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SET THEORY

I. Sets and Functions

1.1. Basic definitions. Mathematics habitually deals with “sets”” made up
of “elements’ of various kinds, e.g., the set of faces of a polyhedron, the
set of points on a line, the set of all positive integers, and so on. Because of
their generality, it is hard to define these concepts in a way that does more
than merely replace the word “set” by some equivalent term like ‘“class,”
“family,”” “collection,” etc. and the word “element’” by some equivalent
term like “member.”” We will adopt a “naive’” point of view and regard the
notions of a set and the elements of a set as primitive and well-understood.

The set concept plays a key role in modern mathematics. This is partly
due to the fact that set theory, originally developed towards the end of the
nineteenth century, has by now become an extensive subject in its own right.
More important, however, is the great influence which set theory has exerted
and continues to exert on mathematical thought as a whole. In this chapter,
we introduce the basic set-theoretic notions and notation to be used in the
rest of the book.

Sets will be denoted by capital letters like 4, B, ..., and elements of
sets by small letters like @, b, . . .. The set with elements a, b, ¢, . . . is often
denoted by {a, b, ¢, ...}, ie., by writing the elements of the set between
curly brackets. For example, {1} is the set whose only member is 1, while
{1,2,...,n,...} is the set of all positive integers. The statement ‘“‘the
element a belongs to the set A’ is written symbolically as a € 4, while
a ¢ A means that “the element @ does not belong to the set A.”” If every
element of a set A also belongs to a set B, we say that A is a subset of the
set B and write 4 < B or B> A (also read as “A4 is contained in B or

|



2 SET THEORY CHAP. 1

“B contains 4”). For example, the set of all even numbers is a subset of the
set of all real numbers. We say that two sets 4 and B are equal and write
A = B if 4 and B consist of precisely the same elements. Note that 4 = B
ifand only if A © B and B < 4, i.e., if and only if every element of 4 is an
element of B and every element of Bis an element of 4. If 4 < Bbut 4 # B,
we call 4 a proper subset of B.

Sometimes it is not known in advance whether or not a certain set (for
example, the set of roots of a given equation) contains any elements at all.
Thus it is convenient to introduce the concept of the empty set, i.e., the set
containing no elements at all. This set will be denoted by the symbol &.
The set & is clearly a subset of every set (why ?).

ANAB

A 1)

FIGURE 1 FIGURE 2

1.2. Operations on sets. Let 4 and B be any two sets. Then by the sum
or union of A and B, denoted by 4 U B, is meant the set consisting of all
elements which belong to at least one of the sets 4 and B (see Figure 1).
More generally, by the sum or union of an arbitrary number (finite or in-
finite) of sets 4, (indexed by some parameter =), we mean the set, denoted by

U 4.,
a

of all elements belonging to at least one of the sets 4,.

By the intersection A N B of two given sets 4 and B, we mean the set
consisting of all elements which belong to both A and B (see Figure 2). For
example, the intersection of the set of all even numbers and the set of all
integers divisible by 3 is the set of all integers divisible by 6. By the inter-
section of an arbitrary number (finite or infinite) of sets 4,, we mean the
set, denoted by

O Aas

of all elements belonging to every one of the sets 4,. Two sets 4 and B are
said to be disjoint if A N B = &, i.e., if they have no elements in common.
More generally, let # be a family of sets such that 4 N B = & for every
pair of sets 4, B in #. Then the sets in & are said to be pairwise disjoint.



SEC. 1 SETS AND FUNCTIONS 3
It is an immediate consequence of the above definitions that the operations
U and N are commutative and associative, i.e., that
AUB=BUA, (AUBUC=A4U(BUC),
ANB=BnNA, ANBNC=ANnBNAO).
Moreover, the operations U and N obey the following distributive laws:
AUBNC=UANC)U(BNCQO), 6))
ANBUC=AUVC)N(BUCIUO). 2
For example, suppose x € (4 U B) N C, so that x belongs to the left-hand

A-8 Ab B

a2

_

A B 4

FIGURE 3 FIGURE 4

side of (1). Then x belongs to both C and 4 U B, i.e., x belongs to both
C and at least one of the sets 4 and B. But then x belongs to at least one of
the sets A N Cand BN C,ie., x€(4 N C) U (B N (), so that x belongs
to the right-hand side of (1). Conversely, suppose x € (4 N C) U (B N C).
Then x belongs to at least one of the two sets 4 N C and B N C. It follows
that x belongs to both C and at least one of the two sets 4 and B, ie., x€ C
and x € 4 U B or equivalently x € (4 U B) N C. This proves (1), and (2) is
proved similarly.

By the difference A — B between two sets A and B (in that order), we
mean the set of all elements of 4 which do not belong to B (see Figure 3).
Note that it is not assumed that 4 > B. It is sometimes convenient (e.g., in
measure theory) to consider the symmetric difference of two sets 4 and B,
denoted by 4 A B and defined as the union of the two differences 4 — B
and B — A (see Figure 4):

ApB=(4—B)U (B — A).

We will often be concerned later with various sets which are all subsets
of some underlying basic set R, for example, various sets of points on the
real line. In this case, given a set 4, the difference R — 4 is called the
complement of A, denoted by CA.
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An important role is played in set theory and its applications by the
following ““duality principle’:

R=U4,=N(R-4,), 3)
R_DAa:EJ(R-—Aa). (4)

In words, the complement of a union equals the intersection of the comple-
ments, and the complement of an intersection equals the union of the
complements. According to the duality principle, any theorem involving a
family of subsets of a fixed set R can be converted automatically into another,
“dual” theorem by replacing all subsets by their complements, all unions
by intersections and all intersections by unions. To prove (3), suppose

xeR—-UA4,. (5)
Then x does not belong to the union
U4, (6)

i.e., x does not belong to any of the sets 4,. It follows that x belongs to each
of the complements R — 4, and hence

xe Q (R —A4,). (M

Conversely, suppose (7) holds, so that x belongs to every set R — A4,. Then
x does not belong to any of the sets 4,, i.e., x does not belong to the union
(6), or equivalently (5) holds. This proves (3), and (4) is proved similarly
(give the details).

Remark. The designation “symmetric difference’ for the set 4 A B is
not too apt, since 4 A B has much in common with the sum 4 U B. In fact,
in A U B the two statements “x belongs to 4> and “x belongs to B’ are
joined by the conjunction “or” used in the ‘“either...or...or both...”
sense, while in A A B the same two statements are joined by “or’> used in the
ordinary “either . . . or .. .”” sense (asin “to be or not to be’’). In other words,
x belongs to 4 U B if and only if x belongs to either 4 or B or both, while x
belongs to 4 A Bif and only if x belongs to either 4 or B but not both. The
set A A B can be regarded as a kind of “modulo-two sum’’ of the sets 4 and
B, i.e., a sum of the sets 4 and B in which elements are dropped if they are
counted twice (once in 4 and once in B).

1.3. Functions and mappings. Images and preimages. A rule associating a
unique real number y = f(x) with each element of a set of real numbers X
is said to define a (real) function f on X. The set X is called the domain
(of definition) of f, and the set Y of all numbers f(x) such that x € X is called
the range of f.
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More generally, let M and N be two arbitrary sets. Then a rule associating
a unique element b = f(a) € N with each element @ € M is again said to define
a function f on M (or a function f with domain M). In this more general
context, f is usually called a mapping of M into N. By the same token, f is
said to map M into N (and a into b).

If a is an element of M, the corresponding element & = f(a) is called the
image of a (under the mapping f). Every element of M with a given element
b € N as its image is called a preimage of b. Note that in general b may have
several preimages. Moreover, N may contain elements with no preimages
at all. If b has a unique preimage, we denote this preimage by f~1(b).

If 4 is a subset of M, the set of all elements f(a) € N such that a € 4
is called the image of 4, denoted by f(4). The set of all elements of M whose
images belong to a given set B < N is called the preimage of B, denoted
by f~1(B). If no element of B has a preimage, then f~(B) = &. A function
fis said to map M into N if f{M) < N, as is always the case, and onto N
if f(M) = N.! Thus every “onto mapping” is an “into mapping,” but not
conversely.

Suppose fmaps M onto N. Then f'is said to be one-to-one if each element
b€ N has a unique preimage f~1(b). In this case, f is said to establish a
one-to-one correspondence between M and N, and the mapping f~! associ-
ating f~1(b) with each b € N is called the inverse of f.

THEOREM 1. The preimage of the union of two sets is the union of the
preimages of the sets:

f7HA Y B) = fTHA) Y fHB).

Proof. If x €f~1(4 U B), then f(x) € 4 U B, so that f(x) belongs
to at least one of the sets 4 and B. But then x belongs to at least one of
the sets f~1(4) and f~1(B), i.e., x €f7}(4) U f1(B).

Conversely, if x € f~1(4) U f~!(B), then x belongs to at least one
of the sets f~1(4) and f~1(B). Therefore f(x) belongs to at least one of
the sets 4 and B, i.e., f(x)€4 U B. But then x €f~1(4 U B). P

THEOREM 2. The preimage of the intersection of two sets is the inter-

section of the preimages of the sets:
f7HA4 N B) = f7(A) N fH(B).

Proof. If x ef7(4 N B), then f(x) €4 N B, so that f(x) € 4 and
f(x) € B. But then x € f~1(4) and x €f~(B), i.e., x €f~1(4) N f(B).

Conversely, if x € f71(4) N f~1(B), then x € f~1(4) and x € f~1(B).
Therefore f(x)€A and f(x)€B, ie., f(x)€A4 N B. But then x¢€
f4nB). §

1 As in the case of real functions, the set f(M) is called the range of f.
2 The symbol § stands for Q.E.D. and indicates the end of a proof.
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THEOREM 3. The image of the union of two sets equals the union of the
images of the sets:

f(4'U B)=f(4) Uf(B).

Proof. If y € f(A U B), then y = f(x) where x belongs to at least one
of the sets 4 and B. Therefore y = f(x) belongs to at least one of the sets
f(4) and f(B), i.e., y € f(4) U f(B).

Conversely, if y € f(4) U f(B), then y = f(x) where x belongs to at
least one of the sets 4 and B, i.e., x€ 4 U B and hence y = f(x) €
fAUB). §

Remark 1. Surprisingly enough, the image of the intersection of two sets
does not necessarily equal the intersection of the images of the sets. For
example, suppose the mapping f projects the xy-plane onto the x-axis,
carrying the point (x,y) into the (x,0). Then the segments 0 < x < 1,
y=0and 0 < x < 1,y = 1 do notintersect, although their images coincide.

Remark 2. Theorems 1-3 continue to hold for unions and intersections
of an arbitrary number (finite or infinite) of sets 4,,:

r(Ya.) = Ura,
r(0a) = 0se),
7Y a) = Yreaa

1.4. Decomposition of a set into classes. Equivalence relations. Decom™
positions of a given set into pairwise disjoint subsets play an important role
in a great variety of problems. For example, the plane (regarded as a point
set) can be decomposed into lines parallel to the x-axis, three-dimensional
space can be decomposed into concentric spheres, the inhabitants of a given
city can be decomposed into different age groups, and so on. Any such
representation of a given set M as the union of a family of pairwise disjoint
subsets of M is called a decomposition or partition of M into classes.

A decomposition is usually made on the basis of some criterion, allowing
us to assign the elements of M to one class or another. For example, the
set of all triangles in the plane can be decomposed into classes of congruent
triangles or into classes of triangles of equal area, the set of all functions
of x can be decomposed into classes of functions all taking the same value at
a given point x, and so on. Despite the great variety of such criteria, they
are not completely arbitrary. For example, it is obviously impossible to
partition all real numbers into classes by assigning the number 4 to the same
class as the number a if and only if b > a. In fact, if b6 > a, b must be
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assigned to the same class as a, but then a cannot be assigned to the same
class as b, since a < b. Moreover, since a is not greater than itself, a cannot
even be assigned to the class containing itself! As another example, it is
impossible to partition the points of the plane into classes by assigning two
points to the same class if and only if the distance between them is less than 1.
In fact, if the distance between a and b is less than 1 and if the distance
between b and c is less than 1, it does not follow that the distance between
a and c is less than 1. Thus, by assigning a to the same class as b and b to
the same class as ¢, we may well find that two points fall in the same class
even though the distance between them is greater than 1!

These examples suggest conditions which must be satisfied by any criterion
if it is to be used as the basis for partitioning a given set into classes. Let
M be a set, and let certain ordered pairs (a, b) of elements of M be called
“labelled.”” If (a, b) is a labelled pair, we say that a is related to b by the
(binary) relation R and write aRb.®> For example, if @ and b are real numbers,
aRb might mean a < b, whileif @ and b are triangles, aRb might mean that
a and b have the same area. A relation between elements of M is called
a relation on M if there is at least one labelled pair (g, b) for every a € M.
A relation R on M is called an equivalence relation (on M) if it satisfies the
following three conditions:

1) Reflexivity: aRa for every a € M ;
2) Symmetry: If aRb, then bRa;
3) Transitivity: If aRb and bRc, then aRc.

THEOREM 4. A set M can be partitioned into classes by a relation R
(acting as a criterion for assigning two elements to the same class) if and
only if R is an equivalence relation on M.

Proof. Every partition of M determines a binary relation on M, where
aRb means that “a belongs to the same class as 4.”’ It is then obvious
that R must be reflexive, symmetric and transitive, i.e., that R is an
equivalence relation on M.

Conversely, let R be an equivalence relation on M, and let X, be the
set of all elements x € M such that xRa (clearly a € K, since R is
reflexive). Then two classes K, and K, are either identical or disjoint.
In fact, suppose an element ¢ belongs to both K, and K, so that cRa
and cRb. Then aRc by the symmetry, and hence

aRb ®

3 Put somewhat differently, let M® be the set of all ordered pairs (a, b) with a, b€ M,
and let % be the subset of M? consisting of all labelled pairs. Then aRb if and only if
(a, b)E £, i.e., a binary relation is essentially just a subset of M2 As an exercise, state
the three conditions for R to be an equivalence relation in terms of ordered pairs and the
set .
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by the transitivity. If now x € X, then xRa and hence xRb by (8) and the
transitivity, i.e., x € K. Virtually the same argument shows that x € X,
implies x € K. Therefore“K, = K, if K, and K, have an element in
common. Therefore the distinct sets K, form a partition of M into
classes. [

Remark. Because of Theorem 4, one often talks about the decomposition
of M into equivalence classes.

There is an intimate connection between mappings and partitions into
classes, as shown by the following examples:

Example 1. Let f be a mapping of a set 4 into a set B and partition 4
into sets, each consisting of all elements with the same image b = f(a) € B.
This gives a partition of 4 into classes. For example, suppose f projects
the xy-plane onto the x-axis, by mapping the point (x, y) into the point
(x, 0). Then the preimages of the points of the x-axis are vertical lines, and
the representation of the plane as the union of these lines is the decomposition
into classes corresponding to f.

Example 2. Given any partition of a set 4 into classes, let B be the set of
these classes and associate each element a € 4 with the class (i.e., element
of B) to which it belongs. This gives a mapping of 4 into B. For example,
suppose we partition three-dimensional space into classes by assigning to the
same class all points which are equidistant from the origin of coordinates.
Then every class is a sphere of a certain radius. The set of all these classes
can be identified with the set of points on the half-line [0, ), each point
corresponding to a possible value of the radius. In this sense, the decom-
position of space into concentric spheres corresponds to the mapping of
space into the half-line [0, o).

Example 3. Suppose we assign all real numbers with the same fractional
part? to the same class. Then the mapping corresponding to this partition
has the effect of “winding’’ the real line onto a circle of unit circumference.

Problem 1. Prove thatif A U B = A4 and 4 N B= A, then A = B.
Problem 2. Show that in general (4 — B) U B # A.

Problem 3. Let A =1{2,4,...,2n,...} and B=1{3,6,...,3n,...}.
Find 4 " Band 4 — B.

4 The largest integer <x is called the integral part of x, denoted by [x], and the quantity
x — [x]is called the fractional part of x.
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Problem 4. Prove that
a)(A—BNC=ANC)—(BNC);
b) AAB=(4YUB)— (4N B).
Problem 5. Prove that
Ud,—UB,= Y, - B,

Problem 6. Let A, be the set of all positive integers divisible by #. Find
the sets

a) U4,; b) N4,.
n=2 n=2
Problem 7. Find
2) U[a+1,b—1]; b) n(a—l,b+1).
n n n

n=1 n n-=1
Problem 8. Let A, be the set of points lying on the curve
y= ’l—a (0 < x < o0).
What is
N 4,2
«=>1
Problem 9. Let y = f(x) = (x) for all real x, where (x) is the fractional
part of x. Prove that every closed interval of length 1 has the same image
under f. What is this image? Is f one-to-one? What is the preimage of the
interval + < y < £? Partition the real line into classes of points with the
same image.

Problem 10. Given a set M, let Z be the set of all ordered pairs on the
form (a, a) with a € M, and let aRb if and only if (a, b) € #. Interpret the
relation R.

Problem 11. Give an example of a binary relation which is

a) Reflexive and symmetric, but not transitive;

b) Reflexive, but neither symmetric nor transitive;
c) Symmetric, but neither reflexive nor transitive;
d) Transitive, but neither reflexive nor symmetric.

2. Equivalence of Sets. The Power of a Set

2.1. Finite and infinite sets. The set of all vertices of a given polyhedron,
the set of all prime numbers less than a given number, and the set of all
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residents of New York City (at a given time) have a certain property in
common, namely, each set has a definite number of elements which can be
found in principle, if not in practice. Accordingly, these sets are all said to
be finite. Clearly, we can be sure that a set is finite without knowing the
number of elements in it. On the other hand, the set of all positive integers,
the set of all points on the line, the set of all circles in the plane, and the
set of all polynomials with rational coefficients have a different property
in common, namely, if we remove one element from each set, then remove
two elements, three elements, and so on, there will still be elements left in
the set at each stage. Accordingly, sets of this kind are said to be infinite.

Given two finite sets, we can always decide whether or not they have the
same number of elements, and if not, we can always determine which set
has more elements than the other. It is natural to ask whether the same is
true of infinite sets. In other words, does it make sense to ask, for example,
whether there are more circles in the plane than rational points on the line,
or more functions defined in the interval [0, 1] than lines in space? As will
soon be apparent, questions of this kind can indeed be answered.

To compare two finite sets 4 and B, we can count the number of elements
in each set and then compare the two numbers, but alternatively, we can try
to establish a one-to-one correspondence between (the elements of) 4 and B,
i.e., a correspondence such that each element in 4 corresponds to one and
only one element in B and vice verse. It is clear that a one-to-one corre-
spondence between two finite sets can be set up if and only if the two sets
have the same number of elements. For example, to ascertain whether or
not the number of students in an assembly is the same as the number of
seats in the auditorium, there is no need to count the number of students
and the number of seats. We need merely observe whether or not there are
empty seats or students with no place to sit down. If the students can all
be seated with no empty seats left, i.e., if there is a one-to-one correspondence
between the set of students and the set of seats, then these two sets obviously
have the same number of elements. The important point here is that the
first method (counting elements) works only for finite sets, while the second
method (setting up a one-to-one correspondence) works for infinite sets as
well as for finite sets.

2.2. Countable sets. The simplest infinite set is the set Z, of all positive
integers. An infinite set is called countable if its elements can be put in one-to-
one correspondence with those of Z,. In other words, a countable set is a
set whose elements can be numbered a,, a,, . . . , @,, . . . . By an uncountable
set we mean, of course, an infinite set which is not countable.

We now give some examples of countable sets:

Example 1. The set Z of all integers, positive, negative or zero, is
countable. In fact, we can set up the following one-to-one correspondence
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between Z and the set Z, of all positive integers:
09 ——ly 1, —2, 2, o
1, 2, 3, 4, 5,...
More explicitly, we associate the nonnegative integer n > 0 with the odd
number 2n + 1, and the negative integer n < 0 with the even number 2 |n],
i.e.,
n<2n-+1 if n>0,
n <> 2 |n| if n<0
(the symbol <> denotes a one-to-one correspondence).
Example 2. The set of all positive even numbers is countable, as shown
by the obvious correspondence n < 2n.
Example 3. The set 2, 4,8, ...,2", ... of powers of 2 is countable, as
shown by the obvious correspondence n < 2",
Example 4. The set Q of all rational numbers is countable. To see this,
we first note that every rational number « can be written as a fraction p/g,

g > 0 in lowest terms with a positive denominator. Call the sum [p| + g the
“height’’ of the rational number . For example,

2=0
is the only rational number of height 0,
—1 1
11
are the only rational numbers of height 2,
—2 —1 1 2
120 2

are the only rational numbers of height 3, and so on. We can now arrange
all rational numbers in order of increasing height (with the numerators
increasing in each set of rational numbers of the same height). In other
words, we first count the rational numbers of height 1, then those of height
2 (suitably arranged), those of height 3, and so on. In this way, we assign
every rational number a unique positive integer, i.e., we set up a one-to-one
correspondence between the set Q of all rational numbers and the set Z,
of all positive integers.

Next we prove some elementary theorems involving countable sets:
THEOREM 1. Every subset of a countable set is countable.

Proof. Let A be countable, with elements a,, a,, . . . , and let B be a
subset of 4. Among the elements a;, s, . . ., leta, , a,,, ... be those in
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the set B. If the set of numbers ny, n,, . . . has a largest number, then
B is finite. Otherwise B is countable (consider the correspondence
ia,). |

THEOREM 2. The union of a finite or countable number of countable
sets Ay, A,, . . . is itself countable.

" Proof. We can assume that no two of the sets 4, A,, ... have
elements in common, since otherwise we could consider the sets

Ala AZ - A17 A3 - (Al UAz), L

instead, which are countable by Theorem 1 and have the same union as
the original sets. Suppose we write the elements of A4;, 4,, ... in the
form of an infinite table

A1 Gz Gig Qg - -
Q3 Q32 Az A3y . - - €))

where the elements of the set 4, appear in the first row, the elements of
the set 4, appear in the second row, and so on. We now count all the
elements in (1) “diagonally,” i.e., first we choose a3, then a;,, then a,,,
and so on, moving in the way shown in the following table:’

AGu—>aq G130y - ..

"4 7

Qo1 Qs Qa3 Gy ...

|~ v

3 Q3 Q3 A3y - .. (2)
v

Qg1 Q43 Qg3 Qg - ..

It is clear that this procedure associates a unique number to each element
in each of the sets A4, 4,,..., thereby establishing a one-to-one
correspondence between the union of the sets 4y, 4, ... and the set
Z, of all positive integers. }

THEOREM 3. Every infinite set has a countable subset.

® Discuss the obvious modifications of (1) and (2) in the case of only a finite number
of sets Ay, Ay, . ...
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Proof. Let M be an infinite set and a, any element of M. Being in-
finite, M contains an element a, distinct from a,, an element a, distinct
from both @, and a,, and so on. Continuing this process (which can
never terminate due to a *“‘shortage’ of elements, since M is infinite),
we get a countable subset

A=A{a, ap,...,8, ...}
of the set M. }

Remark. Theorem 3 shows that countable sets are the “smallest’ infinite
sets. The question of whether there exist uncountable (infinite) sets will be
considered below.

2.3. Equivalence of sets. We arrived at the notion of a countable set M
by considering one-to-one correspondences between M and the set Z, of all
positive integers. More generally, we can consider one-to-one correspondences
between any two sets M and N:

DEFINITION. Two sets M and N are said to be equivalent (written
M ~ N) if there is a one-to-one correspondence between the elements of
M and the elements of N.

The concept of equivalence® is applicable to both finite and infinite sets.
Two finite sets are equivalent if and only if they have the same number of
elements. We can now define a countable set as a set equivalent to the set
Z, of all positive integers. It is clear that two sets which are equivalent to a
third set are equivalent to each other, and in particular that any two countable
sets are equivalent.

Example 1. The sets of points in any two
closed intervals [a, b] and [c, d] are equiv-
alent, and Figure 5 shows how to set up a
one-to-one correspondence between them.
Here two points p and ¢ correspond to each
other if and only if they lie on the same ray
emanating from the point O in which the
extensions of the line segments ac and bd
intersect.

Example 2. The set of all points z in the FIGURE 5
complex plane is equivalent to the set of all

¢ Not to be confused with our previous use of the word in the phrase ‘“‘equivalence
relation.” However, note that set equivalence is an equivalence relation in the sense of
Sec. 1.4, being obviously reflexive, symmetric and transitive. Hence any family of sets
can be partitioned into classes of equivalent sets.
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‘points « on a sphere. In fact, a one-to-
one correspondence z < « between the
points of the two sets can be established
by using stereographic projection, as
shown in Figure 6 (O is the north pole
of the sphere).

Example 3. The set of all points x
FIGURE 6 in the open unit interval (0, 1) is equiv-
alent to the set of all points y on the

whole real line. For example, the formula

y = larctanx—}—l
ki 2

establishes a one-to-one correspondence between these two sets.

The last example and the examples in Sec. 2.2 show that an infinite set
is sometimes equivalent to one of its proper subsets. For example, there are
““as many”’ positive integers as integers of arbitrary sign, there are “as many”’
points in the interval (0, 1) as on the whole real line, and so on. This fact
is characteristic of all infinite sets (and can be used to define such sets), as
shown by

THEOREM 4. Every infinite set is equivalent to one of its proper subsets.

Proof. According to Theorem 3, any infinite set M contains a
countable subset. Let this subset be

A={ay, a5, ...,a, ...}

and partition 4 into two countable subsets

A, = {ay, a5, a5, .. .}, Ay = {as, a4, ag, . . .}.

Obviously, we can establish a one-to-one correspondence between the
countable sets 4 and A4, (merely let a,<> a,, ;). This correspondence
can be extended to a one-to-one correspondence between the sets 4 U
(M —A)=M and 4, U (M — A) = M — A, by simply assigning x
itself to each element x e M — A. But M — A, is a proper subset of
M. ]

2.4. Uncountability of the real numbers. Several examples of countable
sets were given in Sec. 2.2, and many more examples of such sets could be
given. In fact, according to Theorem 2, the union of a finite or countable
number of countable sets is itself countable. It is now natural to ask whether
there exist infinite sets which are uncountable. The existence of such sets
is shown by
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THEOREM 5. The set of real numbers in the closed unit interval [0, 1] is
uncountable.

Proof. Suppose we have somehow managed to count some or all of
the real numbers in [0, 1], arranging them in a list

oy =0.a110y5 .. .0y . . .,
oy = 0.a31050 . . . Agpy - . -

............... 3)

...............

where a;; is the kth digit in the decimal expansion of the number a;.
Consider the decimal

B=0bybs...b,... (4)

constructed as follows: For b, choose any digit (from 0 to 9) different
from ay,, for b, any digit different from ay,, and so on, and in general
for b, any digit different from a,,,. Then the decimal (4) cannot coincide
with any decimal in the list (3). In fact, 8 differs from «a, in at least the
first digit, from a, in at Jeast the second digit, and so on, since in general
b, # a,, for all n. Thus no list of real numbers in the interval [0, 1]
can include all the real numbers in [0, 1].

The above argument must be refined slightly since certain numbers,
namely those of the form p/10¢, can be written as decimals in two ways,
either with an infinite run of zeros or an infinite run of nines. For
example, '

o

=15 = 0.5000...=0.4999...,

so that the fact that two decimals are distinct does not necessarily mean
that they represent distinct real numbers. However, this difficulty
disappears if in constructing 8, we require that 3 contain neither zeros
nor nines, for example by setting b, =2 if a,, =1 and b, =1 if

ann7+“ 1. l

Thus the set [0, 1] is uncountable. Other examples of uncountable sets
equivalent to [0, 1] are

1) The set of points in any closed interval [a, b];

2) The set of points on the real line;

3) The set of points in any open interval (a, b);

4) The set of all points in the plane or in space;

5) The set of all points on a sphere or inside a sphere;

6) The set of all lines in the plane;

7) The set of all continuous réal functions of one or several variables.
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The fact that the sets 1) and 2) are equivalent to [0, 1] is proved as in Examples
1 and 3, pp. 13 and 14, while the fact that the sets 3)-7) are equivalent
to [0, 1] is best proved indiréetly (cf. Problems 7 and 9).

2.5. The power of a set. Given any two sets M and N, suppose M and N
are equivalent. Then M and N are said to have the same power. Roughly
speaking, “power”’ is something shared by equivalent sets. If M and N are
finite, then M and N have the same number of elements, and the concept
of the power of a set reduces to the usual notion of the number of elements
in a set. The power of the set Z, of all positive integers, and hence the power
of any countable set, is denoted by the symbol X,, read “aleph null.” A
set equivalent to the set of real numbers in the interval [0, 1], and hence to
the set of all real numbers, is said to have the power of the continuum,
denoted by c (or often by X).

For the powers of finite sets, i.e., for the positive integers, we have the
notions of “greater than’” and “less than,”” as well as the notion of equality.
We now show how these concepts are extended to the case of infinite sets.

Let 4 and B be any two sets, with powers m(4) and m(B), respectively.
If A is equivalent to B, then m(4) = m(B) by definition. If 4 is equivalent
to a subset of B and if no subset of 4 is equivalent to B, then, by analogy
with the finite case, it is natural to regard m(A4) as less than m(B) or m(B) as
greater than m(4). Logically, however, there are two further possibilities:

a) B has a subset equivalent to 4, and 4 has a subset equivalent to B;
b) A and B are not equivalent, and neither has a subset equivalent to the
other.

In case a), 4 and B are equivalent and hence have the same power, as shown
by the Cantor-Bernstein theorem (Theorem 7 below). Case b) would obvi-
ously show the existence of powers that cannot be compared, but it follows
from the well-ordering theorem (see Sec. 3.7) that this case is actually impos-
sible. Therefore, taking both of these theorems on faith, we see that any two
sets A and B either have the same power or else satisfy one of the rela-
tions m(4) < m(B) or m(A) > m(B). For example, it is clear that 8, < ¢
(why?).

Remark. The very deep problem of the existence of powers between X,
and c is touched upon in Sec. 3.9. As a rule, however, the infinite sets
encountered in analysis are either countable or else have the power of the
continuum.

We have already noted that countable sets are the “smallest” infinite
sets. It has also been shown that there are infinite sets of power greater
than that of a countable set, namely sets with the power of the continuum.
It is natural to ask whether there are infinite sets of power greater than that
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of the continuum or, more generally, whether there is a “largest” power.
These questions are answered by

THEOREM 6. Given any set M, let M be the set whose elements are all
possible subsets of M. Then the power of M is greater than the power of
the original set M.

Proof. Clearly, the power . of the set .# cannot be less than the power
m of the original set M, since the “single-element subsets” (or “‘single-
tons”) of M form a subset of .# equivalent to M. Thus we need only
show thatm and p. donot coincide. Suppose a one-to-one correspondence

a— A, b—B,...

has been established between the elements a, b, ... of M and certain
elements 4, B,... of # (i.e., certain subsets of M). Then 4, B, ...
do not exhaust all the elements of A4, i.e., all the subsets of M. To see
this, let X be the set of elements of M which do not belong to their
“associated subsets.”” More exactly, if a«> 4 we assignato Xifa¢ 4,
but not if a € A. Clearly, X is a subset of M and hence an element of 4.
Suppose there is an element x € M such that x<«» X, and consider
whether or not x belongs to X. Suppose x ¢ X. Then x € X, since, by
definition, X contains every element not contained in its associated
subset. On the other hand, suppose x ¢ X. Then x € X, since X con-
sists precisely of those elements which do not belong to their associated
subsets. In any event, the element x corresponding to the subset X must
simultaneously belong to X and not belong to X. But this is impossible!
It follows that there is no such element x. Therefore no one-to-one cor-
respondence can be established between the sets M and 4, ie.,
m~=u. [

Thus, given any set M, there is a set .# of larger power, a set 4 * of
still larger power, and so on indefinitely. In particular, there is no set of
“largest’” power.

2.6. The Cantor-Bernstein theorem. Next we prove an important theorem
already used in the preceding section:

THEOREM 7 (Cantor-Bernstein). Given any two sets A and B, suppose
A contains a subset A, equivalent to B, while B contains a subset B;
equivalent to A. Then A and B are equivalent.

Proof. By hypothesis, there is a one-to-one function f mapping 4
into B; and a one-to-one function g mapping B into A;:
f(A)=B,<B, gB)=4,< 4.
Therefore

Ay = gf (4) = g(f(4)) = g(By)
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is a subset of 4, equivalent to all of 4. Similarly,

B, "_*fg(B) =f(g®B) =1(4)

is a subset of B, equivalent to B. Let 4, be the subset of A4 into which
the mapping gf carries the set 4,, and let 4, be the subset of 4 into which
gf carries A,. More generally, let A, . be the set into which 4, (k =
1,2,...)is carried by gf. Then clearly

A3A13A2:"-~-DAkDAHIDv
Setting
D =N A4,
k=1

we can represent 4 as the following union of pairwise disjoint sets:

A=A—-A) V(A —A) Uy —A) V-
Uy — A4, ) Y---UD. (5

Similarly, we can write 4, in the form
A= (AI.—AZ)U(AZ—A3)U"‘U(Ak*AkH)U"'UD. ©6)
Clearly, (5) and (6) can be rewritten as
A=DUMUN, (5"

Ay =D UM U N, 6")
where
M= (A —A4)V(ds—A4)V- -,
N=A—-4)Vdy—4)V---,
Ny=(Ay —A) V(4 —4p) U---.

But A — A, is equivalent to A, — Aj (the former is carried into the latter
by the one-to-one function gf), A, — A, is equivalent to 4, — A4, and
so on. Therefore N is equivalent to N,. It follows from the represen-
tations (5') and (6") that a one-to-one correspondence can be set up
between the sets 4 and A;. But A, is equivalent to B, by hypothesis.
Therefore A is equivalent to B. |

Remark. Here we can even ‘‘afford the unnecessary luxury” of explicitly
writing down a one-to-one function carrying 4 into B, i.e.,

g &) if aeD UM,

#(@) = f@  if aeDUN

(sse Figure 7).
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FIGURE 7

Problem 1. Prove that a set with an uncountable subset is itself un-
countable.

Problem 2. Let M be any infinite set and A any countable set. Prove that
M~MUA.

Problem 3. Prove that each of the following sets is countable:

a) The set of all numbers with two distinct decimal expansions (like
0.5000 . . . and 0.4999 . . .);

b) The set of all rational points in the plane (i.e., points with rational
coordinates);

¢) The set of all rational intervals (i.e., intervals with rational end points);

d) The set of all polynomials with rational coefficients.

Problem 4. A number « is called algebraic if it is a root of a polynomial
equation with rational coefficients. Prove that the set of all algebraic numbers
is countable.

Problem 5. Prove the existence of uncountably many transcendental num-
bers, i.e., numbers which are not algebraic.

Hint. Use Theorems 2 and 5.

Problem 6. Prove that the set of all real functions (more generally,
functions taking values in a set containing at least two elements) defined
on a set M is of power greater than the power of M. In particular, prove
that the power of the set of all real functions (continuous and discontinuous)
defined in the interval [0, 1] is greater than c.

Hint. Use the fact that the set of all characteristic functions (i.e., functions
taking only the values 0 and 1) on M is equivalent to the set of all subsets
of M.

Problem 7. Give an indirect proof of the equivalence of the closed interval
[a, b], the open interval (a, b) and the half-open interval [a, b) or (a, b].
Hint. Use Theorem 7.
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Problem 8. Prove that the union of a finite or countable number of sets
each of power c is itself of power c.

Problem 9. Prove that edch of the following sets has the power of the
continuum:

a) The set of all infinite sequences of positive integers;
b) The set of all ordered n-tuples of real numbers;
c) The set of all infinite sequences of real numbers.

Problem 10. Develop a contradiction inherent in the notion of the “set
of all sets which are not members of themselves.”

Hint. Is this set a member of itself ?

Comment. Thus we will be careful to avoid sets which are “too big,” like
the “set of all sets.”

3. Ordered Sets and Ordinal Numbers

3.1. Partially ordered sets. A binary relation R on a set M is said to be a
partial ordering (and the set M itself is said to be partially ordered) if

1) R is reflexive (aRa for every a € M);
2) R is transitive (aRb and bRc together imply aRc);
3) Ris antisymmetric in the sense that aRb and bRa together imply a = b.

For example, if M is the set of all real numbers and aRb means a < b, then
R is a partial ordering. This suggests writing a < b (or equivalently b > a)
instead of aRb whenever R is a partial ordering, and we will do so from now
on. Similarly, we writta < bifa<b,a#bandb>aifb>a,b+#a

The following examples give some idea of the generality of the concept
of a partial ordering:

Example 1. Any set M can be partially ordered in a trivial way by setting
a < bifand only if a = b.

Example 2. Let M be the set of all continuous functions f, g, . . . defined
in a closed interval [«, B]. Then we get a partial ordering by setting f' < g
if and only if f(¢) < g(t) for every ¢ € [a, B].

Example 3. The set of all subsets M,;, M,, ... is partially ordered if
M, < M, means that M, = M,.

Example 4. The set of all integers greater than 1 is partially ordered if
a < b means that “b is divisible by a.””
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An element g of a partially ordered set is said to be maximal if a < b
implies b = a and minimal if b < a implies b = a. Thus in Example 4 every
prime number (greater than 1) is a minimal element.

3.2. Order-preserving mappings. Isomorphisms. Let M and M’ be any
two partially ordered sets, and let f be a one-to-one mapping of M onto M’.
Then f'is said to be order-preserving if a < b (where a, b € M) implies f (a) <
f(b) (in M"). An order-preserving mapping f such that f(a) < f(b) implies
a < b is called an isomorphism. In other words, an isomorphism between
two partially ordered sets M and M’ is a one-to-one mapping of M onto M’
such that f(a) < f(b) if and only if a < b. Two partially ordered sets M
and M’ are said to be isomorphic (to each other) if there exists an isomorphism
between them.

Example. Let M be the set of positive integers greater than 1 partially
ordered as in Example 4, Sec. 3.1, and let M’ be the same set partially ordered
in the natural way, i.e., in such a way that a < b if and only if b — a is
nonnegative. Then the mapping of M onto M’ carrying every integer n
into itself is order-preserving, but not an isomorphism.

Isomorphism between partially ordered sets is an equivalence relation
as defined in Sec. 1.4, being obviously reflexive, symmetric and transitive.
Hence any given family of partially ordered sets can be partitioned into
disjoint classes of isomorphic sets.” Clearly, two isomorphic partially
ordered sets can be regarded as identical in cases where it is the structure
of the partial ordering rather than the specific nature of the elements of the
sets that is of interest.

3.3. Ordered sets. Order types. Given two elements a and b of a partially
ordered set M, it may turn out that neither of the relationsa< borb < a
holds. In this case, @ and b are said to be noncomparable. Thus, in general,
the relation < is defined only for certain pairs of elements, which is why M
is said to be partially ordered. However, suppose M has no noncomparable
elements. Then M is said to be ordered (synonymously, simply or linearly
ordered). In other words, a set M is ordered if it is partially ordered and if,
given any two distinct elements a, b € M, either a << b or b < a. Obviously,
any subset of an ordered set is itself ordered.

Each of the sets figuring in Examples 1-4, Sec. 3.1 is partially ordered,
but not ordered. Simple examples of ordered sets are the set of all positive
integers, the set of all rational numbers, the set of all real numbers in the

" Note that we avoid talking about the ‘““family of all partially ordered sets” (recall
Problem 10, p. 20).
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interval [0, 1], and so on (with the usual relations of “‘greater than’’ and ““less
than’).

Since an ordered set is a special kind of partially ordered set, the concepts
of order-preserving mapping and isomorphism apply equally well to ordered
sets. Two isomorphic ordered sets are said to have the same (order) type.
Thus “type’ is something shared by all isomorphic ordered sets, just as
“power”’ is something shared by all equivalent sets (considered as “plain”
sets, without regard for possible orderings).

The simplest example of an ordered set is the set of all positive integers
1,2,3,... arranged in increasing order, with the usual meaning of the
symbol <. The order type of this set is denoted by the symbol w. Two iso-
morphic ordered sets obviously have the same power (an isomorphism is a
one-to-one correspondence). Thus it makes sense to talk about the power
corresponding to a given order type. For example, the power X, corresponds
to the order type w. The converse is not true, since a set of a given power can
in general be ordered in many different ways. It is only in the finite case that
the number of elements in a set uniquely determines its type, designated by
the same symbol # as the number of elements in the set. For example,
besides the “natural”’ order type w of the set of positive integers, there is
another order type corresponding to the sequence

1,3,5,...,2,4,6,...,

where odd and even numbers are separately arranged in increasing order,
but any odd number precedes any even number. It can be shown that the
number of distinct order types of a set of power N, is infinite and in fact
uncountable.

3.4. Ordered sums and products of ordered sets. Let M, and M, be two
ordered sets of types 6, and 0,, respectively. Then we can introduce an
ordering in the union M; U M, of the two sets by assuming that

1) a and b have the same ordering as in M, if a, b € M,;
2) a and b have the same ordering as in M, if a, b € M,;
JYa<bifae M,be M,

(verify that this is actually an ordering of M; U M,). The set M; U M,
ordered in this way is called the ordered sum of M, and M,, denoted by
M, + M,. Note that the order of terms matters here, i.e., in general M, + M,
is not isomorphic to M; 4+ M,. More generally, we can define the ordered
sum of any finite number of ordered sets by writing (cf. Problem 6)

M1+M2+M3:(M1+M2)+M3,
M1+M2+M3+M4:(M1+M2+M3)+M4,
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and so on. By the ordered sum of the types 6, and 6,, denoted by 6, + 6,,
we mean the order type of the set M; + M,.

Example. Consider the order types w and n. It is easy to see that
n 4 o = w. In fact, if finitely many terms are written to the left of the
sequence 1,2,...,k,..., we again get a set of the same type (why?).
On the other hand, the order type o + #, i.c., the order type of the set?

{1,2,...,k,...,a41,85,...,0a,},
is obviously not equal to w.

