, & \text{for } x \in \left[ \frac{1}{2} + \frac{1}{n}, 1 \right] \end{cases} \] \begin{itemize} \item Show that the sequence $\{f_n\}_{n=2}^\infty$ is Cauchy in the $d_2$ metric, where \[ d_2(f,g) = \left( \int_0^1 |f(x) - g(x)|^2 \, \mathrm{d}x \right)^{1/2}, \quad f, g \in C[0,1]. \] \item Show that the sequence $\{f_n\}_{n=2}^\infty$ is not Cauchy in the $d_\infty$ metric, where \[ d_\infty(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|, \quad f, g \in C[0,1]. \] \end{itemize} \textbf{Q2:} Show that $\ell^2$ is a vector space; that is, if $x, y \in \ell^2$, then $x + y \in \ell^2$ and $\lambda x \in \ell^2$ for any $\lambda \in \mathbb{R}$. You may assume, without proof, the triangle inequality for the norm $\| \cdot \|_2$ on $\R^n$ for any $n\in \N$. \textbf{Q3:} Show that the subset $c_{00}$ is dense in the metric space $\ell^2$. \end{document}