\begin{doublespace} Division can be a tricky topic - much like \raisebox{-.6ex}{\em negative numbers}. However, a careful study at the start will pay you dividends in the future. \end{doublespace} An interesting place to start might be $\displaystyle \frac{4}{0}$. What does it mean to divide a number by zero? \begin{solutionordottedlines}[1in] You can't do this. It doesn't make any sense. The operation is not well-defined. The calculator breaks, computer programs crash unexpectedly. \end{solutionordottedlines} Well let's try dividing by another whole number then: $\frac{4}{2} = \fillin[2]$. This method of writing division as a fraction is common practice beyond \emph{primary school}. We shall try to express division in this form as often as we can. You can and should think about division as taking a group (the numerator) and dividing it into parts (the denominator). If we have 15 people and want to split them into 3 groups, each group has \fillin[5] people. \subsection{Division without Remainders} This clean division, i.e. that without remainders is exactly the reverse of multiplication: \begin{examples} \begin{questions} \question Fill in each box to give the equivalent multiplication or division statement. \begin{parts} \Part[1] \(60 \div 5=12\) is equivalent to \(60=12 \times \square\) \Part[1] \(24 \div \square=4\) is equivalent to \(24=6 \times 4\) \end{parts} \Question[1] How many equal groups of 5 objects can 15 objects be divided into? \begin{solutionorbox}[1in] \end{solutionorbox} \Question[1] There are 60 chocolates to be packed into boxes so that each box has 12 chocolates in it. How many boxes are needed? \begin{solutionorbox}[1in] \end{solutionorbox} \Question[1] A box of 72 chocolates is to be divided equally between 9 people. How many chocolates does each person get? \begin{solutionorbox}[1in] \end{solutionorbox} \Question[1] \(\displaystyle\frac{25}{5}=\fillin[5]\) \Question[1] \(\displaystyle\frac{240}{3}=\fillin[80]\) \end{questions} \end{examples} \subsection{Division \emph{with} remainders} You should still consider this as taking a group of things and dividing it by a denominator amount of parts: This shows that \(28=3 \times 9+1\). We say ' \(28 \div 3\) equals 9 with remainder 1 '. In this process, 28 is called the dividend, 3 is the divisor, 9 is the quotient and 1 is the remainder. The remainder must be less than the divisor.\marginpar{\raggedright The naming of things is termed \emph{nomenclature}} \begin{examples} \begin{questions} \Question[2] Put the quotient in the first box and the remainder in the second box to make each statement true.\\ \begin{parts} \part \(26=\square \times 4+\square\) \part \(34=\square \times 3+\square\) \end{parts} \end{questions} \end{examples} \subsection{The Distributive Law} This part is interesting---it is the same as before, but very rarely are people able to do this mentally for division: \[ \begin{aligned} 16 \div 2 & =(10+6) \div 2 \\ & =10 \div 2+6 \div 2 \\ & =5+3 \\ & =8 \end{aligned} \] Here is another example, this time involving subtraction. It uses the distributive law of division over subtraction. \[ \begin{aligned} 196 \div 4 & =(200-4) \div 4 \\ & =200 \div 4-4 \div 4 \\ & =50-1 \\ & =49 \end{aligned} \] \begin{examples} The distributive law for division over addition and subtraction makes it easier to carry out some divisions. \begin{questions} \Question[2] Use the distributive law to evaluate each of the following. I'll pay double marks for these. \begin{parts} \part \((100+55) \div 5=\fillin[]\) \part \((200-15) \div 5=\fillin[]\) \part \(540 \div 5=\fillin[]\) \end{parts} \end{questions} \end{examples} \begin{exercises} \begin{questions} \Question[1] Fill in each box to give the equivalent multiplication or division statement. \begin{parts} \part \(108 \div 9=12\) is equivalent to \(108=12 \times \square\). \part \(200 \div 10=20\) is equivalent to \(\square=10 \times 20\). \part \(72 \div \square=12\) is equivalent to \(72=12 \times \square\). \end{parts} \Question[6] Work from left to right to calculate the following. \begin{parts} \part \(24 \times 3 \div 3\)\\ \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(10 \times 2 \div 2\)\\ \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(36 \div 4 \times 4\)\\ \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(56 \div 8 \times 8\)\\ \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(18 \div 3 \times 3\)\\ \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(24 \div 12 \times 12\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[2] There are 28 chocolates to be divided equally among 4 people. How many chocolates does each person get? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[2] There are 84 people at a club meeting. The organiser wishes to form 7 equal groups. How many people will there be in each group? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[6] Fill in the boxes to make each statement true, with the smallest possible remainder. \begin{parts} \part \(17=\square \times 3+\square\) \part \(37=\square \times 5+\square\) \part \(13=\square \times 2+\square\) \part \(87=\square \times 8+\square\) \part \(41=\square \times 5+\square\) \part \(148=\square \times 12+\square\) \end{parts} \Question[2] Draw a dot diagram to show \(30 \div 8=3\) with remainder 6 or, equivalently, \(30=8 \times 3+6\). \begin{solutionorbox}[1in] \end{solutionorbox} \Question[2] Draw a dot diagram to show \(20 \div 6=3\) with remainder 2 or, equivalently, \(20=6 \times 3+2\). \begin{solutionorbox}[1in] \end{solutionorbox} \Question[4] Illustrate each expression on a number line. \begin{parts} \part \(7 \div 2\)\\ \begin{solutionorbox}[1in] \end{solutionorbox} \part \(13 \div 3\) \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \Question[6] Evaluate: \begin{parts} \part \[\frac{20}{10}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{30}{6}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{42}{7}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{144}{12}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{36}{4}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{120}{3}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[3] Perform each calculation by using the method indicated. \begin{parts} \part \(448 \div 32\) (divide by 2 five times) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(640 \div 80\) (divide by 10 and then by 8 ) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(805 \div 35\) (divide by 7 and then by 5 ) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[6] Evaluate each expression by using the distributive law. \begin{parts} \part \((600+35) \div 5\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \((300-25) \div 5\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(390 \div 5\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \((600+27) \div 3\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \((300-24) \div 3\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \(390 \div 3\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \end{questions} \end{exercises}