Again let-M, and M, be two ordered sets of types 6, and 6,, respectively.
Suppose we replace each element of M, by a “replica” of the set M;. Then
the resulting set, denoted by M, * M, is called the ordered product of M,
and M, More exactly, M, - M, is the set of all pairs (@, b) where a € M,
b € M,, ordered in such a way that

1) (ay, by) < (as, by) if b, < b, (for arbitrary a, a,);
2) (ay, b) < (a, b) if a3 < a,.

Note that the order of factors matters here, i.e., in general M, - M, is not
isomorphic to M, - M,. The ordered product of any finite number of ordered
sets can be defined by writing (cf. Problem 6)

My My My = (M, - M) M,,
M, My My My = (My* My- My)- M,,

and so on. By the ordered product of the types 6, and 6,, denoted by 6, - 6,,
we mean the order type of the set M, - M,.

3.5. Well-ordered sets. Ordinal numbers. A key concept in the theory of
ordered sets is given by

DEFINITION 1. An ordered set M is said to be well-ordered if every
nonempty subset A of M has a smallest (or “‘first’’) element, i.e., an element
w such that p. < a for every a € A.

Example 1. Every finite ordered set is obviously well-ordered.

Example 2. Every nonempty subset of a well-ordered set is itself well-
ordered.

Example 3. The set M or rational numbers in the interval [0, 1] is ordered
but not well-ordered. It is true that M has a smallest element, namely the

8 Here we use the same curly bracket notation as in Sec. 1.1, but the order of terms
is now crucial.
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number 0, but the subset of M consisting of all positive rational numbers
has no smallest element.

DEFINITION 2. The order type of a well-ordered set is called an ordinal
number or simply an ordinal.® If the set is infinite, the ordinal is said to be
transfinite.

Example 4. The set of positive integers 1,2,...,k,... arranged in
increasing order is well-ordered, and hence its order type  is a (transfinite)
ordinal. The order type w + n of the set

{L2,...,k,...,a,0,...,a,}
is also an ordinal.

Example 5. The set
{ ., —=k,...,—3,=2,—1} )

is ordered but not well-ordered. It is true that any nonempty subset 4 of
(1) has a largest element (i.e., an element v such that a < v for every a € A4),
but in general 4 will not have a smallest element. In fact, the set (1) itself
has no smallest element. Hence the order type of (1), denoted by w*, is not
an ordinal number.

THEOREM 1. The ordered sum of a finite number of well-ordered sets
M, M,, ..., M,is itself a well-ordered set.

Proof. Let M be an arbitrary subset of the ordered sum M; + M, +
-+ 4+ M,, and let M, be the first of the sets M,, M,, ..., M, (namely
the set with smallest index) containing elements of M. Then M N M,
is a subset of the well-ordered set M,, and as such has a smallest element
. Clearly w is the smallest element of M itself. [

COROLLARY. The ordered sum of a finite number of ordinal numbers is
itself an ordinal number.

Thus new ordinal numbers can be constructed from any given set of
ordinal numbers. For example, starting from the positive integers (i.e., the
finite ordinal numbers) and the ordinal number w, we can construct the new
ordinal numbers

w4+n o+, ot+ot+n o4+o4 o,
and so on.

THEOREM 2. The ordered product of two well-ordered sets M, and M,
is itself a well-ordered set.

® This is a good place to point out that the terms ‘‘cardinal number” and ‘“‘power”
(of a set) are synonymous.
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Proof. Let M be an arbitrary subset of M, - M,, so that M is a set of
ordered pairs (a, b) witha € M,, b € M,. The set of all second elements b
of pairs in M is a subset of M,, and as such has a smallest element since
M, is well-ordered. Let b, denote this smallest element, and consider
all pairs of the form (a, b,) contained in M. The set of all first elements
a of these pairs is a subset of M;, and as such has a smallest element
since M, is well-ordered. Let a; denote this smallest element. Then the
pair (ay, by) is clearly the smallest element of M. §

COROLLARY 1. The ordered product of a finite number of well-ordered
sets is itself a well-ordered set.

COROLLARY 2. The ordered product of a finite number of ordinal num-
bers is itself an ordinal number.

Thus it makes sense to talk about the ordinal numbers
o n, 0w, o n wl,
and so on. It is also possible to define such ordinal numbers as!®

(8]
w [5)
w0 ,. ..

3.6. Comparison of ordinal numbers. If »;, and n, are two finite ordinal
numbers, then they either coincide or else one is larger than the other. As
we now show, the same is true of transfinite ordinal numbers. We begin by
observing that every element a of a well-ordered set M determines an (initial)
section P, the set of all x € M such that x < a, and a remainder Q, the set
of all x € M such that x > a. Given any two ordinal numbers « and 8, let
M and N be well-ordered sets of order type « and §, respectively. Then we
say that

1) « = 8 if M and N are isomorphic;
2) « < B if M is isomorphic to some section of N;
3) a« > Bif Nisisomorphic to some section of M

(note that this definition makes sense for finite « and B).

LemMmA. Let f be an isomorphism of a well-ordered set A onto some
subset B = A. Then f(a) > a forallac A.

Proof. If there are elements a € 4 such that f(a) < a, then there is a
least such element since A is well-ordered. Let g, be this element, and
let by = f'(a,). Then b, < a,, and hence f(by) < f(as) = b, since fis an
isomorphism. But then g, is not the smallest element such that f (a) < a.
Contradiction! §

19 See e.g., A. A. Fraenkel, Abstract Set Theory, third edition, North-Holland Pub-
lishing Co., Amsterdam (1966), pp. 202-208.
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It follows from the lemma that a well-ordered set 4 cannot be iso-
morphic to any of its sections, since if 4 were isomorphic to the section
determined by a, then clearsly f(a) < a. In other words, the two relations

x =8, x < B
are incompatible, and so are

o=, > fB.
Moreover, the two relations

a < B, x>p

are incompatible, since otherwise we could use the transitivity to deduce
« < «, which is impossible by the lemma. Therefore, if one of the three
relations

x < B, x=f, x>B )

holds, the other two are automatically excluded. We must still show that
one of the relations (2) always holds, thereby proving that any two ordinal
numbers are comparable.

THEOREM 3. Two given ordinal numbers «. and B satisfy one and only
one of the relations
a < B, x =8, x> B.

Proof. Let W(«) be the set of all ordinals <«. Any two numbers
v and y’ in W(«) are comparable!* and the corresponding ordering of
W(x) makes it a well-ordered set of type «. In fact, if a set

A={..,a,...,b,..}

is of type «, then by definition, the ordinals less than « are the types of
well-ordered sets isomorphic to sections of 4. Hence the ordinals them-
selves are in one-to-one correspondence with the elements of 4. In other
words, the elements of a set of type « can be numbered by using the
ordinals less than «:

A={ay,a...,a,,...}.

Now let « and  be any two ordinals. Then W(x) and W() are well-
ordered sets of types « and (3, respectively. Moreover, let C =4 N B
be the intersection of the sets 4 and B, i.e., the set of all ordinals less than
both « and B. Then C is well-ordered, of type vy, say. We now show that
vy < a. If C = A, then obviously ¥ = «. On the other hand, if C # 4,
then Cis a section of A and hence y < «. In fact,let € C, e d — C.
Then £ and v are comparable, i.e.,either§ < nor§ > v, Butn < & <«

11 Recall the meaning of v < o, ¥ < o, and use the fact that a section of a section of
a well-ordered set is itself a section of a ‘well-ordered set.
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is impossible, since then e C. Therefore & < v and hence C is a
section of 4, which implies y < «. Moreover, ¥ is the first element of
the set A — C. Thus y < «, as asserted, and similarly vy < 8. The case
vy <, y <@ is impossible, since then ye 4 — C, ye B— C. But
then vy ¢ C on the one hand and ye 4 N B = C on the other hand.
It follows that there are only three possibilities

Y=a? Y=B7 a=B?
Y=o y<B, «<B,
Yy <« Y‘:B’ ‘X>B’

i.e., « and B are comparable. [

THEOREM 4. Let A and Bbe well-orderedsets. Theneither A is equivalent
to B or one of the sets is of greater power than the other, i.e., the powers
of A and B are comparable.

Proof. There is a definite power corresponding to each ordinal. But
we have just seen that ordinals are comparable, and so are the corre-
sponding powers (recall the definition of inequality of powers given in
Sec. 2.5).

3.7. The well-ordering theorem, the axiom of choice and equivalent asser-
tions. Theorem 4 shows that the powers of two well-ordered sets are always
comparable. In 1904, Zermelo succeeded in proving the

WELL-ORDERING THEOREM. Every set can be well-ordered.

It follows from the well-ordering theorem and Theorem 5 that the powers of
two arbitrary sets are always comparable, a fact already used in Sec. 2.5.
Zermelo’s proof, which will not be given here,!* rests on the following basic

AXIOM OF CHOICE. Given any set M, there is a “‘choice function” f such
that f(A) is an element of A for every nonempty subset A < M.

We will assume the validity of the axiom of choice without further ado.
In fact, without the axiom of choice we would be severely hampered in
making set-theoretic constructions. However, it should be noted that from
the standpoint of the foundations of set theory, there are still deep and
controversial problems associated with the use of the axiom of choice.

There are a number of assertions equivalent to the axiom of choice, i.e.,
assertions each of which both implies and is implied by the axiom of choice.
One of these is the well-ordering theorem, which obviously implies the axiom
of choice. In fact, if an arbitrary set M can be well-ordered, then, by merely
choosing the “first’’ element in each subset A = M, we get the function f'(A)

12 A, A. Fraenkel, op. cit., pp. 222-227.
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figuring in the statement of the axiom of choice. On the other hand, the
axiom of choice implies the well-ordering theorem, as already noted without
proof. 52

To state further assertions equivalent to the axiom of choice, we need
some more terminology:

" DEFINITION 3. Let M be a partially ordered set, and let A be any subset
of M such that a and b are comparable for every a, b € A. Then A is called
a chain (in M). A chain C is said to be maximal if there is no other chain C’
in M containing C as a proper subset.

DEFINITION 4. An element a of a partially ordered set M is called an
upper bound of a subset M' = M if a' < a for every a’ € M’.

We now have the vocabulary needed to state two other assertions equiv-
alent to the axiom of choice:

HAUSDORFF’S MAXIMAL PRINCIPLE. Every chain in a partially ordered
set M is contained in a maximal chain in M.

ZORN’S LEMMA. If every chain in a partially ordered set M has an upper
bound, then M contains a maximal element.

For the proof of the equivalence of the axiom of choice, the well-ordering
theorem, Hausdorff’s maximal principle and Zorn’s lemma, we refer the
reader elsewhere.!® Of these various equivalent assertions, Zorn’s lemma is
perhaps the most useful.

3.8. Transfinite induction. Mathematical propositions are very often
proved by using the following familiar

THEOREM 4 (Mathematical induction). Given a proposition P(n) formu-
lated for every positive integer n, suppose that

1) P(1) is true;

2) The validity of P(k) for all k < n implies the validity of P(n + 1).
Then P(n) is true for alln = 1,2, . ..

Proof. Suppose P(n) fails to be true for all n =1,2,..., and let
n; be the smallest integer for which P(n) is false (the existence of n;
follows from the well-ordering of the positive integers). Clearly n; > 1,

so that n; — 1 is a positive integer. Therefore P(n) is valid for all
k < n, — 1 but not for n,. Contradiction! [}

Replacing the set of all positive integers by an arbitrary well-ordered set,

13 See e.g., G. Birkhoff, Lattice Theory, third edition, American Mathematical Society,
Providence, R.I. (1967), pp. 205-206.
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we get

THeoReM 4'. (Transfinite induction). Given a well ordered set AM let
P(a) be a proposition formulated for every element a € A. Suppose that

1) P(a) is true for the smallest element of A;
2) The validity of P(a) for all a < a* implies the validity of P(a*).

Then P(a) is true for all a e A.

Proof. Suppose P(a) fails to be true tor all a € 4. Then P(a) is false
for all a in some nonempty subset 4* < 4. By the well-ordering, A*
has a smallest element a*. Therefore P(a) is valid for all a < a* but
not for a*. Contradiction! [

Remark. Since any set can be well-ordered, by the well-ordering theorem,
transfinite induction can in principle be applied to any set M whatsoever.
In practice, however, Zorn’s lemma is a more useful tool, requiring only that
M be partially ordered.

3.9. Historical remarks. Set theory as a branch of mathematics in its
own right stems from the pioneer work of Georg Cantor (1845-1918).
Originally met with disbelief, Cantor’s ideas subsequently became widespread.
By now, the set-theoretic point of view has become standard in the most
diverse fields of mathematics. Basic concepts, like groups, rings, fields, linear
spaces, etc. are habitually defined as sets of elements of an arbitrary kind
obeying appropriate axioms.

Further development of set theory led to a number of logical difficulties,
which naturally gave rise to attempts to replace ““naive’” set theory by a more
rigorous, axiomatic set theory. Itturnsout thatcertain set-theoretic questions,
which would at first seem to have “yes” or “no’’ answers, are in fact of a
different kind. Thus it was shown by Godel in 1940 that a negative answer
to the question ““Is there an uncountable set of power less than that of the
continuum’’ is consistent with set theory (axiomatized in a way we will not
discuss here), but it was recently shown by Cohen that an affirmative answer
to the question is also consistent in the same sense!

Problem 1. Exhibit both a partial ordering and a simple ordering of the
set of all complex numbers.

Problem 2. What is the minimal element of the set of all subsets of a
given set X, partially ordered by set inclusion. What is the maximal element?

Problem 3. A partially ordered set M is said to be a directed set if, given
any two elements a, b € M, there is an element ¢ € M such thata < ¢, b < c.
Are the partially ordered sets in Examples 1-4, Sec. 3.1 all directed sets?

14 For example, the set of all transfinite ordinals less than a given ordinal.
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Problem 4. By the greatest lower bound of two elements @ and b of a
partially ordered set M, we mean an element ¢ € M such that c < a, c < b
and there is no element d & M such that ¢ <d < a, d < b. Similarly, by
the least upper bound of a and b, we mean an element ¢ € M such thata < c,
b < ¢ and there is no element de M such that a< d<c¢, b<d Bya
lattice is meant a partially ordered set any two element of which have both
a greatest lower bound and a least upper bound. Prove that the set of all
subsets of a given set X, partially ordered by set inclusion, is a lattice. What
is the set-theoretic meaning of the greatest lower bound and least upper
bound of two elements of this set?

Problem 5. Prove that an order-preserving mapping of one ordered set
onto another is automatically an isomorphism.

Problem 6. Prove that ordered sums and products of ordered sets are
associative, i.e., prove that if M,, M, and M, are ordered sets, then

(My + My) + My = M, + (My + My), (M, M) My= M, (M, My),
where the operations + and - are the same as in Sec. 3.4.

Comment. This allows us to drop parentheses in writing ordered sums
and products.

Problem 7. Construct well-ordered sets with ordinals

w+n o4+, ot+totn ot+o4o,...
Show that the sets are all countable.
Problem 8. Construct well-ordered sets with ordinals
o' 0, owl-n w,...
Show that the sets are all countable.
Problem 9. Show that
O+ o=n-2, o+ot+to=u-3...

Problem 10. Prove that the set W(«) of all ordinals less than a given
ordinal « is well-ordered.

Problem 11. Prove that any nonempty set of ordinals is well-ordered.

Problem 12. Prove that the set M of all ordinals corresponding to a
countable set is itself uncountable.

Problem 13. Let X, be the power of the set M in the preceding problem.
Prove that there is no power m such that Ry < m < X,.
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4. Systems of Sets?®

4.1. Rings of sets. By a system of sets we mean any set whose elements
are themselves sets. Unless the contrary is explicitly stated, the elements
of a given system of sets will be assumed to be certain subsets of some fixed
set X. Systems of sets will usually be denoted by capital script letters like
R, &, etc. Our chief interest will be systems of sets which have certain
closure properties under the operations introduced in Sec. 1.1.

DEFINITION 1. A nonempty system of sets R is called a ring (of sets) if
AArBe Rand A N Be X whenever Ac #,Be X.
Since
AUB=(AAB)A (A NB),

A—B=AA(ANB),

we also have A UBe % and A — Be # whenever A€ #, Be X.
Thus a ring of sets is a system of sets closed under the operations of
taking unions, intersections, differences, and symmetric differences.
Clearly, a ring of sets is also closed under the operations of taking finite
unions and intersections:

n n
U4, NA,.
k=1 k=1

A ring of sets must contain the empty set @, since 4 — 4 = &.
A set E is called the unit of a system of sets & if E € % and

ANE=A4

for every A € &. Clearly E is unique (why?). Thus the unit of & is
just the maximal set of &, i.e., the set containing all other sets of %.
A ring of sets with a unit is called an algebra (of sets).

Example 1. Given a set A4, the system .#(A4) of all subsets of 4 is an
algebra of sets, with unit £ = 4.

Example 2. The system {&, A} consisting of the empty set @ and any
nonempty set 4 is an algebra of sets, with E = 4.

Example 3. The system of all finite subsets of a given set A is a ring of
sets. This ring is an algebra if and only if A itself is finite.

Example 4. The system of all bounded subsets of the real line is a ring of
sets, which does not contain a unit.

15 The material in this section need not be read now, since it will not be needed until
Chapter 7.
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THEOREM 1. The intersection
o a=N2
of any set of rings is itself a ring.
Proof. An immediate consequence of Definition 1. §

THEOREM 2. Given any nonempty system of sets &, there is a unique
ring P containing & and contained in every ring containing & .

Proof. If & exists, then clearly £ is unique (why?). To prove the
existence of &, consider the union

x=U4
Aey
of all sets 4 belonging to & and the ring .# (X) of all subsets of X. Let
Z be the set of all rings of sets contained in .#(X) and containing &.
Then the intersection
P=N%A
#ex
of all these rings clearly has the desired properties. In fact, & obviously
contains . Moreover, if #* is any ring containing &, then the
intersection Z = Z* N.A(X)isaringinX and hence # < # < R*,
asrequired. Thering & is called the minimal ring generated by the system
&, and will henceforth be denoted by Z(<). i

Remark. The set #(X) containing Z(S) has been introduced to avoid
talking about the “‘set of all rings containing <.’ Such concepts as ‘‘the
set of all sets,”” “the set of all rings,” etc. are inherently contradictory and
should be avoided (recall Problem 10, p. 20).

4.2. Semirings of sets. The following notion is more general than that
of a ring of sets and plays an important role in a number of problems (par-
ticularly in measure theory):

DEFINITION 2. A system of sets & is called a semiring (of sets) if

1) & contains the empty set & ;

2) A " Be S whenever Ac &, Be &,

3) If & contains the sets A and A; < A, then A can be represented
as a finite union

A:

&
et

Ay (1)

of pairwise disjoint sets of &, with the given set A, as its first term.
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Remark. The representation (1) is called a finite expansion of A, with
respect to the sets A;, A, ..., 4.

Example 1. Every ring of sets £ is a semiring, since if Z contains 4 and
A, < A, then A = A; U A, where 4, = A — A, € A.

Example 2. The set & of all open intervals (a, b), closed intervals [a, b]
and half-open intervals [a, b), (a, b], including the “empty interval” (a, @) =
@ and the single-element sets [a, a] = {a}, is a semiring but not a ring.

LEMMA 1. Suppose the sets A, Ay, ..., A,, where 4y, ..., A, are
pairwise disjoint subsets of A, all belong to a semiring . Then there is a
finite expansion

A=U4, (>n)
k=1

with Ay, . .. , A, as its first n terms, where A, € &S, A, N A, = & for all
k,l=1,...,n

Proof. The lemma holds for n = 1, by the definition of a semiring.
Suppose the lemma holds for n = m, and consider m + 1 sets 4;, .. .,
A, Ay satisfying the conditions of the lemma. By hypothesis,

A=4, U+ U4, UB U---UB,,
where the sets 4,,..., 4, By, ..., B, are pairwise disjoint subsets of
A, all belonging to &. Let
By= Ay, N B,
By the definition of a semiring,
B,=B,U--UB

ary?

where the sets B, (j=1,...,r,) are pairwise disjoint subsets of B,
all belonging to &. But then it is easy to see that

» T
A=A, U UA, YA, U (UB,,,),

q=1 \j=2
i.e., the lemma is true for n = m + 1. The proof now follows by mathe-
matical induction. J§

LEMMA 2. Given any finite system of sets Ay, ..., A, belonging to a
semiring &, there is a finite system of pairwise disjoint sets By, ..., B,
belonging to & such that every A, has a finite expansion

A,=UB, (k=1,...,n)

se My

with respect to certain of the sets B,

16 Here M,, denotes some subset of the set {1, 2, ..., 1}, depending on the choice of k.
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Proof. The lemma is trivial for n = 1, since we need only set t = 1,
B, = A4; Suppose the lemma is true for n = m, and consider a system
of sets Ay, ..., Apy Apyyin . Let By, ..., B, be sets of & satisfying
the conditions of the lemma with respect to 4;, ..., 4, and let

By = A1 N B,

Then, by Lemma 1, there is an expansion

Aoy = (91831) U (0 B;,) (B, € &),

p=1

while, by the very definition of a semiring, there is an expansion
B,=B; VB, UB, (B € &).
It is easy to see that

Tg

4,=U (U_Bs,) k=1,...,m)
seMy \ =1

for some suitable M,. Moreover, the sets B,;, B, are pairwise disjoint.

Hence the sets By;, B, satisfy the conditions of the lemma with respect

to 4y, ...,A4,, Ap.. The proof now follows by mathematical induc-

tion. |

4.3. The ring generated by a semiring. According to Theorem 1, there is
a unique minimal ring Z(&’) generated by a given system of sets . The
actual construction of Z(%) is quite complicated for arbitrary . However,
the construction is completely straightforward if & is a semiring, as shown
by
THEOREM 3. If & is a semiring, then R(SF) coincides with the system
Z of all sets A which have finite expansions

with respect to the sets A, € &.
Proof. First we prove that 2 is aring. Let 4 and B be any two sets in
& . Then there are expansions

A=U4, (4,c9),

Cs ECﬁ

B=UB, (B;e).

Jj=1

Since & is a semirirg, the sets

C,“' = Ai nB,
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also belong to #. By Lemma 1, there are expansions

n T
A; = (U CU) v (U Dik) (Dir€ &),
i=1 k=1
m Sy (2)
B, — (U c,.,.) U (U E“) (Eqpe ).
=1 =1
It follows from (2) that 4 N B and 4 A B have the expansions
A N B == U Ci;"

AnB= (li Di,,) U (L{ E,»l),

and hence belong to &. Therefore & is a ring. The fact that & is the
minimal ring generated by & is obvious. [

4.4, Borel algebras. There are many problems (particularly in measure
theory) involving unions and intersections not only of a finite number of
sets, but also of a countable number of sets. This motivates the following

concepts:

DEFINITION 3. A ring of sets is called a o-ring if it contains the union

@
s=U4,
n=1
whenever it contains the sets Ay, Ag, ..., Ay, ... A o-ring with a unit

E is called a o-algebra.

DEFINITION 4. A ring of sets is called a &-ring if it contains the inter-
section

©
D=0N4,
n=1
whenever it contains the sets Ay, Ay, ..., Ay, ... . A S-ring with a unit

E is called a $-algebra.
THEOREM 4. Every c-algebra is a 3-algebra and conversely.

Proof. An immediate consequence of the “dual’” formulas

U4,=E—-NE—4),
NA,=E—-UE~-4,). |

The term Borel algebra (or briefly, B-algebra) is often used to denote
a c-algebra (equivalently, a 3-algebra). The simplest example of a B-algebra
is the set of all subsets of a given set A.



36 SET THEORY CHAP. 1

Given any system of sets &, there always exists at least one B-algebra
containing &. In fact, let
x=U4.

Aeg

Then the system % of all subsets of X is clearly a B-algebra containing .

If # is any B-algebra containing & and if E is its unit, then every
A € & is contained in E and hence

X=UA4cE
AeF

A B-algebra # is called irreducible (with respect to the system %) if X = E,
i.e., an irreducible B-algebra is a B-algebra containing no points that do
not belong to one of the sets 4 € .%. In every case, it will be enough to
consider only irreducible B-algebras.

Theorem 2 has the following analogue for irreducible B-algebras:

THEOREM 5. Given any nonempty system of sets &, there is a unique
irreducible’” B-algebra (%) containing & and contained in every
B-algebra containing & .

Proof. The proof is virtually identical with that of Theorem 2. The
B-algebra % (%) is called the minimal B-algebra generated by the system
& or the Borel closure of . |

Remark. An important role is played in analysis by Borel sets or B-sets.
These are the subsets of the real line belonging to the minimal B-algebra
generated by the set of all closed intervals [a, b].

Problem 1. Let X be an uncountable set, and let # be the ring consisting
of all finite subsets of X and their complements. Is Z a o-ring?

Problem 2. Are open intervals Borel sets?

Problem 3. Let y = f(x) be a function defined on a set M and taking
values in a set N. Let .# be a system of subsets of M, and let f(.#) denote
the system of all images f(4) of sets 4 €.#. Moreover, let 4~ be a system
of subsets of N, and let f~1(4") denote the system of all preimages f~*(B)
of sets B € 4. Prove that

a) If A" is a ring, so is f~1(A);

b) If A" is an algebra, so is f~1(A");

c) If A is a B-algebra, so is f~Y(A);

d) Z(f~HAN)) =[HRN));

e) B A = [THBN)).

Which of these assertions remain true if 4~ is replaced by .# and f~* by f?

17 More exactly, irreducible with respect to &.
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METRIC SPACES

5. Basic Concepts

5.1. Definitions and examples. One of the most important operations in
mathematical analysis is the taking of limits. Here what matters is not so
much the algebraic nature of the real numbers,! but rather the fact that
distance from one point to another on the real line (or in two or three-
dimensional space) is well-defined and has certain properties. Roughly
speaking, a metric space is a set equipped with a distance (or “metric’)
which has these same properties. More exactly, we have

DEfFINITION 1. By a metric space is meant a pair (X, p) consisting of
a set X and a distance p, i.e., a single-valued, nonnegative, real function
p(x, y) defined for all x, y € X which has the following three properties:

1) e(x,y) =0ifandonly if x = y;
2) Symmetry: o(x,y) = p(y, X);
3) Triangle inequality: p(x, z) < p(x,y) + p(y, 2).

We will often refer to the set X as a “space’” and its elements x, y, . .. as
“points.”” Metric spaces are usually denoted by a single letter, like

R= (X’ P)’

or even by the same letter X as used for the underlying space, in cases where
there is no possibility of confusion.

1 Le., the fact that the real numbers form a field.
37



38 METRIC SPACES CHAP. 2

Example 1. Setting
0 if x=y,
1 if x#y,

where x and y are elements of an arbitrary set X, we obviously get a metric
space, which might be called a “‘discrete space” or a “space of isolated
points.”

P(xg,.y) =

Example 2. The set of all real numbers with distance
P(xa,y) = |x —)’l
is a metric space, which we denote by R™.
Example 3. The set of all ordered n-tuples
X = (X, Xo5 .y X,)

of real numbers x;, X,, . . . , X,,, with distance

e(x, ) = \/ él(xk -, 1)

is a metric space denoted by R" and called n-dimensional Euclidean space
(or simply Euclidean n-space). The distance (1) obviously has properties
1) and 2) in Definition 1. Moreover, it is easy to see that (1) satisfies the
triangle inequality. In fact, let
x:(xth)‘-':xn)’ }’=(}’1,}’2,~--,)’")a Z=(ZI,22,...,2'")
be three points in R, and let
G =Xy, — Y b=y — 2z tk=1,...,n).

Then the triangle inequality takes the form

\/I.él(xk —z)' < \/kil(xk — )+ \/"él(yk — z)%, (2)

or equivalently

\/Z(ak + b < \/Zai + /Z‘bi- (2)
k=1 =1 Nzt
It follows from the Cauchy-Schwarz inequality

n 2
( E alcblc) < Z al%
k=1

k=1 k=1

> by, (3)
(see Problem 2) that

Z(ak + bk)2 = Za;f + 2Zakbk + Ebi
¥=1 ¥=1 ¥=1 k=1

n n n n n 2
ai+2\/2ai bi+2bi=(\/ ai+\/2‘b§)
k=1 k=1 k=1 k=1 k=1

Taking square roots, we get (2') and hence (2).

N
s
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Example 4. Take the same set of ordered n-tuples x = (x;, ..., x,) as in
the preceding example, but this time define the distance by the function

ex(x ) = S5 = . @

It is clear that (4) has all three properties of a distance figuring in Definition
1. The corresponding metric space will be denoted by R},

Example 5. Take the same set as in Examples 3 and 4, but this time
define distance between two points x = (x;,...,x,)and y = (1, ..., ¥,)
by the formula

po(x, y) = max IXe — Vel (5

1<k<n

Then we again get a metric space (verify all three properties of the distance).
This space, denoted by R, is often as useful as the Euclidean space R™.

Remark. The last three examples show that it is sometimes important
to use a different notation for a metric space than for the underlying set of
points in the space, since the latter can be “metrized’’ in a variety of different
ways.

Example 6. The set C,, ,, of all continuous functions defined on the
closed interval [a, b], with distance

o(f: £) = max |(2) — g(o) ©)

is a metric space of great importance in analysis (again verify the three
properties of distance). This metric space and the underlying set of “points”’
will both be denoted by the symbol C, ,,. Instead of C,,;, we will often
write just C. A space like C, ,, is often called a “function space,” to
emphasize that its elements are functions.

Example 7. Let-l, be the set of all infinite sequences®
X = (Xgy Xgy o oo s Xpsoos)

of real numbers x;, X5, ... , X, . . . satisfying the convergence condition

xp < oo,

[ ek

k=1

{f

2 The infinite sequence with general term X, can be written as {x;} or simply as
X1, Xgy + . -5 Xx, . . . (this notation is familiar from calculus). It can also be written in
‘“‘point notation” as x = (X1, X, . . - , X, - . .), i.€., @s an “‘ordered co-tuple” generalizing
the notion of an ordered r-tuple. (In writing {x;} we have another use of curly brackets,
but the context will always prevent any confusion between the sequence {x;} and the set
whose onlv element is x..)
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where distance between points is defined by

e(x, y) = \/k_l(xk — )™ @)
Clearly (7) makes sense for all x, y €/,, since it follows from the elementary
inequality

(% £ y)® < 20x% + yp)
that convergence of the two series

<« N <« 2
Z Xies Z Y
. . . k=1 k=1
implies that of the series
0

20— o)
k=1
At the same time, we find that if the points (x;, Xg, ..., X, ...) and

(V15 V2> - + - » Y1» - - -) both belong to /;, then so does the point
(er F Y0 X+ Yor oo X+ Va0 )

The function (7) obviously has the first two defining properties of a distance.
To verify the triangle inequality, which takes the form

Sea =zt < [ S0 — )+ S0n— 2 @®

for the metric (7), we first note that all three series converge, for the reason
just given. Moreover, the inequality

él(xk - zk)z < \/é:l(xk - J’k)2 + \/Ié:l(J’k - zk)2 )

holds for all n, as shown in Example 3. Taking the limit as n — oo in (9),
we get (8), thereby verifying the triangle inequality in J,. Therefore /; is a
metric space.

Example 8. As in Example 6, consider the set of all functions continuous
on the interval [a, b], but this time define distance by the formula

o, = ([0 — o ) (10)

instead of (6). The resulting metric space will be denoted by CZ ,,. The
first two properties of the metric are obvious, and the fact that (10) satisfies
the triangle inequality is an immediate consequence of Schwarz’s inequality

( [xom) dt)2< P>ty arfyico) do (11)
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(see Problem 3), by the continuous analogue of the argument given in
Example 3.

Example 9. Next consider the set of all bounded infinite sequences of real
numbers x = (X, X5, ..., Xy, . . .), and let?

plx, y) = sup (% — Yl (12)

This gives a metric space which we denote by m. The fact that (12) has the
three properties of a metric is almost obvious.

Example 10. As in Example 3, consider the set of all ordered n-tuples
x = (x1,...,X,) of real numbers, but this time define the distance by the
more general formula

n 1/p
an=(gm—wm), (13)

where p is a fixed number >1 (Examples 3 and 4 correspond to the cases
p =2 and p = 1, respectively). This gives a metric space, which we denote
by R7. Itis obvious that p (x, y) = Oifand only if x = y and that p (x, y) =
p,(y> x), but verification of the triangle inequality for the metric (13) requires
a little work. Let
X=(X,00e5X)s P=15e-v>Vn)s Z2=(Z1s++52y)
be three points in R7, and let
G =X — Y =) — 2% k=1,...,n),
just as in Example 3. Then the triangle inequality
Po( X5 2) < (X, 2) + 0, (5 2)
takes the form of Minkowski’s inequality

1/p

(S1a+ o) "< (S "+ (B (14)

The inequality is obvious for p = 1, and hence we can confine ourselves to
the case p > 1.
The proof of (14) for p > 1 is in turn based on Holder’s inequality

S ol < (Slal)” (S s

k=1 k=1

where the numbers p > 1 and ¢ > 1 satisfy the condition

1 1
S+ ==1. (16)
p 4

® The least upper bound or supremum of a sequence of real numbers @i, @, . . . » @, -+ -

is denoted by sup a;.
x
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We begin by observing that the inequality (15) is homogeneous, i.e., if it
holds for two points (ay, ..., a,) and (b, ..., b,), then it holds for any
two points (Aqy, . .., Aa,) and (uby, ... ., ub,) where X and p are arbitrary
real numbers. Therefore we need only prove (15) for the case

Dla” =2 1byl "= 1. (17
k=1 k=1
Thus, assuming that (17) holds, we now
K prove that
b / Slabil < 1. (18)
k=1
S.
2 Consider the two areas S; and S, shown in
o Figure 8, associated with the curve in the &v-
o S plane defined by the equation
S ¢ 1 = &7,
FIGURE 8 or equivalently by the equation
E = .nq—l_
Then clearly
a,. a® b, b?
Sl=f0£”’d£=?, Sz=fu“f;q’d7]=z.

Moreover, it is apparent from the figure that
S+ S8, > ab
for arbitrary positive  and b. It follows that

D Q
ab<a—+b—.
P q

(19)

Setting a = [a,|, b = |b,|, summing over k from 1 to n, and taking account
of (16) and (17), we get the desired inequality (18). This proves Holder’s
inequality (15). Note that (15) reduces to Schwarz’s inequality if p = 2.

It is now an easy matter to prove Minkowski’s inequality (14), starting
from the identity

(lal + 161)* = (lal + |b])*~* la| + (la] + 1b))*~* b].

In fact, setting a = a,, b = b, and summing over k from 1 to n, we obtain
Z(lakl + 1bl)” = Z(Iakl + Ibkl)p—l [azl +Z(lak| + Ikap—l | byl
k=1 k=1 k=1

Next we apply Holder’s inequality (15) to both sums on the right, bearing
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in mind that (p — 1)q = p:

Stat vy < (3artnr)"([B1er] "+ [Sm]")

Dividing both sides of this inequality by

n 1/u
(3 e+ 107) "
we get
n 1/ n 1/p n 1/p
(Zttet + 10007) "< (Zla) + (Zh0)
k=1 k=1 k=1
which immediately implies (14), thereby proving the triangle inequality in R?.
Example 11. Finally let /, be the set of all infinite sequences
X = (X1, Xgs v vy Xps-o2)

of real numbers satisfying the convergence condition
«©
>xp < ©
k=1
for some fixed number p > 1, where distance between points is defined by

o) = (S - ym)”" 20)

k=1
(the case p = 2 has already been considered in Example 7). It follows from
Minkowski’s inequality (14) that

n 1/p n 1/p n 1/p
(Zhoe =) < (o) + S ) @
=1 k=1 k=1
for any n. Since the series
Shal Xl
k=1 k=1
converge, by hypothesis, we can take the limit as n — oo in (21), obtaining
© 1/p @ 1/p 0 1/p
(Z|xk - }’kP) < (ZIX,J”) + (ZIJ’I«IP) < ©oo.
k=1 k=1 k=1
This shows that (20) actually makes sense for arbitrary x, y € /. At the same
time, we have verified that the triangle inequality holds in /, (the other two

properties of a metric are obviously satisfied). Therefore /, is a metric space.

Remark. If R = (X, p) is a metric space and M is any subset of X, then
obviously R* = (M, p) is again a metric space, called a subspace of the
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original metric space R. This device gives us infinitely more examples of
metric spaces.

5.2. Continuous mappings and homeomorphisms. Isometric spaces. Let f
be a mapping of one metric space X into another metric space Y, so that
f associates an element y = f(x) € Y with each element x € X. Then f is
said to be continuous at the point x4 € X if, given any € > 0, there exists a

d > 0 such that
P (f(2),f(x) <=

p(x, xo) < 3

whenever

(here p is the metric in X and p’ the metric in Y). The mapping f is said
to be continuous on X if it is continuous at every point x € X.

Remark. This definition reduces to the usual definition of continuity
familijar from calculus if X and Y are both numerical sets, i.e., if fis a real
function defined on some subset of the real line.

Given two metric spaces X and Y, let f be one-to-one mapping of X onto
Y, and suppose f and f~! are both continuous. Then f is called a homeo-
morphic mapping, or simply a homeomorphism (between X and Y). Two
spaces X and Y are said to be homeomorphic if there exists a homeomorphism
between them.

Example. The function

y=f(x)= g—arc tan x
b

establishes a homeomorphism between the whole real line (—co, o) and the
open interval (—1, 1).

DEFINITION 2. A one-to-one mapping f of one metric space R = (X, p)
onto another metric space R’ = (Y, ') is said to be an isometric mapping
(or simply an isometry) if

P(xls x2) = P/(f(x1)9f(x2))

for all x5, xy € R. Correspondingly, the spaces R and R’ are said to be
isometric (to each other).

Thus if R and R’ are isometric, the “metric relations™ between the
elements of R are the same as those between the elements of R’, i.e., R and
R’ differ only in the explicit nature of their elements (this distinction is
unimportant from the standpoint of metric space theory). From now on,
we will not distinguish between isometric spaces, regarding them simply as
identical.
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Remark. We will discuss continuity and homeomorphisms from a more
general point of view in Sec. 9.6.

Problem 1. Given a metric space (X, p), prove that

a) |e(x,2) — e(y, W)l < p(x, y) + p(z, ) (x,p,z,ucX);
b) lp(x,2) — (. 2)I < p(x,3)  (x,y,z€X).

Problem 2. Verify that
n 2 n n 122
(Zakbk) =3a 36— L3 b, — ba)y.
=1 =1 =1 2i=14i=1
Deduce the Cauchy-Schwarz inequality (3) from this identity.
Problem 3. Verify that

Py i) = [y ae Py de— 2 P[Py — yexras
a a a 2 ava

Deduce Schwarz’s inequality (11) from this identity.
Problem 4. What goes wrong in Example 10, p. 41 if p < 1?
Hint. Show that Minkowski’s inequality fails for p < 1.

Problem 5. Prove that the metric (5) is the limiting case of the metric (13)
in the sense that

Sksn

n 1/p
oo(, ¥) = max |x, — y| =lim (Elxk - ykv) .
1< P~ \k=1

Problem 6. Starting from the inequality (19), deduce Holder’s integral
inequality

[oxomoar < ([xor " (fwor)*  (2+2=1)

valid for any functions x() and y(t) such that the integrals on the right exist.
Problem 7. Use Holder’s integral inequality to prove Minkowski’s integral
inequality

([ + yor aef "< (Lixeor) "+ ([vora” o> 0.

and C

Problem 8. Exhibit an isometry between the spaces C w21

0,1]

6. Convergence. Open and Closed Sets

6.1. Closure of a set. Limit points. By the open sphere (or open ball)
S(xe, 7} in a metric space R we mean the set of points x € R satisfying the
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inequality ( )
p(Xe, x) <r

(p is the metric of R).* The:fixed point X, is called the center of the sphere,
and the number r is called its radius. By the closed sphere (or closed ball)
S'[x,, r] with center x, and radius r we mean the set of points x € R satisfying
the inequality

p(xe, X) < 1.

An open sphere of radius ¢ with center x, will also be called an e-neighborhood
of x,, denoted by O, (x,).

A point x € R is called a contact point of a set M < R if every neighbor-
hood of x contains at least one point of M. The set of all contact points of a
set M is denoted by [M] and is called the closure of M. Obviously M < [M],
since every point of M is a contact point of M. By the closure operator in
a metric space R, we mean the mapping of R into R carrying each set M < R
into its closure [M].

THEOREM 1. The closure operator has the following properties:

1) If M < N, then [M] < [N];
2) [[M]] = [M];

3) [M UN]=[M] UV [N]

4) [g]= 2.

Proof. Property 1) is obvious. To prove property 2), let x € [[M]].
Then any given neighborhood O,(x) contains a point x; € [M]. Consider
the sphere O, (x;) of radius

g =¢ — p(x, xy).

Clearly O, (x,) is contained in O,(x). In fact, if z€O,(x;), then
p(z, x;) < &, and hence, since p(x, x;) = ¢ — g, it follows from the
triangle inequality that

p(z, x) <e+(e—g)=cs,

i.e., z€ O(x). Since x, € [M], there is a point x, € M in O, (x). But
then x, € O,(x) and hence x € [M], since O.(x) is an arbitrary neighbor-
hood of x. Therefore [[M]] = [M]. But obviously [M] < [[M]] and
hence [[M]] = [M], as required.

