You have already covered the theory behind this, but since it is so important to drill here are more exercises: \fbox{\centering \Huge \textbf{BODMAS}}\marginpar{\scriptsize{}label each of these letters!} \begin{exercises} \begin{questions} \Question[] Evaluate:\\ \begin{parts} \part \(6+7+11+8\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(6+7+8-9\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(4-3+6-2\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(12-4-3+2\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(7-1-3+6\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(26-14-4+12\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(56-28-20+2\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(30+50-20-60\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(32+8-40\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(34+5 \times 3\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(60-4 \times 10\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(52+45 \div 9\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(45-45 \div 9\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(66+23 \times 2\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(24-144 \div 12\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(4 \div 10^{3}\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(5+7-4+13\) \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \begin{parts} \part \(5 \times 6 \div 3+7\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((11-7) \times(12-5)\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(4+28 \div 4\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(64 \div 8+42 \div 7\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(7+11 \times(5+7)\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((14+11) \div 5\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(10^{4} \times(2+11)\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((24+56) \div(7+3)\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((4-3) \times 5\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(24-15 \div 3\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(3 \times(5-3)-6\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((32-16)+(54-12) \div 6\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(25 \div 5 \times 5 \div 25\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(4 \times 11 \div 2 \times(12+8)\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((75-45) \times 3+(11+9) \times 5\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((7-4)+9 \div 3\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((11+7) \div 3+8 \times(11+19)\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((11+7) \div 3+8 \times 11+19\) \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \Question[6] Insert brackets in each expression to make the resulting statement true. \begin{parts} \part \(3 \times 6+4=30\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(3 \times 7-6 \div 3=1\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(8 \times 7+30 \div 5=104\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(7 \times 3 \times 2+8=210\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(5-2 \times 1+23 \div 6=12\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(6+7 \times 11+1=156\) \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \Question[5] Evaluate: \begin{parts} \part \((4-3) \times 10^{2}\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \((340-140)-10^{2}\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(3 \times 5-(13-6)\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(10^{3} \div 5 \times 5 \div 25\) \begin{solutionorbox}[1in] \end{solutionorbox} \part \(4 \times 10^{2} \div 2 \times(13+7)\) \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \Question[4] Perform these calculations. \begin{parts} \part Divide 36 by 3 and then add 6 \begin{solutionorbox}[1in] \end{solutionorbox} \part Add 6 to 36 and then divide by 3 \begin{solutionorbox}[1in] \end{solutionorbox} \part Subtract 12 from 64 and then divide by 4 \begin{solutionorbox}[1in] \end{solutionorbox} \part Add 15 to 210 and then divide by 5 \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \Question[2] Crates of bananas have 60 bananas in each. A market store owner buys 12 crates and 23 loose bananas. How many bananas does he buy? \begin{solutionorbox}[2in] \end{solutionorbox} \Question[2] Taj has 568 chocolates to give out at a party. He first divides the chocolates into 8 equal parcels. He then takes 3 of these parcels of chocolates and gives them to his friend Jane. How many chocolates does Jane receive? \begin{solutionorbox}[2in] \end{solutionorbox} \Question[2] Large crates of soft drinks each contain 56 bottles. It is decided that these are too heavy, so 8 bottles are removed from each crate. How many bottles are there in 15 of the lighter crates? \begin{solutionorbox}[2in] \end{solutionorbox} \Question[2] David divides \(\$ 4250\) equally between 5 bank accounts. He then adds another \(\$ 32\) to each of these accounts. How much money has he put into each account? \begin{solutionorbox}[2in] \end{solutionorbox} \end{questions} \end{exercises}