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1. (15 points) Set Theory
(a) (5 points) i. |A| ≤ |B|

Solution: means there exists an injective map f : A → B.

ii. |A| = |B|

Solution: means there exists a bijective map f : A → B.

iii. |A| < |B|

Solution: means ∃ injective but not surjective map A → B.

iv. Prove that |N| = |2N|.

Solution: Consider f : N → 2N given by f(n) = 2n. It is clearly injective and
surjective. The correspondence is illustrated below.

N : 0 1 2 3 · · ·

2N : 0 2 4 6 · · ·

top row: domain

bottom row: codomain
Thus f is a bijection and |N| = |2N|.

(b) (10 points) i. State the Schroder–Bernstein Theorem. This is also known as the Cantor
Bernstein Theorem.

Solution: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

ii. If A is infinite, show |N| ≤ |A|.

Solution: Pick distinct a0, a1, · · · ∈ A recursively; n 7→ an is injective N ↪→ A.

iii. Deduce |A ∪ N| = |A| for infinite A.

Solution: Trivially |A| ≤ |A ∪ N|. From (b) get injection N ↪→ A; combine with
inclusion A ↪→ A to build an injection A ∪N ↪→ A by sending n 7→ a2n+1 and ak 7→ a2k.
Apply Schröder–Bernstein.

iv. If A is countably infinite prove that |N| ≤ |A|.
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Solution: Since A is countably infinite, there exists a bijection h : N → A, hence a
fortiori an injection N ↪→ A. Therefore |N| ≤ |A|.

2. (13 points) Metric Spaces
(a) Define a Metric Space (X, d).

Solution: A metric space is a set X with d : X ×X → [0,∞) such that for all x, y, z ∈ X:

d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z).

(b) Define an open set Y ⊆ X.

Solution: U ⊆ X is open if for each x ∈ U there exists r > 0 with the open ball
B(x, r) = {y ∈ X : d(x, y) < r} ⊆ U .

(c) Define a boundary point.

Solution: A point x ∈ X is a boundary point of A ⊆ X if every open ball B(x, r) meets
both A and X \ A. The boundary is ∂A = cl(A) \ Int(A).

(d) (4 points) Prove that the interior of Y is open.

Solution: By definition,

Int(Y ) =
⋃

{B(x, r) : x ∈ Y, r > 0, B(x, r) ⊆ Y },

a union of open balls. Unions of open sets are open, so Int(Y ) is open.

3. (5 points) Suppose lim sup xn = a and lim sup xn = b. Prove a = b.

Solution: Assume a < b and set ε = b−a
3

. By the lim sup characterization, eventually xn < a+ ε,
but for infinitely many n, xn > b− ε. Thus for some n,

b− ε < xn < a+ ε ⇒ b− a < 2ε = 2
3
(b− a),

a contradiction. Symmetrically b ≤ a. Hence a = b.

4. (11 points) Norm Topology
(a) Define a Normed Space.
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Solution: A normed space is a vector space V over R or C with ‖ · ‖ : V → [0,∞) such
that for all x, y ∈ V , α scalar:

‖x‖ = 0 ⇐⇒ x = 0, ‖αx‖ = |α| ‖x‖, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

(b) Define a Banach Space.

Solution: A Banach space is a complete normed space, i.e. every Cauchy sequence converges
in norm to a limit in the space.

(c) Consider a Cauchy sequence (fn)n≥1 in the ‖ · ‖∞ norm. Prove that (fn) converges pointwise.

Solution: Let X be any set and fn : X → R (or C). Since (fn) is Cauchy in ‖ · ‖∞, for all
ε > 0 ∃N s.t. ‖fn − fm‖∞ < ε for m,n ≥ N . Fix x ∈ X. Then

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε (m,n ≥ N),

so (fn(x)) is Cauchy in R (or C) and hence convergent. Define f(x) = limn→∞ fn(x). Thus
fn → f pointwise.

(d) Hence or otherwise prove that the limit f is continuous (under the standard hypothesis).

Solution: If each fn is continuous and fn → f in ‖·‖∞ (i.e. uniformly), then f is continuous
as a uniform limit of continuous functions. (No compactness assumption is needed for this
implication.)

(e) Show c00 with the `1 metric is not complete.

Solution: Let x(n) = (1, 1/2, . . . , 1/2n−1, 0, 0, . . .) ∈ c00. For m > n,

‖x(m) − x(n)‖1 =
m−1∑
k=n

2−k ≤ 2−(n−1) n→∞−−−→ 0,

so (x(n)) is Cauchy. In `1, x(n) → x = (1, 1/2, 1/4, . . .), but x /∈ c00. Hence c00 is not
complete.

5. (11 points) Topology, Compactness
(a) Define a Hausdorff Space.

Solution: (X, τ) is Hausdorff if for all x 6= y there exist disjoint U, V ∈ τ with x ∈ U ,
y ∈ V .
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(b) Define a compact space.

Solution: (X, τ) is compact if every open cover admits a finite subcover.

(c) Consider
τ = {∅,R} ∪ {(−t, t) ⊂ R : t > 0}.

i. Define a topology.

Solution: A topology τ on X is a collection of subsets of X containing ∅ and X, closed
under arbitrary unions and finite intersections. Members of τ are the open sets.

ii. Prove τ is a topology on R.

Solution: ∅,R ∈ τ by definition. Arbitrary unions: a union of sets (−ti, ti) is either
R (if ti unbounded) or (−T, T ) with T = supi ti; both in τ , and unions with R give R.
Finite intersections: (−s, s) ∩ (−t, t) = (−min{s, t},min{s, t}) ∈ τ , and intersections
with R return the other set. Hence τ is a topology.

iii. Find the limit(s) of the sequence xn = (−1)n in (R, τ).

Solution: Nontrivial basic neighborhoods are (−t, t) about 0. For y 6= 0, the only open
set containing y is R, so the neighborhood condition is vacuous and every sequence
converges to y. For 0, neighborhoods are (−t, t); since (−1)n /∈ (−t, t) for t < 1, the
sequence is not eventually in any neighborhood of 0. Therefore (−1)n converges to
every y ∈ R \ {0} and to no other point.

(d) Let X be Hausdorff and Y ⊆ X compact. Prove Y is closed in X.

Solution: For x ∈ X \ Y and each y ∈ Y , choose disjoint opens Uy 3 x, Vy 3 y. The
{Vy}y∈Y cover Y , so compactness yields y1, . . . , yk with Y ⊂

⋃k
i=1 Vyi . Then U =

⋂k
i=1 Uyi

is an open neighborhood of x disjoint from Y . Hence X \ Y is open, so Y is closed.
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