To prove property 3), let x € [M U N] and suppose x ¢ [M] U [N].
Then x ¢ [M] and x ¢ [N]. But then there exist neighborhoods O, (x)
and O, (x) such that O, (x) contains no points of M while O,,(x) contains

4 Any confusion between *‘sphere” meant in the sense of spherical surface and *‘sphere”
meant in the sense of a solid sphere (or ball) will always be avoided by judicious use of the
adjectives “‘open” or “closed.”
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no points of N. It follows that the neighborhood O,.(x), where ¢ =
min {g;, €}, contains no points of either M or N, and hence no points
of M U N, contrary to the assumption that x € [M U N]. Therefore
x € [M] v [N], and hence

[M U N]< [M] U [N], ™

since x is an arbitrary point of [M U NJ]. On the other hand, since
McMUN and N M UN, it follows from property 1) that
[M] < [M U N]and [N] = [M U N]. But then

[M] L [N]< [M U N],

which together with (1) implies [M U N] = [M] U [N].
Finally, to prove property 4), we observe that given any M < R,

M]=[M VU 2]=[M]U (5],

by property 3). It follows that [@] < [M]. But this is possible for
arbitrary M only if [&] = @. (Alternatively, the set with no elements
can have no contact points!) |

A point x € Ris called a /imit point of a set M < R if every neighborhood
of x contains infinitely many points of M. The limit point may or may not
belong to M. For example, if M is the set of rational numbers in the interval
[0, 1], then every point of [0, 1], rational or not, is a limit point of M.

A point x belonging to a set M is called an isolated point of M if there
is a (“‘sufficiently small”’) neighborhood of x containing no points of M other
than x itself.

6.2. Convergence and limits. A sequence of points {x,} = x;, Xp, ...,
X, ... in a metric space R is said to converge to a point x € R if every
neighborhood O,(x) of x contains all points x,, starting from a certain index
(more exactly, if, given any € > 0, there is an integer N, such that O.(x)
contains all points x,, with n > N,). The point x is called the limit of the
sequence {x,}, and we write x,, — x (as n — o). Clearly, {x,} converges to
x if and only if

lim p(x, x,) = 0.

7= 0
It is an immediate consequence of the definition of a limit that

1) No sequence can have two distinct limits;
2) If a sequence {x,} converges to a point x, then so does every subse-
quence of {x,}

(give the details).
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THEOREM 2. A4 necessary and sufficient condition for a point x to be a
contact point of a set M is that there exist a sequence {x,} of points of M
converging to x.

Proof. The condition is necessary, since if x is a contact point of M,
then every neighborhood O,,,(x) contains at least one point x, € M,

and these points form a sequence {x,} converging to M. The sufficiency
is obvious. |

THEOREM 2'. A necessary and sufficient condition for a point x to be a
limit point of a set M is that there exist a sequence {x,} of distinct points
of M converging to x.

Proof. Clearly, if x is a limit point of M, then the points x, €
0,/(x) N M figuring in the proof of Theorem 2 can be chosen to be
distinct. This proves the necessity, and the sufficiency is again obvious. [

6.3. Dense subsets. Separable spaces. Let 4 and B be two subsets of a
metric space R. Then A is said to be dense in B if [4] > B. In particular,
A is said to be everywhere dense (in R) if [A] = R. A set A is said to be
nowhere dense if it is dense in no (open) sphere at all.

Example 1. The set of all rational points is dense in the real line R

Example 2. The set of all points x = (X, X,, . . ., x,,) with rational co-
ordinates is dense in each of the spaces R”, R7 and R? introduced in Examples
3-5, pp. 38-39.

Example 3. The set of all points x = (x5, Xp, ..., X, . ..) with only
finitely many nonzero coordinates, each a rational number, is dense in the
space /, introduced in Example 7, p. 39.

Example 4. The set of all polynomials with rational coefficients is dense
in both spaces C, ,, and C{, ,, introduced in Examples 6 and 8, pp. 39 and
40.

DEFINITION. A metric space is said to be separable if it has a countable
everywhere dense subset.

Example 5. The spaces R', R", R}, R}, 1, C, ,1,and C}, , areallseparable,
since the sets in Examples 1-4 above are all countable.

Example 6. The *discrete space” M described in Example 1, p. 38 con-
tains a countable everywhere dense subset and hence is separable if and only
if it is itself a countable set, since clearly [M] = M in this case.

Example 7. There is no countable everywhere dense set in the space m of
all bounded sequences, introduced in Example 9, p. 41. In fact, consider
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the set E of all sequences consisting exclusively of zeros and ones. Clearly,
E has the power of the continuum (recall Theorem 6, Sec. 2.5), since there
is a one-to-one correspondence between E and the set of all subsets of the
set Z, ={1,2,...,n,...} (describe the correspondence). According to
formula (12), p. 41, the distance between any two points of E equals 1.
Suppose we surround each point of E by an open sphere of radius %, thereby
obtaining an uncountably infinite family of pairwise disjoint spheres. Then
if some set M is everywhere dense in m, there must be at least one point of
M in each of the spheres. It follows that M cannot be countable and hence
that m cannot be separable.

6.4. Closed sets. We say that a subset M of a metric space R is closed if it
coincides with its own closure, i.e., if [M] = M. In other words, a set is
called closed if it contains all its limit points (see Problem 2).

Example 1. The empty set @ and the whole space R are closed sets.

Example 2. Every closed interval [a, b] on the real line is a closed set.

Example 3. Every closed sphere in a metric space is a closed set. In
particular, the set of all functions fin the space Cy, ,, such that |f(1)] < K
(where K is a constant) is closed.

Example 4. The set of all functions fin C, ,, such that | f(f)] < K (an

open sphere) is not closed. The closure of this set is the closed sphere in the
preceding example.

Example 5. Any set consisting of a finite number of points is closed.

THEOREM 3. The intersection of an arbitrary number of closed sets is
closed. The union of a finite number of closed sets is closed.

Proof. Given arbitrary sets F, indexed by a parameter «, let x be a
limit point of the intersection

F=NF,

Then any neighborhood O, (x) contains infinitely many points of F, and
hence infinitely many points of each F,. Therefore x is a limit point of
each F, and hence belongs to each F,, since the sets F, are all closed.
It follows that x € F, and hence that F itself is closed.

Next let

be the union of a finite number of closed sets Fy, and suppose x does
not belong to F. Then x does not belong to any of the sets F,, and hence
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cannot be a limit point of any of them. But then, for every k, there is a
neighborhood O, (x) contammg no more than a finite number of points
of F;. Choosing e

e=min{e, ..., ¢},

we get a neighborhood O,(x) containing no more than a finite number of
points of F, so that x cannot be a limit point of F. This proves that a
point x ¢ F cannot be a limit point of F. Therefore F is closed. [

6.5. Open sets. A point x is called an interior point of a set M if x has a
neighborhood O.(x) © M, i.e., a neighborhood consisting entirely of points
of M. A set is said to be open if its points are all interior points.

Example 1. Every open interval (g, b) on the real line is an open set. In
fact, if @ < x < b, choose € = min {x — a, b — x}. Then clearly O(x) <
(a, b).

Example 2. Every open sphere S(g, r) in a metric space is an open set.
In fact, x € S(a, r) implies p(a, x) < r. Hence, choosinge = r — p(a, x), we
have O (x) = S(x, €) < S(a, r).

Example 3. Let M be the set of all functions f in C, ,, such that f (r) <
g(t), where g is a fixed function in G, ;. Then M is an open subset of Cp, ;..

THEOREM 4. A subset M of a metric space R is open if and only if its
complement R — M is closed.

Proof. If M is open, then every point x € M has a neighborhood
(entirely) contained in M. Therefore no point x € M can be a contact
point of R — M. In other words, if x is a contact point of R — M,
then xe R — M, i.e., R — M is closed.

Conversely, if R — M is closed, then any point x € M must have a
neighborhood contained in M, since otherwise every neighborhood of x
would contain points of R — M, i.e., x would be a contact point of
R — M notin R — M. Therefore M is open. [

COROLLARY. The empty set & and the whole space R are open sets.
Proof. An immediate consequence of Theorem 4 and Example 1,
Sec. 6.4. |

THEOREM S. The union of an arbitrary number of open sets is open. The
intersection of a finite number of open sets is open.

Proof. This is the “dual” of Theorem 3. The proof is an immediate
consequence of Theorem 4 and formulas (3)-(4), p. 4. |}
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6.6. Open and closed sets on the real line. The structure of open and closed
sets in a given metric space can be quite complicated. This is true even for
open and closed sets in a Euclidean space of two or more dimensions
(R™, n > 2). In the one-dimensional case, however, it is an easy matter to
give a complete description of all open sets (and hence of all closed sets):

THEOREM 6. Every open set G on the real line is the union of a finite or
countable system of pairwise disjoint open intervals.®

Proof. Let x be an arbitrary point of G. By the definition of an open
set, there is at least one open interval containing x and contained in G.
Let I, be the union of all such open intervals. Then, as we now show, I,
is itself an open interval. In fact; let®

a=infl,, b=supl,
(where we allow the cases @ = — o0 and b = + ). Then obviously
I, < (a,b). 2

Moreover, suppose y is an arbitrary point of (a, &) distinct from x,
where, to be explicit, we assume that a < y < x. Then there is a point
y' €I, such that a < y’ <y (why?). Hence G contains an open interval
containing the points y* and x. But then this interval also contains y,
i.e., yeI,. (The case y > x is treated similarly.) Moreover, the point
x belongs to I, by hypothesis. It follows that I, = (a, b), and hence by
(2) that I, = (a, b). Thus I, is itself an open interval, as asserted, in fact
the open interval (a, b).

By its very construction, the interval (a, b) is contained in G and is
not a subset of a larger interval contained in G. Moreover, it is clear
that two intervals I, and I, corresponding to distinct points x and x’
either coincide or else are disjoint (otherwise I, and I, would both be
contained in a larger interval I, U I, = I < G. There are no more than
countably many such pairwise disjoint intervals I,. In fact, choosing an
arbitrary rational point in each ,, we establish a one-to-one correspond-
ence between the intervals I, and a subset of the rational numbers.
Finally, it is obvious that

¢=Ur. 1

COROLLARY. Every closed set on the real line can be obtained by deleting
a finite or countable system of pairwise disjoint intervals from the line.

3 The infinite intervals (— o, ©), (¢, ©), and (— o, b) are regarded as open.
¢ Given a set of real numbers E, inf E denotes the greatest lower bound or infimum
of E, while sup E denotes the least upper bound or supremum of E.



52 METRIC SPACES CHAP. 2

Proof. An immediate consequence of Theorems 4 and 6. ||

Example 1. Every closed interval [a, b] is a closed set (here a and b are
necessarily finite).

Example 2. Every single-element set {x,} is closed.

Example 3. The union of a finite number of closed intervals and single-
element sets is a closed set.

Example 4 (The Cantor set). A more interesting example of a closed set
on the line can be constructed as follows: Delete the open interval (3, %)
from the closed interval F; = [0, 1], and let F, denote the remaining closed
set, consisting of two closed intervals. Then delete the open intervals
(5, %) and (%, §) from Fy, and let F, denote the remaining closed set, con-
sisting of four closed intervals. Then delete the “middle third”” from each
of these four intervals, getting a new closed set F3, and so on (see Figure 9).
Continuing this process indefinitely, we get a sequence of closed sets F,, such
that

FOD F13FZD"'DF¢LD”

(such a sequence is said to be decreasing). The intersection

F=MNF,
n=0

of all these sets is called the Cantor set. Clearly F is closed, by Theorem 3,
and is obtained from the unit interval [0, 1] by deleting a countable number
of open intervals. In fact, at the nth stage of the construction, we delete
21 intervals, each of length 1/3".

To describe the structure of the set F, we first note that F contains the
points

0, l 2 %’ %’ %3 %! %, %7 AR (3)
i.e., the end points of the deleted intervals (together with the points 0 and 1).
0 1/.5
0 3 § !
3 3 £
0o & 2 ¢ 2 7 8
g 9 3 3% 9 5
- T - T A

FIGURE 9
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However F contains many other points. In fact, given any x € [0, 1], suppose
we write x in ternary notation, representing x as a series

a,  a, an
—_ = — o .. i SRR 4
=2+ o4+ Tt (4)

where each of the numbers a,, @, . . . , a,, . . . can only take one of the three
values 0, 1, 2. Then it is easy to see that x belongs to Fif and only if x has a
representation (4) such that none of the numbers a,, a,, . .., a,, . .. equals
1 (think things through).”

Remarkably enough, the set F has the power of the continuum, i.c.,
there are as many points in F as in the whole interval [0, 1], despite the fact
that the sum of the lengths of the deleted intervals equals

F+3445+ =1L
To see this, we associate a new point
by
2

with each point (4), where®

b b,
2_§+...+_+...

y= on

0 if a,=0,
1 if a,=2.

n

In this way, we set up a one-to-one correspondence between F and the whole
interval [0, 1]. It follows that F has the power of the continuum, as asserted.
Let A4, be the set of points (3). Then F = 4, U 4,, wheretheset 4, = F — 4,
is uncountable, since A4, is countable and F itself is not. The points of 4,
are often called “points (of F) of the first kind,” while those of A, are called
““points of the second kind.”

Problem 1. Give an example of a metric space R and two open spheres
S(x, r,) and S(y, rz) in R such that S(x, r;) < S(p, rp) although r; > r,.

Problem 2. Prove that every contact point of a set M is either a limit point
of M or an isolated point of M.

7 Just as in the case of ordinary decimals, certain numbers can be written in two
distinct ways. For example,

;1+0+0+—-'+0+ L0202
T3 T3 3

+...+2 4+
33 3 ’

1
3 3 3
Since none of the numerators in the second representation equals 1 the point } belongs
to F (this is already obvious from the construction of F).

8 If x has two representations of the form (4), then one and only one of them has no
NUMErators a,, ds, . . . , da, . . . equal to 1. These are the numbers used to define b,.
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Comment. In particular, [M] can only contain points of the following
three types:

a) Limit points of M belonging to M;

b) Limit points of M which do not belong to M;

c) Isolated points of M.

Thus [M]is the union of M and the set of all its limit points.

Problem 3. Prove that if x, — x, y, — y as n — oo, then p(x,, y,) —
e(x, )-
Hint. Use Problem la, p. 45.

Problem 4. Let fbe a mapping of one metric space X into another metric
space Y. Prove that fis continuous at a point x, if and only if the sequence
{yn} = {f(x,)} converges to y = f(x,) whenever the sequence {x,} con-
verges to x,.

Problem 5. Prove that

a) The closure of any set M is a closed set;
b) [M] is the smallest closed set containing M.

Problem 6. Is the union of infinitely many closed sets necessarily closed ?
How about the intersection of infinitely many open sets? Give examples.

Problem 7. Prove directly that the point } belongs to the Cantor set F,
although it is not an end point of any of the open intervals deleted in con-
structing F.

Hint. The point } divides the interval [0, 1] in the ratio 1:3. It also
divides the interval [0, §] left after deleting (4, %) in the ratio 3:1, and so on.

Problem 8. Let F be the Cantor set. Prove that

a) The points of the first kind, i.e., the points (3) form an everywhere
dense subset of F;
b) The numbers of the form ¢, + ¢,, where #,, ¢, € F, fill the whole interval
[0, 2].
Problem 9. Given a metric space R, let A be a subset of R and x a point
of R. Then the number
p(4, x) = inf o(a, x)
aed

is called the distance between A and x. Prove that

a) x € 4 implies p(4, x) = 0, but not conversely;

b) p(4, x) is a continuous function of x (for fixed 4);

¢) e(4, x) = 0if and only if x is a contact point of 4;

d) [A] = A U M, where M is the set of all points x such that p(4, x) = 0.
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Problem 10. Let A and B be two subsets of a metric space R. Then the
number

(4, B) = inf p(a, b)
b9y

is called the distance between A and B. Show that p(4, B) =0if 4 N B +# &,
but not conversely.

Problem 11. Let Mg be the set of all functions fin C, ,, satisfying a
Lipschitz condition, i.e., the set of all f such that

[f(t) —ft)| < Kty — 8,
for all t,, ¢, € [a, b], where K is a fixed positive number. Prove that

a) My is closed and in fact is the closure of the set of all differentiable
functions on [a, b] such that | f'(?)| < K;
b) The set

M=UMK
K

of all functions satisfying a Lipschitz condition for some K is not
closed;
c) The closure of M is the whole space C, ;.

Problem 12. An open set G in n-dimensional Euclidean space R™ is said
to be connected if any points x, y € G can be joined by a polygonal line®
lying entirely in G. For example, the (open) disk x* 4 y* < 1 is connected,
but not the union of the two disks

x2+yr <, x—22+y2<1

(even though they share a contact point). An open subset of an open set G
is called a component of G if it is connected and is not contained in a larger
connected subset of G. Use Zorn’s lemma to prove that every open set G in
R* is the union of no more than countably many pairwise disjoint com-
ponents.

Comment. In the case n = 1 (i.e., on the real line) every connected open
set is an open interval, possibility one of the infinite intervals (—oco, o0),
(@, ©), (—00, b). Thus Theorem 6 on the structure of open sets on the line
is tantamount to two assertions:

1) Every open set on the line is the union of a finite or countable number
of components;
2) Every open connected set on the line is an open interval.

® By a polygonal line we mean a curve obtained by joining a finite number of straight
line segments end to end.
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The first assertion holds for open sets in R* (and in fact is susceptible to
further generalizations), while the second assertion pertains specifically to
the real line.

7. Complete Metric Spaces

7.1. Definitions and examples. The reader is presumably already familiar
with the notion of the completeness of the real line. The real line is, of course,
a particularly simple example of a metric space. We now make the natural
generalization of the notion of completeness to the case of an arbitrary
metric space.

DEFINITION 1. A sequence {x,} of points in-a metric space R with metric
p is said to satisfy the Cauchy criterion if, given any € > 0, there is an
integer N, such that o(x,, x,-) < € for alln,n' > N,.

DEFINITION 2. A subsequence {x,,} of points in a metric space R is called
a Cauchy sequence (or a fundamental sequence) if it satisfies the Cauchy
criterion.

THEOREM 1. Every convergent sequence {x,} is fundamental.

Proof. If {x,} converges to a limit x, then, given any ¢ > 0, there is
an integer N, such that

€
P(xm x) < 5
for all n > N,. But then

P(xmxn') < p(xn> X) + p(xprs x)<e
foralln,n > N,. }

DEFINITION 3. A metric space R is said to be complete if every Cauchy
sequence in R converges to an element of R. Otherwise R is said to be
incomplete.

Example 1. Let R be the “space of isolated points” considered in Example
1, p.38. Then the Cauchy sequences in R are just the “stationary sequences,”
i.e., the sequences {x,} all of whose terms are the same starting from some
index n. Every such sequence is obviously convergent to an element of R.
Hence R is complete.

Example 2. The completeness of the real line R* is familiar from elemen-
tary analysis.
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Example 3. The completeness of Euclidean n-space R™ follows from that
of RL. In fact, let
P =) (p=12..)

be a fundamental sequence of points of R*. Then, given any € > 0, there
exists an N, such that

n
S — Xy <&
k=1

for all p, ¢ > N.. it follows that

[x? — x{?| < ¢ (k=1,...,n)

for all p,qg > N, i.e., each {x,‘c’”} is a fundamental sequence in R*. Let

X =(Xg,...,%X),
where
x, = lim x{?.
. P
Then obviously
limx? = x,

P> 0

This proves the completeness of R™. The completeness of the spaces R} and
R? introduced in Examples 4 and 5, p. 39 is proved in almost the same way
(give the details).

Example 4. Let {x,(r)} be a Cauchy sequence in the function space C, ,,
considered in Example 6, p. 39. Then, given any € > 0, there is an N, such

that
]xn(t) - xn’(t)l <e (l)

for all n, ' > N, and all ¢ € [a, b]. It follows that the sequence {x,(?)} is
uniformly convergent. But the limit of a uniformly convergent sequence of
continuous functions is itself a continuous function (see Problem 1). Taking
the limit as n’ — oo in (1), we find that

[xa(t) — x(O) < &
for alln > N, and all ¢ € [a, b], i.e., {x,(#)} converges in the metric of C, ,,
to a function x(t) € C;, ,;. Hence C, ,; is a complete metric space.

Example 5. Next let x'™ be a sequence in the space /; considered in
Example 7, p. 39, so that

( (
x('n) — (xln)’ xén)’ e, xk'n), . .),

zl(x;"’)2 <o (n=12,..).
k=
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Suppose further that {x{"} is a Cauchy sequence. Then, given any € > 0,
there is a N_ such that

pz(x(n) Cat )) z(x(n) }(c'n'))z <e (2)
if n,n’ > N,. It follows that
xW —x"P<e  (k=1,2,...),

i.e., for every k the sequence {x;™} is fundamental and hence convergent.

Let

X, = lim x{™,

n—+ o

X = (X1, Xg5 e o vy Xps o« 2)-

Then, as we now show, x is itself a point of /, and moreover {x{™} converges
to x in the /, metric, so that /; is a complete metric space.
In fact, (2) implies

Z(x‘”’ XM <e 3)
for any fixed M. Holding n fixed in (3) and taking the limit as n’ — oo, we get
Z(x"" —x) < )

Since (4) holds for arbitrary M, we can in turn take the limit of (4) as M — oo,
obtaining

=]
S —x)t < (5)
k=1
Just as on p. 40, the convergence of the two series
@
PICLIDYC RN,
k=1
implies that of the series
> X
k=1

This proves that x € /,. Moreover, since ¢ is arbitrarily small, (5) implies

lim p(x'™, x) = lim \/ ™ — x)t =0,

n=row n—*w

i.e., {x"} converges to x in the /, metric, as asserted.
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Example 6. 1t is easy to show that the space C,

vy of Example 8, p. 40 is
incomplete. If

-1 if —1<t<—'1“,
n

. 1 1
p.(= nt if —=<r<=,
n n

1 if 1<t*<1,

n
then {¢,(?)} is a fundamental sequence in C7, ,,, since
1 2
f_l[%(t) — P dt < ———
min {n, n'}

However, {¢,(#)} cannot converge to a function in C7, ;;. In fact, consider
the discontinuous function

$(t) = {

—1 if t<O,
1 if t>0.

Then, given any function fe C?, ,,, it follows from Schwarz’s inequality
(obviously still valid for piecewise continuous functions) that

(f_llff(’) - ¢(f)]2)1/2< ( f_lllf( 1 — e.(OF dt)m+ ( f_lllcp,,(t) — Y(OF dt)llf

But the integral on the left is nonzero, by the continuity of f, and moreover
it is clear that

lim [* [oa(t) — O] dt = 0.
n—+ o
Therefore

1
L5 — eao ar
cannot converge to zero as n — oo.

7.2. The nested sphere theorem. A sequence of closed spheres
Slxy, 1], Slxg, r2]s oo, Slxp, 70l - 0.
in a metric space R is said to be nested (or decreasing) if
S[xy, 1] 2 S[xg, 1] 2 -+ 2 S[x,, 1] 2 0 - -

Using this concept, we can prove a simple criterion for the completeness of R:
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THEOREM 2 (Nested sphere theorem). A metric space R is complete if
and only if every nested sequence {S,} = {S[x,, r,]} of closed spheres in
R such that r,, — 0 as n — o0 has a nonempty intersection

N S,
n=1
Proof. If R is complete and if {S,} = {S[x,, r,]} is any nested se-
quence of closed spheres in R such that r, — 0 as n— co, then the
sequence {x,} of centers of the spheres is fundamental, since p(x,, x,) <
r, forn’ > nand r, — 0 as n — oo. Therefore {x,} has a limit. Let

x =lim x,,.
n— a0
Then
s}
xeNs,.
n=1

In fact, S, contains every point of the sequence {x,} except possibly the
points x;, X,, . . . , X,_3, and hence x is a limit point of every sphere S,,.
But S, is closed, and hence x € S,, for all n.

Conversely, suppose every nested sequence of closed spheres in R
with radii converging to zero has a nonempty intersection, and let {x,}
be any fundamental sequence in R. Then x has a limit in R. To see this,
use the fact that {x,} is fundamental to choose a term x,, of the sequence
{x,} such that

1
p(x'n’ xnl) < _2—

for alln > ny, and let S be the closed sphere of radius 1 with center x,, .
Then choose a term x,,, of {x,} such that n, > n, and

1

P(xn: xnz) < i;

for alln > n,, and let S, be the closed sphere of radius § with center Xp,e

Continue this construction indefinitely, i.e., once having chosen terms

Xags Xpgs oo+ s X, (m < my <+ < ny), choose a term x,,  such that
Ngy1 > Hy and

1
P(xm xnk+1) < %

for all n > ny,,, let Sy, be the closed sphere of radius 1/2* with center
Xp,.,» and so on. This gives a nested sequence {S,} of closed spheres
with radii converging to zero. By hypothesis, these spheres have a non-
empty intersection, i.e., there is a point x in all the spheres. This point
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is obviously the limit of the sequence {xuk}. But if a fundamental se-
quence contains a subsequence converging to x, then the sequence itself
must converge to x (why?), i.e.,
limx, =x. §
n-—+ o
7.3. Baire’s theorem. It will be recalled from Sec. 6.3 that a subset 4 of a
metric space R is said to be nowhere dense in R if it is dense in no (open)
sphere at all, or equivalently, if every sphere § < R contains another sphere
S’ such that $" M 4 = @& (check the equivalence). This concept plays an
important role in

THEOREM 3 (Baire). A complete metric space R cannot be represented
as the union of a countable number of nowhere dense sets.

Proof. Suppose to the contrary that
R=U4, (6)
n=1

where every set 4, is nowhere dense in R. Let Sy < R be a closed sphere
of radius 1. Since 4, is nowhere dense in S;, being nowhere dense in R,
there is a closed sphere S; of radius less than § such that S, = S, and
S, N A, = &. Since A4, is nowhere dense in S;, being nowhere dense
in S,, there is a closed sphere S, of radius less than § such that S, < .S}
and S, N 4, = &, and so on. In this way, we get a nested sequence of
closed spheres {S,} with radii converging to zero such that

S, NA,= & (n=1,2,..)).
By the nested sphere theorem, the intersection
D
Ns,
n=1

contains a point x. By construction, x cannot belong to any of the
sets 4, i.e.,

It follows that
0
R#UA4,,

n=1

contrary to (6). Hence the representation (6) is impossible. J

COROLLARY. A complete metric space R without isolated points is
uncountable.

Proof. Every single-element set {x} is nowhere dense in R. J
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7.4. Completion of a metric space. As we now show, an incomplete metric
space can always be enlarged (in an essentially unique way) to give a complete
metric space.

DEFINITION 4. Given a metric space R with closure [R], a complete
metric space R* is called a completion of R if R = R* and [R] = R*,
L.e., if R is a subset of R* everywhere dense in R*.

Example 1. Clearly R* = R if R is already complete (see Problem 7).

Example 2. The space of all real numbers is the completion of the space
of all rational numbers.

THEOREM 4. Every metric space R has a completion. This completion
is unique to within an isometric mapping carrying every point x € R into
itself.

Proof. The proof is somewhat lengthy, but completely straight-
forward. First we prove the uniqueness, showing that if R* and R**
are two completions of R, then there is a one-to-one mapping x** =
¢(x*) of R* onto R** such that ¢(x) = x for all x € R and

pu(x*, y*) = pa(x**, y**) ™

(y** = ¢(y*)), where g, is the distance in R* and p, the distance in R**.
The required mapping ¢ is constructed as follows: Let x* be an arbitrary
point of R*. Then, by the definition of a completion, there is a sequence
{x,} of points of R converging to x*. The points of the sequence {x,}
also belong to R**, where they form a fundamental sequence (why ?).
Therefore {x,} converges to a point x** € R**, since R** is complete.
It is clear that x** is independent of the choice of the sequence {x,}
converging to the point x* (why?). If we set @(x*) = x**, then ¢ is
the required mapping. In fact, ¢(x) = x for all x € R, since if x, - x
€ R, thenobviously x = x* € R*, x** = x. Moreover, suppose x,, — x*,
Yo —>y* in R*, while x, — x**, y, — y** in R**. Then, if p is the
distance in R,

p(x*, y*) =lim py(x,, y,) = lim (., ¥,.) ®

n-r o n-=>wn

(see Problem 3, p. 54), while at the same time

pZ(X**’ y**) = lim PZ(xm yn) = lim P(xm y'n) (8,)
n—ow n =0
But (8) and (8') together imply (7).
We must now prove the existence of a completion of R. Given an
arbitrary metric space R, we say that two Cauchy sequences {x,} and
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{%,} in R are equivalent and write {x,} ~ {X,} if

lim o(x,, %,) = 0.

n—-+w
As anticipated by the notation and terminology, ~ is reflexive, sym-
metric and transitive, i.e., ~ is an equivalence relation in the sense of
Sec. 1.4. Therefore the set of all Cauchy sequences of points in the space
R can be partitioned into classes of equivalent sequences. Let these
classes be the points of a new space R*. Then we define the distance
between two arbitrary points x*, y* € R* by the formula

pl(X*:y*) = lim P(xn’ yn)’ (9)
n—>0

where {x,} is any “representative’” of x* (namely, any Cauchy sequence
in the class x*) and {y,} is any representative of y*.

The next step is to verify that (9) is in fact a distance, i.e., that (9)
exists, is independent of the choice of the sequences {x,} € x*, {y,} € y*,
and satisfies the three properties of a distance figuring in Definition 1,
p: 37. Given any ¢ > 0, it follows from the triangle inequality in R
(recall Problem 1b, p. 45) that

[0(Xns Yn) — 0(Xnrs Yor)l
= Ip(xn’ yn) - p(xn” V) + P(x'ﬂ'a Yn) — P(.Xw, y"l’)l
< ]p(-xn’ yn) - p(xn'? yn)l + lp(xn’a .Vn) - P(xn” yﬂ’)l

€
< P(xn’ xn') + P(yn’ yn') < _2— + ; =zt (10)

for all sufficiently large n and n’. Therefore the sequence of real numbers
{s,} = {p(x,, ¥} is fundamental and hence has a limit. This limit is
independent of the choice {x,} € x*, {y,} € y*. In fact, suppose

xXab (Fabex*, {ya)s Fa) ep*
Then
[0(Xns V) — p(Ens Il < (x> £) + 0(Vns Jn)s

by a calculation analogous to (10). But

lim P(xn’ i'n) = lim P(yn’ j}'n) =0,

since {x,} ~ {%,}, {y.} ~ {J,}, and hence

lim p(x,,, y,) = lim p(%,, 7).

n— oo n= o

As for the three properties of a metric, it is obvious that p,(x*, y*) =
p1(p*, x*), and the fact that p,(x*, y*) = 0 if and only if x* = y* is an
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immediate consequence of the definition of equivalent Cauchy sequences.
To verify the triangle inequality in R*, we start from the triangle inequality

0(tn 2p) < (X ¥u) + (s 22)
in the original space R and then take the limit as n — co, obtaining

n-+ o n— o n-rw

p(x*, 2%) < pa(x*, y*) + 1%, 2%).

We now come to the crucial step of showing that R* is a completion
of R. Suppose that with every point x € R, we associate the class x* € R*
of all Cauchy sequences converging to x. Let

i.e.,

x =limx,, y=Ilimy,.
n—+w n—w

Then clearly
P(% ) = lim p(xn yu)

(recall Problem 3, p. 54), while on the other hand

Pl(x*’ y*) =1lim P(Xna yn)5
by definition. Therefore
P(x’ }’) = pl(X*) }’*),

and hence the mapping of R into R* carrying x into x* is isometric.
Accordingly, we need no longer distinguish between the original space R
and its image in R*, in particular between the two metrics p and p,
(recall the relevant comments on p. 44). In other words, R can be re-
garded as a subset of R*. The theorem will be proved once we succeed
in showing that

1) Ris everywhere dense in R¥, i.e., [R] = R;
2) R*is complete.

To this end, given any point x* € R* and any € > 0, choose a rep-
resentative of x*, namely a Cauchy sequence {x,} in the class x*. Let
N be such that p(x,, x,,) < efor all n, n’ > N. Then

P(xw X*) = lim P(xn’ xn’) <€
n'= 0

if n > N, i.e., every neighborhood of the point x* contains a point of R.
It follows that [R] = R.

Finally, to show that R* is complete, we first note that by the very
definition of R*, any Cauchy sequence {x,} consisting of points in R
converges to some point in R*, namely to the point x* € R* defined by
{x,}. Moreover, since R is dense in R*, given any Cauchy sequence
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{x}} consisting of points in R*, we can find an equivalent sequence {x,}
consisting of points in R. In fact, we need only choose x, to be any
point of R such that p(x,, x}) < 1/n. The resulting sequence {x,} is
fundamental, and, as just shown, converges to a point x* € R*. But then
the sequence {x*} also converges to x*. |

Example. If R is the space of all rational numbers, then R* is the space of
all real numbers, both equipped with the distance p(x, y) = |x — y|. In this
way, we can ‘“‘construct the real number system.”” However, there still
remains the problem of suitably defining sums and products of real numbers
and verifying that the usual axioms of arithmetic are satisfied.

Problem 1. Prove that the limit f(#) of a uniformly convergent sequence
of functions {f,(¢)} continuous on [a, b] is itself a function continuous on
[a, b].

Hint. Clearly
Lf () — f(t)] < 1f (1) — fa@] + 110(®) — falt)] + [ falte) — f (1)1

where ¢, t, € [a, b]. Use the uniform convergence to make the sum of the
first and third terms on the right small for sufficiently large n. Then use the
continuity of f, () to make the second term small for ¢ sufficiently close to #,.

Problem 2. Prove that the space m in Example 9, p. 41 is complete.

Problem 3. Prove that if R is complete, then the intersection () S,
figuring in Theorem 2 consists of a single point. n=1

Problem 4. By the diameter of a subset 4 of a metric space R is meant the
number

d(A4) = sup o(x, y).

x,YeA

Suppose R is complete, and let {4,} be a sequence of closed subsets of R
nested in the sense that

A13A2:)"'DA7;D"'
Suppose further that
lim d(4,) = 0.
" n—> o
Prove that the intersection ] 4, is nonempty.
n=1

Problem 5. A subset 4 of a metric space R is said to be bounded if its
diameter d(A) is finite. Prove that the union of a finite number of bounded
sets is bounded.
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Problem 6. Give an example of a complete metric space R and a nested
sequence {4} of closed subsets of R such that

N4,= .
n=1

Reconcile this example with Problem 4.

Problem 7. Prove that a subspace of a complete metric space R is com-
plete if and only if it is closed.

Problem 8. Prove that the real line equipped with the distance
p(x, y) = |arc tan x — arc tan y|
is an incomplete metric space.

Problem 9. Give an example of a complete metric space homeomorphic
to an incomplete metric space.

Hint. Consider the example on p. 44.

Comment. Thus homeomorphic metric spaces can have different “metric
properties.”

Problem 10. Carry out the program discussed in the last sentence of the
example on p. 65.

Hint. If {x,} and {y,} are Cauchy sequences of rational numbers serving
as “‘representatives’” of real numbers x* and y*, respectively, define x* 4 y*
as the real number with representative {x,, + y,}.

8. Contraction Mappings

8.1. Definition of a contraction mapping. The fixed point theorem. Let A
be a mapping of a metric space R into itself. Then x is called a fixed point
of 4if Ax = x, i.e., if A carries x into itself. Suppose there exists a number
a < 1 such that

p(dx, Ay) < ap(x, y) 0]

for every pair of points x, y € R. Then 4 is said to be a contraction mapping.
Every contraction mapping is automatically continuous, since it follows from
the “contraction condition’ (1) that Ax, — Ax whenever x, — x.

THEOREM 1 (Fixed point theorem®). Every contraction mapping A
defined on a complete metric space R has a unique fixed point.

10 Often called the method of successive approximations (see the remark following
Theorem 1) or the principle of contraction mappings.
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Proof. Given an arbitrary point x, R, let"
X, = Axy, Xy = Ax; = A%y, ..., x,=Ax, =A%, ... (2)

Then the sequence {x,} is fundamental. In fact, assuming to be explicit
that n < n’, we have

(% X)) = p(A"x0, A™X0) < (X0, Xpr—y)
< ‘xn[P(xO’ xl) + P(xl’ x2) + -+ P(xn'—n——l’ xn'—n)]

n 2 n'—n— n 1
< oa"plxgy X[l +aa+ "+ - + N<a p(xo,xl)l——.
—

But the expression on the right can be made arbitrarily small for suffi-
ciently large n, since o < 1. Since R is complete, the sequence {x,},
being fundamental, has a limit

x =lim x,.

n-—* 0

Then, by the continuity of 4,

Ax = Alimx, =limA4x, =limx,,; = x.
n— o n—* o n= w0
This proves the existence of a fixed point x. To prove the uniqueness of x,
we note that if
Ax = x, Ay =y,
(1) becomes
p(x, y) < ap(x, ).

But then p(x, y) = Osince o« << 1, and hence x = y. |

Remark. The fixed point theorem can be used to prove existence and
uniqueness theorems for solutions of equations of various types. Besides
showing that an equation of the form Ax = x has a unique solution, the
fixed point theorem also gives a practical method for finding the solution, i.e.,
calculation of the “‘successive approximations’ (2). In fact, as shown in
the proof, the approximations (2) actually converge to the solution of the
equation Ax = x. For this reason, the fixed point theorem is often called
the method of successive approximations.

Example 1. Let f be a function defined on the closed interval [a, b] which
which maps [a, b] into itself and satisfies a Lipschitz condition

1/ () — Sl < K[x1 — xo, 3)

with constant K << 1. Then f is a contraction mapping, and hence, by

11 42x means A(Ax), A*x means A(A%x) = A*(Ax), and so on.
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FIGURE 10
Theorem 1, the sequence
Xo> x; =f(xo), Xg=f(x1), ... ©))

converges to the unique root of the equation f(x) = x. In particular, the
“contraction condition” (3) holds if f has a continuous derivative f* on [a, b]
such that

[ffl< K< 1.

The behavior of the successive approximations (4) in the cases 0 < f'(x) < 1
and —1 < f’(x) < 0 is shown in Figures 10 and 11.

Example 2. Consider the mapping 4 of n-dimensional space into itself
given by the system of linear equations

yvi=2ax;+b  (i=1,...,n). 5)
=1
B
b y
fla)
‘l »
Flo) L L )
A LT
| (.
| [
] 1
0 X Ky X Ky b b

FIGURE 11
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If A4 is a contraction mapping, we can use the method of successive approxi-
mations to solve the equation 4x = x. The conditions under which 4 is a
contraction mapping depend on the choice of metric. We now examine three
cases:

1) The space R} with metric

p(x, y) = max [x; — y,l.
1<is<n

In this case,

P(.V’ j;) = m?x |y¢ - )71| = mf.ix
i

k2

Z a;{x; — %))

1 2

< max 3 la| max |x, — %] = (mfx > la,-il) o, %),
and the contraction condition
glaﬁl<a<1 i=1,...,n. (6)
2) The space R} with metric

o(x, y) = Zl 1%; — yil.
Here

P02 9) =31y — 5l = 3| S aye; — )

1

< 33 lal lx — % < (m;lx > laul) o(x, 3),
7 1
and the contraction condition is now
ZIaij]<a<1 (j=1,...,n). @)
i

3) Ordinary Euclidean space R” with metric

px, ) = | S =

Using the Cauchy-Schwarz inequality, we have

7

2
=2 (Z a(x; — i,)) < (z g a?i) p*(x, %),
7 %
and the contraction condition becomes

22a;<a<l (8)
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Thus, if at least one of the conditions (6)—(8) holds, there exists a unique
point x = (xy, X, ..., X,) such that

xi=Sax,+ b (=1,...,n). (9)

The sequence of successive approximations to this solution of the equation
x = Ax are of the form

0 . ¢\(0) ..(0) (0
xO = (x{2 X ., X,
1) __ (1 (1) (1
x()'_(xl):x‘z >"-3xn))y
(k) __ (k) (k) (%)
X _(xl s X 7---,xn)9

................

where
® _ % (k—1)
¥ k—
x? =3 a;;xFV + by,
=1

and we can choose any point x'® as the “zeroth approximation.”

Each of the conditions (6)—(8) is sufficient for applicability of the method
of successive approximations, but none of them is necessary. Infact, examples
can be constructed in which each of the conditions (6)—(8) is satisfied, but
not the other two.

Theorem 1 has the following useful generalization, which will be needed
later (see Example 2, p. 75):

THEOREM 1. Given a continuous mapping of a complete metric space R
into itself, suppose A™ is a contraction mapping (n an integer > 1). Then
A has a unique fixed point.

Proof. Choosing any point x, € R, let

x = lim A""x,.

k— o

Then, by the continuity of 4,

Ax = lim 4A4*"x,.

k=
But 4" is a contraction mapping, and hence
o(A5" Axy, A¥"x0) < ap(AFDAxy, AFDmx) < -+ - < a¥p(Axy, Xo)
where o < 1. It follows that
p(Ax, x) =k1im o(AA*"xy, A¥"x4) = 0,

i.e., Ax = x so that x is a fixed point of 4. To prove the uniqueness of x,
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we merely note that if 4 has more than one fixed point, then so does 4",
which is impossible, by Theorem 1, since A" is a contraction

mapping. ||

8.2. Contraction mappings and differential equations. The most interesting
applications of Theorems 1 and 1’ arise when the space R is a function
space. We can then use these theorems to prove a number of existence and
uniqueness theorems for differential and integral equations, as shown in this
section and the next.

THEOREM 2 (Picard). Given a function f(x, y) defined and continuous
on a plane domain G containing the point (x,, y,),'% suppose f satisfies a
Lipschitz condition of the form

f(xp) —fx DI < My — 3|

in the variable y. Then there is an interval |x — xo| < 8 in which the
differential equation

d
7=/ (10)
has a unigue solution
y =9
satisfying the initial condition '
?(x0) = Yo- (11)

Proof. Together the differential equation (10) and the initial condition
(11) are equivalent to the integral equation

o) = yo + [ (8, () dt. (12)
By the continuity of f, we have
£ 9l < K 13)

in some domain G’ < G containing the point (x,, ¥,).!* Choose § >0
such that

D (x,p)eG if |x — x| < 8, |y — yol < K3;

2) M3 <1,

and let C* be the space of continuous functions ¢ defined on the interval
2 By an n-dimensional domain we mean an open connected set in Euclidean n-space

R™ (connectedness is defined in Problem 12, p. 55).
13 In fact, fis bounded on [G'] if [G'] = G (cf. Theorem 2, p. 110).
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|x — x4/ < 8 and such that |(x) — y,| < K3, equipped with the metric
e, ) = max |p(x) — F(x)|-

The space C* is complete, since it is a closed subspace of the space of all

continuous functions on [x, — 3, x, + &]. Consider the mapping ¢ =
A defined by the integral equation

W) = yo+ [ ft o) dt  (bx — xol < ).

