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1. (15 points) Set Theory
(a) (5 points) 1i. |A| < |B|

1i.

iii.

iv.

Solution: means there exists an injective map f: A — B.

Al = |B]

Solution: means there exists a bijective map f: A — B.

Al < [B]

Solution: means 3 injective but not surjective map A — B.

Prove that |N| = |2N|.

Solution: Consider f : N — 2N given by f(n) = 2n. It is clearly injective and
surjective. The correspondence is illustrated below.
top row: domain

N: 0 1 2 3

2N: 0 2 4 6

bottom row: codomain
Thus f is a bijection and |N| = |2N].

(b) (10 points) 1i. State the Schroder-Bernstein Theorem. This is also known as the Cantor

1i.

1ii.

iv.

Bernstein Theorem.

Solution: If |A| < |B| and |B| < |A| then |A| = |B|.

If A is infinite, show |N| < |A].

Solution: Pick distinct ag, ay, - - - € A recursively; n — a,, is injective N < A.

Deduce |AUN| = | A| for infinite A.

Solution: Trivially |A|] < |A UNJ. From (b) get injection N < A; combine with
inclusion A < A to build an injection A UN — A by sending n + as,,1 and ay —> ag.
Apply Schroder—Bernstein.

If A is countably infinite prove that |[N| < |A].



Aayush Bajaj | 25362216

Solution: Since A is countably infinite, there exists a bijection h : N — A, hence a
fortiori an injection N < A. Therefore |N| < |A].

2. (13 points) Metric Spaces
(a) Define a Metric Space (X, d).

Solution: A metric space is a set X with d : X x X — [0, 00) such that for all z,y,z € X:

d(z,y) =0 <= z=y, dy)=dyz), dz z) <dzy)+dy,=)

(b) Define an open set Y C X.

Solution: U C X is open if for each © € U there exists » > 0 with the open ball
B(z,r)={ye X :d(z,y) <r} CU.

(¢) Define a boundary point.

Solution: A point x € X is a boundary point of A C X if every open ball B(x,r) meets
both A and X \ A. The boundary is 0A = cl(A) \ Int(A).

(d) (4 points) Prove that the interior of Y is open.

Solution: By definition,
Int(Y) = U{B(x,r) cx €Y, r>0, B(z,r) CY},

a union of open balls. Unions of open sets are open, so Int(Y) is open.

3. (5 points) Suppose limsup z,, = a and limsup z,, = b. Prove a = b.

Solution: Assume a < b and set ¢ = b_T“ By the lim sup characterization, eventually x, < a+¢,

but for infinitely many n, x, > b — . Thus for some n,
b—e<z,<a+e = b—a<2=3(b—a),

a contradiction. Symmetrically b < a. Hence a = b.

4. (11 points) Norm Topology
(a) Define a Normed Space.
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Solution: A normed space is a vector space V over R or C with || - || : V' — [0, 00) such
that for all x,y € V', a scalar:

ol =0 &= z=0, Jlaz|| = lallz], [lz+yl <]+ [yl

(b) Define a Banach Space.

Solution: A Banach space is a complete normed space, i.e. every Cauchy sequence converges
in norm to a limit in the space.

(c¢) Consider a Cauchy sequence (f,),>1 in the || - || norm. Prove that (f,,) converges pointwise.

Solution: Let X be any set and f,, : X — R (or C). Since (f,,) is Cauchy in || - ||, for all
e>03dN s.t. ||fo — fimlleo <€ for m;n > N. Fix x € X. Then

[foa() = fu(@)] < | fo = finllw <& (m,n > N),

so (fn(z)) is Cauchy in R (or C) and hence convergent. Define f(z) = lim, o fn(z). Thus
fn — f pointwise.

(d) Hence or otherwise prove that the limit f is continuous (under the standard hypothesis).

Solution: If each f, is continuous and f,, — f in ||| (i.e. uniformly), then f is continuous
as a uniform limit of continuous functions. (No compactness assumption is needed for this
implication.)

(e) Show cgp with the ¢; metric is not complete.

Solution: Let 2™ = (1,1/2,...,1/2"71,0,0,...) € coo. For m > n,
m—1
|20 — 2|, = Z 2k < o-(n=1) 220
k=n

so (z™) is Cauchy. In ', 2™ — 2 = (1,1/2,1/4,...), but = ¢ co. Hence cg is not
complete.

5. (11 points) Topology, Compactness
(a) Define a Hausdorff Space.

Solution: (X, 7) is Hausdorff if for all x # y there exist disjoint U,V € 7 with z € U,
yeV.
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(b) Define a compact space.

Solution: (X, 7) is compact if every open cover admits a finite subcover.

(c) Consider
T={2,R} U {(—t,t) CR: t>0}.

i. Define a topology.

Solution: A topology 7 on X is a collection of subsets of X containing @ and X, closed
under arbitrary unions and finite intersections. Members of 7 are the open sets.

ii. Prove 7 is a topology on R.

Solution: @, R € 7 by definition. Arbitrary unions: a union of sets (—t;,¢;) is either
R (if ¢; unbounded) or (=T, T) with T" = sup, t;; both in 7, and unions with R give R.
Finite intersections: (—s,s) N (—t,t) = (—min{s, ¢}, min{s,t}) € 7, and intersections
with R return the other set. Hence 7 is a topology.

iii. Find the limit(s) of the sequence x,, = (—1)" in (R, 7).

Solution: Nontrivial basic neighborhoods are (—t,t) about 0. For y # 0, the only open
set containing y is R, so the neighborhood condition is vacuous and every sequence
converges to y. For 0, neighborhoods are (—t,t); since (—1)" ¢ (—t,t) for t < 1, the
sequence is not eventually in any neighborhood of 0. Therefore (—1)" converges to
every y € R\ {0} and to no other point.

(d) Let X be Hausdorff and Y C X compact. Prove Y is closed in X.

Solution: For z € X \ 'Y and each y € Y, choose disjoint opens U, 3 z, V, 3 y. The
{V, }yey cover Y, so compactness yields yi,...,y, with Y C Ule V,.- Then U = ﬂle Uy,
is an open neighborhood of z disjoint from Y. Hence X \ Y is open, so Y is closed.




	Q1. Set Theory
	Q2. Metric Spaces
	Q3. Sequences
	Q4. Norm Topology
	Q5. Topology, Compactness

