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§ Problems

§§ Appetisers

1. The Newton-Raphson method.

(a) 2Estimate
√
2 using 2 iterations of the Newton-Raphson method. Let x0 = 1

Hint: The equation f(x) = x2 − 2 may be helpful.

(b) 1What does this method do, and how can it be used to find the optima of a
function?

(c) 1List one advantage and one disadvantage for this method in practise.Half mark
each

Hint: Generalise to the multivariate matrix case.

2. 2Let n be the number of people in a group. What number must n be such that 2
people in this group share the same birthday with at least 50% probability?

(a) 1What number must n be such that 2 people share the same birthday with
100% probability?

3. What kind of matrices possess an inverse? If the following matrices do, find them:

(a) 1[
5 4 3
3 2 1

]
(b) 10 2 4

2 4 6
4 6 8


(c) 1

4 3 2 1
0 3 2 1
0 0 2 1
0 0 0 1


Recall that A|I ⇝ I|A−1

4. Let xT =
[
1 2 3

]T
and yT =

[
−2 1 3

]T
. Compute the distance between these

two vectors by taking the inner product to be:

(a) 1the familiar dot product: xTy

(b) 1xTAy,A =

2 1 0
1 2 −1
0 −1 2


Hint: Recall that ∥x∥ :=

√
⟨x, x⟩

5. Matrix Decompositions
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(a) 1The trace of a matrix is equal to the of the eigenvalues.

(b) 1The determinant of a matrix is equal to the of its eigenvalues.

(c) 1Find the eigenvalues of this R2×2 matrix:[
3 3
7 −1

]
(d) 1Qualitatively describe the differences between eigendecompositions and Singu-

lar Value Decompositions1

6. 2Given that a matrix A ∈ Rn×n is positive semi-definite, denoted A ⪰ 0, if A = AT

and xTAx ≥ 0, ∀x ∈ Rn. Show that A = zzT for an arbitrary z ∈ Rn

7. Here are two ordinary, linear, autonomous and inhomogenous differential equations:

(a) 2Find the exact solution to:

dy

dx
+ cos(x)y = cos(x), y(

π

2
) = −1

(b) 2Find the general solution to:

y
′′
+ 14y

′
+ 49y = et

8. 6List out the first four terms of the power series expansions of:

(a) exp z

(b) sin z

(c) cos z

(d) sinh z

(e) cosh z

(f) 1
1−x

(g) 1
1+x

9. 3Solve the following recurrence relation with initial conditions2:

an+1 =
2an
n+ 3

, a0 = 1

10. 3Compute the following determinant — efficiently.∣∣∣∣∣∣∣∣∣∣
2 0 1 2 0
2 −1 0 1 1
0 1 2 1 2
−2 0 2 −1 2
2 0 0 1 1

∣∣∣∣∣∣∣∣∣∣
1mathematics is sufficient, although not necessary here.
2be grateful for the ease of this recurrence; solving real ones in DE’s are painful
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11. 2Express the derivative of σ(z) =
1

1 + e−z
, σ

′
(z), as a function of σ(z).

12. 5Describe the following Probability Distributions (in a sentence or two), and give an
example experiment for each:

(a) Bernoulli

(b) Binomial

(c) Gaussian

(d) Pareto

(e) Geometric

(f) Poisson

(g) Uniform

13. 2“The principle point of proof is to compel belief” - Daniel Velleman. Keeping this
in mind, explain to me either mathematically or otherwise, why(

n

r

)
=

n!

r!(n− r)!

§§ Main Course: Least Squares

The following section is devoted to deriving closed forms for the univariate and multi-
variate least squares model. We will then go on to see how to massage this linear model
to fit obviously non-linear relationships (Figure 1, Image 3) and non-obvious non-linear
relationships (Figure 2).

Figure 1: Linear Regression with increasingly polynomial features

§§§ Matrix Calculus

14. A univariate linear regression model is a model that tries to predict an outcome
based on just a single independent variable: x. The model takes in data in the form
of tuples and constructs a prediction (first plot, Figure 1) that we can use either to
interpolate or extrapolate values of the dependent variable.
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Figure 2: Non-Euclidean classification

The question then becomes, what kind of metric should we use to determine this
line? In practice we construct a loss function L(w) = 1

n

∑n
i=1(yi − y∗i )

2. This takes
each data point we were given, yi and squares the difference between it and our
linear model y∗i = w0 + w1xi.

3

Our loss function is then equivalently

L(w) =
1

n

n∑
i=0

(yi − (w0 + w1xi))
2

(a) 2Obviously we want to minimise this loss function to achieve the best possible
linear model4. We will see why this Mean-Squared Error (MSE) is a good
choice in the following parts, but for now show that the w0 which minimises
this loss function is equal to y − w1x. Recall that a = 1

n

∑n
i=0 ai.

(b) 2Repeat the steps by taking the partial derivative w.r.t w1 and showing that

the minimum occurs at
xy − w0x

x2
.

the hat
above the
y signifies
the best
estimate

(c) 1Solve the above weights simultaneously to rewrite the univariate regression
line ŷ(x) = w0 + w1x in terms of the data only.

15. We now extend this result to the multivariate case of p features5 with n feature
vectors6: x1,x2, ...,xn.

3the * indicates our best estimate
4in the sense that the least squares estimate of the weight parameters will have the smallest variance

amongst all linear unbiased estimates
5this is how many independent variables we have
6this is how many data points you have
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So each ith feature vector, xi has p entries:

xi =


xi,0

xi,1
...

xi,p−1


.

Our outputs (still y) will now be taking in richer feature vectors and applying
weights w0, ..., wp−1 to each data point of each independent variable.