Clearly 4 is a contraction mapping carrying C* into itself. In fact, if
¢ € C*, |x — x| < & then

19 = yol = | [ 7t oy dif < [[170, ol dt < K 1x — xf < K3

by (13), and hence ¢ = A¢ also belongs to C*. Moreover,

9 — J091 < 17 o0 = £, 3] dt < M3 max |g(x) ~ G(x),
and hence ’ ~ ¢
P(q” "I)) < MSP((P’ 213)

after maximizing with respect to x. But M3 < 1, so that 4 is a con-
traction mapping. It follows from Theorem 1 that the equation ¢ = A,
i.e., the integral equation (12), has a unique solution in the space C*. §

Theorem 2 can easily be generalized to the case of systems of differential
equations:

THEOREM 2’. Given n functions fi(X, yy, . . . , y,) defined and continuous
on an (n + 1)-dimensional domain G containing the point

(x07 )7017 e ’yOn)7
suppose each f; satisfies a Lipschitz condition of the form

5, Yo ¥) = S0 B0 )| < M max [y — 5
inthe variables yy, . . . , y,. Then thereisaninterval|x — xo| < &in which

the system of differential equations

dy; .
l:ﬁ(x;yl"'-,))n) (1:1""”1) (14)
dx

has a unique solution
Nh= (Pl(x)’ ey Y = (P,,,(X)
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satisfying the initial conditions

91(X0) = Yors - + « » PulX0) = Yon- (15)

Proof. Together the differential equations (14) and the initial con-
ditions (15) are equivalent to the system of integral equations

@
) = yoi [ f6 @D, @D G=1,...,m). (16)
By the continuity of the functions f;, we have

LGy syl <K (E=1,...,0) (17)

in some domain G’ < @G containing the point (x,, Vo1, - - - » Yon). Choose
8 > 0 such that

D (Y1 -ee s ) €G I |x — x| < 8, |y; — Yol < K3 forall i =
1,...,n;

2) M3 < 1.
This time let C* be the space of ordered n-tuples

<P=(cp1,...,(Pn)
of continuous functions ¢, . . . , ¢, defined on the interval |x — x| < &
such that |@;(x) — yo;l < K8 for all i =1, ..., n, equipped with the
metric

o, ¢) = H;a.x lpi(x) — x|

Clearly C* is complete. Moreover, the mapping ¢ = 4¢ defined by the
system of integral equations

W) = yor+ [ At o0

Ux —xl < d,i=1,...

is a contraction mapping carrying C* into i

¢=(fr,--., Pa) EC* AN

then & - S
1009 — yod = | [ £t 0 & X\“&oﬁ

i\ X) — i = i t, t), o O o
W) = yod =[], it AN
by (17), so that ¢ = ({;. 3o &

, g-ﬁ N
[dx) — {Lt(x)l = f /\»\k case of (18) by extending the
,\D\
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and hence
o(b, 1) < MBp(s, §)

after maximizing with reéspect to x and i. But M3 < 1, so that 4 is a
contraction mapping. It follows from Theorem 1 that the equation
¢ = Ag, i.e., the system of integral equations (16), has a unique solution
in the space C*. |

8.3. Contraction mappings and integral equations. We now show how the
method of successive approximations can be used to prove the existence and
uniqueness of solutions of integral equations.

Example 1. By a Fredholm equation (of the second kind) is meant an
integral equation of the form

S =2 KGx 3)10) dy + 9, (18)

involving two given functions K and ¢, an unknown function f and an
arbitrary parameter A. The function K is called the kernel of the equation,
and the equation is said to be homogeneous if ¢ = 0 (but otherwise non-
homogeneous).

Suppose K(x,y) and ¢(x) are continuous on the square a < x < b,
a < y < b, so that in particular

Kx, <M (a<x<ba<y<hb).
Consider the mapping g = Af of the complete metric space C, ,; into itself
given by
g(x) =1 f:K(x, NS dy + o(x).
Clearly, if g, = Af1, g = Af,, then
p(81, 82) = max [g(x) — go(N)| < A M(b — @) max | f,(x) — fo(x)|

= [A M(b — a)p(fy, f2)s
so that 4 is a contraction mapping if
1
M(b —a)’
It follows from Theorem 1 that the integral equation (18) has a unique

solution for any value of A satisfying (19). The successive approximations
JosSfis - -+ 5 fusr - - - to this solution are given by

I < (19)

b
S = 2] KGo 0o s ) dy + 6 (n=1,2,..),
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where any function continuous on [a, b] can be chosen as f,. Note that the
method of successive approximations can be applied to the equation (18)
only for sufficiently small |A].

Example 2. Next consider the Volterra equation

FG) =] K(x, ) () dy + (), (20)

which differs from the Fredholm equation (18) by having the variable x
rather than the fixed number b as the upper limit of integration.'* It is easy
to see that the method of successive approximations can be applied to the
Volterra equation (20) for arbitrary X, not just for sufficiently small |A| as
in the case of the Fredholm equation (18). In fact, let 4 be the mapping
of Cp, ,; into itself defined by

45 = [ K, 9)f0) dy + o),
and let 3, f € G, ;- Then
Af) — AfO1 = A[, KCxa UG — A dy
< AM(x — @) max | fi() — (),

where
M = max |K(x, y)|.
.Y

It follows that
|A4%,(x) — 4%,09) < 22M® max | ) — () [[x — @) dx

—wpr =) max 4G9 — A0,

and in general,
JA(x) — Afu0)] < A"M"( — max (%) — ful)]

n n b
<y =0k o max £,(5) — ()]
which implies

o(A™fy, A7fy) < amn =) ”’ Y o(furf).

4 Equation (20) can be regarded formally as a special case of (18) by extending the
definition of the kernel, i.e., by setting

Kx,y) =0 if y>x
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But, given any A, we can always choose n large enough to make

ey &=’
n!

b

i.e., A™ is a contraction mapping for sufficiently large n. It follows from
Theorem 1 that the integral equation (20) has a unique solution for arbitrary A.

Problem 1. Let A be a mapping of a metric space R into itself. Prove that
the condition
p(Ax, 4y) < o(x,y)  (x#))

is insufficient for the existence of a fixed point of 4.

Problem 2. Let F(x) be a continuously differentiable function defined on
the interval [a, b] such that F(a) < 0, F(b) > 0 and

0< K, < FFix) < K, (a < x < b).
Use Theorem 1 to find the unique root of the equation F(x) = 0.

Hint. Introduce the auxiliary function f(x) = x — AF(x), and choose A
such that the theorem works for the equivalent equation f(x) = x.

Problem 3. Devise a proof of the implicit function theorem based on the
use of the fixed point theorem.s

Problem 4. Prove that the method of successive approximations can be
used to solve the system (9) if |a;;| < 1/n (for all i and ), but not if |a;,| = 1/n.

Problem 5. Prove that the condition (6) is necessary for the mapping (5)
to be a contraction mapping in the space Ry.

Problem 6. Prove that any of the conditions (6)—(8) implies

a;, — 1 aye Qin
as Ay, — 1 Aoy 20
an An2 Tt Qpp — 1

Comment. Hence the fact that the system (5) has a unique solution (under
suitable conditions) follows from Cramer’s rule as well as from the fixed
point theorem.

% See e.g., 1. G. Petrovski, Ordinary Differential Equations (translated by R. A. Silver-
man), Prentice-Hall, Inc., Englewood Cliffs, N.J. (1966), p. 47.
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Problem 7. Consider the nonlinear integral equation

b
S = 1] KGe, y: 1) dy + o) (1)
with continuous K and ¢, where X satisfies a Lipschitz condition of the form
|K(x, y; 21) — K(x, y; 2)| < M |21 — 2y
in its “functional” argument. Prove that (21) has a unique solution for all

1
M —a)’

Write the successive approximations to this solution.

A <



3

TOPOLOGICAL SPACES

9. Basic Concepts

9.1. Definitions and examples. In our study of metric spaces, we defined
a number of key ideas like contact point, limit point, closure of a set, etc.
In each case, the definition rests on the notion of a neighborhood, or, what
amounts to the same thing, the notion of an open set. These notions (neigh-
borhood and open set) were in turn defined by using the metric (or distance)
in the given space. However, instead of introducing a metric in a given set
X, we can go about things differently, by specifying a system of open sets
in X with suitable properties. This approach leads to the notion of a fopo-
logical space. Metric spaces are topological spaces of a rather special
(although very important) kind.

DEFINITION 1. Given a set X, by a topology in X is meant a system < of
subsets G < X, called open sets (relative to ), with the following two
properties:

1) The set X itself and the empty set & belong to ©;

2) Arbitrary (finite or infinite) unions U G, and finite intersections

N G, of open sets belong to ~.
k=1

DEFINITION 2. By a topological space is meant a pair (X, <), consisting
of a set X and a topology « defined in X.
Just as a metric space is a pair consisting of a set X’and a metric defined in

X, so a topological space is a pair consisting of a set X' and a topology defined
in X. Thus, to specify a topological space, we must specify both a set X and

78
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a topology in X, i.e., we must indicate which subsets of X are to be regarded
as “open (in X).” Clearly, we can equip one and the same set with various
different topologies, thereby defining various different topological spaces.
Nevertheless, we will usually denote a topological space, namely a pair (X, *),
by a single letter like 7. Just as in the case of a metric space R, the elements
of a topological space T will be called the points of T.

By the closed sets of a topological space T, we mean the complements
T — G of the open sets G of T. It follows from Definition 1 and the “duality
principle” (see p. 4) that

1") The space T itself and the empty set & are closed;

2') Arbitrary (finite or infinite) intersections ﬂ F, and finite unions U F,
of closed sets of T are closed.

The natural way of introducing the concepts of neighborhood, contact
point, limit point and closure of a set is now apparent:

a) By a neighborhood of a point x in a topological space T is meant any
open set G < T containing x;

b) A point x € T is called a contact point of a set M < T if every neigh-
borhood of x contains at least one point of M;

c) A point x € T is called a limit point of a set M < T if every neighbor-
hood of x contains infinitely many points of M;

d) The set of all contact points of a set M < T is called the closure of
M, denoted by [M].

Example 1. According to Theorem 5, p. 50, the open sets in any metric
space satisfy the two properties in Definition 1. Hence every metric space
is a topological space as well.

Example 2. Given any set T, suppose we regard every subset of T as open.
Then T is a topological space (the properties in Definition 1 are obviously
satisfied). In particular, every set M < T is both open and closed, and every
set M < T coincides with its own closure. Note that the “discrete metric
space’’ of Example 1, p. 38 has this trivial topology.

Example 3. As another extreme case, consider an arbitrary set T equipped
with a topology consisting of just two sets, the whole set T and the empty
set @. Then T is a topological space, a kind of “space of coalesced points”™
(mainly of academic interest). Note that the closure of every nonempty set
is the whole space T.

Example 4. Let T be the set {a, b}, consisting of just two points a and b,
and let the open sets in T be T itself, the empty set and the single-element set
{b}. Then the two properties in Definition 1 are satisfied, and T is a topo-
logical space. The closed sets in this space are T itself, the empty set and the
set {a}. Note that the closure of {b} is the whole space T.
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9.2. Comparison of topologies. Let ; and 7, be two topologies defined
in the same set X.! Then we say that the topology =, is stronger than the
topology v, (or equivalently that 7, is weaker than «,) if 7, < 7, ie., if
every set of the system 7, is a set of the system 7;.

THEOREM 1. The intersection © = ﬂ t, of any set of topologies in X
is itself a topology in X.

Proof. Clearly N 7, contains X and &. Moreover, since every T, is

closed (algebraically) under the operations of taking arbitrary unions and

finite intersections, the same is true of ) ©,. §
o

COROLLARY. Let & be any system of subsets of a set X. Then there
exists a minimal topology in X containing &, i.e., a topology ~(#) con-
taining % and contained in every topology containing .

Proof. A topology containing & always exists, e.g., the topology
in which every subset of X is open. The intersection of all topologies
containing # is the desired minimal topology 7(#), often called the
topology generated by the system #. §

Let #Z be a system of subsets of X and 4 a fixed subset of X. Then by
the trace of the system % on the set 4 we mean the system %4 consisting of
all subsets of X of the form 4 N B, Be %. It is easy to see that the trace
(on A) of a topology = (defined in X) is a topology 7, in 4. (Such a topol-
ogy is often called a relative topology.) In this sense, every subset 4 of a
given topological space (X, 1) generates a new topological space (4, ),
called a subspace of the original topological space (X, 7).

9.3. Bases. Axioms of countability. As we have seen, defining a topology
in a space T means specifying a system of open sets in 7. However, in many
concrete problems, it is more convenient to specify, instead of all the open
sets, some system of subsets which uniquely determines all the open sets.
For example, in the case of a metric space we first introduced the notion of
an open sphere (s-neighborhood) and then defined an open set G as a set such
that every point x € G has a neighborhood O,.(x) = G. In other words, the
open sets in a metric space are precisely those which can be represented as
finite or infinite unions of open spheres. In particular, the open sets on the
real line are precisely those which can be represented as finite or countable
unions of open intervals (recall Theorem 6, p. 51). These considerations
suggest

! This gives two topological spaces T, = (X, 71) and T, = (X, 7).
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DEFINITION 3. A family % of open subsets of a topological space T is
called a base for T if every open set in T can be represented as a union of
sets in 4.

Example 1. The set of all open spheres (of all possible radii and with all
possible centers) in a metric space R is a base for R. In particular, the set
of all open intervals is a base on the real line. The set of all open intervals
with rational end points is also a base on the line, since any open interval
(and hence any open set on the line) can be represented as a union of such
intervals.

It is clear from the foregoing that a topology « can be defined'in a set T
by specifying a base & in 7. This topology = is just the system of sets which
can be represented as unions of setsin &. If this way of specifying a topology
is to be of practical value, we must find requirements which, when imposed
on a system & of subsets of a given set T, guarantee that the system 7 of all
possible unions of sets in & be a topology in T, i.e., that v have the two
properties figuring in Definition 1:

THEOREM 2. Given a set T, let & be a system of subsets G, < T with the
Jollowing two properties:

1) Every point x € T belongs to at least one G, € ¥ ;
2) If x € G, N\ Gy, then thereis a G, € G such that x € G, < G, N G,

Suppose the empty set & and all sets representable as unions of sets G,
are designated as open. Then T is a topological space, and 9 is a base for T.

Proof. It follows at once from the conditions of the theorem that the
whole set T'and the empty set @ are open sets, and that the union of any
number of open sets is open. We must still show that the intersection of
a finite number of open sets is open. It is enough to prove this for just
two sets. Thus let

A= 9 Gs, B= LBJ Gg.
Then
A r\B=H3(GaﬂGB). )

By hypothesis, given any point x € G, N Gy, thereis a G, € & such that
x e G, < G, N G,. Hence the set G, N G is open, being the union of
all G, contained in G, N Gg. But then (1) is also open. Therefore T is a
topological space. The fact that & is a base for T is clear from the way
open sets in T are defined. |

The following theorem is a useful tool for deciding whether or not a
given system of open sets is a base:
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THEOREM 3. A system & of open sets G, in a topological space T is a
base for T if and only if, given any open set G < T and any point x € G,
there is a set G, € 9 such‘that x € G, < G.

Proof. If % is a base for T, then every open set G < T is a union

¢=UGgG,

of sets G, € 4. Therefore every point x € G is contained in some set
G, <= G. Conversely, given any open set G < T, suppose that for every
point x € G there is a set G (x) € ¥ such that x € G,(x) < G. Then

G= U Go:(x),
xeG

i.e., G is a union of sets in . |

Example 2. It follows from Theorem 3 that the set of all open spheres
with rational radii (and all possible centers) in a metric space R is a base for
R (this is obvious anyway). In particular, as already noted in Example 1,
the set of all open intervals with rational end points is a base for the real line.

An impertant class of topological spaces consists of spaces with a countable
base, i.e., spaces in which there is at least one base containing no more than
countably many sets. Such a space is also said to satisfy the second axiom of
countability.

THEOREM 4. If a topological space T has a countable base, then T con-
tains a countable everywhere dense subset, i.e., a countable set M < T
such that [M] = T.

Proof. Let ¥ ={G,,G,,...,G,,...} be a countable base for 7,
and choose a point x,, in each G,. Then the set

M= {x,X0...,%p ...}

is countable. Moreover, M is everywhere dense in T, since otherwise
the nonempty open set G = T — [M] would contain no points of M.
But this is impossible, since G is a union of some of the sets G, in ¢ and
G,, contains the point x, € M. |

For metric spaces, we can say even more:

THEOREM 5. If a metric space R has a countable everywhere dense
subset, then R has a countable base.

Proof. Suppose R has a countable everywhere dense subset {x;,
Xg, - .., Xp, . . .}. Then, given any open set G = R and any x € G, there
is an open sphere S(x,,, 1/n) such that x € S(x,,, 1/n) = G for suitable
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positive integers m and » (why?). Hence the open spheres S(x,,, 1/n),
where m and » range over all positive integers, form a countable base for
R 1

Combining Theorems 4 and 5, we see that a metric space R has a countable
base if and only if it has a countable everywhere dense subset.

Example 3. Every separable metric space, i.e., every metric space with a
countable everywhere dense subset, is a metric space satisfying the second
axiom of countability.

Example 4. The space m of all bounded sequences is not separable (recall
Example 7, p. 48) and hence has no countable base.

Remark. In general, Theorem 5 does not hold for arbitrary (nonmetric)
topological spaces. In fact, examples can be given of topological spaces
which have a countable everywhere dense subset but no countable base. Let us
see how this might come about. Given any point x of a metric space R, there
is a countable neighborhood base (or local base) at x, i.e., a countable system
0 of neighborhoods of x with the following property: Given any open set G
containing x, there is a neighborhood O € @ such that O < G (cf. Theorem
3).2 Suppose every point x of a topological space T has a countable neigh-
borhood base. Then T is said to satisfy the first axiom of countability.
However, this axiom need not be satisfied in an arbitrary topological space.
Hence the argument used in the case of metric spaces to deduce the existence
of a countable base from that of a countable everywhere dense subset does
not carry over to the case of an arbitrary topological space.

A system # of sets M, is called a cover (or covering) of a topological
space T, and . is said to cover T, if

T=UM.,.

A cover consisting of open (or closed) sets only is called an open (or closed)
cover. If 4 is a cover of a topological space T, then by a subcover of A
we mean any subset of .# which also covers T.

THEOREM 6. If T is a topological space with a countable base ¥, then
every open cover O has a finite or countable subcover.

Proof. Since 0 covers T, each point x € T belongs to some open set
0, € 0. Moreover, since ¢ is a countable base for T, for each xe T
there is a set G,(x) € ¢ such that x € G,(x) < O, (recall Theorem 3).

2 For example, the set of open spheres S(x, 1/n) is a countable neighborhood base at
any point x of a metric space R.
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The collection of all sets G,,(x) selected in this way is finite or countable
andcovers T. Foreach G,(x) we now choose one of the sets O, containing
G,(x), thereby obtaining-a finite or countable subcover of 0. ||

Given any topological space T, the empty set & and the space T itself
are both open and closed, by definition. A topological space T is said to
be connected if it has no subsets other than @ and T which are both open
and closed. For example, the real line R is connected, but not the set
R — {x} obtained from R! by deleting any point x.

9.4. Convergent sequences in a topological space, The concept of a con-
vergent sequence, introduced in Sec. 6.2 for the case of a metric space,
generalizes in the natural way to the case of a topological space. Thus a
sequence of points {x,} = x;, Xa, ..., X,, ... in a topological space T is
said to converge to a point x € T (called the /imit of the sequence) if every
neighborhood G(x) of x contains all points x,, starting from a certain index.?
However, the concept of a convergent sequence does not play the same basic
role for topological spaces as for metric spaces. In fact, in the case of a
metric space R, a point x is a contact point of a set M < R if and only if M
contains a sequence converging to x. On the other hand, in the case of a
topological space T, this is in general not true, as shown by Problem 11.
In other words, a point x can be a contact point of a set M < T (i.e., x can
belong to [M]) without M containing a sequence converging to x. However,
convergent sequences “are given their rights back” if T satisfies the first
axiom of countability, i.e., if there is a countable neighborhood base at every
point x e T

THEOREM 7. If a topological space T satisfies the first axiom of
countability, then every contact point x of a set M < T is the limit of a
convergent sequence of points in M.

Proof. Let O be a countable neighborhood base at x, consisting of
sets O,,. It can be assumed that O, o < 0,(mn=1,2,...), since other-

wise we need only replace O, by n O;. Let x, be any point of M

contained in O,. Such a point x, can always be found, since x is a
contact point of M. Then the sequence {x,} obviously converges to

x. 1

Remark. As already noted, every metric space satisfies the first axiom
of countability. This, together with Theorem 7, shows why in the case of
metric spaces we were able to formulate concepts like contact point, limit

3 More exactly, if, given any G(x), there is an integer Ng such that G(x) contains all
points x, with n > Ng.
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point, etc. in terms of convergent sequences (recall Theorems 2 and 2/,
p- 48).

9.5. Axioms of separation. Although many basic concepts of the theory
of metric spaces carry over easily to the case of topological spaces, an
arbitrary topological space is still too general an object for most problems
of analysis. In fact, things can happen in an arbitrary topological space
which differ in an essential way from what happens in a metric space. Thus,
for example, a finite set of points need not be closed in an arbitrary topo-
logical space, as shown in Example 4, p. 79. Hence it is desirable to
specialize the notion of a topological space somewhat by considering topo-
logical spaces more closely resembling metric spaces. This is done by
imposing extra conditions on a topological space T, in addition to the two
defining properties figuring in Definition 1, p. 78. For example, as we
have already seen, the axioms of countability allow us to study topological
spaces from the standpoint of the concept of convergence. We now introduce
supplementary conditions, called axioms of separation, of quite a different
type:

DEFINITION 4. Suppose that for each pair of distinct points x and y in
a topological space T, there is a neighborhood O, of x and a neighborhood

O, of y such that x € O,, y € O,. Then T is said to satisfy the first axiom of
separation, and is called a T,-space.

Example 1. The space in Example 2, p. 79 is a T;-space, but not the space
in Example 4.

THEOREM 8. Every finite subset of a Ty-space is closed.

Proof. Given any single-element set {x}, suppose y # x. Then y
has a neighborhood O, which does not contain x, i.e., y ¢ [{x}]. There-
fore [{x}] = {x}, i.e., every “singleton’ {x} is closed. But every finite
union of closed sets is itself closed. Hence every finite subset of the given
space is closed. ||

The next axiom of separation is stronger than the first axiom:

DEFINITION 5. Suppose that for each pair of distinct points x and y in
a topological space T, there is a neighborhood O, of x and a neighborhood
O, of y such that O, "\ O, = &. Then T is said to satisfy the second (or
Hausdorff') axiom of separation, and is called a T,-space or Hausdorff
space.

Thus, roughly speaking, each pair of disjoint points in a Hausdorff space
has a pair of disjoint neighborhoods.
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Example 2. Every Hausdorff space is a T-space, but not conversely (see
Problem 10).

Topological spaces more general than Hausdorff spaces are rarely used
in analysis. In fact, most of the topological spaces of interest in analysis
satisfy a separation condition even stronger than the second axiom of
separation:

DEFINITION 6. A Ty-space T is said to be mormal if for each pair of
disjoint closed sets F, and F, in T, there is an open set O, containing F,
and an open set O, containing F, such that 0, N\ 0, = &.

In other words, each pair of disjoint closed sets in a normal space has a
pair of disjoint “neighborhoods.”

Example 3. Obviously, every normal space is a Hausdorff space.

Example 4. Consider the closed unit interval [0, 1], where neighborhoods
of any point x = 0 are defined in the usual way (i.e., as open sets containing
x), but neighborhoods of the point x = 0 are all half-open intervals [0, «)
with the points

1
| 2
5 . @
deleted (and arbitrary unions and finite intersections of these neighborhoods
with neighborhoods of nonzero points). This space is Hausdorff, but not

normal since the set {0} and the set of points (2) are disjoint closed sets
without disjoint neighborhoods.

THEOREM 9. Every metric space is normal.

Proof. Let X and Y be any two disjoint closed subsets of R. Every
point x € X has a neighborhood O, disjoint from Y, and hence is at a
positive distance p, from Y (recall Problem 9, p. 54). Similarly, every
point y € Y is at a positive distance p, from X. Consider the open sets

U= U S(X, %Px)’ V= U S(y’ %Pu),
xeX ve¥

where, as usual, S(x, r) is the open sphere with center x and radius r.
Itis clear that X < U, Y < V. Moreover, U and V are disjoint. In fact,
suppose to the contrary that there is a point z € U N V. Then there are
points x, € X, yo € Y such that

p(X0: 2) < $pq,  0(2> Y0) < doy-
Assume, to be explicit, that o, < g, . Then

P(XO? }’o) < p(xg, 2) + p(z, Yo) < %on + %on < P>
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i.e., xo € S(¥o, Py, ). This contradicts the definition of Py, and shows that
there is no pomt zeUNV. |

Remark. Every subspace of a metric space is itself a metric space and
hence normal. This is not true for normal spaces in general, i.e., a subspace
of a normal space need not be normal.* A property of a topological space
T shared by every subspace of T is said to be hereditary. Thus normality of a

space is not a hereditary property. These ideas are pursued in Problems
13 and 14.

9.6. Continuous mappings. Homeomorphisms. The concept of a contin-
uous mapping, introduced for metric spaces in Sec. 5.2, generalizes at once
to the case of arbitrary topological spaces. Thus, let f be a mapping of one
topological space X into another topological space Y, so that f associates
an element y = f(x) € Y with each element x € X. Then f is said to be
continuous at the point x, € X if, given any neighborhood ¥, of the point

= f(x,), there is a neighborhood U, of the point x, such that f, ) <
V The mapping fis said to be contimious on X if it is continuous at every
point of X. In particular, a continuous mapping of a topological space X
into the real line is called a continuous real function on X.

Remark. These definitions clearly reduce to the corresponding definitions
for metric spaces in Sec. 5.2 if X and Y are both metric spaces.

The notion of continuity of a mapping f of one topological space into
another® is easily stated in terms of open sets, i.e., in terms of the topologies
of the two spaces:

THEOREM 10. A mapping f of a topological space X into a topological
space Y is continuous if and only if the preimage I' = f~(G) of every
open set G < Y is open (in X).

Proof. Suppose f is continuous on X, and let G be any open subset
of Y. Choose any point x € I' = f~(G), and let y = f(x). Then Gisa
neighborhood of the point y. Hence, by the continuity of f, there is a
neighborhood U, of x such that f'(U,) < G,i.e., U, = I'. In other words,
every point x € I' has a neighborhood contained in I'. But then I' is
open (see Problem 1).

Conversely, suppose I' = f~(G) is open whenever G < Y is open.
Given any point x € X, let ¥, be any neighborhood of the point y = f(x).

4 See e.g., J. L. Kelley, General Topology, D. Van Nostrand Co., Inc., Princeton, N.J.
(1955), p. 132.

® If desired, the mapping f can always be regarded as ‘‘onto,”” since otherwise we need
only replace the space Y by the subspace f(X) < Y.
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Then clearly x € f~1(V,), and moreover f(V,) is open, by hypothesis.
Therefore U, = f~(V,) is a neighborhood of x such that f(U,) < V,.
In other words, fis continuous at x and hence on X, since x is an arbitrary
point of X. {

Naturally, Theorem 10 has the following “dual’:

THEOREM 10°. A mapping f of a topological space X into a topological
space Y is continuous if and only if the preimage I = f~1(F) of every closed
set F < Yis closed (in X).

Proof. Use the fact that the preimage of a complement is the comple-
ment of the preimage. |

Remark. Let X and Y be two arbitrary sets, and let f be a mapping of
X into Y. Suppose that in Y there is specified a topology =, i.e., a system
of sets containing Y and &, and closed under the operations of taking
arbitrary unions and finite intersections. Then since the preimage of a
union (or intersection) of sets equals the union (or intersection) of the
preimages of the sets, by Theorems 1 and 2, p. 5, the preimage of the
topology =, i.e., the system of all sets f~'(G) where G € 7, is a topology
in X which we denote by /().

Suppose now that X and Y are topological spaces, with topologies 7 x
and vy, respectively. Then Theorem 10, giving a necessary and sufficient
condition for a mapping f of X into Y to be continuous can be paraphrased
as follows: A mapping fof X into Y is continuous if and only if the topology
Tx is stronger than the topology f~(ty).

Example. 1t is easy to see that the image (as opposed to the preimage) of
an open set under a continuous mapping need not be open. Similarly, the
image of a closed set under a continuous mapping need not be closed. For
example, consider the mapping of the half-open interval X = [0, 1) onto the
circle of unit circumference corresponding to “winding” the interval onto
the circle. Then the set [, 1), which is closed in [0, 1), goes into a set which
is not closed on the circle (see Figure 12).

£(0)

o
-4

FIGURE 12
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The theorem on continuity of composite functions, familiar from
elementary calculus, has the following analogue for topological spaces:

THEOREM 11. Given topological spaces X, Y and Z, suppose f is a
continuous mapping of X into Y and ¢ a continuous mapping of Y into Z.
Then the mapping of, i.e., the mapping carrying x into ¢(f(x)), is
continuous.

Proof. An immediate consequence of Theorem 10.

Given two topological spaces X and Y, let /' be a one-to-one mapping of X
onto Y, and suppose f and f~! are both continuous. Then f is called a
homeomorphic mapping or simply -a homeomorphism (between X and Y).
Two spaces X and Y are said to be homeomorphic if there exists a homeo-
morphism between them. Homeomorphic spaces have the same topological
properties, and from the topological point of view are merely two “repre-
sentatives” of one and the same space. In fact, if X and Y have topologies
Tx and Ty, respectively, and if fis a homeomorphic mapping of X onto Y,
then Ty = f~'(ry) and vy = f(7x). The relation of being homeomorphic
is obviously reflexive, symmetric and transitive, and hence is an equivalence
relation. Therefore any given family of topological spaces can be partitioned
into disjoint classes of homeomorphic spaces.

Remark. Again these are the natural generalizations of the same notions
for metric spaces, introduced in Sec. 2.2. It should be noted that two homeo-
morphic metric spaces need not have the same “metric properties’ (recall
Problem 9, p. 66). Note also that the topology of a metric space is uniquely
determined by its metric, but not conversely (illustrate this by an example).

9.7. Various ways of specifying topologies. Metrizability. The most direct
and in principle the simplest way of specifying a topology in a space T is to
indicate which subsets of T are regarded as open. The system of all such
subsets must then satisfy properties 1) and 2) of Definition 1. By duality,
we could just as well indicate which subsets of X are regarded as closed.
The system of all such subsets must then satisfy properties 1’) and 2) on
p- 79. However, this method is of limited practical value. For example, in
the case of the plane it is hardly possible to give a direct description of all
open sets (as was done in Theorem 6, p. 51 for the case of the line).

A topology is often specified in a space T by giving a base for 7. In
fact, this is precisely what is done in Sec. 6 for the case of a metric space R,
where the base for R consists of all open spheres (or even all open spheres
with rational radii).

Another way of specifying a topology in a space T is to introduce the
notion of convergence in 7. As noted in Sec. 9.4, this is not a universal
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method. It does work, however, in the case of spaces satisfying the first
axiom of countability.®

Still another way of introducing a topology in a space T is to specify
a closure operator in T, i.e., a mapping which assigns to each subset M = T
a subset [M] < T and satisfies the four properties listed in Theorem 1,
p- 46. It can be shown that the system of complements of all sets M < T
such that [M] = M is then a topology in T.7

Specifying a metric in a space T is one of the most important ways of
introducing a topology in T, but it is again far from being a universal method.
As already noted, every metric space is normal and satisfies the first axiom
of countability. Hence no metric can be used to introduce a topology in a
space which fails to have these two properties. A topological space T is said
to be metrizable if its topology can be specified by means of some metric
(more exactly, if it is homeomorphic to some metric space). As just pointed
out, a necessary condition for a topological space T to be metrizable is that
it be normal and satisfy the first axiom of countability. However, it can be
shown that these conditions are not sufficient for T to be metrizable. On the
other hand, in the case of a space with a countable base (i.e., satisfying the
second axiom of countability), we have

URYSOHN’S METRIZATION THEOREM. A necessary and sufficient condi-
tion for a topological space with a countable base to be metrizable is that
it be normal.

The necessity follows from Theorem 9. For the sufficiency we refer to the
literature.?

Problem 1. Given a topological space T, prove that a set G < T'is open if
and only if every point x € G has a neighborhood contained in G.

Problem 2. Given a topological space T, prove that

a) [M] = M if and only if M is a closed set, i.e., the complement T — G
of an openset G < T

b) [M] is the smallest closed set containing M ;

¢) The closure operator, i.e., the mapping of T into T carrying M into
[M] satisfies Theorem 1, p. 46.

Problem 3. Consider the set J of all possible topologies defined in a
set X, where t, < T, means that 7, is weaker than t,. Verify that < is a

¢In fact, by suitably generalizing the notion of convergence (and introducing the
concepts of “‘nets” and ‘‘filters”), this method can be made to work quite generally. See
e.g., J. L. Kelley, op. cit., p. 83.

7J. L. Kelley, op. cit., p. 43.

8 See e.g., P. S. Alexandroff, Einfiihrung in die Mengenlehre und die Theorie der Reellen
Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin (1956), p. 195 ff.



SEC. 9 BASIC CONCEpPTs 9l

partial ordering of 7. Does 7 have maximal and minimal elements? If so,
what are they?

Problem 4. Can two distinct topologies t, and 7, in X generate the same
relative topology in a subset 4 < X?

Problem 5. Let
X={a,b,c}, A=1{a,b}, B={b,c},
and let ¥ = {@, X, 4, B}. Is & a base for a topology in X?

Problem 6. Prove that if M is an uncountable subset of a topological
space with a countable base, then some point of M is a limit point of M.

Problem 7. Prove that the topological space T in Example 4, p. 79 is
connected.

Comment. T might be called a “‘connected doubleton.”

Problem 8. Prove that a topological space satisfying the second axiom of
countability automatically satisfies the first axiom of countability.

Problem 9. Give an example of a topological space satisfying the first
axiom of countability but not the second axiom of countability.

Problem 10. Let ~+ be the system of sets consisting of the empty set and
every subset of the closed unit interval [0, 1] obtained by deleting a finite
or countable number of points from X. Verify that T = (X, 1) is a topological
space. Prove that T satisfies neither the second nor the first axiom of count-
ability. Prove that T is a T;-space, but not a Hausdorff space.

Problem 11. Let T be the topological space of the preceding problem.
Prove that the only convergent sequences in T are the “stationary sequences,”
i.e., the sequences all of whose terms are the same starting from some index
n. Prove that the set M = (0, 1] has the point 0 as a contact point, but
contains no sequence of points converging to 0.

Problem 12. Prove the converse of Theorem 8.

Comment. Hence a topological space T is a T;-space if and only if every
finite subset of T is closed.

Problem 13. Prove the following theorem, known as Urysohn’s lemma:
Given a normal space T and two disjoint closed subsets F,, F, € T, there
exists a continuous real function f such that 0 < f(x) < 1 and

0 if xeF,

JTO=1 x€eF,
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Problem 14. A Ty-space T is said to be completely regular if, given any
closed set F < T and any point x, € T — F, there exists a continuous real
function f such that 0 < f(x) < 1 and

0 if X = Xg»

/6= 1 if xePF.

(Completely regular spaces are also called Tychonoff spaces.) Prove that
every normal space is completely regular, but not conversely. Prove that
every subspace of a completely regular space (in particular, of a normal space)
is completely regular.

Comment. Thus, unlike normality, complete regularity is a hereditary
property. It can be shown that a space is completely regular if and only if
itis a subspace of a normal space.® Completely regular spaces are particularly
important in analysis, since they “are able to support sufficiently many
continuous functions,” i.e., for any two distinct points x and y of a completely
regular space T, there is a continuous real function on T taking distinct
values at x and y.

10. Compactness

10.1. Compact topological spaces. The reader has presumably already
encountered the familiar

HEINE-BOREL THEOREM. Any cover of a closed interval[a, b] by a system
of open intervals (or, more generally, open sets) has a finite subcover.

Generalizing this property of closed intervals, we are led to a key concept
of real analysis:

DEFINITION 1. A topological space T is said to be compact if every open
cover of T has a finite subcover. A compact Hausdor[f space is called a
compactum.

Example. As we will see in Sec. 11.2, any closed bounded subset of
Euclidean n-space R" is compact, for arbitrary n. On the other hand, R”
itself (e.g., the real line or three-dimensional space) is not compact.

DEFINITION 2. A system of subsets {A,} of a set T is said to be centered

n
if every finite intersection (| A, is nonempty X®
k=1

°J. L. Kelley, op. cit., p. 145.
10 A system of sets with typical member 4, will often be denoted by {4} (this is still
another use of curly brackets).



SEC. 10 COMPACTNESS 93

THEOREM 1. A topological space T is compact if and only if it has the
following property:

A) Every centered system of closed subsets of T has a nonempty
intersection.

Proof. Suppose T is compact, and let {F,} be any centered system of
closed subsets of 7. Then thesets G, = T — F, are open. Hence the fact

n
that no finite intersection () F, is empty implies that no finite system of

k=1
sets G, = T — F) covers T. But then the whole system of sets {G,} cannot
cover T, by the compactness, and hence N} F, # &. In other words,
T has property A) if T is compact. *
Conversely, suppose T has property A), and let {G,} be any open
cover of T. Setting F, = T — G,, we find that (| F, = &, which, by

x
property A), implies that the system F, is not centered, i.e., that there
are sets Fy, ..., F, such that (| F,, = @. But then the corresponding

k=1
open sets G, = T — F, form a finite subcover of the cover {G,}. In
other words, T is compact if T has property A). |

THEOREM 2. Every closed subset F of a compact topological space T is
itself compact.

Proof. Let {F,} be any centered system of closed subsets of the sub-
space F < T. Then every F, is closed in T as well, i.e., {F,} is a centered
system of closed subsets of 7. Therefore M} F, # @, by Theorem 1.

o
But then F is compact, by Theorem 1 again. [

COROLLARY. Every closed subset of a compactum is itself a compactum.

Proof. Use Theorem 2 and the fact that every subset of a Hausdorff
space is itself a Hausdorff space. |

THEOREM 3. Let K be a compactum and T any Hausdorff space con-
taining K. Then K is closed in T.

Proof. Suppose y ¢ K, so that y € T — K. Then, given any point
x € K, there is a neighborhood U, of x and a neighborhood V,, of y such
that

Uu.NvV,=a.
The neighborhoods {U,}(x € K) form an open cover of K. Hence, by the
compactness of K, {U,} has a finite subcover consisting of sets Ups -« + 5
U, Let

V=V, N NY,

&1 Tnt
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Then V is a neighborhood of the point y which does not intersect the set
Uy, Y+ - VU, > K, and hence y ¢ [K]. It follows that K is closed

(inT7). 1

Remark. 1t is a consequence of Theorems 2 and 3 that compactness is
an “intrinsic property,” in the sense that a compactum remains a compactum
after being “‘embedded” in any larger Hausdorff space.

THEOREM 4. Every compactum K is a normal space.

Proof. Let X and Y be any two disjoint closed subsets of K. Re-
peating the argument given in the proof of Theorem 3, we easily see that,
given any point y € Y, there exists a neighborhood U, containing y and
an open set O, ® X such that U, N 0, = &. Since Y is compact, by
Theorem 2, the cover {U,}(y € Y) of the set Y has a finite subcover
U,,...,U,. The open sets

v
0(l)=0”10...noyﬂ’ 0(2)=Uylu...uu

Yn
then satisfy the normality conditions

oW o X’ 0% o Y, oY N OB = <. l

10.2. Continuous mappings of compact spaces. Next we show that the
“continuous image” of a compact space is itself a compact space:

THEOREM 5. Let X be a compact space and f a continuous mapping of X
onto a topological space Y. Then Y = f(X) is itself compact.

Proof. Let {V,} be any open cover of Y, and let U, = f~(V,). Then
the sets U, are open (being preimages of open sets under a continuous
mapping) and cover the space X. Since X is compact, {U,} has a finite
suocover Uy, .., U,,. Then the sets V,, ..., V, , where V;, = f(Up),
cover Y. It follows that Y is compact.

THEOREM 6. A one-to-one continuous mapping of a compactum X
onto a compactum Y is necessarily a homeomorphism.

Proof. Wemustshow that theinverse mappingf— is itself continuous.
Let F be a closed set in X and P = f(F) its image in Y. Then P is a
compactum, by Theorem 5. Hence, by Theorem 3, P is closed in Y.
Therefore the preimage under /! of any closed set F < X is closed. It
follows from Theorem 10’, p. 88 that ! is continuous. ||

10.3. Countable compactness. We begin by proving animportant property
of compact spaces:

THEOREM 7. If T is a compact space, then any infinite subset of T has
at least one limit point.
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Proof. Suppose T contains an infinite set X with no limit point. Then
T contains a countable set

X = {%, X9 0% ey Xps...}
with no limit point. But then the sets
xnz{xﬁ’xn+l»"'} (71:1,2,...)

form a centered system of closed sets in T with an empty intersection,
i.e., T'is not compact. |

These considerations suggest

DEFINITION 3. A topological space T is said to be countably compact
if every infinite subset of T has at least one limit point (in T).

Thus Theorem 7 says that every compact set is countably compact. The
converse, however, is not true (see Problem 1). The relation between the
concepts of compactness and countable compactness is made clear by

THEOREM 8. Each of the following two conditions is necessary and
sufficient for a topological space T to be countably compact:

1) Every countable open cover of T has a finite subcover;
2) Every countable centered system of closed subsets of T has a non-
empty intersection.

