MATH3611 — Final Solutions

Aayush Bajaj | z5362216

August 18, 2025

Contents

Q1. Set Theory	2
Q2. Metric Spaces	5
Q3. Sequences	é
Q4. Norm Topology	é
Q5. Topology, Compactness	4_

- 1. (15 points) Set Theory
 - (a) (5 points) i. $|A| \leq |B|$

Solution: means there exists an **injective** map $f: A \to B$.

ii. |A| = |B|

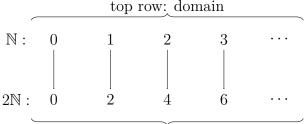
Solution: means there exists a **bijective** map $f: A \to B$.

iii. |A| < |B|

Solution: means \exists injective but not surjective map $A \to B$.

iv. Prove that $|\mathbb{N}| = |2\mathbb{N}|$.

Solution: Consider $f: \mathbb{N} \to 2\mathbb{N}$ given by f(n) = 2n. It is clearly injective and surjective. The correspondence is illustrated below.



bottom row: codomain

Thus f is a bijection and $|\mathbb{N}| = |2\mathbb{N}|$.

(b) (10 points) i. State the Schroder–Bernstein Theorem. This is also known as the Cantor Bernstein Theorem.

Solution: If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|.

ii. If A is infinite, show $|\mathbb{N}| \leq |A|$.

Solution: Pick distinct $a_0, a_1, \dots \in A$ recursively; $n \mapsto a_n$ is injective $\mathbb{N} \hookrightarrow A$.

iii. Deduce $|A \cup \mathbb{N}| = |A|$ for infinite A.

Solution: Trivially $|A| \leq |A \cup \mathbb{N}|$. From (b) get injection $\mathbb{N} \hookrightarrow A$; combine with inclusion $A \hookrightarrow A$ to build an injection $A \cup \mathbb{N} \hookrightarrow A$ by sending $n \mapsto a_{2n+1}$ and $a_k \mapsto a_{2k}$. Apply Schröder-Bernstein.

iv. If A is countably infinite prove that $|\mathbb{N}| \leq |A|$.

Solution: Since A is countably infinite, there exists a bijection $h : \mathbb{N} \to A$, hence a fortiori an injection $\mathbb{N} \hookrightarrow A$. Therefore $|\mathbb{N}| < |A|$.

- 2. (13 points) Metric Spaces
 - (a) Define a Metric Space (X, d).

Solution: A metric space is a set X with $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$:

$$d(x,y) = 0 \iff x = y, \quad d(x,y) = d(y,x), \quad d(x,z) \le d(x,y) + d(y,z).$$

(b) Define an open set $Y \subseteq X$.

Solution: $U \subseteq X$ is open if for each $x \in U$ there exists r > 0 with the open ball $B(x,r) = \{y \in X : d(x,y) < r\} \subseteq U$.

(c) Define a boundary point.

Solution: A point $x \in X$ is a boundary point of $A \subseteq X$ if every open ball B(x,r) meets both A and $X \setminus A$. The boundary is $\partial A = \operatorname{cl}(A) \setminus \operatorname{Int}(A)$.

(d) (4 points) Prove that the interior of Y is open.

Solution: By definition,

$$Int(Y) = \bigcup \{ B(x,r) : x \in Y, \ r > 0, \ B(x,r) \subseteq Y \},\$$

a union of open balls. Unions of open sets are open, so Int(Y) is open.

3. (5 points) Suppose $\limsup x_n = a$ and $\limsup x_n = b$. Prove a = b.

Solution: Assume a < b and set $\varepsilon = \frac{b-a}{3}$. By the lim sup characterization, eventually $x_n < a + \varepsilon$, but for infinitely many $n, x_n > b - \varepsilon$. Thus for some n,

$$b - \varepsilon < x_n < a + \varepsilon \implies b - a < 2\varepsilon = \frac{2}{3}(b - a),$$

a contradiction. Symmetrically $b \leq a$. Hence a = b.

- 4. (11 points) Norm Topology
 - (a) Define a Normed Space.

Solution: A normed space is a vector space V over \mathbb{R} or \mathbb{C} with $\|\cdot\|:V\to[0,\infty)$ such that for all $x,y\in V$, α scalar:

$$||x|| = 0 \iff x = 0, \quad ||\alpha x|| = |\alpha| \, ||x||, \quad ||x + y|| \le ||x|| + ||y||.$$

(b) Define a Banach Space.

