\begin{student} To \emph{add} is to \emph{sum}. The meanings are identical. It is useful to think about the number line for your basic operations: \begin{figure}[ht] \centering \begin{tikzpicture} \draw[->] (0,0) -- (11,0); \foreach \x in {0,1,2,3,4,5,6,7,8,9,10} \draw[shift={(\x,0)}] (0,3pt) -- (0,-3pt) node[below] {$\x$}; \foreach \x in {1,2,3,4} \draw[-latex] (6+\x-1,0) to[bend left] (6+\x,0); \end{tikzpicture} \caption{the addition, 6 + 4} \end{figure} It seems trivial now, but learning to think in simple terms will help your mathematical problem solving skills\footnote{i.e. what does it mean to multiply 6 by -2 on the number line?}. \end{student} \subsection{Commutativity} The algebraic operation of \emph{addition} is said to \textbf{commutative}. This means that $a + b$ is the same as $b + a$. \begin{questions} \Question[1] A good way to remember this is: \begin{solutionordottedlines}[1in] If it is possible to commuting from place A to place B, then it will be the exact same commuting from place B back to place A! \end{solutionordottedlines} \end{questions} \subsection{Associativity} Addition is also \textbf{associative}. This means that $(a + b) + c$ is the same as $a + (b + c)$. This becomes helpful in that we can just swap the order around for addition. See if you can discover this yourself: \begin{examples} \begin{questions} \Question[2] Calculate the following. Ask your tutor for a hint if it's taking longer than 20 seconds. \begin{parts} \part $23+41+7+9 = $ \fillin[80] \part $27+55+445+23+7$ \fillin[557] \end{parts} \end{questions} \end{examples} \begin{exercises} It should not take you more than 15 minutes to complete all of the following: \begin{questions} \Question[6] Half marks each; carry out the additions mentally. \begin{multicols}{3} \begin{parts} \part $15 + 5=$ \fillin[][1.5cm] \part $8+22=$ \fillin[][1.5cm] \part $13+7=$ \fillin[][1.5cm] \part $74+6=$ \fillin[][1.5cm] \part $7+58=$ \fillin[][1.5cm] \part $6+38=$ \fillin[][1.5cm] \part $8+89=$ \fillin[][1.5cm] \part $32+9=$ \fillin[][1.5cm] \part $35+27=$ \fillin[][1cm] \part $42+19=$ \fillin[][1cm] \part $29+36=$ \fillin[][1cm] \part $57+86=$ \fillin[][1cm] \end{parts} \end{multicols} \Question[4] Also half marks: \begin{multicols}{2} \begin{parts} \part \(1+9+33=\) \fillin[] \part \(2+38+5=\) \fillin[] \part \(27+6+3=\) \fillin[] \part \(16+24+5=\) \fillin[] \part \(61+9+24=\) \fillin[] \part \(4+42+38=\) \fillin[] \part \(16+55+27=\) \fillin[] \part \(72+19+26=\) \fillin[] \end{parts} \end{multicols} \Question[4] Now with 4 terms. \begin{multicols}{2} \begin{parts} \part \(22+17+18+23\) =\fillin[][1.5cm] \part \(14+18+76+92\) =\fillin[][1.5cm] \part \(13+27+64+6\) =\fillin[][1.5cm] \part \(25+32+15+18\) =\fillin[][1.5cm] \part \(15+34+26+35\) =\fillin[][1.5cm] \part \(12+19+18+1\) =\fillin[][1.5cm] \end{parts} \end{multicols} \Question[8] Now entering the triple digits. I'll pay you 1 mark each: \begin{multicols}{2} \begin{parts} \part \(243+57=\) \fillin[] \part \(567+43=\) \fillin[] \part \(328+22=\) \fillin[] \part \(786+24=\) \fillin[] \part \(435+25=\) \fillin[] \part \(963+57=\) \fillin[] \part \(486+524=\) \fillin[] \part \(364+251=\) \fillin[] \end{parts} \end{multicols} \Question[2] Three cows produced 29 litres, 47 litres and 23 litres of milk in one day. How much milk did they produce in total? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[2] A tiler laid 267 tiles in the kitchen, 20 tiles in the laundry and 113 tiles in the bathroom. How many tiles did he lay in total? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[2] On the first day of my holidays, I travelled 85 kilometres from my home in Victor Harbor to Adelaide, then 516 kilometres from Adelaide to Broken Hill. The next day I travelled 298 kilometres from Broken Hill to Mildura. How many kilometres did I travel in the first two days of my trip? \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \Question[2] A busker collected \(\$ 8.00, \$ 13.00, \$ 4.00\) and \(\$ 12.00\) over four days. How much did she earn? \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \Question[2] In three Year 7 classes, 27 students, 31 students and 26 students attended roll call one morning. How many Year 7 students were present? \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \Question[2] I picked 18 daffodils from my garden on Monday, 3 on Tuesday, 27 on Wednesday, 6 on Thursday and 12 on Friday. How many daffodils did I pick over the five days? \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \Question[2] In one week, Sam read four books. The first book had 312 pages, the second 175, the third 48 and the fourth 98 . How many pages did Sam read in the week? \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \Question[2]$\,$ \begin{parts} \part By appropriately pairing numbers, carry out the addition \(1+2+3+4+5+6+7+8+9\) \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \part Use the same idea to find the sum of numbers from 1 to 99 inclusive. \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \end{parts} \end{questions} \end{exercises}