Proof. The equivalence of conditions 1) and 2) is an immediate
consequence of the duality principle. Moreover, if T is not countably
compact, then, repeating the argument given in proving Theorem 7,
we find that there is a countable centered system of closed subsets of T’
with an empty intersection. This proves the sufficiency of condition 2).
Thus we need only prove the necessity of condition 2). Let T be
countably compact, and let {F,} be a countable centered system of
closed sets in T. Then, as we now show, ) F, #* &. Let

n
@, = NF,.
k=1
Then none of the @, is empty, since {F,} is centered. Moreover,

(DID(I)zj...D(I)"D...’
and
No,=NF,.

There are now just two possibilities:

o, =, 1 =" starting from some index n,, in which case it
is obvious that N ¢, = @, #* &.
n
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2) There are infinitely many distinct sets ®@,. In this case, there is
clearly no loss of generality in assuming that all the @, are distinct.
Let x,, € ®,, — ®,,5. Then the sequence {x,} consists of infinitely
many distinct points of T, and hence, by the countable compact-
ness of 7, must have at least one limit point, say x,. But then x,
must be a limit point of @, since @, contains all the points x,,
Xpi1s - - - - Moreover x, € @, since @, is closed. It follows that

%eN®,, ie, NO,#= .

Thus compact topological spaces are those in which an arbitrary open
cover has a finite subcover, while countably compact spaces are those in
which every countable open cover has a finite subcover. Although in general
countable compactness does not imply compactness, we have the following
important special situation:

THEOREM 9. The concepts of compactness and countable compactness
coincide for a topological space T with a countable base.

Proof. By Theorem 6, p. 83, every open cover ¢ of T has a countable
subcover. Hence, if T is countably compact, 0 has a finite subcover, by
Theorem 8. |

Remark. The concept of a countably compact topological space, unlike
that of a compact space, has not turned out to be very natural or fruitful.
Its presence in mathematics ¢an be explained in terms of a kind of “historical
inertia.”” The point is that, as will be shown in the next section, the concepts
of compactness and countable compactness coincide for metric spaces, as
well as for spaces with a countable base. The notion of compactness was
originally introduced in connection with metric spaces, with a compact metric
space being defined as one in which every infinite subset has at least one
limit point (i.e., in terms of what is now called “countable compactness™).
The “automatic transcription” of this definition from metric spaces to
topological spaces then led to the concept of a countably compact topological
space. Sometimes, especially in the older literature, the word “‘compact”
is used in the sense of “‘countably compact,” and a topological space compact
in our sense (i.e., such that every open cover has a finite subcover) is said
to be “bicompact.”” In this older language, a compact Hausdorff space
(a “compactum” in our terminology) is called a “bicompactum,” and the
term ‘“‘compactum” is reserved for a compact metric space. We will adhere
to the terminology introduced in Definitions 1 and 3, often using the term
“metric compactum” to designate a compact metric space.

10.4. Relatively compact subsets. Among the subsets of a topological
space, those whose closures are compact are of special interest:
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DEFINITION 4. A subset M of a topological space T is said to be rela-
tively compact (in T) if its closure M in T is compact.

Example 1. According to Theorem 2, every subset of a compact topo-
logical space is relatively compact.

Example 2. As we will see in Sec. 11.3, every bounded subset of the real
line R* (or more generally of Euclidean n-space R™) is relatively compact.

A related concept is given by

DEFINITION 5. A subset M of a topological space T is said to be rela-
tively countably compact (in T) if every infinite subset A < M has at least
one limit point in T (which may or may not belong to M).

Relative compactness (unlike compactness) is not an “intrinsic property,”
i.e., it depends on the space T in which the given set M is “embedded.”
For example, the set of all rational numbers in the interval (0, 1) is relatively
compact if regarded as a subset of the real line, but not if regarded as a subset
of the space of all rational numbers. The concept of relative compactness
is most important in the case of metric spaces (see Sec. 11.3).

Problem 1. Let X be the set of all ordinal numbers less than the first
uncountable ordinal. Let («, 3) < X denote the set of all ordinal numbers
v such that « < y < 8, and let the open sets in X be all unions of intervals
(a, B). Prove that the resulting topological space is countably compact but
not compact.

Problem 2. A topological space T is said to be locally compact if every
point x € T has at least one relatively compact neighborhood. Show that a
compact space is automatically locally compact, but not conversely. Prove
that every closed subspace of a locally compact subspace is locally compact.

Problem 3. A point x is said to be a complete limit point of a subset 4 of a
topological space if, given any neighborhood U of x, the sets 4 and 4 N U
have the same power (i.¢., cardinal number). Prove that every infinite subset
of a compact topological space has at least one complete limit point.

Comment. Conversely, it can be shown that if every infinite subset of a
topological space T has at least one complete limit point, then T'is compact.!!

I1. Compactness in Metric Spaces

11.1. Total boundedness. Since metric spaces are topological spaces of a
special kind, the definitions and results of the preceding section apply to

1P, S. Alexandroff, op. cit., pp. 250-251; J. L. Kelley, op. cit., pp. 163-164.
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metric spaces as well. However, in the case of metric spaces, the concept
of compactness is intimately connected with another concept, known as
total boundedness.

DEFINITION 1. Let R be a metric space and € any positive number. Then
a set A < R is said to be an e-net for a set M < R if, for every x e M,
there is at least one point a € A such that p(x, a) < e.

Example 1. The set of all points with integral coordinates is a (1 /\/ 5)—net.
Example 2. Every subset of a totally bounded set is itself totally bounded.

DEFINITION 2. Given a metric space R and a subset M < R, suppose M
has a finite e-net for every € > 0. Then M is said to be totally bounded.

If a set M is totally bounded, then obviously so is its closure [M]. Every
totally bounded set is automatically bounded, being the union of a finite
number of bounded sets (recall Problem 5, p. 65). The converse is not true,
as shown in Example 4.

Example 3. In Euclidean n-space R", total boundedness is equivalent to
boundedness. In fact, if M < R is bounded, then M is contained in some
sufficiently large cube Q. Partitioning Q into smaller cubes of side €, we find

that the vertices of the little cubes form a finite (\/;15/2)-net for Q and hence
(a fortiori) for any set contained in Q. ’

Example 4. The unit sphere X in lz,( with equation

Sx-1,
n=1
is bounded but not totally bounded. In fact, consider the points
e, =(1,0,0,...), e=(0,1,0,..),...,
where the nth coordinate of ¢, is one and the others are all zero. These
points all lie on X, and the distance between any two of them is 2. Hence
X cannot have a finite e-net with € < \/5/2.

Example 5. Let Il be the set of points x = (xy, %3, ..., X, ...) in k
satisfying the inequalities
1

1
|X1|<1, Ix2|<£’~'-, Ixnl<'2_,,:"-v

The set II, called the Hilbert cube (or fundamental parallelepiped)'® furnishes

2 Another commonly encountered definition of the Hilbert cube is the set of points
in /, satisfying the inequalities

e e

S| =

1
|xll < ]7 lle < 'i, R ] lxul <
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an example of an infinite-dimensional totally bounded set. The fact that II
is totally bounded can be seen as follows: Given any € > 0, choose n such
that

1 <& ’
271 2
and with each point
X = (xl,X2,... ,x,,,...)
in IT associate the point
x* = (xy, Xgy00+5%,,0,0,...) 1)
(x* is also a point in IT). Then
<&
o(x, x*) = \/ = Py
k==n+1 2" 1 2

But the set IT* of all points in IT of the form (1) is totally bounded, being
a bounded set in n-space. Let 4 be a finite (¢/2)-net in II*. Then 4 is a finite
e-net for the whole set II.

11.2. Compactness and total boundedness. We now show the connection
between the concepts of compactness (of both kinds) and total boundedness:

THEOREM 1. Every countably compact metric space R is totally bounded.

Proof. Suppose R is not totally bounded. Then there is an g, > 0
such that R has no finite gy-net. Choose any point g, € R. Then R
contains at least one point, say a,, such that

P(al’ aZ) > €ps

since otherwise a; would be an gy-net for R. Moreover, R contains a
point ag such that
p(ay, ag) > &, p(as, as) > &,

since otherwise the pair a,, @, would be an g4-net for R. More generally,
once having found the points a,, a,, . . . , a,, we choose a,,, € R such
that

p(ay; Gpyr) > € k=1,2,...,n).

This construction gives an infinite sequence of distinct points a,, as, . . . ,
a,, . .. with no limit points, since p(a,, a,) > ¢, if j # k. But then R
cannot be countably compact. |

COROLLARY 1. Every countably compact metric space has a countable
everywhere dense subset and a countable base.

Proof. Since Ristotallybounded, by Theorem 1, Rhasa finite(1/n)-net
foreveryn =1,2,... . The union of all these nets is then a countable



100  TOPOLOGICAL SPACES CHAP. 3

everywhere dense subset of R. It follows from Theorem 5, p. 82 that R
has a countable base.

COROLLARY 2. Every countably compact metric space is compact.

Proof. An immediate consequence of Corollary 1 and Theorem 9,
p-9%. 1

According to Theorem 1, total boundedness is a necessary condition for
a metric space to be compact. However, this condition is not sufficient. For
example, the set of rational points in the interval [0, 1] with the ordinary
definition of distance forms a metric space R which is totally bounded but
not compact. In fact, the sequence of points

0, 0.4, 0.41, 0.414, 0.4142, ...

in R, i.e., the sequence of decimal approximations to the irrational number
V2 — 1, has no limit point in R. Necessary and sufficient conditions for
compactness of a metric space are given by

THEOREM 2. A metric space R is compact if and only if it is totally
bounded and complete.

Proof. To see that compactness of R implies completeness of R,
we need only note that if R has a Cauchy sequence {x,} with no limit,
then {x,} has no limit points in R. This, together with Theorem 1,
shows that R is totally bounded and complete if R is compact.

Conversely, suppose R is totally bounded and complete, and let {x,}
be any infinite sequence of distinct points in R. Let N, be a finite 1-net
for R, and construct a closed sphere of radius 1 about every point of N;.
Since these spheres cover R and there are infinitely many of them, at least
one of the spheres, say S;, contains an infinite subsequence

(1) (1)
X X,

of the sequence {x,}. Let N, be a finite -net for R, and construct a closed
sphere of radius } for every point of N,. Then at least one of these
spheres, say S,, contains an infinite subsequence

(2) (@)
X1 X

of the sequence {x'V'}. Continue this construction indefinitely, finding
a closed sphere S; of radius } containing an infinite subsequence

3) (3)
Xy X

of the sequence {x¥}, and so on, where S, has radius 1/2*1. Let S, be
the closed sphere with the same center as S, but with a radius r, twice as
large (i.e., equal to 1/2"). Then clearly

SiDSéD"':’S;D"',
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and moreover r, — 0 as n — . Since R is complete, it follows from
the nested sphere theorem (Theorem 2, p. 60) that

ns, +# o.
n=1
In fact, there is a point x, € R such that
N 55, = {xo}
n=1

(recall Problem 3, p. 65). Clearly x, is a limit point of the original
sequence {x,}, since every neighborhood of x, contains some sphere S,
and hence some infinite subsequence {x'®}. Therefore every infinite
sequence {x,} of distinct points of R has a limit point in R. It follows that
R is countably compact and hence compact, by Corollary 2.

Example. As already noted, a subset M of Euclidean n-space R" is totally
bounded if and only if it is bounded. Moreover, M is complete if and only if
it is closed (recall Problem 7, p. 66). Hence, by Theorem 2, the set of all
compact subsets of R" coincides with the set of all closed bounded subsets
of R".

11.3. Relatively compact subsets of a metric space. The concept of relative
compactness, introduced in Sec. 10.4 for subsets of an arbitrary topological
space, applies in particular to subsets of a metric space. In the case of a
metric space, however, there is no longer any distinction between relative
compactness and relative countable compactness.

THEOREM 3. A subset M of a complete metric space R is relatively
compact if and only if it is totally bounded.

Proof. An immediate consequence of Theorem 2 and the fact that a
closed subset of a complete metric space is itself complete. |

Example. Any bounded subset of Euclidean n-space it totally bounded
and hence relatively compact (this is our version of the familiar Bolzano-
Weierstrass theorem).

Remark. The utility of Theorem 3 stems from the fact it is usually easier
to prove that a set is totally bounded than to give a direct proof of its relative
compactness. On the other hand, compactness is the key property as far as
applications are concerned.

11.4. Arzela’s theorem. The problem of proving the compactness of
various subsets of a given metric space is encountered quite frequently in
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analysis. However, the direct application of Theorem 2 is not always easy.
This explains the need for special criteria serving as practical tools for proving
compactness in particularspaces. For example, as we have seen, the bounded-
ness of a set in Euclidean n-space implies its compactness, but this implication
fails in more general metric spaces.

One of the most important metric spaces in analysis is the function space
Cla,by> introduced in Example 6, p. 39. For subsets of this space, we have
an important and frequently used criterion for relative compactness, called
Arzeld’s theorem, which will be stated and proved after first introducing two
new concepts:

DEeFINITION 3. A4 family © of functions ¢ defined on a closed interval
[a, b] is said to be uniformly bounded if there exists a number K > 0 such
that
le()l < K

forall x € [a,b] and all ¢ € D.

DEFINITION 4. 4 family © of functions ¢ defined on a closed interval
[a, B is said to be equicontinuous if, given any € > 0, there exists a number
3 > 0 such that |x" — x"| < 8 implies

le(x) — o(x") < ¢
forall X', x" € [a, bl and all ¢ € D.

THEOREM 4 (Arzell). A necessary and sufficient condition for a family
@ of continuous functions ¢ defined on a closed interval [a, b] to be
relatively compact in Cy, ,, is that © be uniformly bounded and equi-
continuous.

Proof. We give the proof in two steps:

Step 1 (Necessity). Suppose @ is relatively compact in C, ,;. Then
by Theorem 3, given any € > 0, there is a finite (g/3)-net ¢, ..., @,
in @ (see Problem 1). Being a continuous function defined on a closed
interval, each ¢, is bounded:

lo()l < K (a<x<b).
Let

K=max{K1,..‘,K,l}+§.
By the definition of an (g/3)-net, given any ¢ € @, there is at least one ¢;
such that

o(, ;) = max | g(x) — g,(x)| < .
as<e<h 3
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Therefore

W@N<Mﬁﬂ+§<&+§<K,

i.e., @ is uniformly bounded. Moreover, each function ¢, in the (¢/3)-net
is continuous, and hence uniformly continuous, on [a, b]. Hence, given
any € > 0, there is a 3, such that

1%&0—%QM<§

whenever |x, — x,| < §,. Let
3 =min {3,,...,3,}.
Then, given any ¢ € ® and choosing ¢, such that p(¢, ¢,) < &/3, we have

[ (1) — o(x2)|
< Jo(xy) — (x| + 19:1) — ()l + [s(x0) — @(x2)]

€, € ¢
<s+c-+c=c¢
3 + 3 + 3
whenever |x; — x,| < 8. This proves the equicontinuity of ®.

Step 2 (Sufficiency). Suppose @ is uniformly bounded and equi-
continuous. According to Theorem 3, to prove that @ is relatively com-
pact in Cp, ;;, we need only show that @ is totally bounded, i.e., that
given any e > 0, there exists a finite e-net for @ in C, ,,. Suppose
lo(x)] < K for all ¢ € ®, and let 3 > 0 be such that

wuo—Qam<§

for all ¢ € ® whenever |x; — x,| < 3. Divide the interval a < x < b
along the x-axis into subintervals of length less than 3, by introducing
points of subdivision xg, x;, X, . . . , X,, such that

Q=X < X <Xy <+ < x,=b,

and then draw a vertical line through each of these points. Similarly,
divide the interval —K < y < K along the y-axis into subintervals of
length less than /5, by introducing points of subdivision yy, 1, ya,- - . » ¥,
such that

—K=p<n<p<<p=XK

and then draw a horizontal line through each of these points. In this
way, the rectangle a < x < b, —M < y < M is divided into np cells of
horizontal side length less than & and vertical side length less than ¢/5.
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We now associate with each function ¢ € @ a polygonal line y = {(x)
which has vertices at points of the form (x,,y;) and differs from the
function ¢ by less than €5 at every point x, (the reader should draw a
figure and convince himself on the existence of such a function). Since

lo(ed) — 400l <5,

lo(Xis1) — $0xin)l < § ,

lo(x) — 9(0pn)l < §,

by construction, we have

) — Pl < 255 .

Moreover,
3
W) — @I < (< x < ),

since Y(x) is linear between the points x, and x,,,. Let x be any point
in [a, b] and x,, the point of subdivision nearest to x on the left. Then

lo(x) — d(¥)] < lo(x) — (x| + lo(x) — b + [$(x) — d(X)| < ¢,

i.e., the set of polygonal lines ¢(x) forms an e-net for ®. But there
are obviously only finitely many such lines. Therefore @ is totally
bounded. §

11.5. Peano’s theorem. Arzeld’s theorem has many applications, among
them the following existence theorem for differential equations:

THEOREM 5 (Peano). Let f(x, y) be defined and continuous on a plane
domain G. Then at least one integral curve of the differential equation

<L) ®

passes through each point (x,, o) of G.
Proof. By the continuity of f, we have
/Gl < K

in some domain G’ = G containing the point (x,, y,). Draw the lines
with slopes K and —K through the point (x, y,). Then draw vertical
lines x = a and x = b (a < x, < b) which together with the first two
lines form two isosceles triangles contained in G’ with common vertex
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>

FIGURE 13

(x> ¥o), as shown in Figure 13. This gives a closed interval [a, b], which
will figure in the rest of the proof.

The next step is to construct a family of polygonal lines, called Euler
lines, associated with the differential equation (2). We begin by drawing
the line with slope f'(x,, y,) through the point (x,, y,). Next, choosing a
point (x,, y;) on the first line, we draw the line with slope f (x;, y,) through
the point (x;, y;). Then, choosing a point (x, y;) on the second line, we
draw the line with slope f (x,, y,) through the point (x,, y,), and so on
indefinitely. Suppose we construct a whole sequence Ly, Ly, ..., L,, ...
of such Euler lines going through the point (x,, y,), with the property
that the length of the longest line segment making up L, approaches 0
asn — 0. Let ¢, be the function with graph L,. Then this gives a family
of functions ¢,, @,,. .., @,, ... ,alldefined on the interval [a, b], which
is easily seen to be uniformly bounded and equicontinuous (why?). It
follows from Arzeld’s theorem that the sequence {¢,} contains a uni-

formly convergent subsequence o), @ ..., o™, ... Let
(%) =lim ¢'"(x).
Then clearly e
¢(%0) = Yo,

so that the curve y = ¢(x) passes through the point (x,, y,).

We now show that y = ¢(x) satisfies the differential equation (2) in
the open interval (a, b). This means showing that, given any € > 0 and
any points x’, x” € (a, b), we have

xll — r , ,
o) — ox) _ Fx', o(x))

"o Nt

x
whenever [x” — x'| is sufficiently small, or equivalently that

‘ (P('n)(xn) _ (P(n)(x/)

<e

PR — [ o(x)

X —X

<e 3)




106 TOPOLOGICAL SPACES CHAP. 3

whenever n is sufficiently large and |x” — x| is sufficiently small. Let
y' = o(x"). Then, by the continuity of f, given any e > 0, there is a
number 7 > 0 such that

f(x!a.y,) — £ <f(xay) <f(x',}”) + €
whenever
Ix — x| <29, |y—)y1|<4Km.

The set of points (x, y) satisfying these inequalities is a rectangle, which
we denote by Q. Let N be so large that for all # > N, the length of the
longest segment making up L, is less than » and moreover

le(x) — o™ (x)| < K.
Then all the Euler lines L, with n > N lie inside the rectangle Q (why?).
Suppose L, has vertices (aq, by), (a4, by), . . . , (@411, bpy1), Where!d
A< X <Ay <, < - <a, <x" < a,.
Then
" (ay) — ¢ (x) = f(aq, bo)(a, — x'),
e (ayy) — 9™ (a) = f(ay, b)(ay: — a;) (i=12,..., k=1,
e (x") — o"(ay) = f(ar, b)(x" — ay).
Hence, if |x" — x| < =,
V&) —ella — x) < o"(a) — oM ) <[f (X, y") +ellay — x),
&) — ellain — a) < o™ (a) — 9™ (ay)
<[f&,y)+elan—a) (=1,2,...,k-1),
[f(x,p) — el(x” —a) <™ (x")— o™ (a) <[f (x', y) + el (x" — ap).
Adding these inequalities, we get
&, p) — el(x" — ) < o"(x") — oM (XN < [f (¥, ) +el(x" — x)
if |x" — x’| < 7, which is equivalent to (3). §

Remark. Different subsequences of a sequence of Euler lines may con-
verge to different solutions of the differential equation (2). Hence the solution
@ found in the proof of Theorem 5 may not be the unique solution of (2)
passing through the point (x,, yo).

Problem 1. Let M be a totally bounded subset of a metric space R. Prove
that the e-nets figuring in the definition of total boundedness of M can always
be chosen to consist of points of M rather than of R.

13 To be explicit, we assume that x” > x’. The case x” < x’ is treated similarly.
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Hint. Given an e-net for M consisting of points a,, g, . . . , a, € R, all
within € of some point of M, replace each point g, by a point b, € M such
that p(ay, b)) < e.

Problem 2. Prove that every totally bounded metric space is separable.

Hint. Construct a finite (1/n)-net for every n = 1,2, ... Then take the
union of these nets.

Problem 3. Let M be a bounded subset of the space Cp, ;. Prove that the
set of all functions

FGx) = [ f(2) dr
with '€ M compact.

Problem 4. Given two metric compacta X and Y, let Cxy be the set of
all continuous mappings of X into Y. Let distance be defined in Cxy by the
formula

o(f> &) = sup o(f(x), g(x)- @

Prove that Cxy is a metric space. Let My be the set of all mappings of
X into Y, with the same metric (4). Prove that Cxy is closed in M x5

Hint. Use the method of Problem 1, p. 65 to prove that the limit of a
uniformly convergent sequence of continuous mappings is itself a continuous
mapping.

Problem 5. Let X, Y and Cxy be the same as in the preceding problem.
Prove the following generalization of Arzeld’s theorem: A necessary and
sufficient condition for a set D = Cxyp to be relatively compact is that
D be an equicontinuous family of functions, in the sense that given any ¢ > 0,
there exists a number 8 > Osuchthat p(x’, y') < dimplies p(f(x), f(x")) < e
for all x’, x" € X and all f€ D.

Hint. To prove the sufficiency, show that D is relatively compact in
M 5 (defined in the preceding problem) and hence in Cxy, since Cxy is
closed in Mxy. To prove the relative compactness of D in My, first
represent X as a unjon of finitely many pairwise disjoint sets E; such that
x', x" € E; implies p(x’, x") < 8. For example, let x,, . . . , x,, be a (3/2)-net
for X, and let

E; = S[x;, 8] — U Slx; , 3l.
j<i
Then let y;, ..., y, be an e-net in Y, and let L be the set of all functions
taking the values y; on the sets E;. Givenany fe Dandanyx, € {x,,...,x,},
let y, € {y1, . . . , yn} besuch that o(f(x;), y;) < € and let g € L be such that
g(x;) = y;. Show that o(f(x), g(x)) < 2¢, thereby proving that L is a finite
2e-net for D in M xy.
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12. Real Functions on Metric and Topological Spaces

12.1. Continuous and uniformly continuous functions and functionals. Let T
be a topological space, in particular a metric space. Then by a real function
on T we mean a mapping of T into the space R* (the real line). For example,
a real function on Euclidean n-space R is just the usual “function of n
variables.” Suppose T is a function space, i.e., a space whose elements are
functions. Then a real function on T is called a functional.

Example 1. Let x(f) be a function defined on the interval [0, 1], let
@(Sg5 S35 - - - » §,) be a function of n + 1 variables defined for all real values
of its arguments, and let (¢, ) be a function of two variables defined for
all t € [0, 1] and all real #. Then the following are all functionals:

Fy(x) = sup x(1),
0<1<1

Fy(x) = inf x(2),

Fy(x) = x(t,) where ¢, € [0, 1],
Fy(x) = o[x(t), x(ty), - . ., x(2,)],
Fox) = [ 41, x(0] dt

Fg(x) = x'(t,)  where t,€ [0, 1],

Fo(x) = f:\h + x'%(2) dt,
Fyx) = [l dr.

The functionals F,, F;, Fs, F, and F; are defined on the space C of all
functions continuous on the interval [0, 1]. On the other hand, Fj is defined
only for functions differentiable at the point f,, F, is defined only for functions
such that the expression V1 4 x%(1) is integrable, and Fj is defined only for
functions with integrable |x'(¢)|.

Example 2. The functional F, is continuous on C, since

p(x, y) = sup |x — yl, [sup x — sup y| < sup [x — y|.

Example 3. The functional Fy is discontinuous on C at any point x, where
it is defined. In fact, let x(z) be such that x'(¢;) = 1 and |x(¢)| < ¢, and let
y = %o + x. Then y'(t;) = x,(%) + 1 even though ¢(x,, y) < . However,
Fg is continuous if it is defined on the space C? of all functions continuously
differentiable on the interval [0, 1], with metric

e(x, y) = sup [Ix(1) — y(O] + |¥'(1) — y'(DI]

0<¢<<1

(why?).
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Example 4. The function F; is also discontinuous on C. In fact, let

x(t) =0, x,(8) = 1 sin 27wtnt.
n
Then

P(Xn, xo) = ’1- —0,
n

but Fy(x,) > 4 for all n while F,(x,) = 1. Hence Fy(x,) fails to approach
Fy(x,) even though x,, — x,.

The ordinary concept of uniform continuity generalizes at once to the
case of arbitrary metric spaces:

DEFINITION 1. A real function f(x) defined on a metric space R is said
to be uniformly continuous on R if, given any € > 0, there is a 8 > 0 such
that p(xy, x5) < & implies | f(x,) — f(x2)| < € for all x,, x, € R.

The reader will recall from calculus that a real function continuous on a
closed interval [a, b] is uniformly continuous on [a, b]. This fact is a special
case of

THEOREM 1. A real function f continuous on a compact metric space R
is uniformly continuous on R.

Proof. Suppose f is continuous but not uniformly continuous on R.
Then for some positive € and every n there are points x,, and x, in R such
that

, 1
p(x,,, xp) < ;l_ (1)
but
[f(en) = f(x2)] > e 0

Since R is compact, the sequence {x,} has a subsequence {x,,} converging
to a point x € R. Hence {x, } also converges to x, because of (1). But
then at least one of the inequalities

[f(x) — f(x)] > §, 1fGe) — f(xi )l > 25

must hold for arbitrary k, because of (2). This contradicts the assumed
continuity of fat x. |

12.2. Continuous and semicontinuous functions on compact spaces. As just
shown, the theorem on uniform continuity of a function continuous on a
closed interval generalizes to functions continuous on arbitrary metric
compacta. There are other properties of functions continuous on a closed
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interval which generalize to arbitrary compact spaces (not necessarily metric
spaces):

THEOREM 2. A real function f continuous on a compact topological
space T is bounded on T.** Moreover f achieves its least upper bound and
greatest lower bound on T.

Proof. A continuous real function on T is a continuous mapping of
T into the real line R'. The image of T'in R! is compact, by Theorem 5,
p- 94. But every compact subset of R! is bounded and closed (see p.
101). Hence fis bounded on T. Moreover, f not only has a least upper
bound and greatest lower bound on T, but actually achieves these bounds
at points of 7. |

Theorem 2 can be generalized to a larger class of functions, which we
now introduce:

DEFINITION 2. A4 (real) function f defined on a topological space T is
said to be upper semicontinuous at a point x, € T if, given any € > 0, there
exists a neighborhood of x, in which f(x) < f(x,) + €. Similarly, f is said
to be lower semicontinuous at x, if, given any € > 0, there exists a neighbor-
hood of x, in which f(x) > f(x,) — e.

Example 1. Let [x] be the integral part of x, i.e., the largest integer <x.
Then f(x) = [x] is upper semicontinuous for all x.

Example 2. Given a continuous function f, suppose we increase the value
f(x,) taken by f at the point x,. Then f becomes upper semicontinuous at x,.
Similarly, f becomes lower semicontinuous at x, if we decrease f(x,).
Moreover, f is upper semicontinuous if and only if —f is lower semicon-
tinuous. These facts can be used to construct many more examples of
semicontinuous functions.

In studying the properties of semicontinuous functions, it is convenient
to allow them to take infinite values. If f(x,) = <+, we regard f as upper
semicontinuous at x,. The function f is also regarded as lower semicon-
tinuous at x, if, given any h > 0, there is a neighborhood of x, in which
f(x) > h. Similarly, if f(x,) = —o0, we regard f as lower semicontinuous
at x,, and at the same time upper semicontinuous at x, if, given any 2 > 0,
there is a neighborhood of x, in which f(x) < —h.

We now prove the promised generalization of Theorem 2:

14 A real function (or functional) fis said to be bounded on a set E if f(E) is contained
in some interval [—C, C].
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THEOREM 2'. A finite lower semicontinuous function f defined on a
compact topological space T is bounded from below.

Proof. Suppose to the contrary that inff(x) = —oo. Then there
exists a sequence {x,} such that f(x,) < —n. Since T is compact, the
infinite set E = {x;, %y, ..., X,, ...} has at least one limit point x,.
Since fis finite and lower semicontinuous at x,, there is a neighborhood
U of x4 in which f(x) > f(x,) — 1. But then U can only contain finitely
many points of £, so that x, cannot be a limit point of E. |

THEOREM 2. A finite lower semicontinuous function f defined on a
compact topological space T achieves its greatest lower bound on T.

Proof. By Theorem 2’, inff(x) is finite. Clearly, there exists a
sequence {x,} such that

f(x) < inff(x) + L.
n

By the compactness of T, the set E = {x,, x5, ..., X,, . . .} has at least
one limit point x,. If f(x,) > inf £, then, by the semicontinuity of fat x,,
there is a neighborhood U of the point x, and a 8 > 0 such that f(x) >
inf f + & for all x € U. But then U cannot contain an infinite subset of
E, i.e., x, cannot be a limit point of x,. It follows that f(x,) = inff. |

Remark. Theorems 2’ and 2" remain true if the words “lower,” “below,”
and ““greatest’” are replaced by “upper,” “above,” and “least.”” The details
are left as an exercise.

We conclude this section with some useful terminology:

DEFINITION 3. Given a real function f defined on a metric space R, the
(finite or infinite) quantity

f(xo) = lim { sup f(x)}

=0 (zeS(zy.e)

is called the upper limit of f at x,, while the (finite or infinite) quantity

_f(xo) = lim

£—=0

{ inf f(x)}

zeS(zg.e)

is called the lower limit of f at x,. The difference

Wf (xo) = f(x6) — [ (%0),

provided it exists,'® is called the oscillation of f at x,.

15 I.e., provided at least one of the numbers 1 (x,), f(x,) is finite.
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FIGURE 14

12.3. Continuous curves in metric spaces. Instead of mappings of a metric
space into the real line, we now consider mappings of a subset of the real
line into a metric space. More exactly, let P = f(¢) be a continuous map-
ping of the interval a < t < b into a metric space R. As t “traverses” the
interval from a to b, the point P = f(t) “traverses a continuous curve” in
the space R. Before giving a formal definition corresponding to this rough
idea of a “curve,” we make two key observations:

1)

2)

The order in which points are traversed will be regarded as an essential
property of a curve. For example, the set of points shown in Figure
14(a) gives rise to two distinct curves when traversed in the two distinct
ways shown in Figures 14(b) and 14(c). Similarly, the function shown
in Figure 15(a), defined in the interval 0 < ¢ < 1, determines a “curve”
filling up the segment 0 < y < 1 of the y-axis, but this curve is traversed
three times (twice upward and once downward) and hence is distinct
from the segment 0 < y < 1 traversed just once from the point y = 0
to the point y = 1.

The choice of the parameter ¢ will be regarded as unimportant,
provided a change in parameter does not change the order in which
the points of the curve are traversed. Thus the functions shown in
Figures 15(a) and 15(b) represent the same curve, even though a given
point of the curve corresponds to different parameter values in the
two cases. For example, the point A in Figure 15(a) corresponds to

N
}
1
|
N
T
|
|
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FIGURE 15
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two isolated points C and D on the r-axis, while in Figure 15(b) the
same point 4 corresponds to an jsolated point C and a whole line
segment DE (note that the point on the curve does not move at all
as f traverses the segment DE).

We now give a formal definition of a curve, embodying these qualitative
ideas. Two continuous functions

P=f(), P=g("),
defined on intervals
al < tl < bl’ all < t” < b/l

and taking values in a metric space R, are said to be equivalent if there exist
two continuous nondecreasing functions

t'=o@), 1"=0),

defined on the same interval

a<t<hb,
such that
@ =ad, ob)=10,
Y@ =a", Y)=1?0"
and

f(e®) =gW@®) forall 1€ ]a,b].

It is easy to see that this relation of equivalence is reflexive (f is equivalent
tof), symmetric (if fis equivalent to g, then g is equivalent to f) and transitive
(if f is equivalent to g and g is equivalent to A, then f is equivalent to h).
Hence the set of all continuous functions of the given type can be partitioned
into classes of equivalent functions (cf. Sec. 1.4), and each such class is said
to define a (continuous) curve in the space R.

For each function P = f(¢’) defined on an interval [d’, '], there is an
equivalent function defined on the interval [a", b"] = [0, 1]. In fact, we need
only make the choice

t'=oet)=0"—d)y+d, t"=4¢@)=t

Thus every curve can be regarded as specified parametrically in terms of a
function defined on the unit interval I = [0, 1]. By the same token, it is
often convenient!® to introduce the space C(Z, R) of continuous mappings f
of the interval I into the space R, equipped with the metric

e(f. 8) =Ds<l§glp(f(t), g(1)), (3)

where p is the metric in the space R.

18 Cf. Problems 7-12.
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Problem 1. Let the functionals F, Fy, Fs, F,, F; and the space C be the
same as on p. 108. Prove that

a) F,, F; and F; are continuous on C;
b) F,iscontinuous on Cif the function ¢ iscontinuous in all its arguments ;
c) F, is uniformly continuous on C.

Define F;, F;, F; and F, on a space larger than C.

Problem 2. Let the functionals F;, F and the spaces C, C™) be the same
as on p. 108. Prove that

a) Fjyis discontinuous on C;
b) F, and F, are continuous on CV,

Problem 3. Let M be the space of all bounded real functions defined on
the interval [a, b], with metric p(f, g) = sup|f — g|. By the length of the
curve

y=/(x) f(a<x<b
is meant the functional

L(f) = sup 3N — 5 + (fG2) — i)

where the least upper bound (which may equal + c0) is taken over all possible
partitions of [a, b] obtained by introducing points of subdivision x,, xy,
Xgs+ .., X, such that )
=Xy <X <Xp<-+'<x,=h.
Prove that
a) For continuous functions

L(f)= lim S 4 — %)+ (FOD) — f(xe)s

max |z;—2;_1|~0 i=1

b) For continuously differentiable functions
y ——
L) = [NTH 7 ds
©) The functional L(f) is lower semicontinuous on M.

Problem 4. Let f,f and o be the same as in Definition 3. Prove that

a) fis upper semicontinuous;

b) fis lower semicontinuous;

c)-fis continuous at x, if and only if —o0 < f(xg) = fl(xy) < o0, i.e., if
and only if wf (xg) = 0. i
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Problem 5. Let K be a metric compactum and 4 a mapping of K into
itself such that-p(4x, Ay) < p(x, y) if x # y. Prove that 4 has a unique
fixed point in K. Reconcile this with Problem 1, p. 76.

Problem 6. Let K be a metric compactum and {f,(x)} a sequence of
continuous functions on K, increasing in the sense that

D <D< <ful®) <o

Prove that if {f,(x)} converges to a continuous function on K, then the
covergence is uniform (Dini’s theorem).

Problem 7. A sequence of curves {I',} in a metric space R is said to
converge to a curve I’ in R if the curves I, and I' have parametric repre-
sentations

P=f01) (O<1<1
and

P=f(1) (O<r<],
respectively, such that

lim 8(f,f,) =0,

n—ac

where p is the metric (3) of the space C(/, R) introduced on p. 113. Prove
that if a sequence of curves in a compact metric space R can be represented
parametrically by an equicontinuous family of functions on [0, 1], then the
sequence contains a convergent subsequence.

Hint. Use Problem 3, p. 107.

Psroblem 8. Let I be a curve in a metric space R, with parametric repre-
sentation

P=f(1) (a< t<b).
By the length of I' is meant the functional

L) = L(f) = 5up 3 o(/ (1. ().

where p is the metric in R and the least upper bound (which may equal + o0)
is taken over all possible partitions of [a, b] obtained by introducing points
of subdivision #,, t,, t5, ..., I,, ... such that

Aa=1t, <l <ty<+ -+ <t,=h.

Prove that L(I') is independent of the parametric representation of I'.
Suppose we choose a = 0, b = 1, thereby confining ourselves to parametric
representations of the form

P=f( (O<t<]l).
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Prove that L(f) is then a lower semicontinuous functional on the space
C(I, R) introduced on p. 113. Equivalently, prove that if a sequence of
curves {I',} converges to-a curve I', in the sense of Problem 7, then L(I")
does not exceed the smallest limit point (i.e., the lower limit) of the sequence

{L(T)}.

Problem 9. Given a metric space R with metric p, let I' be a curve in R
of finite length S with parametric representation

P=f(r) (a< t<b).
Let s = ¢(T) be the length of the arc

P=f@) (@<1<T)

(where T < b), i.e., the arc of I going from the “initial point” P, = f(a)

to the “final point”” Pp = f(T). Then I' has a parametric representation
of the form

P=gk) (O<s<9),
where g(s) = f(¢71(s)) if ¢ is one-to-one. Prove that

p(g(s1), g(s2)) < sy — ssl-

Hint. The length of an arc is no less than the length of the inscribed chord.

Problem 10. In the preceding problem, let T = s/S. Then I' has a para-
metric representation

P = F(t) = g(S7) O<r<))
in terms of a function F defined on the unit interval [0, 1]. Prove that
F satisfies a Lipschitz condition of the form
p(F(m), F(72)) < S|t — 7l

Suppose R is compact and let {I',} be a sequence of curves, all of length
less than some finite number M. Prove that {I',} contains a convergent
subsequence, where convergence of curves is defined as in Problem 7.

Problem 11. Given a compact metric space R, suppose two points 4 and B
in R can be joined by a continuous curve of finite length. Prove that among
all such curves, there is a curve of least length.

Comment. Even in the case where R is a “smooth” (i.e., sufficiently
differentiable) closed surface in Euclidean 3-space, this result is not amenable
to the methods of elementary differential geometry, which ordinarily deals
only with the case of “neighboring” points 4 and B.

Problem 12. Let % be the set of all curves in a given metric space R.



SEC. 12 REAL FUNCTIONS ON METRIC AND TOPOLOGICAL SPACES "7

Define the distance between two curves I'y, 'y € € by the formula
p(T'y, Ty) = inf 3(/1, f2), “4

where p is the metric (3) in the space C(I, R), and the greatest lower bound
is taken over all possible representations

P=fi) (O<i<] ©)
of I'; and
P=f(t) (@O<t<]) (6)

of I',. Prove that the metric p makes % into a metric space.

Comment. The fact that 5(I'y, I';) = 0 implies the identity of I'; and T,
follows from the (not very easily proved) fact that the greatest lower bound
in (4) is achieved for a suitable choice of the parametric representations (5)
and (6).
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LINEAR SPACES

13. Basic Concepts

13.1. Definitions and examples. One of the most important concepts in
mathematics is that of a linear space, which will play a key role in the rest
of this book:

DEFINITION 1. A nonempty set L of elements x, y, z, . . . is said to be a
linear space (or vector space) if it satisfies the following three axioms:

1) Any two elements x,y € L uniquely determine a third element

x +y €L, called the sum of x and y, such that

a) x +y =y + x (commutativity);

b) (x +») +z = x + (¥ + 2) (associativity);

¢) There exists an element O € L, called the zero element, with the
property that x 4 0 = x for every x € L;

d) For every x € L there exists an element —x, called the negative
of x, with the property that x 4+ (—x) = 0;

2) Any number « and any element x € L uniquely determine an element
ax € L, called the product of o« and x, such that

a) «(Px) = («f)x;

b) Ix = x;
3) The operations of addition and multiplication obey two distributive
laws:

a) (x 4 B)x = aa + Bx;
b) a(x + y) = ax + ay.

118
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Remark. The elements of L are called “points’ or “‘vectors,” while the
numbers «, B, . . . are often called “scalars.” If « is an arbitrary real number,
L is called a real linear space, while if « is an arbitrary complex number, L
is called a complex linear space.! Unless the contrary is explicitly stated, the
considerations that follow will be valid for both real and complex spaces.
Clearly, any complex linear space reduces to a real linear space if we allow
vectors to be multiplied by real numbers only.

We now give some examples of linear spaces, leaving it to the reader
to verify in detail that the conditions in Definition 1 are satisfied in each case.?

Example 1. The real line (the set of all real numbers) with the usual
arithmetic operations of addition and multiplication is a linear space.

Example 2. The set of all ordered n-tuples
X = (X1, Xg5 - - - 5 Xp)

of real or complex numbers x;, X, . . . , X,,, with sums and “scalar multiples”
defined by the formulas

(xla xz, cee X,,,) + (yl’yZa AR :y'n) = (xl +)’1» x2 +y2’ L) x'n +yn)’

(X1, Xy o oo s Xp) = (00X, 00Xy, . . ., AX,),

is also a linear space. This space is called n-dimensional (vector) space, or
simply n-space, denoted by R" in the real case and C” in the complex case.
(Concerning the precise meaning of the term ‘“n-dimensional,” see Sec.
13.2)

Example 3. The set of all (real or complex) functions continuous on an
interval [a, b], with the usual operations of addition of functions and multi-
plication of functions by numbers, forms a linear space Cy, ), one of the
most important spaces in analysis.