It makes sense to stack these feature vectors and construct a design matrixX ∈ Rn×p:

X =


x1

T

x2
T

...
xn

T

 =


x1,0 x1,1 . . . x1,p−1

x2,0 x2,1 . . . x2,p−1
...

...
. . .

...
xn,0 xn,1 . . . xn,p−1


You should verify for yourself that the multivariate model now looks like:

ŷi = w0 + w1xi,1 + w2xi,2 + . . .+ wp−1xi,p−1 (1)

And thus our previously manageable loss function transforms into

L(w) =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

=
1

n

n∑
i=1

(w0 + w1xi,1 + w2xi,2 + . . .+ wp−1xi,p−1)
2 (3)

It should now be clear that taking partials with respect to each of the p weights is
infeasible, and thus we must leverage matrix notation and calculus:

L(w) =
1

n
∥y −Xw∥22

where ∥ · ∥22 denotes the L2 norm and has the property ∥x∥22 = xTx.

(a) 1Begin by showing that ∇xb
Tx = b, where b,x ∈ Rn

do not fear
summation
expansions! (b) 1Next show that ∇xx

TAx = 2Ax, with A ∈ Rn×n and x ∈ Rn

(c) 2Finally, by leveraging the above rules, find ∇wL(w).

(d) 1Set the above gradient to 0, and thus find the critical point.

16. 1Whilst a critical point is a necessary condition for a minimum, it is not sufficient.
Given that any critical point of a convex function is a minimum, show that the
Hessian of L(w) is positive semidefinite.
Recall the definition from Question 6.

17. 2Wielding this Hessian, apply the Newton-Raphson method to this problem to find
out how many iterations it takes to find the optimal solution. Let w = w0.
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§§§ Statistics

In this section we will justify the use of the Mean-Squared Error that we befriended
in the previous section. We will justify mathematically its existence as the best loss
function under the assumption that the noise within our sampling was / is normally
distributed.

18. Given a loss function parametrised on θ, L(θ), we now want to choose this parameter
that gives us the highest possible likelihood of observing the data. In other words,
we wish to find the maximum likelihood estimator (MLE):

θ̂MLE = argmax
θ∈Θ

L(θ)

(a) 3AssumingX1, ..., Xn
i.i.d.∼ Bernoulli(p), compute p̂MLE. Recall that the Bernoulli

Distribution is discrete and has probability mass function:

P(X = k) = pk(1− p)1−k, k = 0, 1 p ∈ [0, 1]

(b) 4Assume that X1, ..., Xn
i.i.d.∼ N (µ, σ2). Compute (µ̂MLE, σ̂

2
MLE)

19. 5Having now practised finding MLE’s, let us now rewrite equation 1 as

y = Xw

=⇒ y(i) = x(i)Tw

And now the punchline: Let us assume that each of these data points have a
degree of noise in them. Furthermore, we will assume that this noise is normally
distributed with zero mean and variance σ2:

y(i) = x(i)Tw + ϵ(i), ϵ ∼ N (0, σ2)

Your task is write down the log-likelihood and maximum likelihood estimation
objective and then solve for the MLE estimator ŵMLE. Note: you may assume the
errors are independent and identically distributed.

§§§ Non-linearities

20. 2In this question we will explore the capacity of a linear model to fit polynomial
relationships with a trick known as Locally Weighted Regression.

Locally Weighted Regression (LWR) is a non-parametric regression technique where
weights are assigned to the data points based on their “closeness” to the query point.
The weighted linear regression model minimizes a weighted version of the squared
loss:

L(w) =
n∑

i=1

w(i)
(
y(i) − x(i)Tw

)2

,
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where the weights are given by:

w(i) = exp

(
−∥x(i) − x∥2

2τ 2

)
.

Here, τ > 0 is a bandwidth parameter controlling the locality of the regression.

(a) 1Explain the difference between a parametric and non-parametric model.

(b) 2Derive the closed-form solution for the weight vector w by solving the weighted
least squares minimization problem.

(c) 2For the dataset:

{(x(i), y(i))} = {(−1, 1), (0, 0), (1, 1)},

use Locally Weighted Regression with τ = 1 to compute the predicted value ŷ
at x = 0.5

21. 1What is an n-dimensional line called?

22. 3We will now see how it is possible to construct a linear decision boundary for data
which looks as tangled as Figure Figure 2.

The concentric circles have been randomly coloured, but the point of the task is to
colour them correctly.

Your task is simple, submit a sketch or plot in 2 or 3 dimensions, that separates
this data. This task may require some research into kernel methods, which project
the data into higher dimensions and allow you to linearly separate the data in at
least two of these dimensions

23. 2Finally, because all of the above methods are prone to overfitting, find the closed
form solution of the multivariate least squares subject to L2 normalisation throttled
by the hyperparameter lambda.

wridge = argmax
w

∥y −Xw∥22 + λ∥w∥22

Note: Ridge regression is another term for L2 normalised Least Squares

−1 −0.5 0 0.5 1

−2

0

2

Overfitting (No Regularization)

Sixth Degree Polynomial

−1 −0.5 0 0.5 1

−2

0

2

With L2 Regularization

Regularized Sixth Degree Polynomial

Figure 3: for conceptual benefit
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§ Grade Table

Question: 1 2 3 4 5 6 7 8 9 10 11 12

Points: 4 3 3 2 4 2 4 6 3 3 2 5

Score:

Question: 13 14 15 16 17 18 19 20 21 22 23 Total

Points: 2 5 5 1 2 7 5 7 1 3 2 81

Score:

§ References

cs229 problem set 0; mathematics for machine learning (book); cs229 lecture notes;
cs9417 lab code + tutorials. the diff eqns q were from a unsw math test. i created the
matrix problems excluding q10. the remaining problems are simply classical.
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