Solution: A Banach space is a complete normed space, i.e. every Cauchy sequence converges in norm to a limit in the space.

(c) Consider a Cauchy sequence $(f_n)_{n\geq 1}$ in the $\|\cdot\|_{\infty}$ norm. Prove that (f_n) converges pointwise.

Solution: Let X be any set and $f_n: X \to \mathbb{R}$ (or \mathbb{C}). Since (f_n) is Cauchy in $\|\cdot\|_{\infty}$, for all $\varepsilon > 0 \exists N \text{ s.t. } \|f_n - f_m\|_{\infty} < \varepsilon \text{ for } m, n \geq N$. Fix $x \in X$. Then

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \varepsilon \quad (m, n \ge N),$$

so $(f_n(x))$ is Cauchy in \mathbb{R} (or \mathbb{C}) and hence convergent. Define $f(x) = \lim_{n \to \infty} f_n(x)$. Thus $f_n \to f$ pointwise.

(d) Hence or otherwise prove that the limit f is continuous (under the standard hypothesis).

Solution: If each f_n is *continuous* and $f_n \to f$ in $\|\cdot\|_{\infty}$ (i.e. uniformly), then f is continuous as a uniform limit of continuous functions. (No compactness assumption is needed for this implication.)

(e) Show c_{00} with the ℓ_1 metric is not complete.

Solution: Let $x^{(n)} = (1, 1/2, \dots, 1/2^{n-1}, 0, 0, \dots) \in c_{00}$. For m > n,

$$||x^{(m)} - x^{(n)}||_1 = \sum_{k=n}^{m-1} 2^{-k} \le 2^{-(n-1)} \xrightarrow{n \to \infty} 0,$$

so $(x^{(n)})$ is Cauchy. In ℓ^1 , $x^{(n)} \to x = (1, 1/2, 1/4, \ldots)$, but $x \notin c_{00}$. Hence c_{00} is not complete.

- 5. (11 points) Topology, Compactness
 - (a) Define a Hausdorff Space.

Solution: (X, τ) is Hausdorff if for all $x \neq y$ there exist disjoint $U, V \in \tau$ with $x \in U$, $y \in V$.

(b) Define a compact space.

Solution: (X, τ) is compact if every open cover admits a finite subcover.

(c) Consider

$$\tau = \{\emptyset, \mathbb{R}\} \cup \{(-t, t) \subset \mathbb{R} : t > 0\}.$$

i. Define a topology.

Solution: A topology τ on X is a collection of subsets of X containing \varnothing and X, closed under arbitrary unions and finite intersections. Members of τ are the open sets.

ii. Prove τ is a topology on \mathbb{R} .

Solution: \emptyset , $\mathbb{R} \in \tau$ by definition. Arbitrary unions: a union of sets $(-t_i, t_i)$ is either \mathbb{R} (if t_i unbounded) or (-T, T) with $T = \sup_i t_i$; both in τ , and unions with \mathbb{R} give \mathbb{R} . Finite intersections: $(-s, s) \cap (-t, t) = (-\min\{s, t\}, \min\{s, t\}) \in \tau$, and intersections with \mathbb{R} return the other set. Hence τ is a topology.

iii. Find the limit(s) of the sequence $x_n = (-1)^n$ in (\mathbb{R}, τ) .

Solution: Nontrivial basic neighborhoods are (-t,t) about 0. For $y \neq 0$, the only open set containing y is \mathbb{R} , so the neighborhood condition is vacuous and *every* sequence converges to y. For 0, neighborhoods are (-t,t); since $(-1)^n \notin (-t,t)$ for t < 1, the sequence is not eventually in any neighborhood of 0. Therefore $(-1)^n$ converges to every $y \in \mathbb{R} \setminus \{0\}$ and to no other point.

(d) Let X be Hausdorff and $Y \subseteq X$ compact. Prove Y is closed in X.

Solution: For $x \in X \setminus Y$ and each $y \in Y$, choose disjoint opens $U_y \ni x$, $V_y \ni y$. The $\{V_y\}_{y\in Y}$ cover Y, so compactness yields y_1, \ldots, y_k with $Y \subset \bigcup_{i=1}^k V_{y_i}$. Then $U = \bigcap_{i=1}^k U_{y_i}$ is an open neighborhood of x disjoint from Y. Hence $X \setminus Y$ is open, so Y is closed.