Example 4. The set [, of all infinite sequences

X = (X9 Xgy e o v s Xpgp -2 2) )

of real or complex numbers X, X, . . . , X3, . . . satisfying the convergence
condition

)
Z ka|2 < @,
*=1

! More generally, one can consider linear spaces over an arbitrary field.

21t will be noted that certain symbols like R", C, ,3, /. and m are used here with
somewhat different meanings than in Sec. 5.1. The point is that there is no metric here,
at least for the time being, while on the other hand, sums and scalar multiples of vectors
were not defined in Chaps. 2 and 3.
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equipped with operations
1, Xgs oo e s Xy oo ) F Vo Yer oo s Vio e+ 0)
=X +yuX Y Xt V)
0U(X1s Xgy oo v s Xpp v o o) = (OXy, OXgy o v vy UXgy o . ), 2
is a linear space. The fact that

o

o
Dlal*< oo,  Jinl< oo
. X k=1 ¥=1
implies

e
D e+ pl* <
k=1
is an immediate consequence of the elementary inequality

(o + ) < 205 + ¥2)-

Example 5. Let c be the set of all convergent sequences (1), ¢, the set of
all sequences (1) converging to zero, m the set of all bounded sequences,
and R the set of all sequences (1). Thenc, ¢y, mand R” are all linear spaces,
provided that in each case addition of sequences and multiplication of
sequences by numbers are defined by (2).

Since linear spaces are defined in terms of two operations, addition
of elements and multiplication of elements by numbers, it is natural to
introduce

DEFINITION 2. Two linear spaces L and L* are said to be isomorphic if
there is a one-to-one correspondence x <« x* between L and L* which
preserves operations, in the sense that

x> x*, yey*
(where x,y € L, x*, y* € L*) implies
X 4y x* 4 p*
and

ox <> ax*
(« an arbitrary number).

Remark. It is sometimes convenient to regard isomorphic linear spaces
as different “realizations” of one and the same linear space.

13.2. Linear dependence. We say that the elements x, y, . . ., w of a linear
space L are linearly dependent if there exist numbers «, B, . . . , A, not all zero,
such that?®

ax +By 4+ +aw=0. (3)

3 The left-hand side of (3) is called a linear combination of the elements x, y, ..., w.
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If no such numbers exist, the elements x, y, ..., w are said to be linearly
independent. In other words, the elements x, y,..., w are linearly inde-
pendent if and only if (3) implies

a=B=--+=r=0.

More generally, the elements x, y, . . . belonging to some infinite set £ < L
are said to be linearly independent if the elements belonging to every finite
subset of E are linearly independent.

A linear space L is said to be n-dimensional (or of dimension n) if n linearly
independent elements can be found in L, but any n + 1 elements of L are
linearly dependent. Suppose # linearly independent elements can be found
in L for every n. Then L is said to be infinite-dimensional, but otherwise L
is said to be finite-dimensional. Any seét of n linearly independent elements of
an n-dimensional space L is called a basis in L.

Remark. The typical course on linear algebra deals with finite-dimensional
linear spaces. Here, however, we will be primarily concerned with infinite-
dimensional spaces, the case of greater interest from the standpoint of
mathematical analysis.

13.3. Subspaces. Given a nonempty subset L’ of a linear space L, suppose
L is itself a linear space with respect to the operations of addition and multi-
plication defined in L. Then L’ is said to be a subspace (of L). In other
words, we say that L’ < Lis a subspaceif x € L', y € L’ implies ax + By € L’
for arbitrary « and 8. The “trivial space’’ consisting of the zero element alone
is a subspace of every linear space L. At the opposite extreme, L can always
be regarded as a subset of itself. By a proper subspace of a linear space L,
we mean a subspace which is distinct from L ijtself and contains at least
one nonzero element.

Example 1. Let L be any linear space, and x any nonzero element of L.
Then the set {Ax} of all scalar multiples of x, where A ranges over all (real or
complex) numbers is obviously a one-dimensional subspace of L, in fact a
proper subspace if the dimension of L exceeds 1.

Example 2. The set Py, ;) of all polynomials on [a, b] is a proper subspace
of the set C, ) of all continuous functions on [a, b]. Like C  itself, Py 5
is infinite-dimensional. At the same time, C, ; is itself a proper subspace of
the set of all functions on [a, b], both continuous and discontinuous.

Example 3. Each of the linear spaces /y, ¢y, ¢, m and R” (in that order)
is a proper subspace of the next one.

Given a linear space L, let {x,} be any nonempty set of elements x, € L.
Then L has a smallest subspace (possibly L itself) containing {x,}.# In fact,

4 Here we use curly brackets in the same way as in footnote 10, p. 92.
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there is at least one such subspace, namely L itself. Moreover, it is clear
that the intersection of any system of subspaces {L,} is itself a subspace,
since if L* = () L, and x,.y € L*, then ax + By € L* for all « and § (why?).

.
The smallest subspace of L containing the set {x,} is then just the intersection
of all subspaces containing {x,}. This minimal subspace, denoted by L({x,}),
is called the (/inear) subspace generated by {x,} or the linear hull of {x,}.

13.4. Factor spaces. Let L be a linear space and L’ a subspace of L.
Then two elements x, y € L are said to belong to the same (residue) class
generated by L' if the difference x — y belongs to L’. The set of all such
classes is called the factor space (or quotient space) of L relative to L', denoted
by L/L’. Theoperations of addition of elements and multiplication of elements
by numbers can be introduced in a factor space L/L’ in the following natural
way: Given two elements of L/L’, i.e., two classes £ and 7, we choose a
“representative” from each class, say x from & and y from v. We then
define the sum & + 7 of the classes & and 7 to be the class containing the
element x + y, while the product «& of the number « and the class & is
defined to be the class containing the element ax. Here we rely on the fact
that the classes £ + v and £ are independent of the choice of the “repre-
sentatives” x and y (why?).

THEOREM 1. Fvery factor space L[L’, with operations defined in the
way just described, is a linear space.

Proof. We need only verify that L/L’ satisfies the three axioms in
Definition 1. This is almost trivial (give the details). |

Let L be a linear space and L' a subspace of L. Then the dimension of
the factor space L/L’ is called the codimension of L' in L.

THEOREM 2. Let L' be a subspace of a linear space L. Then L' has finite
codimension n if and only if there are linearly independent elements x, . . . ,
X, in L such that every element x € L has a unique representation of the
form

X=°!1x1+"'+“nxn+)’, (4)

where o, . .. , &, are numbers and y € L'

Proof. Supposeevery element x € L has a unique representation of the
form (4). Given any class £ € L/L’, let x be any element of &, and let
£, be the class containing x, (k = 1, ..., n). Then (4) clearly implies

€=al€1+"'+an£n'

Hence &, ..., &, is a basis for L/L’ (the linear independence of £, . . . ,
¢, follows from that of x;, . . . , x,,). In other words, L/L’ has dimension
n, or equivalently L’ has codimension n.
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Conversely, suppose L’ has codimension #, so that L/L' has dimension
n. Then L/L' has a basis §;, ..., §,. Given any x € L, let & be the class
in L/L' containing x. Then

52“121‘1""'4‘0‘"&"

for suitable numbers «;, . . ., a,. But this means that every element in
€, in particular x, differs only by an element y € L’ from a linear com-
bination of elements x,,...,x, where x, is any fixed element of
Ec(k=1,...,n),ie.,

X=X+ Fax, +y  (yeL) e
(the linear independence of x5, . . . , x,, follows from that of &, . .. , ,).
Suppose there is another such representation

x=axXy+ -+ oax,+y (Y eL). ()

Then, subtracting (5) from (5), we get

O0=(xg— o)X+ "+ (a0, — )+ ('€el),
and hence

0= (al - a{)gl + + (an - a;t)fm

where in the last equation 0 means the class containing the zero element
of L, i.e., the space L' itself. But &, ..., &, are linearly independent,
and hence oy = o, ..., %, = «,. [

13.5. Linear functionals. A numerical function f defined on alinear space
L is called a functional (on L).* A functional fis said to be additive if

S+ =f@+fQ)

for all x, y € L and homogeneous if

S (o) = of (%)
for every number «. A functional defined on a complex linear space is called
conjugate-homogeneous if

flax) = af(x)

for every number «, where & is the complex conjugate of «. An additive

5 The word “‘functional” has already been used in a somewhat different sense in Sec.
12.1, where a functional means a real function defined on a function space (topological
or metric). Later on, we will deal with linear spaces which are also metric spaces and
have functions as their elements. The two uses of the word *‘functional” will then coincide
(if we allow complex-valued funciionals).
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homogeneous functional is called a linear functional, while an additive
conjugate-homogeneous functional is called a conjugate-linear functional.

Example 1. Let R” be real n-space, with elements x = (xy, ..., x,), and
let a = (ay, ..., a,) be a fixed element of R*. Then

f(x)= Z Xy
k=1
is a linear functional on R™. Similarly,
S = Z Xy,
k=1

is a conjugate-linear functional on complex n-space C”.
Example 2. Consider the integral

169 = ['x(0) dt,

or more generally
1(x) = ["x()e(t) 1,

where ¢(¢) is a fixed continuous function on [a, b]. It follows at once from
elementary properties of integrals that /(x) is a linear functional. Similarly,
the integral

) = [ 30 d,

or more generally

I = [ ¥Deyar,

is a conjugate-linear functional on C ;).

Example 3. Another kind of linear functional on the space C, ;; is the
functional
8t(,(x) = x(t,),
which assigns to each function x(¢) € G, ;) its value at some fixed point
to € [a, b]. In mathematical physics, particularly in-quantum mechanics, this
functional is often written in the form

8,(x) = f:x(r)a(t — 1) dt,

where 3(1 — 1,) is a “fictitious’ or “generalized”’ function, called the (Dirac)
delta function, which equals zero everywhere except at ¢t = 0 and has an
integral equal to 1.5 As we will see in Sec. 20.3, the delta function can be

¢ Clearly, no ““true”” function can have these properties!
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represented as the limit, in a suitable sense, of a sequence of “true” functions
@, each vanishing outside of some ¢,-neighborhood of the point t = 0 and
satisfying the condition

Poswar=1
(e, > 0 asn — ).
Example 4. Let n be a fixed positive integer, and let
X = (X1, Xaseees Xgsono)
be an arbitrary element of /,. Then

f (%) = x,
is obviously a linear functional on /,. The same functional can be defined

on other spaces whose elements are sequences, e.g., on the spaces ¢,, ¢, m
and R® considered in Example 5, p. 120.

13.6. The null space of a functional. Hyperplanes. Let f be a linear func-
tional defined on a linear space L. Then the set L, of all elements x € L such
that

fx)=0
is called the null space of f. It will be assumed that f is nontrivial, i.e., that
f(x) # 0 for at least one (and hence infinitely many) x € L, so that the set
L — L,is nonempty. Obviously L, is a subspace of L, since x, y € L, implies

Sflax + By) = of (x) + Bf (») = 0.

THEOREM 3. Let X, be any fixed element of L — L,. Then every element
x € L has a unique representation of the form

X = aXq +}’,
where y € L,.

Proof. Clearly f(x,) # 0, and in particular x, = 0. There is no loss
of generality in assuming that f(x,) = 1, since otherwise we need only
replace x, by Xof f(%,), noting that

(Ges) ~fea

y =X — axy,

Given any x € L, let

where
o = f(x).

Then y € L,, since

FO) = f(x — axg) = f(x) — of (xp) = f(¥) — a = 0.
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Thus
X = axo +y (yelL,). (6)

Moreover, the representation (6) is unique. In fact, if there is another
such representation

x=d%+y (yel), ©)
then, subtracting (6") from (6), we get
(x —a)xg=y —y.
If « = o', then obviously y' = y. On the other hand, if « # «’, then

y—y

Xo =
0 o — o

eL,,
contrary to the choice of x,. [}

COROLLARY 1. Two elements x, and x, belong to the same class gener-
ated by L, if and only if f(x,) = f(x,).
Proof. It follows from
X1 = f(x1)Xo + y1
Xy = f(X2)%0 + )2
that
xy — xg = (f(x1) — f(x2))Xo + (y1 — 12)-

Hence x; — x, € L, if and only if the coefficient of x, vanishes. [

COROLLARY 2. L, has codimension 1.

Proof. Given any class £ generated by L, let x be any element of &
and choose f(x)x, = ax, as the “representative” of £. By Corollary 1,
this representative is unique, and there is obviously a nonzero class
since x, = 0 and f(x) # O for some x € L. Moreover, given any two
distinct classes £ and % with representatives ax, and fx,, respectively,
we have

Blaxg) — a(Bxo) = 0

ﬂa—dY]:Oa

where at least one of the numbers «, § is nonzero (why?). Therefore any
two distinct elements of L/L, are linearly dependent. It follows that
L/L, is one-dimensional, i.e., L, has codimension . [

and hence

COROLLARY 3. Two nontrivial linear functionals f and g with the same
null space are proportional.
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Proof. Again let x, be such that f(x,) = 1. Then g(x;) # 0. In fact,
x=f(X)x +y (reLy,

g(x) = f(x)g(xo) + g() = f(*)g(x0),

since L, = L,. But then g(x,) = 0 would imply that g is trivial, contrary
to hypothesis. It follows that

80 = g(xo)f (),
i.e., g(x)is proportional to f(x) with constant of proportionality g(x,). #

and hence

Given a linear space L, let L’ = L be any subspace of codimension 1.
Then every class in L generated by L' is called a hyperplane ““parallel to L”
(in particular, L’ itself is a hyperplane containing 0, i.e., “going through the
origin’”). In other words, a hyperplane M’ parallel to a subspace L’ is the
set obtained by subjecting L’ to the parallel displacement (or shift) determined
by the vector x, € L, so that?

M =L +x,={xx=x,+y,yelL}.
It is clear that M’ = L’ if and only if x, € L’. We can now give a simple
geometric interpretation of linear functionals:

THEOREM 4. Given a linear space L, let f be a nontrivial linear functional
on L. Then the set M, = {x:f(x) = 1} is a hyperplane parallel to the null
space L, of the functional. Conversely,let M' = L' + x, (xo ¢ L") be any
hyperplane parallel to a subspace L' < L of codimension 1 and not passing
through the origin. Then there exists a unique linear functional f on L such
that M’ = {x:f(x) = 1}.

Proof. Given f, let x, be such that f(x,) = 1 (such an x, can always
be found). Then, by Theorem 3, every vector x € M, can be represented
in the form x = x, + y, where y e L,.

Conversely, given M’ = L’ + x;,(x, ¢ L"), it follows from Theorem 2
and its proof that every element x € L can be uniquely represented in the
form x = ax, + y, where y € L’. Setting f(x) = «, we get the desired
linear functional. The uniqueness of f follows from the fact that if
g(x) =1 for x e M’, then g(y) = 0 for y € L’ (why?), so that

gaxg +y) = a = f(axo + ). 1

Remark. Thus we have established a one-to-one correspondence be-
tween the set of all nontrivial linear functionals on L and the set of all
hyperplanes in L which do not pass through the origin.

? The expression on the right is shorthand for the set of all x such that x = x, + y,
y € L’ (the colon is read “‘such that”). Similarly, {x : f(x) = 1} is the set of all x such that
f(x) =1, and so on.
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Problem 1. Prove that the set of all polynomials of degree n — 1 with
real (or complex) coeflicients is a linear space, isomorphic to the n-dimensional
vector space R (or C™).

Problem 2. Verify that R* and C* are n-dimensional, as anticipated by the
terminology in Example 2, p. 119.

Problem 3. Verify that the spaces Ci,,;, L, ¢, ¢, m and R” are all
infinite-dimensional.

Problem 4. Given a linear space L, a set {x,} of linearly independent
elements of L is said to be a Hamel basis (in L) if the linear subspace generated
by {x,} coincides with L. Prove that
a) Every linear space has a Hamel basis;
b) If {x,} is 2 Hamel basis in L, then every vector x € L has a unique
representation as a finite linear combination of vectors from the set
{xa};

c) Any two Hamel bases in a linear space L have the same power
(cardinal number), called the algebraic dimension of L;

d) Two linear spaces are isomorphic if and only if they have the same

algebraic dimension.

Problem 5. Let L' be a k-dimensional subspace of an n-dimensional linear
space L. Prove that the factor space L/L’ has dimension n — k.

Problem 6. Let f,f1, . . . ,f, be linear functionals on a linear space L such

that fi(x) = - - - = f,(x) = 0 implies f(x) = 0. Prove that there exist con-
stants ay, . . . , a,, such that

£6) = Saufi(x)

for every x € L.

I4. Convex Sets and Functionals. The Hahn-Banach Theorem

14.1. Convex sets and bodies. Many important topics in the theory of
linear spaces rely on the notion of convexity. This notion, stemming from
intuitive geometric ideas, can be formulated purely analytically. Given a
real linear space L, let x and y be any two points of L. Then by the (closed)
segment in L joining x and y we mean the set of all points in L of the form
ax + By where «, B> 0 and « + B = 1. Such a segment minus its end
points x and y is called an open segment. By the interior of a set M < L,
denoted by I(M), we mean the set of all points x € M with the following
property: Given any y € L, there exists a number ¢ = ¢(y) > 0 such that
x+tyeMif|t| <e.
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DEFINITION 1. A set M < L is said to be convex if whenever it contains
two points x and y, it also contains the segment joining x and y.

DEFINITION 2. A convex set is called a convex body if its interior is
nonempty.

Example 1. The cube, ball, tetrahedron and half-space are all convex
bodies in three-dimensional Euclidean space R3. On the other hand, the
line segment, plane and triangle are convex sets in R3, but not convex bodies.

Example 2. As usual, let C, ,, be the space of all functions continuous on
the interval [a, b], and let M be the subset of C, ,) consisting of all functions
satisfying the extra condition

/Ml <1
Then M is convex, since
lfOl<1, lgi< 1
together with &, > 0, « + B = 1 implies
lef (1) + Bg()l < « + B = 1.

Example 3. The closed unit sphere in /,, i.e., the set of all points x =
(%15 X35 -+ - » Xp, - - .) sSuch that

o

X< 1,

n=1
is a convex body. Its interior consists of all points x = (X1, Xg; « + + » Xps + + =)
satisfying the condition

o

Sk <1.

n=1

Example 4. The Hilbert cube II (see Example 5, p. 98) is a convex set in
l5, but not a convex body. In fact,

if x eII. Let

1 1
Yo = 1’5"'~:—>"-),
and suppose x + 1y, €1, i.e.,

t 1
Xo + ; < on—1 °
Then
t 1 1
n < | X + n l + Ix"[ < 2n-—-l + 2n—1 - 2n—2

for all n=1,2,..., which implies t = 0. Therefore the interior of II is
empty.
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THEOREM 1. If M is a convex set, then so is its interior I[(M).

Proof. Suppose x, yeI(M), and let z = ax + By, «, § > 0, « +
= 1. Then, given any a € L, there are numbers ¢, > 0, &, > 0 such
that the points x + t,a, y + f,a belong to M if |1] < e, |ty] < e,
Therefore
ox +ta) +B(y +ta) =z + ta

belongs to M if |t| < € = min {e,, €,}, i.e., z€ [(M).
THEOREM 2. The intersection
M=NM,
a
of any number of convex sets M, is itself a convex set.

Proof. Let x and y be any two points of M. Then x and y belong to
every M,, and hence so does the segment joining x and y. But then the
segment joining x and y belongs to M. ||

Given any subset 4 of a linear space L, there is a smallest convex set
containing 4, i.e., the intersection of all convex sets containing 4 (there
is at least one convex set containing A4, namely L itself). This minimal
convex set containing A is called the convex hull of A. For example, the
convex hull of three noncollinear points is the triangle with these points as
vertices.

14.2. Convex functionals. Next we introduce the important concept of a
convex functional:

DErRINITION 3. A4 functional p defined on a real linear space L is said to
be convex if

1) p(x) > 0 for all x € L (nonnegativity);
2) plax) = ap(x) for all x€ L and all & > 0;
3) p(x + ) < p(x) +p(y) for all x, y € L.

Remark. Here, unlike the case of linear functionals, we do not assume
that p(x) is finite for all x € L, i.e., we allow the case where p(x) = +
for some x € L.

Example 1. The length of a vector in Euclidean n-space R” is a convex
functional. The first and second conditions are immediate consequences of
the definition of length in R™ (length is inherently nonnegative), while the
third condition means that the length of the sum of two vectors does not
exceed the sum of their lengths (the triangle inequality).
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Example 2. Let M be the space of bounded functions of x defined on some
set S, and let s, be a fixed point of S. Then

Pso(¥) = |x(s50)]
is a convex functional.
Example 3. Let m be the space of bounded numerical sequences x =
(xy, X3, - . - » Xg, . . .). Then the functional
p(x) = sup |xx|
is convex.

14.3. The Minkowski functional. Next we consider the connection be-
tween convex functionals and convex sets:

THEOREM 3. If p is a convex functional on a linear space L and k is any
positive number, then the set

E = {x:p(x) < k}
is convex. If p is finite, then E is a convex body with interior
I(E)= {x:p(x) <k}
(so that in particular 0 € I(E)).
Proof. If x,yeE, &,8 > 0, + f = 1, then

plex + By) < ap() + Bp() < k,
i.e., £ is a convex set. Now suppose p is finite, and let p(x) < k, t > 0,
ye€ L. Then
pix £ 1) < p(x) + 1p(+y).

If p(—y) = p(») = 0, then x 4 ty € E for all t. On the other hand, if at
least one of the numbers p(y), p(—y) is nonzero, then x + ty € E if

k — p(x) ‘
max {p(y), p(—y)}

Suppose we choose a definite value of k, say k = 1. Then every finite
convex functional p uniquely determines a convex body E in L, such that
0 € I(E). Conversely, suppose E is a convex body whose interior contains
the point 0, and consider the functional

pg(x) = inf !r:’—:eE, r> 0}, (1)

called the Minkowski functional of the convex body E. Then we have

THEOREM 4. The Minkowski functional (1) is finite and convex.
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Proof. Given any x € L, the element x/r belongs to E if r is suffi-
ciently large (why ?), and hence pz(x) is nonnegative and finite. Clearly
pz(0) = 0. If « > 0, then

Pr(ax) = inf {r >0: e E} = inf{ar' > 0: I;GE;
r r

= ocinf{r’ >0:T¢ E} = apg(x). )
r

Next, given any € > 0 and any x,, x, € L, choose numbers r; (i = 1, 2)
such that

pr(x) <r, < pg(x;) +=
Then x;/r; € E. If r = r; 4 ry, then

X+ X niX, | X
- [
r rry rry

belongs to the segment with end peints x,/r; and x,/r,. Since E is convex,
this segment and hence the point (x, + x,)/r belongs to E. It follows that

Pe(x; + x5) < r=ry +ry < pg(x) + pg(x) + 2
or

Pe(*1 + X3) < pr(xy) + pg(xs), 3

since ¢ is arbitrary. Together (2) and (3) imply that pgz(x) is convex. J

13.4. The Hahn-Banach theorem. Given a real linear space L and any
subspace L, < L, let f; be a linear functional defined on L,. Then a linear
functional f defined on the whole space L is said to be an extension of the
functional f, if

f(x) =fo(x) forall xelL,

A problem frequently encountered in analysis is that of extending an arbitrary
linear functional, originally defined on some subspace, onto a larger space.
A central role in problems of this kind is played by

THEOREM 5 (Hahn-Banach). Let p be a finite convex functional defined
on q real linear space L, and let L, be a subspace of L. Suppose f, is a
linear functional on L, satisfying the condition

Jo(x) < p(x) O

on Ly. Then f, can be extended to a linear functional on L satisfying (1)
on the whole space L. More exactly, there is a linear functional f defined
on L and equal to f, at every point of L,, such that f(x) < p(x) on L.
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Proof. Suppose L, # L, since otherwise the theorem is trivial. We
begin by showing that f, can be extended onto a larger space L without
violating the condition (4). Let z be any element of L — L,, and let L
be the subspace generated by L, and the element z, i.e., the set of all linear

combinations
x+1z (x € Ly).

If fis to be an extension of fo onto L, we must have

Fx + 12) = fux) + tf(2)
Fx +t2) = fo(x) + ¢ (5)

after setting f(z) = c. We now choose ¢ such that the “majorization”
condition f(x + 1z) < p(x + tz) is satisfied, i.e., such that

Sox) +te < p(x + t2).

We can write this condition as

or

() el
or
¢< p(;—‘+c) —fo(f) ©)
if ¢t > 0, and as
A+ {5
or
colE)) o

if < 0. Hence we want to show that there is always a value of ¢ satisfying
(6) and (7). Let y’ and y” be arbitrary elements of Lo. Then it follows
from the inequality

LN =L)< p( —¥)=p(" +2)— (¢ +2)
<py +2)+p(—y —2)
that
—A0Q") +p0" +2) > —L() — p(—y — 2). ®)
Let
¢ = sup [—/(¥) — p(—=y" — 2)],

¢ = i:l"f [—/0G") + p(y" + 2)1.

Then
cll > cl ,



134 LINEAR SPACES CHAP. 4

by (8) and the fact that y" and y” are arbitrary. Hence, choosing ¢ such
that

c// >c> C,,

we find that the functional f'defined on L by the formula (5) satisfies the
condition f(x) < p(x). Thus we have succeeded in showing that if f; is
defined on a subspace L, = L and satisfies (4) on L,, then f, can be
extended onto a larger subspace L with the condition (4) being preserved.

To complete the proof, suppose first that L is generated by a countable
set of elements x;, X, . . . , X,,, . . . in L. Then we construct a functional
on L by induction, i.e., by constructing a sequence of subspaces

L(l) = {L, x1}9 L(‘Z) = {L(l)y xz}» vy

each contained in the next. Here {L®), x,,} denotes the minimal linear
subspace of L containing L and x,,,. This process extends the
functional onto the whole space L, since every element x € L belongs to
some subspace L™,

More generally, i.e., in the case where there is no countable set
generating L, the theorem is proved by applying Zorn’s lemma (see
p-28). The set F of all possible extensions of the functional f; satisfying
the majorization condition (5) is partially ordered, and each linearly
ordered subset #, < % has an upper bound. This upper bound is the
functional which is defined on the union of the domains of all functionals
feF, and coincides with every such functional f on the domain of f.
Hence, by Zorn’s lemma, % has a maximal element f. Clearly f must be
the desired functional extending f, onto L and satisfying the condition
p(x) < f(x), since otherwise we could extend fin turn, by the method
described above, from the proper subspace on which it is defined onto a
large subspace, thereby contradicting the maximality of f. 1}

Next we turn to the case of complex linear spaces:

DEerINITION 3. A functional p defined on a complex linear space L is
said to be convex if

1) p(x) > O for all x € L (nonnegativity);

2) p(ax) = |a| p(x) for all x € L and all complex «;

3) p(x + ) < p(x) + p(y) for all x, y € L.
The corresponding complex version of the Hahn-Banach theorem is
given by

THEOREM 5'. Let p be a finite convex functional, defined on a complex
linear space L, and let L, be a subspace of L. Suppose f, is a linear
functional on L, satisfying the condition

[fo(X)] < p(x) )
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on Ly. Then fy can be extended to a linear functional on L satisfying (4')
on the whole space L.

Proof. Let Ly and Ly denote the spaces L and L,, regarded as real
linear spaces. Clearly p is a finite convex functional on Lg, while

Jor(x) = Re fo(x)

is a real linear functional on Ly, satisfying the condition

|for(®)] < p(x)

and hence (a fortiori) the condition

Jor(*) < p(3).

By Theorem 5, there exists a real linear functional f defined on all of L,
satisfying the conditions

Jr(x) < p(x) if xelLg(=L),
Jr(®) = for(x) if x€Lyg (= Ly).

—fr(*) = fr(—x) < p(—x) = p(x),

[/ < p(x) if xelLg(=L). )]
We now define the functional

S (%) = fr(x) — ifg(ix)

on L, using the fact that L is a complex.linear space in which multipli-
cation by complex numbers is defined. It is easily verified that fis a com-
plex linear functional on L such that

S (x) = fo(x) if xelL,,
Re f(x) = fr(x) if xel.
Finally, to show that | f(x)] < p(x) for all x € L, suppose to the contrary
that | £ (xo)| > p(x,) for some x, € L. Writing f'(x,) = pe’® where p > 0,
we set y, = e~*®x,. Then

Sr(yo) = Re f(yo) = Re [e®f(x9)] = p > p(x) = p(yo)
which contradicts (9).

Clearly

and hence

14.5. Separation of convex sets in a linear space. Given a real linear space
L, let M and N be two subsets of L. Then a linear functional f defined on
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L is said to separate M and N if there exists a number C such that
f(x)=C if xeM,
f(x)< C if xeN.

It follows at once from this definition that

1) A linear functional f separates two sets M and N if and only if it
separates M — N = {z:z=x — y, x € M, y € N} and {0}, i.e., the set
consisting of all differences x — y where x € M, y € N and the set
whose only element is O (note that the minus sign in M — N does not
have the usual meaning of a set difference);

2) A linear functional f separates two sets M and N if and only if it
separates the sets M — x, = {z:z2 =x — xp, x e M} and N — x, =
{z:z=y — x, y e N} for every x, € L.

The following theorem on the separation of convex sets in a linear space
has numerous applications and is an easy consequence of the Hahn-Banach
theorem:

THEOREM 6. Let M and N be two disjoint convex sets in a real linear
space L, where at least one of the sets, say M, has a nonempty interior
(i.e., is a convex body). Then there exists a nontrivial linear functional f on
L separating M and L.

Proof. There is no loss of generality in assuming that the point 0
belongs to the interior of M, since otherwise we need only consider the
sets M —xy={z:z=x — xo, x€ M} and N — xo = {z:2 =y — X,
y € N}, where x, is some point of the interior of M. Let y, be a point of
N. Then the point —y, belongs to the interior of the set M — N =
{z:z=x—y,xe M,y e N}, and 0 belongs to the interior of the set
M—N+4+y={ziz=x—y + o, x€ M, ye N} Since M and N are
disjoint, wehave0 ¢ M — N,y, ¢ M — N 4 y,. Letpbethe Minkowski
functional for the set M — N + y,. Then p(y,) > 1since y, ¢ M — N
~+ yo. Consider the linear functional

Jo(aye) = ap(yo)

defined on the one-dimensional subspace of L consisting of all elements
of the form ay,. Clearly f; satisfies the condition

JSo(eyo) < p(apo),
since
ployo) = ap(ye)  if a>0,
while
Jo(wyo) = afo(y0) <0 < playo)  if a <O.

Hence, by the Hahn-Banach theorem, the functional fo can be extended
to a linear functional f defined on the whole space L and satisfying the
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condition f(y) < p(y) on L. Itfollowsthatf(y) < lifye M — N + y,,
while at the same time f(y,) > 1, i.e., f separates the sets M — N + y,
and {y,}. Therefore f separates the sets M — N and {0}. But then f
separates the sets M and N. |

Problem 1. Let M be the set of all points x = (X3, Xp, . . ., X, . . .) in ly
satisfying the condition

nxi< 1.

V8

n=1

Prove that M is a convex set, but not a convex body.

Problem 2. Give an example of two convex bodies whose intersection is
not a convex body.

Problem 3. We say that n + 1 points x;, x, . . . , X,,,; in a linear space L
are “in general position™ if they do not belong to any (n — 1)-dimensional
subspace of L. The convex hull of a set of » 4- 1 points x;, X5, . . . , X,y in
general position is called an n-dimensional simplex, and the points x;, x5, . . . ,
Xn41 themselves are called the vertices of the simplex. Describe the zero-
dimensional, one-dimensional, two-dimensional and three-dimensional
simplexes in Euclidean three-space R®. Prove that the simplex with vertices

X1, X, - -+ » Xnyq is the set of all points in L which can be represented in the
form
n+1
X = z XXy
k=1
where
n+1

o> 0, oy =1.
k=1

Problem 4. Show that if the points xy, x,, . . . , X, are in general position,
then so are any k 4 1 (k < n) of them.

Comment. Hence the k + 1 points generate a k-dimensional simplex,
called a k-dimensional face of the n-dimensional simplex with vertices xy,
Xy oo oy Xpt1e

Problem 5. Describe all zero-dimensional, one-dimensional and two-
dimensional faces of the tetrahedron in R® with vertices e, e,, e3, €,.

Problem 6. Show that in the Hahn-Banach theorem we can drop the
condition that the functional p be finite.

I5. Normed Linear Spaces

15.1. Definitions and examples. Chapters 2 and 3 deal with topological
(in particular, metric) spaces, i.e., spaces equipped with the notion of
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closeness of elements, while Secs. 14 and 15 deal with linear spaces, i.e.,
spaces equipped with the operations of addition of elements and multipli-
cation of elements by numbers. We now combine these two ideas, arriving at
the notion of a topological linear space, equipped with a topology as well
as with the algebraic operations characterizing a linear space. In this section
and the next, we will study topological linear spaces of a particularly
important type, namely normed linear spaces and Euclidean spaces. Topo-
logical linear spaces in general will be considered in Sec. 17.

DERINITION 1. A functional p defined on a linear space L is said to be
a norm (in L) if it has the following properties:

a) p is finite and convex;

b) p(x) =0 only if x = 0;

¢) p(ax) = |a| p(x) for all x € L and all «.

Recalling the definition of a convex functional, we see that a norm in
L is a finite functional on L such that

1) p(x) > Ofor all x € L, where p(x) = 0if and only if x = 0;
2) p(ax) = |«| p(x) for all x € L and all «;
3) p(x + ) < p(x) + p(y) for all x, y € L.

DEFINITION 2. A linear space L, equipped with a norm p(x) = | x|, is
called a normed linear space.

The notation | x| will henceforth be preferred for the norm of the element
x € L. In terms of this notation, properties 1)—3) take the form:

1) |x|| > O for all x € L, where ||x|| = 0 if and only if x = 0;
2"y |lex|| = || ||x| for all x € L and all «;
3') Triangle inequality: ||x + y| < |lx| + |y for all x, y € L.

Every normed linear space L becomes a metric space if we set

e(x, y) = lIx —yl 0y}

for arbitrary x, y € L. The fact that (1) is a metric follows at once from
properties 1)-3"). Thus everything said about metric spaces in Chap. 2
carries over to the case of normed linear spaces.

Many of the spaces considered in Chap. 2 as examples of metric spaces
(or in Sec. 13 as examples of linear spaces) can be made into normed linear
spaces in a natural way, as shown by the following examples (in each case,
verify that the norm has all the required properties):

® One of the pioneer workers in this field was Stefan Banach (1892-1945), author of
the classic Théorie des Opérations Linéaires, reprinted by Chelsea Publishing Co., New
York (1955).
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Example 1. The real line R' becomes a normed linear space if we set
[Ixll = |x| for every number x € R

Example 2. To make real n-space R" into a normed linear space, we set

EENLN

for every element x = (x4, X, . . . , X,,) in R”. The formula

e(x, )= lIx — yll = \/ gl(xk — )’
then defines the same metric in R as already considered in Example 3, p. 38.

Example 3. We can also equip real n-space with the norm

Il = Sl ®)
or the norm -
xllo = max [x]. 3

1<k<n

The corresponding metrics lead to the spaces RP and R} considered in Ex-
amples 4 and 5, p. 39.

Example 4. The formula

2 2
B
=1

Ixl = \/

3

introduces a norm in complex n-space C". Other possible norms in C” are
given by (2) and (3).

Example 5. The space C, ., of all functions continuous on the interval
[a, b] can be equipped with the norm

I £ = max | f(2)].
a<sE<H

The metric space corresponding to this norm has already been considered in
Example 6, p. 39.

Example 6. Let m be the space of all bounded numerical sequences

X = (X1 Xgy o v vy Xpy v 0)s
and let
x|l = sup []. 4

Then (4) obviously has all the properties of a norm. The metric “induced”
by this norm is the same as that considered in Example 9, p. 41.
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Example 7. A complete normed linear space, relative to the metric (1), is
called a Banach space. 1t is easy to see that the spaces in Examples 1-6 are
all Banach spaces (the details are left as an exercise).

15.2. Subspaces of a normed linear space. In Sec. 13.3 we defined a
subspace of a linear space L (unequipped with any topology) as a nonempty
set L, with the property that if x, y € L,, then ax + By € L, for arbitrary «
and B. The subspaces of greatest interest in a normed linear space are the
closed subspaces, i.e., those containing all their limit points. In the case of an
infinite-dimensional space, it is easy to give examples of subspaces that are
not closed:®

Example 1. In the space of all bounded sequences, the sequences with
only finitely many nonzero terms form a subspace, but not a closed subspace,
since, for example, the closure of the subspace contains the sequence

(111)
2 n

Example 2. The set P, ,, of all polynomials defined on the interval [a, 5]
is a subspace of C ;;, but obviously not a closed subspace. On the other
hand, the closure of P, ,; coincides with Ci, ;;, since every function con-
tinuous on [a, b] is the limit of a uniformly convergent sequence of poly-
nomials, by Weierstrass’ approximation theorem.°

In what follows, we will be concerned as a rule with closed subspaces.
Hence it is natural to modify somewhat the terminology adopted in Sec. 13.3,
i.e., by a subspace of a normed normed linear space we will always mean a
closed subspace. In particular, by the subspace generated by a set of elements
{x,} we will always mean the smallest closed subspace containing {x,}. This
subspace will also be called the linear closure of {x,}. The term linear manifold
will be reserved for a set of elements L, (not necessarily closed) such that
x,y € Ly implies ax + By € L, for arbitrary numbers « and B. A set of
elements {x,} in a normed linear space L is said to be complete (in L) if the
linear closure of {x,} coincides with L.

Remark. Thisisanother meaning of the word ““closed,” not to be confused
with its meaning in Sec. 6.4. The context will always make it clear which
meaning is intended.

Example 3. By Weierstrass’ approximation theorem, the set of functions
1,¢t,¢%...,t"%...is complete in C 5.

® This contingency cannot arise in a finite-dimensional subspace (see Problem 5a).
10 See e.g., G. P. Tolstov, Fourier Series (iranslated by R. A. Silverman), Prentice-Hall,
Inc., Englewood Cliffs, N.J. (1962), p. 120.
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Problem 1. A subset M of a normed linear space R is said to be bounded
if there is a constant C such that | x|| < C for all x € M. Reconcile this with
Problem 5, p. 65.

Problem 2. Given a Banach space R, let {B,} be a nested sequence of
closed spheres in R (so that B; ® B, = --- > B, > ---). Prove that N B,

is nonempty (it is not assumed that the radius of B, approaches 0 asn — o0).
Give an example of a nested sequence {E,} of nonempty closed bounded
convex sets in a Banach space R such that (] E, is empty (cf. Problem 6,
p. 66). »

Problem 3. Prove that the algebraic dimension (defined in Problem 4c,
p- 128) of an infinite-dimensional Banach space is uncountable.

Problem 4. Let R be a Banach space, and let M be a closed subspace of R.
Define a norm in the factor space P = R/M by setting

181 = inf |

for every element (residue class) £ € P. Prove that
a) [ €| is actually a norm in P;
b) The space P, equipped with this norm, is a Banach space.

Problem 5. Let R be a normed linear space. Prove that

a) Every finite-dimensional linear subspace of R is closed;

b) If M is a closed subspace of R and N a finite-dimensijonal subspace
of R, then the set

M+ N={zz=x+ypy,xeM,yecN} ®)
is a closed subspace of R;

c) If Q is an open convex set in R and x, ¢ Q, then there exists a closed
hyperplane which passes through the point x; and does not intersect Q.

Problem 6. Let x = (x, X, ..., X, . ..) be an arbitrary element of /.
Prove that /, is a normed linear space when equipped with the norm

el =[xt

k=1
Give an example of two closed linear subspaces M and N of I, whose “linear
sum’ M -+ N is not closed.
Problem 7. Two norms [[*|,, ||*[lz in a linear space R are said to be
equivalent if there exist constants @, b > 0O such that
allxlly < lxlle < b x|,

for all x € R. Prove that if R is finite-dimensional, then any two norms in
R are equivalent.
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16. Euclidean Spaces

16.1. Scalar products. Orthogonality and bases. We begin with two key
definitions:

DEFINITION 1. By a scalar product in a real linear space R is meant a
real function defined for every pair of elements x, y € R and denoted by
(x, y), with the following properties:

1) (x, x) > 0 where (x, x) = 0 if and only if x = 0;

2) (xs y) = (}’, X);

3) (x, y) = Ax, y);

4) (x,y +2)=(x,) +(x,2)

(valid for all x, y, z € R and all real }).

DEFINITION 2. A linear space R equipped with a scalar product is called

a Euclidean space.

LEMMA. Any two elements x, y of a Euclidean space R satisfy the
Schwarz inequality
[Ges < Il iyl @
where ___- o
Il =V, Iyl =V,
Proof. The quadratic polynomial
e() = (x +y, Mx + p) = NM(x, x) + 2Mx, ) + (¢, ))
= [x[22% + 2(x, YA + |ylI®
is obviously nonnegative. Therefore
G2 — P lyl* < o, )

since otherwise ¢(2A) would become negative for some A (why ?). But (2)
is equivalent to (1). 1
We now use the scalar product in a Euclidean space R to introduce a
norm in R:

THEOREM 1. A Euclidean space R becomes a normed linear space when

equipped with the norm
Il =V, %) (xeB.

Proof. Properties 1) and 2') on p. 138 are immediate consequences
of the definition of a scalar product. To prove property 3'), ie., the
triangle inequality, we note that

Ix +ylI* = (x +, x +y) = (%, x) +2(x, y) + (> )

< (6,x) + 210+ G,
< %l 42 llxfi Iyl + Iylz = dixl + Iy,
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because of the Schwarz inequality (1), and hence

lx +pI < xt + 1yl B

The scalar product in R can be used to define the angle between two
vectors as well as the length (i.e., norm) of a vector:

DEFINITION 3. Given any two vectors x and y in a Euclidean space R,
the quantity 9 defined by the formula

p— (¥
ol iyl

is called the angle between x and y.

0<6<m) (3)

Remark. 1t follows from Schwarz’s inequality (1) that the right-hand
side of (3) cannot exceed 1. Therefore, given any x and y, (3) actually
determines a unique angle in the interval [0, =].

Suppose (x, y) = 0, so that (3) implies 6 = =/2. Then the vectors x and y
are said to be orthogonal. A set of nonzero vectors {x,} in R is said to be
an orthogonal system if

(%« xg) = 0 for a«#B

and an orthonormal system if

0 for « # B,
(xa’ Xp) = {1

for «=p.

If {x.} is an orthogonal system, then clearly

{ui:n}

THEOREM 2. The vectors in an orthogonal system {x,}; are linearly
independent.

is an orthonormal system.

Proof. Suppose
C1Xg, + Xy, + 0 Xy, = 0.

Then, taking the scalar product with x, , we get
(Vg €1y + CaXgy 77 F CaXe)) = (X X,) = O,
by the orthogonality of {x,}. But (x,,, x,) 7 0, and hence
=0 (=12,...,n. }

An orthogonal system {x,} is called an orthogonal basis if it is complete,
i.e., if the smallest closed subspace containing {x,} is the whole space R.
Similarly, a complete orthonormal system is called an orthonormal basis.
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16.2. Examples. We now give some examples of Euclidean spaces and
orthogonal bases in them:

Example 1. Let R" be real n-space, i.e., the set of all ordered n-tuples

X = (X1, X2, .o -5 %,), = (V1> Var+--»Vu)>--., equipped with the same
algebraic operations as in Example 2, p. 119. Using the formula

(5, 9) = S50 @

to define a scalar product in R”®, we get Euclidean n-space.!* The corre-
sponding norm and distance in R™ are

n
Ix = \/ >t
k=1

and
plx, y) = llx — yll = \/ kZI(xk — )’ 3
The vectors
e = (1,0,0, e ,O),
e, =(0,1,0,...,0),

form an orthonormal basis in R”, one of infinitely many such bases.

Example 2. The space I, with elements x = (x;, X, . ., X . . 2), Y =
(V1> Y25+ oo > Y- ++)s ..., Where

Leel o +o] o
> x; < o, Sye<oo,...,
k=1 k=1

becomes an infinite-dimensional Euclidean space when equipped with the
scalar product

>, ¥ =§lxkyk~ (6)

The convergence of the right-hand side of (6) follows from the elementary
inequality

eyl < (el + 19:)? < 20x% + ¥0),
and it is an easy matter to verify that (6) has all the properties of a scalar

11 The term *‘Euclidean n-space” has already been used in Example 3, p. 38 to describe
the metric space with distance (5). In so doing, we anticipated the eventual introduction of
the scalar product (4).
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product. The simplest orthonormal basis in /, consists of the vectors

%=«LQL:5, Q)

...........

The orthonormality of the system (7) is obvious. As for the completeness
of the system, given any vector x = (X;, X3, .. . , X, .. .) in lp, let

X®) = (Xy, X5 -4 » X5, 0,0, .. .).

Then x*® jis a linear combination of the vectors e, e,, ..., ¢; and
[x* — x|| -0 ask — oo.

Example 3. The space C, , consisting of all continuous functions on
[a, b] equipped with the scalar product

(/&) =[f()g) di

is another example of a Euclidean space. Among the various orthogonal
bases in Cf, ;, one of the most important is the system of trigonometric
functions

27nnt . 27mnt
cos sin

1’ 2
b—a b—a

n=1,2,...). (8)

The orthogonality of this system can be verified by a simple calculation.
Making the choice a = —=, b = =, we simplify (8) to

1, cosnmt, sinnt (n=1,2,..). 8"

Thus (8") is an orthogonal basis in the space C_; ;). As for the completeness,
we have

THEOREM 3. The system (8) is complete in CE, ..

Proof. By another version of Weierstrass’ approximation theorem,?
every function ¢ continuous on the interval [a, b] and such that ¢(a) =
@(b) is the limit of a uniformly convergent sequence of trigonometric
polynomials, i.e., linear combinations of elements of the system (8).

- This sequence converges (a fortiori) to ¢ in the norm of the space Cf, ..
But an arbitrary function f € Cf, ,; can be represented as the limit in the

@

1% See e.g., G. P. Tolstov, op. cit., Corollary 1, p. 117.
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Ct ) norm of a sequence of functions {9, }, where

S if a<x<b—

= [(p=3) —w@]e—» 4@ i b—taxs

coincides with f in the interval
[a,b — (1/n)], is linear on [b — (1/n), b]
and takes the same value at the point
b as at the point a (see Figure 16).
Hence every element of Cf, ,; can
be approximated arbitrarily closely
(in the C? ,, norm) by a linear
combination of elements of the system
FIiGURE 16 ®. 1

—
Q.___//

16.3. Existence of an orthogonal basis. Orthogonalization. From now on,
we will be mainly concerned with the case of separable Euclidean spaces,
i.e., Euclidean spaces containing a countable everywhere dense subset. For
example, the spaces R”, I, and C{, ,; are all separable, as shown in Sec. 6.3.
An example of a nonseparable Euclidean space is given in Problem 2.

THEOREM 4. Every orthogonal system {x,} in a separable Euclidean
space R has no more than countably many elements x,. >

Proof. There is no loss of generality in assuming that the system
{x.} is orthonormal as well as orthogonal, since otherwise we need only

replace {x,} by
xa
{leall }

e — xgl = V2 if a#B. ©)

We then have

Consider the set of open spheres S(x,, 3). These spheres are pairwise
disjoint, because of (9). Moreover, each sphere contains at least one
element from some countable subset {y,} everywhere dense in R. Conse-
quently there are no more than countably many such spheres, and hence
no more than countably many elements x,. [

We have already exhibited an orthogonal basis in each of the spaces R”,
I, and Cf, ,;. The existence of an orthogonal basis in any separable Euclidean
space is guaranteed by the following theorem and its corollary, analogous
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to the theorem on the existence of an orthogonal basis in any finite-dimensional
Euclidean space:!3

THEOREM 5 (Orthogonalization theorem). Let

Jisfos oo s fus e (10)
be any (countable) set of linearly independent elements of a Euclidean

space R. Then R contains a set of elements

1> Posvv s Prs-o- (11)
such that

1) The system (11) is orthonormal,
2) Every element o, is a linear combination

P, = anlf;l + anzfz +-+ annfn (ann #~ 0)

of the elements fy, fo, . . ., fu;
3) Every element f,, is a linear combination

fn:bnl(\ol + Dpae + 0 +bnnq7n (bnn#o)
of the elements ¢y, @g, . . . , Q.
Moreover, every element of the system (10) is uniquely determined by these

conditions to within a factor of +1.

Proof. First we construct ¢,. Setting

P = all.fla
we determine a;; from the condition
. . (91, 91) = a§1(f1’f1) =1,
which implies
1 _ 1
b V(A f)
This obviously determines ¢; uniquely (except for sign).
Next suppose elements ¢y, @,, . . . , ¢, satisfying the conditions of

the theorem have already been constructed. Then f,, can be written in the
form

an =

So=Dbuor+ by 1P+, (12)
where
(hps 9) =0  (k=1,2,...,n—1).

13 See e.g., G. E. Shilov, An Introduction to the Theory of Linear Spaces (translated by
R. A. Silverman), Prentice-Hall, Inc., Englewood Cliffs, N.J. (1961), Theorem 28, p. 142.
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In fact, the coefficients b,, and hence the element A, are uniquely
determined by the conditions
(h'm (Pk) = (f'n - bnl‘?l —_ = bn.n—l‘?n—l; (Pk)

= (fm (Pk) - bﬂk((pk’ (Pk) =0,

b = (frs 01) k=1,2,...,n—1.
Clearly (h,, h,) > 0, since (h,, h,) = O contradicts the assumed linear
independence of the elements (10). Let
P
T )
Using (12) and (13), we express 4, and hence ¢, in terms of the functions
JirSos oo s fus i, ¢
Cn=Auf1 + uofo + 0+ Apn S

i.e.,

(13)

where
yy = ——— £ 0.
(hn: hn)
Moreover
((Pn’q)k)zo (k:1,2,...,n—1),
((P'rw (Pn) =1
and
fn = bnl‘?l + an(PZ + e + bnn(pn’
where
bun = (tny h) > 0.
Thus, starting from elements ¢y, ¢, . . . , ¢,_; satisfying the conditions
of the theorem, we have constructed elements @y, @z, ..., ¢y, ¢p

satisfying the same conditions. The proof now follows by mathematical
induction. {

Remark. The process leading from the linearly independent elements (10)
to the orthonormal system (11) is called orthogonalization. 1t is clear that
the subspace generated by (10) coincides with that generated by (11).
Hence the set (10) is complete if and only if the set (11) is complete.

COROLLARY. Every separable Euclidean space R has a countable
orthonormal basis.

Proof. Let ¢y, 4y, ..., Yy, ... be a countable everywhere dense
subset of R. Then a complete set of linearly independent elements f;,
Jer -+ s fns . . . can be selected from {{,,}. In fact, we need only eliminate
from the sequence {{,} all elements ¢, which can be written as linear
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combinations of elements {, with smaller indices (i < k). Applying the

orthogonalization process to fi, fo, . + + , fn, - . . , We get an orthonormal
basis. f§
16.4. Bessel’s inequality. Closed orthogonal systems. Let e, e,,..., e,

be an orthonormal basis in R*. Then every vector x € R” can be written in
the form

n

X =2 cpep,
k=1
where
¢ = (X, ).

We now show how this generalizes to the case of an infinite-dimensional
Euclidean space R. Let ¢, s, ..., 9, ... be an orthonormal system in
R, and let f be an arbitrary element of R. Suppose that with f we associate

1) The sequence of numbers
a=Ue (k=12,..), (14)
called the components or Fourier coefficients of f with respect to the

system {@z};
2) The series

%Ck@k (15)

k=1

(for the time being, purely formal), called the Fourier series of f with
respect to the system {¢,}.

Then it is natural to ask whether the series (15) converges,' and if so,
whether the sum of the series coincides with the original function f. To
answer these questions, we first prove

THEOREM 6. Given an orthonormal system

O1s Pas e v vs Do v e - (16)

in a Euclidean space R, let f be an arbitrary element of R. Then the
expression

n
f— 2 arx
k=1
achieves its minimum for

ak:ck:(.f’q’k) (k:1’2’---an)-

14 More exactly, whether the sequence of partial sums corresponding to (15) converges
in the metric of R.
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This minimum equals

Tik —élci-

Moreover

< (1)

a result known as Bessel’s inequality.

Proof. Let

3

Sn = 1akfpk' (18)

k

Then, by the orthonormality of (16),
1= S = (/= S ~ Zanen)
= (f’f) - 2(fazakq7k) + (Eak% Zaz%)
k=1 k=1 =1

=If1* = 22 apce + 2
k=1 k=1
or
If = Sal* = ISP = Z ek + 3 (e — e)®, (19)

where
e = (f, ¢ (k=1,2,...,n).

The expression in the right-hand side of (19) obviously achieves its mini-
mum when its last term vanishes, i.e., when

a, = c, k=1,2,...,n),

and this minimum is just
I — Sal2 = I£]? —éci. (20)

Moreover, since || f — S, /|2 > 0, it follows from (20) that

a < IfI* (21)

b
i

for every n. Hence the series
Lo
2 c
k=1

is convergent. Taking the limit as n — o in (21), we get (17). 1§
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Remark. Geometrically, Bessel’s inequality (17) means that the sum of
the squares of the projections of a vector fonto a set of mutually perpendicular
directions cannot exceed the square of the length of the vector itself. For a
geometric interpretation of the rest of Theorem 6, see Problems 5 and 6.

The case where Bessel’s inequality becomes an equality is particularly
important:

DEFINITION 4. Suppose equality holds in (17) for every feR, i.e.,
suppose

Sa-1n (22

for every f € R. Then the orthonormal system ¢y, @q, . . . , @y, . . . is said
to be closed.

Remark. This is another meaning of the word ‘“closed,” not to be
confused with its meaning in Sec. 6.4. The context will always make it
clear which meaning is intended. Formula (22) is known as Parseval’s
theorem.

THEOREM 7. An orthonormal system ©; ¢@,, . . . , Gy, . . . in a Euclidean
space R is closed if and only if every element f € R is the sum of its Fourier
series.

Proof. According to Definition 4, R is closed if and only if (22) holds
for every f € R. Taking the limit as n — co in (20) and using (18), we see
that (22) holds for every f € R if and only if

lim || f—3 e || =0,
. n=+ k=1
or equivalently
o0
f = z Cr Pr>
k=1

for every fe R. ]

The properties of being complete and being closed are intimately connected,
as shown by

THEOREM 8. An orthonormal system @y, s, . . ., @y, . . . in a Euclidean
space R is complete if and only if it is closed.

Proof. Suppose {¢,} is closed. Then, by Theorem 7, every element
Jf € Ris the limit of the partial sums of its Fourier series. In other words,
linear combinations of elements of {¢,} are everywhere dense in R,
i.e., {9,} is complete.
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Conversely, suppose {¢;} is complete. Then every element f € R can
be approximated arbitrarily closely by a linear combination

2 i Px
k=1
of elements of {¢,}. But the partial sum
> CrPr
k=1

of the Fourier series of f'is at least as good an approximation. Hence f
is the sum of its own Fourier series. It follows from Theorem 7 that
{ox} is closed. §

COROLLARY. Every separable Euclidean space R contains a closed
orthonormal system @, @y . .« Pp» -+ -

Proof. An immediate consequence of Theorem 8 and the corollary
to Theorem 5. J§

Example 1. The orthonormal system (7) is closed in /,.

Remark. In introducing the concepts of Fourier coefficients and Fourier
series, we assumed that the system {¢,} is orthonormal. More generally,
suppose {¢;} is orthogonal but not orthonormal, and let

Px
b=
" ol
Then the system {{;} is orthonormal. Given any f< R, let

ee = (fy U) = —— (fs @)

[l ol
and consider the series
© o c o0
zck% = 2 . Pr = Eak(Pkr
= *=1 [ Pl K=t
where
c s
=t — s 20) q”;) ) (23)
Noel  Nlpxll

Then the coefficients (23) are called the Fourier coefficients of the element
f€ R with respect to the orthogonal (but not orthonormal) system {¢,}.
Substituting ¢, = ay, [ ¢,ll into (17), we get the following version of Bessel’s
inequality for arbitrary orthogonal systems:

Satledt < 1A an
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If equality holds in (17') for every f € R, the orthogonal system {¢,} is said
to be closed, just as in Definition 4.

Example 2. The orthogonal system (8) is closed in C7, ..

16.5. Complete Euclidean spaces. The Riesz-Fischer theorem. Given a
Euclidean space R, let {¢,} be an orthonormal (but not necessarily complete)
system in R. It follows from Bessel’s inequality that a necessary condition
for the numbers ¢y, ¢p, . . . , ¢ . - . t0 be Fourier coefficients of an element
f € R is that the series

[
2 <
k=1

converge. It turns out that this condition is also sufficient if R is complete,
as shown by

THEOREM 9 (Riesz-Fischer). Given an orthonormal system {¢,} in a
complete Euclidean space R, let the numbers c,, ¢y, . . . , Cy, . . . be such
that

< 2
k=1
converges. Then there exists an element f€ R with ¢y, ¢y, ... , Cyy - . . GS
its Fourier coefficients, i.e., such that
< 2 2
2ea=IfI

=1

a=U 9% (*k=12,...).
Proof. Writing

where

n
fn = z Cx Pr>
k=1
we have

n+y
I frts _fn"2 = [Cp1Pnir+ " + cn+m<Pn+pn2 = Z c,i.

k=n+1

Hence f converges to some element f € R, by the convergence of (24)
and the completeness of R. Moreover,

(f’ (Pk) = (fm (Pk) + (f—fm (Pk)’ (25)

where the first term on the right equals ¢, if # > k and the second term
approaches zero as n — 00, since

I = frr @)1 < I — full il
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Taking the limit as n — oo in (25), we get
(fs o) = s

since the left-hand side is independent of n. Moreover,

If = full =0

as n — o0, and hence

(f_ 2GS —2 ck(Pk) =) —2e—0
=1 k=1 x=1
asn— o, i.e.,
lim Yeg=Yci=|71% 1
n—>o k=1 k=
THEOREM 10. Let {¢@,} be an orthonormal system in a complete Eu-

clidean space. Then {¢,} is complete if and only if R contains no nonzero
element orthogonal to all the elements of {¢,}.

Proof. Suppose {¢,} is complete and hence closed (by Theorem 8),
and suppose f is orthogonal to all the elements of {¢p,}. Then all the
Fourier coefficients of f vanish. Hence

IfI?=23cr=0
k=1

by the Riesz-Fischer theorem, i.e., f = 0.
Conversely, suppose {¢;} is not complete. Then R contains an
element g # 0 such that

[}
lel® > Elcyf, where ¢, = (g, o)
k=

(why?). By the Riesz-Fischer theorem, there exists an element f€ R
such that

(o =cu  IfIF=3ck

But f — g is orthogonal to all the ¢,, by construction. Moreover, it
follows from

s =kZIC§ <lel®
that f—g #0. [

16.6. Hilbert space. The isomorphism theorem. Continuing our study of
complete Euclidean spaces, we concentrate our attention on infinite-
dimensional spaces, since finite-dimensional spaces are considered in great
detail in courses on linear algebra.
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DEFINITION 5. By a Hilbert space'® is meant a Euclidean space which
is complete, separable and infinite-dimensional.

In other words, a Hilbert space is a set H of elements f, g, ... of any
kind such that

1) H is a Euclidean space, i.e., a real linear space'® equipped with a
scalar product;

2) H is complete with respect to the metric p(f, g) = ||/ — gl;

3) H is separable, i.e., H contains a countable everywhere dense subset;

4) H is infinite-dimensional, i.e., given any positive integer n, H contains
n linearly independent elements.

Example. The real space /, is a Hilbert space (check all the properties).

DEFINITION 6. Two Euclidean spaces R and R* are said to be isomor-
Dphic (to each other) if there is a one-to-one correspondence x <> x*, y > y*
between the elements of R and those of R* (x,y € R, x*, y* € R*)
preserving linear operations and scalar products in the sense that'?

X Fyoxt Lyt axeraxt, (3)= (Y.

It is well known that any two n-dimensional Euclidean spaces are iso-
morphic to each other, and in particular that every n-dimensional Euclidean
space is isomorphic to the space R™ of Example 1, p. 144.1® On the other
hand, two infinite-dimensional Euclidean spaces need not be isomorphic.
For example, the spaces /, and CZ, ,; are not isomorphic, as can be seen from
the fact that /, is complete while C?, ;; is not (recall Examples 4 and 5,
p- 57). Nevertheless, for Hilbert spaces we have

THEOREM 11 (Isornorphism theorem). Any two Hilbert spaces are
isomorphic.

Proof. The theorem will be proved once we manage to show that
every Hilbert space H is isomorphic to /,. Let {¢,} be any complete
orthonormal system in H (such exists by the corollary to Theorem 5),
and with every element f € H associate its Fourier coefficients {c,} with

respect to {¢,}. Since
0
S ¢ < oo,
k=1

15 Named after the celebrated German mathematician David Hilbert (1862-1943).

18 However, see Sec. 16.9.

17 Isomorphism of two normed linear spaces R and R* is defined in the same way,
except that preservation of scalar products is replaced by preservation of norms, i.e., by
the condition || x{| = [|x*].

18 See e.g., G. E. Shilov, op. cit., Theorem 29, p. 144.
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by Theorem 8, the sequence (cy, ¢, . . ., ¢, . . .) belongs to /,. Con-
versely, by the Riesz-Fischer theorem, to every element (¢y, ¢y, .. .,
Cys - - .) in I, there corresponds an element f€ H with the numbers ¢;,
Cay .- 5 Cy, - . . as its Fourier coefficients. This correspondence between
the elements of H and those of /; is obviously one-to-one. Moreover, if

fer (e CoennsChyen)s
Feor (€1, 6,y ),
then clearly
f’{_f(_)(cl+61762+62""3ck+5k"")a

of <> (xCy, XCay o v v 5 ALy Lt L),

i.e., sums go into sums and scalar multiples into scalar multiples with the
same factor. Finally, by Parseval’s theorem,

=3  (PH=38

of) 4+ 200 + ) = (f+Fof +7) =S (e + 2

k=1 k=1

(
k=1
=>cp+ 2368 + 2.
k=1 =
and hence

0
(.f’ f ) = Z Ckgk,
k=1
so that scalar products are preserved. [

Remark. Theorem 11 shows that to within an isomorphism, there is
only one Hilbert space (i.e., only one space with the four properties listed
above, and that this space has /, as its “coordinate realization,” just as
the space of all ordered n-tuples of real numbers with the scalar product

n
2 XV is the “coordinate realization” of axiomatically defined Euclidean
k=1

n-space.

16.7. Subspaces. Orthogonal complements and direct sums. In keeping
with the terminology of Sec. 15.2, by a linear manifold in a Hilbert space H
we mean a set L of elements of H such that f, g € H implies af + g € L for
arbitrary numbers « and 3, while by a subspace of H we mean a closed linear
manifold in H.

LemMA. If a metric space R has a countable everywhere dense subset,
then so does every subset R" = R.
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Proof. Let
El’ £2’~‘~a£n"

be a countable everywhere dense subset of R, and let
a, = inf p(&,, M).
NeER

Then, given any positive integers » and p, there is a point 7, € R’ such
that

1
9(&71’ 72%») <a, + 1_7 .

Given any € > 0 and any n € R, let

1 €
_<_,
p 3
and choose » such that
p(émn)<§.
Then
1 e & 2¢
ns fn <a’n+_<_ o=
P(&ns M) , 3+3 3

and hence p(%, 1,,) < &. In other words, R’ has an everywhere dense
subset {n,,} (n, p = 1,2, ...) containing no more than countably many
elements. |}

THEOREM 12. Every subspace M of a Hilbert space H is either a (com-
plete separable) Euclidean space or itself a Hilbert space. Moreover, M
has an orthonormal basis, like H itself.

Proof. The fact that M has properties 1) and 2) of Definition 5 is.
obvious. The separability of M follows from the lemma. To copstruct an

orthonormal basis in M, apply Theorem 5 to any countable everywhere
dense subset of M. [

Subspaces of a Hilbert space I have certain special properties (not shared
by subspaces of an arbitrary normed linear space), stemming from the
presence of a scalar product in H and the associated concept of orthogonality:

THEOREM 13. Let M be a subspace of a Hilbert space H, and let
M=HoM

denote the orthogonal complement of M, i.e., the set of all elements h' € H
orthogonal to every h € M. Then M’ is also a subspace of H.
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Proof. The linearity of M’ is obvious, since
o (his h) = (hs, ) = O
implies
(aahy + aghs, B) = 0
for arbitrary numbers «, and «,. To show that M’ is closed, suppose

{h,} is a sequence of elements of M’ converting to A’. Then, given any
heM,

(W'y h) =lim (h;,, k) =0,
and hence " e M’. || e
Remark. By definition, h" € M’ if and only if 4’ is orthogonal to every
h e M. But then s € H if and only if 4 is orthogonal to every 4’ € M’. Hence

M’ = H © M implies M = H © M’, and we can call M and M’ (mutually)
orthogonal subspaces of H.

THEOREM 14. Let M be a subspace of a Hilbert space H, and let
M’ = H © M be the orthogonal complement of M. Then every element
f € H has a unique representation of the form

f=h+H, (26)
where he M, h' € M.

Proof. Given any f e H, let {¢,} be an orthonormal basis in M, and
let

h =k§_jlckq>k, &= (f, ow)-
By Bessel’s inequality,
> < oo,
k=1

and hence, by the Riesz-Fischer theorem, 4 exists and belongs to M.
Let

K =f—h
Then obviously
', (Pk) =0

for all k, and since any element g € M can be represented in the form

o]
g = z ak cka
k=1
we have

(hl: g) :kzlak(h,, (Pic) = 0,

i.e., # € M’. This proves the existence of the representation (26).
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To prove the uniqueness of (26), suppose there is another represen-
tation
f = hl + h1”
where b, € M, h; € M'. Then

(he, o) = (fs 9) = &
for all k, and hence

hy=h  h=h. 1

COROLLARY 1. Every orthonormal system {¢,} in a Hilbert space H
can be enlarged to give a complete orthonormal system in H.

Proof. Let M be the linear closure of {¢,}, so that {¢,} is complete
in M. Let M’ = H © M be the orthogonal complement of M, and let
{ 9.} be a complete orthonormal system in M’ (such exists by Theorem 12,
since M’ is a subspace). Recalling (26), we see that the union of {¢.}
and {¢,} is a complete orthonormal system in H. |

CoRrOLLARY 2. Let M be a subspace of a Hilbert space H, and let
M' = H© M. Then M' has codimension n if M has dimension n and
dimension n if M has codimension n.

Proof. An immediate consequence of the representation (26) and
Theorem 2, p. 122. |

Let M be a subspace of a Hilbert space H, with orthogonal complement
M' = H © M. If every vector f € H can be represented in the form

f=h+h (heM heM),
we say that H is the direct sum of the orthogonal subspaces M and M’, and
write
H=Mo®M.
The concept of a direct sum generalizes at once to the case of any finite or

even countable number of subspaces: Thus H is said to be the direct sum
of the subspaces M;, M,, ..., M,, ... and we write

H=M,®0M,® - ®OM,®" -
if
1) The subspaces M, are pairwise orthogonal, i.e., every element in M;
is orthogonal to every element in M, whenever j 7 k;
2) Every element f € H has a representation of the form
S=h+h + - +h+ (27)
where h,e H,(n=1,2,...).
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It is easy to see that the representation (27) is unique if it exists and that

1£1% =2 A,
. . n=1 7"\
(give the details).

Besides direct sums of subspaces, we can also talk about direct sums of a
finite or countable number of Hilbert spaces. Thus, given two Hilbert spaces
H, and H,, by the direct sum

H=H,®H,

is meant the set of all ordered pairs (#,, h,) with h, € Hy, hy € H,, where
linear operations and the scalar product in H are defined by

(hy, o) + (h3, hs) = (hy + hy, by + h3),
o(hy, hy) = (ahy, ahy),
((hy, o), (hy, h3)) = (hy, hy) + (ha, hs).

Consider the subspace of H consisting of all pairs of the form (4, 0) and
the subspace consisting of all pairs of the form (0, A;). Then clearly these
two subspaces are orthogonal and can be identified in a natural way with H,
and H,, respectively. More generally, given any Hilbert spaces H,, H,, .. .,

H,, ..., Dby the direct sum

H=HOoH,®  -®H,® -
is meant the set of all sequences

h=(hy,hyy... by, (h,€ H,)
such that

2 I, * < oo,
n=1

with linear operations defined in the obvious way and the scalar product of
two elements s = (hy, by, ... hyyy o), 8 = (81,820 - - - > §ns - - ) defined by

(h, 8) = 3 (hns 22).

16.8. Characterization of Euclidean spaces. Given a normed linear space
R, we now look for circumstances under which R is Euclidean. In other
words, we look for extra conditions on the norm of R which guarantee that
the norm be derivable from some suitably defined scalar product in R.

THEOREM 15. A necessary and sufficient condition for a normed linear
space R to be Euclidean is that

If+ gl* + If — gl* =271 + 1gl® (28)
Jforevery f, g€ R.
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Proof. Thinking off + gand f — gas the “diagonals of the parallelo-
gram in R with sides f'and g,”” we can interpret (28) as the analogue of a
familar property of parallelograms in the plane, i.e., the sum of the
squares of the diagonals of a parallelogram equals the sum of the
squares of its sides. The necessity of (28) is obvious, since if R is
Euclidean, then

If+glt+lf—glP=+gf+8)+(—8f—8
=N +2,8) + @)+ N
—2(f,g) +(&8)

= 20171 + llgh?.
To prove the sufficiency of (28), we set
(f, 8 = lf + gl — If —gl®, (29)

and show that if (28) holds, then (29) has all the properties of a scalar
product listed on p. 142. Since (29) implies

L) = 20212 — 1 = F 1 = 1f13 (30)

the scalar product (29) clearly generates the given norm ||| in R. More-
over, it follows at once from (29) and (30) that
D (f,f) > 0 where (f,f) = 0if and only if f = 0;

2) (£,8) = (&))-
The proof of the linearity properties

(f+eh=0Un+@h (3D
(of, 8) = (£, &) (32)

requires a little work. To prove (31), consider the function of three
vectors

and

O(f. 8 h) =4l(f+g M — (/. h) — (g Ml

or equivalently
o(f,g. ) =1f+g+h>—If—g—hl>—If +AI>+ If—Al?
— lig + All* + lig — Al (33)
after using (29). It follows from (28) that
If+g+hE=2IFfLh?P+2Igl>—Ilf£h—gl% (34)
Substituting (34) into (33), we get

O(f,g. m)=—If+h—glP+1f—h—gl>+1f+hl?
— If = hl> —lg + Al* + lig — Al (39)
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Taking half the sum (34) and (35), we find that

Of g m) =1(lg +4+ flI*+ llg + 1 — f1I?)

—3(lg— 2+ 11+ g — h— f1?

—lg — Al* + llg — A%,
which becomes

O(f, 8 ) = (lg + AI* + If1) — (g — AllE — 117
—lg + Al + g — hlt =0
after applying (28) to both expressions in parentheses. But ®(f, g, h) =0
is equivalent to (31).
To prove (32), we introduce the function
() = (¢f, 8) — <(f, )

where f and g are fixed but arbitrary elements of R. It follows at once
from (29) that

9(0) = ¥(lgl* = g’ =0
and ¢(—1) = 0, since (—f, g) = —(f, g). Hence, given any integer n,
(f,8) = Gsgan(f+ -+ /)8 =sgnnl(f,8) + -+ (/, 8]
= |nl sgn n(f, g) = n(f, &),
i.e., ¢(r) = 0. Moreover, given any integers p, g (¢ # 0),

(gf’ g) - ”(éf’ g) = gq(iﬂ g) =Lo,

i.e., ¢(c) = O for all rational c. But ¢(c) is a continuous function of ¢
(why?), and hence ¢(c) = 0, which is equivalent to (32). [

Example 1. The n-dimensional space R%, equippéd with the norm

n 1/p
Ixll, = (zlxkl”) :
k=1

is a normed linear space if p > 1 (see Example 10, p. 41) and a Euclidean
space if p = 2 (see Example 1, p. 144). However, R}, fails to be Euclidean
if p # 2. In fact, for the two vectors

f=,1,0,...,0),

g=(,-1,0,...,0),
we have

f+g=@2,0,0,...,0),

f—g=1(0,2,0,...,0),
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and hence
£, = lgh, =22,  1f+gl=If—gl=2
Therefore the “parallelogram condition™ (28) fails if p # 2.

Example 2. Consider the space Cyq -/, of all functions continuous on the
interval [0, =/2], and let

f(t) =cost, g() =sinzt.

Then
Ifih=lgll =1,
and
If+ gl = max |cos t + sint| = /2,
o0<t<m/2
lf— gl = max |cost —sint| = 1.
O<t<m/2
Therefore

If+gl® + 1F — gl* # 20 £ 1% + Igl®).

It follows that the norm in Cy, .,; cannot be generated by any scalar product
whatsoever, i.e., the space Cj; ., fails to be Euclidean. It is easy to see that
the same is true of the space C, ,; for any a and b (a < b).

16.9. Complex Euclidean spaces. Besides real Euclidean spaces, we can
also consider complex Euclidean spaces, i.e., complex linear spaces equipped
with a scalar product. However, we must now modify the properties of the
scalar product listed on p. 142, since in the complex case these properties
are contradictory as they stand. In fact, it follows from properties 2) and
3), p. 142 that

(Ax, Ax) = N(x, x),

and hence, after choosing A = i, that
(ix, lx) = —"(x’ x)a
i.e., the norms of the vectors x and ix cannot both be positive, contrary to
property 1). To remedy this difficulty, we define the scalar product in a
complex Euclidean space R as a complex-valued function (x, y), defined for
every pair of elements x, y € R, with the following properties:
1) (x, x) > 0 where (x, x) = 0 if and only if x = 0;

2) (x, ) =, x);
3) (x, p) = Mx, ));
4 (x,y +2)=(x,2) + (», 2)

(valid for all x, y, z € R and all complex 2). It follows from 2") and 3’) that

(x? >\}’) = ()‘}” x) = 7\(}’, x) = i(x,)’)
(as usual, the overbar denotes the complex conjugate).
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Example 1. The space C* introduced in Example 2, p. 119 becomes a
complex Euclidean space if we define the scalar product of two elements
x=(x5, .., %),y =1-..,y)in C"as

n
(x> y) = zxk}-’lc
k=1

Example 2. The complex space I, with elements x = (x;, X5, . . . , Xz, . . .),
Yy=0nYe - o>V 2), ..., Where

© . 0
Zkal < O, Zlylc]2< OO,,,,’
k=1 k=1

becomes an infinite-dimensional complex Euclidean space when equipped
with the scalar product

©
(X, }’) = zka’k
k=1

Example 3. The space C}, ,, of all complex-valued functions continuous
on the interval [a, b], equipped with the scalar product

b —_—
o) =[r0zmar,
is another example of an infinite-dimensional complex Euclidean space.

The norm (length) of a vector in a complex Euclidean space is defined
by the same formula

Ixl = v (x, x)

as in the real case. However, the notion of the angle between two vectors
x and y plays no role in the complex case, since the quantity

(x, )

(EANGY
is in general complex and hence cannot be the cosine of a real angle. On
the other hand, the notion of orthogonality is defined in the same way as
before, i.e., two elements x and y of a complex Euclidean space are said
to be orthogonal if (x, y) = 0.

Let {¢;} be any orthogonal system in a complex Euclidean space R, and
let f'be any element of R. Then, just as in the real case, the numbers
1

Qe

and the series

o)
Z AxPr
k=1



SEC. 16 EUCLIDEAN SPACES 165

are called the Fourier coefficients and the Fourier series of the function f,
with respect to the system {¢,}. In the complex case, Bessel’s inequality
(17") becomes

Slalled® < 171"

If the system {¢,} is orthonormal, the Fourier coefficients become
ay = ¢ = (f’ Pr)>
and Bessel’s inequality simplifies to

Sled? < 112
k=1

By a complex Hilbert space is meant a complex Euclidean space which is
complete, separable and infinite-dimensional. Theorem 11 carries over at
once to the complex case, with isomorphism being defined exactly as in
Definition 6:

THEOREM 11’ (Isomorphism theorem). Any two complex Hilbert spaces
are isomorphic.

Proof. This time show that every complex Hilbert space is isomorphic
to the complex space I, the “coordinate realization” of a complex
Hilbert space. |

Remark. As an exercise, the reader should state and prove the complex
analogues of all the other theorems of Sec. 16.

Problem 1. Prove that in a Euclidean space, the operations of addition,
multiplication by numbers and the formation of scalar products are all
continuous. More exactly, prove that if x, —x, y, —y (in the sense of
norm convergence) and A, — A (in the sense of ordinary convergence), then

Xn +)’n - X +)’, )‘nxu — AX, (xn’yn) - (x,,y)'
Hint. Use Schwarz’s inequality.

Problem 2. Let R be the set of all functions f defined on the interval [0, 1]
such that

1) f(¢) is nonzero at no more than countably many points ¢, f,, . . . ;

2 3740 < .

Define addition of elements and multiplication of elements by scalars in the
ordinary way, i.e., (f + g)(#) = f(2) + g(#), («f)(t) = af(¢). If fand g are
two elements of R, nonzero only at the points #,1,,... and ¢;,¢,,...,
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respectively, define the scalar product of f and g as

(fi9) = 3 f)e().

2, 7=

Prove that this scalar product makes R into a Euclidean space. Prove that R
is nonseparable, i.e., that R contains no countable everywhere dense subset.

Problem 3. Give an example of a (nonseparable) Euclidean space which
has no orthonormal basis. Prove that a complete Euclidean space (not
necessarily separable) always has an orthonormal basis.

Problem 4. Prove that every nested sequence of nonempty closed bounded
convex sets in a complete Euclidean space (not necessarily separable) has a
nonempty intersection.

Comment. Cf. Problem 6, p. 66 and Problem 2, p. 141.

Problem 5. Given a Euclidean space R, let ¢;, ¢, ..., ¢, ... be an
orthonormal basis in R and f an arbitrary element of R. Prove that the
element

n
f—2an
%=1
is orthogonal to all linear combinations of the form

Ebk%

=1

ar=ron (k=1,2...,n).

Problem 6. According to elementary geometry, the length of the perpen-
dicular dropped from a point P to a line L or plane II is smaller than the
length of any other line segment\j\oining P to L or II. What is the natural
generalization of this fact to the case of an arbitrary Euclidean space ?

if and only if

Hint. Use Theorem 6 and the result of the preceding problem.

Problem 7. Let R be a complete Euclidean space (not necessarily separ-
able), so that R has an orthonormal basis {¢,}, by Problem 3. Prove that
every vector f € R satisfies the formulas

f= ; (far @)0ar  S1I* = 210 eI,

where neither sum contains more than countably many nonzero terms.

Problem 8. Give an example of a Euclidean space R and an orthonormal
system {¢,,} in R such that R contains no nonzero element orthogonal to every
®n, even though {¢,} fails to be complete.
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Comment. By Theorem 10, R cannot be complete.

Problem 9. Given a Euclidean space R, not necessarily complete, let R*
be the completion of R as defined in Sec. 7.4. Define linear operations and
the scalar product in R* by “continuous extension” of those in R < R*.
More exactly, if x, — x, y, —y where x,,, y, € R, let

x4+ y=Ilim(x, + y,), ox=Ilimax,, (x,y)=Ilim(x,, y,).
n= o0 n— oo n=+ oo
Prove that

a) These limits exist and are independent of the choice of the sequences
{x.}> {¥»} in R converging to x and y;
b) R* is itself a Euclidean space..

Complete Cf, ,; in this way, and show that the resulting space is a Hilbert
space.

Comment. The elements belonging to the completion of CZ, ,; but not to
Ct,,» are themselves functions, in fact discontinuous functions whose squares
are Lebesgue-integrable on [a, 4], as defined in Sec. 29.

Problem 10. Prove that each of the following sets is a subspace of the
Hilbert space /,:

a) The set of all (x,, X3, . . . , Xy, . . .) € I such that x; = x,;
b) The set of all (x, x,, . .., Xz, . . .) €I, such that x,, = 0 for all even k.

Problem 11. Show that every complex Euclidean space of finite dimension
n is isomorphic to the space C” of Example 1, p. 164. Generalize Problem 9
to the case where Cf, , is the complex space of Example 3, p. 164.

17. Topological Linear Spaces

17.1. Definitions and examples. Specification of a norm is only one way
of introducing a topology into a linear space. There are many situations in
analysis, notably in the theory of generalized functions (to be discussed
in Sec. 21), where it is desirable to use other methods of equipping a linear
space with a topology:

DEFINITION 1. By a topological linear space is meant a set E with the
Sfollowing properties:

1) E is a linear space;

2) E is a topological space;

3) The operations of addition of elements of E and multiplication of
elements of E by numbers (real or complex) are continuous with
respect to the topology in E, in the sense that
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a) If 2y = x4 + y,, then, given any neighborhood U of the point z,,
there are neighborhoods V and W of the points x, and y,,
respectively, such that x + y € U whenever xe V, y € W,

b) If agxy = yy, then, given any neighborhood U of the point y,,
there is a neighborhood V of the point x, and a number ¢ > 0
such that ax € U whenever x € V, |o — o < €.

THEOREM 1. Let E be a topological linear space, and let U be any
neighborhood of zero. Then the set

U+ x={yy=x+x,xeU}
is a neighborhood of x,. Moreover, every neighborhood of x, is a set of this
form, i.e., some neighborhood of zero “shifted by the vector x,.”

Proof. It follows from property 3a) that the mapping f(x) = x — x,
carrying FE into itself is continuous. Hence, by Theorem 10, p. 87, the
preimage f~1(U) of any neighborhood U of the point zero is itself a
neighborhood. But f~1(U) = U + x,. Therefore U 4 x, is a neighbor-
hood, obviously of the point x,. Similarly, given any neighborhood ¥V
of the point xy, let U = V — x4 = V + (—x,). Then U is a neighbor-
hood of zero, by the continuity of the mapping g(x) = x + x,. But
clearly U 4+ x,= V. |

Remark. Thus the topology in E is determined by giving a neighborhood
base at zero, i.e., a system A, of neighborhoods of zero with the property
that, given any open set G < E containing the point zero, there is a neighbor-
hood N € A, contained in G. In fact, the mapping f(x) = x + x, carries a
neighborhood base at zero into a neighborhood base at x,. Hence 4}
and its “translates,” i.e., the system of all sets of the form {V:¥V = U + x,
U e N, x € E}, constitute a base for the topology in E. In this sense, A,
“generates” the topology in E.

Example 1. Every normed linear space is clearly a topological linear
space. In fact, it is an immediate consequence of the properties of a norm
that the operations of addition of vectors and multiplication of vectors by
scalars are continuous with respect to the topology “induced” by the norm.

Example 2. Let R® be the linear space of all numerical sequences x =
(%15« -5 Xps - - .), real or complex, and let A consist of all sets of the form

Ui, ke = (XX €R%, x| <&y o0y x| <}
for some number € > 0 and positive integers k,, . . . , k,. Then R® becomes

a topological linear space when equipped with the topology generated by
‘/V(; 19

1 As an exercise, verify that 47 and its translates satisfy Theorem 2 (or Theorem 3)
of Sec. 9.3 and that the linear operations in R® are continuous with respect to the topology
generated by ;.
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Example 3. Let Ki, ) be the linear space of all infinitely differentiable
functions on the interval [a, b],2° and let A4, consist of all sets of the form

U,.={9:9 €Ky [00(X)] <&, ..., 0"(x)| < e for all x € [a, b]}

for some number ¢ > 0 and positive integer r. Then K|, ,; becomes a topo-
logical linear space when equipped with the topology generated by this
neighborhood base (again supply some missing details).

DEFINITION 2. A4 subset M of a topological linear space E is said to be
bounded if, given.any neighborhood U of zero, there is a number o > 0 such
that M < oU = {z:z = ax,x e U}L2

DEFINITION 3. A topological linear space E is said to be locally bounded
if it contains at least one nonempty bounded open set.

THEOREM 2. Every normed linear space E is locally bounded.

Proof. Given any ¢ > 0, the set of all x € E such that ||x| < ¢ is
obviously nonempty, bounded and open. [

DEFINITION 4. A topological linear space E is said to be locally convex
if every nonempty open set in E contains a nonempty convex open subset.

THEOREM 3. Every normed linear space E is locally convex.

Proof. Merely note that every nonempty open set in E contains an
open sphere. §

Remark. 1t follows from Theorems 2 and 3 that every normed linear space
is both locally bounded and locally convex. Conversely, it can be shown that
every locally bounded and locally convex topological linear space satisfying
the first axiom of separation is normable, in the sense that E can be equipped
with a norm ||| generating the given topology in E, via the metric p(x, y) =
Ix — 1.

17.2. Historical remarks. For some time it was thought that the concept
of a normed linear space (introduced in the thirties, notably in the work of
Banach) was general enough to serve all the concrete needs of analysis.
However, it subsequently became apparent that this was not so and that
there are a number of problems involving such spaces as the space of in-
finitely differentiable functions, the space R of all numerical sequences,
etc., in which the natural topology cannot be specified in terms of any norm
whatsoever. Thus topological linear spaces, as opposed to normed linear

20 A function ¢ is said to be infinitely differentiable if it has derivatives ¢® of all orders
k=0,1,2,... (the zeroth derivative ® is just the function ¢ itself).

1 A sequence {x,} of points in E is said to be bounded if the set {x1, X3, . . .y Xns .« .}
consisting of all terms of the sequence, is bounded.
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spaces, are by no means ‘“‘exotic’’ or “pathological.”” On the contrary, some
of these spaces are no less natural and important a generalization of finite-
dimensional Euclidean space than, say, Hilbert space.

Problem 1. Reconcile Definition 2 with Problem 1, p. 141 in the case
where E is a normed linear space.

Problem 2. Let E be a topological linear space. Prove that

a) If U and V are open sets, thensois U + V = {z:z=x 4+ y,xe U,
yEeV};

b) If U is open, then so is aU = {z:z = ax, x € U} provided that o« # 0;

c) If F < Eis closed, then so is o F for arbitrary o.

Problem 3. Prove that a topological linear space is a Ty-space if and only
if the intersection of all neighborhoods of zero contains no nonzero elements.

Problem 4. Prove that a topological linear space E automatically has the
following separation property: Given any point x € E and any neighborhood
U of x, there is another neighborhood V of x such that [V] < U.

Hint. If U is a neighborhood of zero, then, by the continuity of sub-
traction, there is a neighborhood ¥ of zero such that 22

V—V={zzz=x—y,xeV,yeVi< U

Suppose y € [V]. Then every neighborhood of y, in particular V + y,
contains a point of V. Hence there is a point z € ¥ such that z + y € V. It
follows that ye V — V < U.

Problem 5. Prove that a topological space T has the separation property
figuring in Problem 4 if and only if for each point x € T and each closed set
F < Tnot containing x, there is an open set O, containing x and an open set
0, containing F such that 0, N 0, = @.

Comment. Thus, for T-spaces, this separation property is ‘“halfway
between” that of a Hausdorff space and that of a normal space.

Problem 6. Given a topological linear space E, prove that

a) If {x,} is a convergent sequence of points in E, then the set M =
{*1, X3, ..., X,, ...} is bounded;

b) A subset M < E is bounded if and only if, given any sequence {x,}
of points in M and any sequence {c,} of positive numbers converging
to zero, the sequence {e,x,} also converges to zero.

22 Here the minus sign in ¥ — ¥ does not have the usual meaning of a set difference
(the same kind of notation was used in Sec. 14.5).
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Problem 7. Prove that

a) The space R* of Example 2, p. 168 is not locally bounded;
b) Every locally bounded topological linear space satisfies the first axiom
of countability.

Problem 8. Let x be any point of a locally convex topological linear
space E, and let U be any neighborhood of x. Prove that x has a convex
neighborhood contained in U.

Hint. It is enough to consider the case x = 0. Suppose U is a neighbor-
hood of zero. Then there is a neighborhood ¥V of zero such that V — V < U,
where ¥V — V is the same as in the hint to Problem 4. Since E is locally
convex, there is a nonempty convex openset V' < V. If x, € V', then V' — x,
is a convex neighborhood of zero contained in U.

Problem 9. Prove that an open set U in a topological linear space is
convex if and only if U + U = 2U.

Problem 10. Given a linear space E, a set U < E is said to be symmetric
if x € U implies —x € U. Let & be the set of all convex symmetric subsets
of E such that each coincides with its own interior. Prove that

a) % is a system of neighborhoods of zero determining a locally convex
topology v in E which satisfies the first axiom of separation;

b) The topology =t is the strongest locally convex topology compatible
with the linear operations in E;

c) Every linear functional on E is continuous with respect to .

Problem 11. Two norms [-||; and |||, in a linear space E are said to be
compatible if, whenever a sequence {x,} in E is fundamental with respect
to both norms and converges to a limit x € E with respect to one of them, it
also converges to the same limit x with respect to the other norm. A linear
space E equipped with a countable system of compatible norms ||, is said
to be countably normed. Prove that every countably normed linear space
becomes a topological linear space when equipped with the topology
generated by the neighborhood base consisting of all sets of the form

Upe={x:x€k, x|y <e,..., x|, <¢} (1)
for some number ¢ > 0 and positive integer r.

Problem 12. Prove that each of the following spaces is countably normed,
i.e., in each case verify the compatlblhty of the given system of norms |-[[,:

a) The space K, ,;of infinitely differentiable functions on [a, b], equipped
with the norms

I/, = sup lf(k’(t)l (n=0,1,2,...); (2

ast<b
0<k<n
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b) The space S of all infinitely differentiable functions f (t) on (— 0, 0)
such that f(¢) and all its derivatives approach zero as |t| — oo faster
than any power of 1/[¢t| (i.e., such that t2f@(¢) — 0 as|t] — oo for
arbitrary p and ¢), equipped with the norms

Ifla=sup [f9(M] (n=0,1,2,...);
P,q<n

c) The space @ of all numerical séquences X = (Xy,...5Xg...)such
that
2 k"
k=1
converges for alln = 0,1, 2, ..., equipped with the norms

Ixll, = \/Zk"x,f (n=0,1,2,...).
k=1

Show that (1) and (2) define the same topology in K[, ;) as in Example 3,

p. 169.

Comment. ® might be called the space of “‘rapidly decreasing sequences.”

Problem 13. A norm |-||; is said to be stronger than a norm |||, if there is
a constant ¢ > 0 such that || x|\> ¢ [ x|, for all x € E (then ||, is said to
be weaker than ||-|,). Discuss the norms (2) in this language.

Comment. Two norms are said to be comparable if one is stronger than
the other, and equivalent if one is both stronger and weaker than the other
(cf. Problem 7, p. 141).

Problem 14. Prove that every countably normed space satisfies the first
axiom of countability.

Hint. Replace the system of neighborhoods U, . by the subsystem such
that € takes only the values
1

n

1,

N [ =

(this can be done without changing the topology).

Comment. Thus the topology in E can be described in terms of convergent
sequences (recall Sec. 9.4).

Problem 15. Prove that the topology in a countably normed space can be
specified in terms of the metric

1 x =yl
o(x, y) = gz,,l—Jr”x_y”w (x,y € E). 3)
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First verify that p(x, y) has all the properties of a metric, and is invariant
under shifts in the sense that p(x +z,y + z) = p(x, y) for all x, y, z€ E.

Comment. A countably normed space is said to be complete if it is
complete with respect to the metric (3).

Problem 16. Prove that a sequence {x;} in a countably normed space is
fundamental with respect to the metric (4) if and only if it is fundamental
with respect to each of the norms |-|,. Prove.that {x,} converges to an
element x € E with respect to the metric (3) if and only if it converges to
x with respect to each of the norms ||| ..

Comment. Thus, in particular, a countably normed space E is said to be
complete if a sequence {x,} in E converges whenever it is fundamental with
respect to each of the norms [|{|,,.

Problem 17. An infinite-dimensional separable linear space H equipped
with a countable system of scalar products (-, ), is said to be countably
Hilbert if the norms

Ixl, =V(x, x), (x€H)

generated by these scalar products are compatible and if the space H is
complete. Prove that the space ® of Problem 12¢ is countably Hilbert when
equipped with the scalar products

(xa y)n =k§1knxkyk (n =0,12,.. ‘),

where x = (X3, ..., Xp...), ¥ = (Y1, -+ » Vs . . .) aT€ ANY two elements of P.

Problem 18. The norms |||, in a countably normed space E can be
assumed to satisfy the condition
lxlle < lxl, if k<, 4)

since otherwise we can replace |||, by

-l =sup {lIllw - llos ooy e}

(Prove that this does not change the topology in E.) Let E, denote the
completion of E with respect to the norm |[-||,,. Using (4), prove that

E13E23...DE”3
Clearly,
E<NE,.
n=1

Prove that E is complete if and only if

E=NE,.

n=1
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Problem 19. Let C{?,, be the space of all functions defined on the interval
[a, b] with continuous derivatives up to order » inclusive, equipped with the
norm

Il = sup 1fP()I
<t<p

LAY

0<r<n
(note that C{?); = C, ). Prove that C{}; is complete. Prove that K, 5
equals the intersection
o
(n)
nc[zyb]’
n=0

and hence is complete (by Problem 18).
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LINEAR FUNCTIONALS

18. Continuous Linear Functionals

18.1. Continuous linear functionals on a topological linear space. A (real)
functional f defined on a topological linear space E is said to be /inear on E if

floax 4+ By) = of (¥) + BF ()

for all x, y € E and arbitrary numbers «, 3 (recall Sec. 13.5), and continuous
at the point x, € E if, given any € > 0, there is a neighborhood U of x, such
that

) —f(x)l < M
for all x € U (recall Sec. 9.6). We say that the functional f is continuous (on
E) if it is continuous at every point x, € E.

THEOREM 1. Let f be a linear functional on a topological linear space E,
and suppose f is continuous at some point x4 € E. Then f is continuous on
E, i.e., at every point of E.

Proof. Given any point y € E and any number ¢ > 0, let U be a
neighborhood of x, such that x € U implies (1). Then

V=U+{yp—x)={ziz=x4+y— x4, xe U}

is a neighborhood of y, by Theorem 1, p. 168. Moreover, x € ¥ implies
x + xo — y € U and hence

/) —fO) = 1f(x + X0 —y) = f(x)l <ce,
i.e., fis continuous at y. [
{75
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COROLLARY. The continuity of a linear functional on a topological linear
space need only be checked at a single point, for example, at the point zero.

THEOREM 2. Let f be a linear functional on a topological linear space E.
Then f'is continuous on E if and only if f is bounded in some neighborhood
of zero.!

Proof. Suppose fis continuous on E, in particular at the point zero.
Then, given any ¢ > 0, there is a neighborhood of zero in which
[f(x)| <e. Obviously, fis bounded in this neighborhood.

Conversely, suppose f'is bounded in some neighborhood U of zero,
so that | f(x)| < C for all x € U, where C is a suitable constant. Then,
given any € > 0, we have | f(x)| < ¢ for all x in the neighborhood

E-U={z:z=ix,er ,
C C

i.e., fis continuous at zero and hence on all of E. |

THEOREM 3. A necessary condition for a'linear functional f to be
continuous on. a topological linear space E is that f be bounded on every
bounded set. The condition is also sufficient if E satisfies the first axiom of
countability.

Proof. To prove the necessity, suppose f is continuous on E. Then f
is bounded in some neighborhood U of zero:

f@®l<C  (xel).

Let M < E be any bounded set, as defined in Definition 2, p. 169. Then
M < «U for some « > 0, and hence

fGl < Ca  (xe M,

i.e., f is bounded on M.
" As for the sufficiency, let {U,} be a countable neighborhood base at
the point zero such that

U13U2:)...3 U"D...

(cf. the proof.of Theorem 7, p. 84). If f fails to be continuous on E, it

cannot be bounded on any of these neighborhoods of zero. Therefore in

each U, there is a point x, such that | f(x,)| > n. The sequence {x,} is
bounded (recall footnote 21, p. 169), and even converges to zero, while
-thesequence {f(x,)} is unbounded.- But then f fails. to be bounded .on
-the bounded set {x;, x,, ..., x,, . . .}, contrary to hypothesis. .}

Guided by Theorem 3, we introduce

* Recall footnote 14, p. 110.
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DEFINITION 1. Given a linear functional f on a topological linear space
E, suppose f is bounded on every bounded subset of E. Then f is said to be
a bounded linear functional.

Remark. In general, a bounded linear functional need not be continuous.

18.2. Continuous linear functionals on a.normed linear space. Suppose
E is a normed linear space, so that in particular E satisfies the first axiom of
countability (recall the remark on p. 83). Then, by Theorem 3, a linear
functional on E is continuous if and only if it is bounded. But by a bounded
set in a normed linear space we mean a set contained in some closed sphere
x| < C (recall Problem 1, p. 141). Therefore a linear functional f on a
normed linear space is bounded (and hence continuous) if and only if it'is
bounded on every closed sphere [|x|| < C, or equivalently on the closed unit
sphere x| < 1, because of the linearity of f. In other words, fis bounded
if and only if the number

I/l = sup [f(x)] &)
. . llwll <1
is finite.
DEFINITION 2. Given a bounded linear functional f on a normed linear

space E, the number (2), equal to the least upper bound of | f(x)| on the
closed unit sphere | x| < 1, is called the norm of f.

THEOREM 4. The norm || f || has the following two properties:

I/l = 'f?ﬂ 3)

lFfGl < IfN Ixh forall x€E. @
Proof. Clearly,

If1 = sup | f(x)| = sup |f(x)|
llzlj<1 llzli=1

(why?). But the set of all vectors in E of norm 1 coincides with the set
of all vectors

X (xeE,x#0), (5)
x|
and hence
_ x FE)
171 = sup If Gl = s“p'f(u n) =

which proves (3). Moreover, since the vectors (5) all have norm 1, it
follows from (2) that

_ el .
‘funl ) < W (e B x70),

which implies (4) for x 7 0. The validity of (4) for x = 0 is obvious. f



178 LINEAR FUNCTIONALS CHAP. 5§

Example 1. Let R" be Euclidean n-space, and let a be any fixed nonzero
vector in R*. Then the scalar product

f(x) = (x,a) (x e RY)

defines a functional on R” which is obviously linear. By Schwarz’s inequality,

fl = 1(x, o)l < ] llall. (6)

Therefore f is bounded and hence continuous on R”. It follows from (6) that
Ajal @20, ™
The right-hand side of (7) is independent of x, and hence
sup LN _ gy,
_ evo x|
ie.,
11 < lal.

But choosing x = a, we get

lf (@] = |(a, o)l = lla[l?,

If(a)] _
llall

£ = lal.

Example 2. More generally, let R be an arbitrary Euclidean space, and
let a be a fixed element of R. Then the same argument as in the preceding
example shows that the scalar product

f@)=(xa (xeB)

defines a bounded linear functional on R, with norm

1/ = llall.

or equivalently

= llall.
It follows from (3) that

Example 3. The integral
1() = [*x() i

is a linear functional on the space Cy, ;). Since

16N = | [7x(0)de | < max (0] 6 — @) = 1311 6 — a),

where the equality holds if x(t) = const, we sec that the functional I is
bounded, with norm
Ml =b— a. (®)
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Example 4. More generally, let yo() be a fixed function in Cp, ,,, and let

1) = [ x(0y(e) d.

Then [ is a linear functional on Ci, ;;. Since

) = [x(oyo( de| < 121 LIyl dt

where the equality holds if x(¢) = const, the functional I is bounded, with
norm

111 = [[1yo(0) d. ®

Note that (9) reduces to (8) in the case y,(¢) = 1.
Example 5. As in Example 3, p. 124, let

34, (x) = x(to)

be the linear functional on Cy, ;) which assigns to each function x(7) € C, 5
its value at some fixed point ¢, € [a, b]. Clearly

Ix(£0)| < max [x(2)| = [ x|,
<t

SIS

where equality holds if x(f) = const. Hence 3, is bounded, with norm
18:,] = 1.

The concept of the norm of a bounded linear functional on a normed
linear space can be given a simple geometric interpretation. As shown in
Theorem 4, p. 127, every nontrivial linear functional f can be associated
with a hyperplane

M, = {xf(x) =1}

Let d be the distance from the hyperplane M, to the point x = 0, defined as

d = inf |x|
flz)=1
(cf. Problem 9, p. 54). Since, as always
ISDE< 1A ],
f(x) =1 implies
1
= - M 5
. x|l > i (xeM,)
1.e.,
ds -1 (10)

> .
A1
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On the other hand, it follows from (3) that, given any ¢ > 0, there is an
element x, such that f,(x) = 1 and

f1 =9 lxl < L.
Therefore
d = inf ||x| < 1 ,
Flx)=1 fl —e
and hence
1
d<—, 11
T an

since € > 0 is arbitrary. Comparing (10) and (11), we get
g— L
/1

i.e., the norm of the linear functional f equals the reciprocal of the distance
between the hyperplane f(x) = 1 and the point x = 0.

18.3. The Hahn-Banach theorem for a normed linear space. Let fo(x) be a
linear functional defined on a subset L of a linear space E, satisfying the
condition

| /o)l < p(x), (12)

where p is a finite convex functional on E. Then, according to the Hahn-
Banach theorem (Theorem 5, p. 132), f; can be extended onto the whole
space E without violating the condition (12) As applied to bounded linear
functionals on a normed linear space E, this result can be formulated as
follows:

THEOREM 5 (Hahn-Banach). Given a real normed linear space E, let
L be a subspace of E and f, a bounded linear functional on L Then f, can
be extended to a bounded linear functional f on the whole space E without
increasing its norm, i.e.,

”f”on E = ”ﬂ)” on L*

Proof. We need only choose the functional p in Theorem 5, p. 132 to
be the convex functional k | x||, where

k= ”ﬁ)”on L l

This form of the Hahn-Banach theorem has a simple geometric interpreta-
tion. The equation

Solx) =1 (13)
specifies a hyperplane in the subspace L, at distance
1

140
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from the origin (the point x = 0) The fact that the functional f;, can be
extended onto the whole space E without increasing its norm means that the
hyperplane (13) can be extended to a larger hyperplane in the whole space
E in such a way that the distance between the larger hyperplane and the
origin is the same as the distance between the hyperplane (13) and the origin.

In the same way, starting from the complex version of the Hahn-Banach
theorem (Theorem 5, p. 134), we get

THEOREM 5'. Given a complex normed linear space E, let L be a
subspace of E and f, a bounded linear functional on L. Then f, can be
extended to a bounded linear functional f on the whole space E without
] ing its norm,.i.e.,
increasing its norm, i.e 1 lonz = follon £

In the case of an arbitrary topological linear space E, a nontrivial con-
tinuous linear functional on E may not even exist. However, by imposing
suitable restrictions on E, we can guarantee the existence of ‘“‘sufficiently
many” continuous linear functionals on E.?

DEFINITION 3. A topological linear space E is said to have sufficiently
many continuous linear functionals if for each pair of distinct points
X1, Xp € E there exists a continuous linear functional f on E such that
f(x1) %~ f(xy), or equivalently, if for each nonzero element x, € E there
exists a.continuous linear functional on E such that f(x,) # 0.

THEOREM 6. Every normed linear space E has sufficiently many con-
tinuous linear functionals.

Proof. Given any nonzero element x,€ E, we define a linear
functional
Jo(hxg) = A

on the set L of all elements of the form Ax,. We then use the Hahn-~
Banach theorem to extend f, onto the whole space E. This gives a
continuous linear functional on E such that f(xg) =1 £ 0. |

Problem 1. Prove that a functional f on a T;-space E is continuous at a
point x € E if and only if x,, — x implies f(x,) — f(x).

Problem 2. Prove that every linear functional on a finite-dimensional
topological linear space is automatically continuous.

Problem 3. Let E be a topological linear space. Prove that a linear
functional f on E is continuous if and only if

a) Its null space {x:f(x) = 0} is closed in E;
b) There exists an open set U < E and a number ¢ such that ¢ ¢ f (V).

2 See Theorem 6 and Problems 7-8.
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Problem 4. Given a topological linear space E, prove that

a) If every linear functional on E is continuous, then the topology in
E is the topology t of Problem 10, p. 171;

b) If E is infinite-dimensional and normable, then there exists a non-
continuous linear functional on E;

c) If E has a neighborhood base at zero whose power does not exceed
the algebraic dimension of E, then there exists a noncontinuous linear
functional on E.

Hint. In b) use the existence of a Hamel basis in E (recall Problem 4,
p. 128, where algebraic dimension is also defined).

Problem 5. Prove that
f(x) = ax(0) + bx(1),

g(x) = f:’ "x(t) dt — | | () di

are both bounded linear functionals on the space Cp ;. What are their
norms?

Problem 6. As in Problem 11, p. 171, let E be a countably normed space
with norms ||-||,, where

Ixly < Ixlle < - < Ixllp < v+ (14)

(as in Problem 18, p. 173, this condition entails no loss of generality).
Let E* be the set of all continuous linear functionals on E, and let E¥ be
the set of all linear functionals on E which are continuous with respect to
the norm |||,,. Prove that

% * PR * cee
EICE2C CEnC
and

E*=UE% (15)
n=1

Hint. If fis a continuous linear functional on E, then, by Theorem 2,
there is a neighborhood U of zero in which f is bounded. It follows from
(14) and the definition of the topology in E that there is a number ¢ > 0 and
a positive integer k such that the open sphere |x||; < ¢ is contained in U.
Being bounded on this sphere, f is bounded and continuous with respect to
the norm |- [f.

Comment. Let f be a continuous linear functional on E, i.e., let f€ E*,
Then by the order of f is meant the smallest integer n for which fe E}}. It
follows from (15) that every continuous linear functional on E is of finite
order.
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Problem 7. Prove that every countably normed space E has sufficiently
many continuous linear functionals.

Hint. Given any nonzero element x, € E, use Theorem 6 to construct a
linear functional f continuous with respect to the norm ||, such that

S(xp) #0.

Problem 8. Show that every real locally convex topological linear space
E satisfying the first axiom of separation has sufficiently many continuous
linear functionals.

Hint. Given any nonzero element x, € E, show that there is a convex
symmetric® neighborhood U of zero such that x,¢ U. Let py be the
Minkowski functional of U. Then, as in the proof of Theorem 6, p. 136,
Py is a finite convex functional on E such that py(—x) = py(x) and

pu( <1 if xelU, py(x)=>1.

Define a linear functional fy(Ax,) = A on the set L of all elements of the
form Ax,. Clearly | fo(x)| < po(x) on L and f,(x,) = 1. Now use the Hahn-
Banach theorem to extend f; onto the whole space E.

Comment. The importance of locally convex spaces is mainly due to this
property (which continues to hold in the complex case).

19. The Conjugate Space

19.1. Definition of the conjugate space. The operations of addition of
functionals and multiplication of functionals by numbers are defined in the
obvious way:

DEFINITION 1. Let f and g be two functionals defined on a topological
linear space E, and let o be any number. Then by the sum of f and g,
denoted by f + g, is meant the functional whose value at every point x € E
is the sum of the values of f and g at x, while by the product of « and f,
denoted by of, is meant the functional whose value at every point x € E is
the product of o and the value of f at x. More concisely,

(f +8)x) = f(%) + g(x),
of (x) = af (x)

for every x € E.

Clearly, if fand g are linear functionals, then so are f + g and «f. More-
over, if f and g are bounded (and hence continuous), so are f -+ g and af.

3 Recall Problem 10, p. 171.
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Let E* be the set of all continuous linear functionals on E. Then the
space E*, called the conjugate space of E, is itself a linear space, when
equipped with the operations of addition of functionals and multiplication
of functionals by numbers. This can be seen at once by verifying the three
axioms in Definition 1, p. 118. Note that the zero element in E* is the
functional f = 0, equal to zero for all x € E.

The next step is to introduce a topology in E*, besides the linear operations
just described. This can be done in various ways. First we consider the
particularly simple case where the original space E is a normed linear space.

19.2. The conjugate space of a normed linear space. Let f'be a continuous
linear functional on a normed linear space E. In Sec. 18.2 we introduced the
concept of the norm of f, equal to

If (€2
1Al = Pl

(recall Theorem 4, p. 177). This quantity clearly has all the properties of a
norm, as listed on p. 138. In fact,
D Ifl > 0 where || || = 0if and only if f = 0;

2) llofll = feel 11115
3) If +gl < Ifl + lligll, since obviously

up L8O _ (I eGL

2% 0 [BT] zro x| exo [|x|

Hence the space E* conjugate to E can be made into a normed linear space
by simply equipping each functional f€ E* with its norm [ f]|. The corre-
sponding topology in E* is called the strong topology in E*. In cases where
we want to emphasize that E* is equipped with the norm |||, we will write
(E*, |l instead of E*.

Example 1. Let E be Euclidean n-space (real or complex), and let
e, ..., e, be any basis in E, so that every vector x € E has a unique repre-
sentation of the form

n
x = ZXkek.
k=1

If fis a linear functional on E, then clearly

fx)= Zf(ek)xk (1)

Thus a linear functional on E is uniquely determined by its values on the
basis vectors e;,...,e,, where these values can be assigned arbitrarily.
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Consider the linear functionals f;, . . . , f, defined by
1 if j=k,
FO=lo i j2k
It is clear that these functionals are linearly independent, and moreover that

Si(x) = x;.

Hence we can write (1) in the form

£ =3 fen i)

Thus the functionals f;, . . . , f,, form a basis in the space E*, called the dual
of the basis e, ..., e, in the original space E. Therefore E* is itself an
n-dimensional linear space. Of course, different norms in E “induce”
different norms in E* (see Problem 1).

Example 2. Let c, be the space of all sequences x = (xy, ..., X . . .)
converging to zero, with norm

Il = sup llxfl-

Then the space (cf, |I-I) conjugate to c, is isomorphic (see footnote 17,
p- 155) to the space /; of all absolutely summable sequences f = (f1, ...,
S - - »),* with norm

171 =§1 £ids

To prove this,-we first note that, given any element f = (f5,...,f;, .. .)€/,
the formula

7 =3 xf, @

defines a functional f on the space c,, where f is clearly linear. Moreover,
it follows from (2) that

FC < lel 1A,
and hence

171 < 11 3

© 4 A sequence {fi}, or f = (f1, oo s fir oo ) in “point notation,” is said to be absolutely
summable if

8

1 fil < o0,
1

w
]
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Consider the vectors

in ¢,, and let

(n)__n ﬁc

™M =73 & ¢
e
(f f, = 0, we set f,/| fr| = 0). Then x™ € ¢,, and
e < 1. @
Moreover
Fe™ =3 L ey =314,
E=1 | fl B=1
so that
lim f(x') =k§1|fkl =1l (%)
It follows from (4) and (5) that N

1A= 1fI (6)
(why?). Comparing (3) and (6), we get
171 =111

Thus the mapping carrying f into f is a “norm-preserving”” mapping of
1, into ¢f. We must still verify that this mapping is one-to-one and “onto”
(see p. 5), i.e., that every functional f€ ¢} has a unique representation of
the form (2), where f = (f1, ... fro .- D EL Lot x = (%, ..., X, . ..) ECo.
Then

a0
X = E X5€xs
F=1

where the series on the right converges in ¢, to the element x, since

n
X — 3, Xpey
r=1

= sup |x;| —0
k>n
asn — oo. Since the functional /'€ ¢¥ is continuous,

70 =§ x (e

(where is the continuity used ?). Hence / has a unique representation of the
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form (2), and we need only verify that

E 7 (el < co.
This time let -
(n) — s f(ek)
A e ™
Noting that x™ € ¢g and [|x™| < 1, we find that
3170 =5 T 7y — 7™ < 171
k=1 =1 | f(er)]

But this implies (7), since »n can be made arbitrarily large.

Whether or not the original space E is complete, we have

THEOREM 1. The conjugate space (E*, ||*||) is complete.

187

M

Proof. Let{f,}beafundamental sequence of functionalsin E*, Then,

given any € > 0, there is an integer N such that n, n’ > N implies

Ifo —farll <,
1£o(®) — £ < fa = full X < e llx]

so that

for every x € E. Therefore the sequence { f,(x)} is fundamental and hence

convergent for every x € E. Let

£6) =1lim £,().
Then f is linear, since

f(ax + By) =7}g§° Sa(ax + By)
=lim [of, () + Bf.(N] = of(x) + BF ().

Moreover, choosing n so large that || f,, — f..,ll < 1 for all p > 0, we

have ||/, < I/l + 1 for all p > 0, and hence

[faraCOL < (U1l 4+ 1) lIx].
It follows that

lim | f,(0)] = LA < (1fall + 1) %),

so that fis bounded and hence continuous.

To complete the proof, we now show that the functional fis the limit

of the sequence {f,}, i.e., that
lim{ f, — fll =0.

n—

(&
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Given any ¢ > 0, let n be so large that

1fn = Fasol <§ 9)

for all p > 0. By the definition of the norm in E*, there is a nonzero
element x,, . € E such that

I xn,a) - x”,a)' € €
Ry Pt e {0 S S Y W PR
1%, 3 3
where
xn,s
Uy, = —
1%,
Therefore

1fo = 1 < Ufaltn,) = furo(tn, | + | faaltin,d) — f (0] + g

< WS = Farall Nt -F | furo(tine) — fltn)] + §,

or

2e .
ufn —f” < ,fn+p(un,e) —_f(un,e)l + '5 (10)
after using (9) and the fact that jju, || = 1. But
Hm £, 0) = ftn),

P
by the very definition of f.\\Hence, taking the limit as p — « in (10),
we get
”f n f ” < €,
which implies (8), since ¢ > 0 is arbitrary. [
Next we examine the structure of the space conjugate to a Hilbert space:

THEOREM 2. Let H be a real Hilbert space. Then, given any x, € H,
the formula
J&) = (%, %) (xeH) (11)
defines a continous linear functional on H, with || f|| = |x,)|. Conversely,
given any continuous linear functional f on H, there is a unique element
Xo € H such that (11) holds, with | x| = | fl.

Proof. Given any x,€ H, formula (11) obviously defines a linear
functional on H. By Schwarz’s inequality,

Lf O = 1Cx, xo)| < [1x]l l1xoll» (12)
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so that f is bounded and hence continuous. Moreover ||f| = lx,l,
because of (12) and the fact that f(x,) = [x,%

‘Conversely, let f be any continuous linear functional on H. If f= 0,
then f obviously has the representation (11) with x, = 0 (in this case
lIxoll = IIf]| = 0). Otherwise, let

Hy = {x:f(x) = 0}

be the null space of f. Since fis continuous, Hy is a closed subspace of H.
According to Theorem 3, Corollary 2, p. 126, the codimension of the null
space of any nontrivial linear functional f equals 1. Therefore, by
Theorem 14, Corollary 2, p. 159, the orthogonal complement H, of the
space H, is one-dimensional, i.e., there exists a nonzero vector y,
orthogonal to H, such that every vector x € H has a unique repre-
sentation of the form

X =y + N, (13)
where y € H,. Clearly, there is no loss of generality in assuming that
lyoll = 1. Now let

xo = S (Yo)yo- 14

Then, given any x € H, we have

J&) =1 + o) = ¥ (o)
because of (13), and

(x5 x0) = Mo X0) = M (Yo)os Vo) = M (o)

because of (14). Therefore (11) holds for all x € H. To prove the
uniqueness of x,, suppose

) =(x,x) (xeH). ar)
Then, subtracting (11") from (11), we get
(X, X —Xg) =0  (x€H),
which immediately implies x; = X, after choosing x = x, — x;. |

COROLLARY. The correspondence x,<> f is an isomorphism between
H and H*, regarded as normed linear spaces.

Proof. If
f(x) = (xa xo), g(X) = (x’}’o),
then
af (x) + Bg(x) = (x, axo + By,).
Moreover [[xol = | f1l. 1

19.3. The strong topology in the conjugate space. Let E be a normed lin-
ear space. Then as we have seen, the conjugate space E* is itself a normed
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linear space, and a neighborhood of zero in £* means the set of all continuous
linear functionals on E satisfying the condition { f|] < ¢ for some ¢ > 0. In
other words, for a neighborhood base at zero in the space E* we can take
the set of all functionals in E* such that | f(x)| < € when x ranges over the
closed unit sphere || x| < 1 in the space E. Suppose E is a topological linear
space, but not a normed linear space. Then in defining the topology in E* it
seems natural to start from an arbitrary bounded set 4 < E, since there is no
longer a “‘unit sphere.”” This suggests

DEFINITION 2. Let E be a topological linear space, with conjugate
space E*. Then by the strong topology’ in E* is meant the topology
generated by the neighborhood base at zero consisting of all sets of the form

Uge={f11f(x)| < eforallxe A} (15)

Jfor some number € > 0 and bounded set A < E.°

o

Regardless of the topology in the original set E, we have

THEOREM 3. The conjugate space E*, equipped with the strong
topology, is a locally convex T,-space.

Proof. If fo € E* and f, # 0, then there is an element x, € E such
that fy(x,) 5= 0. Let
e=3%f(xo)l, 4 ={xo}.

Then clearly f, ¢ U, ., and hence E* 1s a T;-space. To verify that the
strong topology in E* is locally convex, we need only note that U, , is
a convex set in E* for any ¢ > 0 and any bounded set 4 < E. |

Remark. The strong topology in E* will be denoted by the symbol b.
In cases where we want to emphasize that E* is equipped with the strong
topology, we will write (E*, b) instead of E*,

19.4. The second conjugate space. Since the set of all continuous linear
functionals on a topological linear space E is itself a topological linear space,
namely the conjugate space (E*,b), we can also talk about the second
conjugate space E** = (E*)*, i.e., set of all continuous linear functionals
on E*, the third conjugate space E¥** = (E**)*, and so on.

THEOREM 4. Given a topological linear space E with conjugate space
E*, let x, be any fixed element of E. Then

ey () = f(x0)

 As opposed to the weak topology in E*, to be discussed in Sec. 20.3.
¢ See Problem 8.
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is a continuous linear functional on E*.
Proof. The linearity is obvious, since

bao(of + Bg) = of (x0) + Bg(Xo) = oy () + Bl (8) (S, g € E).

As for the continuity, given any € > 0, let 4 be a bounded subset of E
containing x,, and let U, . be the neighborhood (15). Then

e N = 1f(x0)l <& if feUg,,

i.e., the functional ¢, is continuous at 0 and hence continuous on the
whole space E*. |

Thus the mapping
m(x) = ¢z(f)’
called the natural mapping of E into E*, is a mapping of the whole space

E onto some subset w(E) of the second conjugate space E**, Clearly = is
linear, in the sense that

m(ox + By) = fax + By) = of (x) + Bf () = am(x) + Br(y).

Suppose E has sufficiently many continuous linear functionals, e.g., suppose
E is a normed linear space or a locally convex topological linear space
satisfying the first axiom of separation.” Then = is one-to-one, since, given
any two distinct elements x,, x, € E, there is a functional fe E* such that
S (xy) # f(x,) and hence w(x,) 7 w(x,). Being the conjugate space of (E*, b),
E** can also be equipped with a strong topology (introduced by the obvious
analogue of Definition 2), which we denote by b*.

If =(E) = E**, the space E is said to be semireflexive. It can be shown
(see Problem 9) that the inverse mapping ©~! carrying 7(E) into E is always
continuous. If E is semireflexive and if = (as well as =) is continuous,
the space E is said to be reflexive and = then establishes a homeomorphism
between the space E and (E**, b*). In this case, each element x € E can be
identified with the corresponding element w(x) € E**, and hence it is con-
venient 1o denote the value of a functional '€ E* at the point x € E by the
more symmetric notation

J&x) = (f, %).

Thus (f, x) can be regarded as a functional on E for each fixed f € E*, and as
a functional on E* for each fixed x € E (in the latter case, x also acts like
an element of E**).

THEOREM 5. If E is a normed linear space (so that in particular E*
and E** are also normed linear spaces), then the natural mapping of E
into E** is an isometry.

7 Recall Problem 8, p. 183.
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Proof. Given an element x € E, let || x|| denote the norm of x in E and

lixll, the norm of its image in E**. We want to show that |x| = |x[,.
To this end, let f be any element of E*. Then
[0 < IFI lIxl,
ie.,
I(f, %)
Ixlf > (f+#0),
A1 s
and since the left-hand side is independent of f,
(£, x|
[l > p = |Ix| (16)
171 *

On the other hand, by the Hahn-Banach theorem, for every x, € E there
is a linear functional f; such that

[(fo> x0)l = 11761l I xoll- (17)

In fact, to construct such a functional, we need only set fo(x) = A for any
element of the form Ax,, and then extend f; to a functional on the whole
space E (without changing its norm). It follows from (17) that

_ o (S0
lxhs = sup =2 %> 1. (18)
Comparing (16) and (18), we get
lxll = flxll2. N

COROLLARY. The concepts of semireflexivity and reflexivity coincide
for a normed linear space.

Proof. If the natural mapping = is an isometry, then obviously both
m-and =~ are continuous. |

Remark. According to Theorem 35, every normed linear space E is iso-
metric to the linear manifold n(E) = E**8, Identifying E with w(F), we
can assert that E < E** in general, and E = E** if E is reflexive (or
semireflexive).

THEOREM 6. Every reflexive normed linear space is complete.

Proof. If Eisreflexive, then E = E**, But E** = (E*)*iscomplete,
by Theorem:1, p. 187. |

8 The set #(E) need not be closed.
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Example 1. Finite-dimensional Euclidean spaces and Hilbert space are
the simplest examples of reflexive spaces (in fact, for such spaces E = E¥).
This follows from Theorem 2 (cf. Problem 5).

Example 2. The space c, of all sequences x = (Xy,. . ., X, . . .) converging
to zero is an example of a complete nonreflexive space. In fact, as we saw
in Example 2, p. 185, the conjugate space of ¢, is the space /; of all absolutely
summable sequences, which in turn has the space m of all bounded sequences
(not necessarily converging to zero) as its conjugate space (see Problem 2c).

Example 3. It can be shown that the space C,,; of all continuous
functions on [a, b] is nonreflexive, and even that there is no normed linear
space with Cy, ,; as its conjugate space.

Example 4. The space /,, where 1 < p % 2, is an example of a reflexive
space which does not coincide with its conjugate space. In fact, I} = [,
where

+2i=1,

S =
Qe

and hence I[J* = I =1,

Problem 1. Let E be Euclidean n-space (real or complex), and let
e,...,e, be a basis in E. Let x,,..., x, be the coordinates of a vector
x € E with respect to the basis ey, ... , e,, and let f*, ..., /" be the coordi-
nates of a functional f'€ E* with respect to the dual basis f;, . . . , f,. Prove
that in each of the following pairs, the norm in E* is the norm “induced”
by the corresponding norm in E:

o Il = ( éllka)m, 171 = ( §1|f"|2)”2;

1/q

b) Ixl = ( élxm)m, I/l = ,(éllf"v)

where l—+— =1 (p,q > 1);
p

1
q

O Ixl = sup Ixds  IfI =3 174
k=1

1<Ksn

dy fxf = zx 11 = sup If*.

<k<n

Problem 2. Let [, be the normed linear space of all sequences x =
(X145« .+ Xy, . . .) With norm

J 0 1/p
uxu=(z|x,,r’) <w  (p> 1)
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Prove that
a) If p > 1, the space [} conjugate to /, is isomorphic to the space /,,
where
P q

b) If p > 1, the general form of a continuous linear functional on /, is
) =%

where x = (X, ..., %, .. D)€L, =1 . s fio. ) ElL
¢) If p =1, I} is isomorphic to the space m of all bounded sequences
x= (x5, ..., X ...) with norm ||x]| = sup |x,].
kE
Problem 3. Let E be an incomplete normed linear space, with completion
E. Prove that the conjugate spaces E* and (E)* are isomorphic.

Hint. Given any f € E*, extend f by continuity to a functional f € (E)*.
Conversely, given any f e (E)*, let f be the restriction of f to E, namely
the functional f(x) = f(x) for all x € E. Show that fe> f is the desired
isomorphism (with ||/} = || f .

Problem 4. Let E be an incomplete Euclidean space with the Hilbert
space H as its completion. Prove that E* and H are isomorphic.

Problem 5. Particularize Theorem 2 to the case of a finite-dimensional
Euclidean space.

Problem 6. Generalize Theorem 2 to the case of a complex Hilbert space.

Hint. Write x, = f(py)y, instead of (14). The isomorphism of H and H*
associating the functional f(x) = (x, x,) with x, is then “conjugate-linear”
in the sense that «f is associated with ax,.

Problem 7. Let @ be the same countably normed space of “rapidly
decreasing sequences” as in Problem 12c, p. 172. Find the conjugate space O*.

Hint. Use Problem 6, p. 182.

Ans. ®* is the space of all functionals f of the form

7o) = gxf

where f = (f1, ..., f; ...) is any sequence satisfying the condition
o0
2 kTfr< o
k=1

for some nonnegative integer n.
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Problem 8. Let E, E*, and U, . be the same as in Definition 2. Verify
that the system U, . actually generates a topology b in E* such that the
linear operations in E* are continuous with respect to b. Prove that if E
is a normed linear space, then b coincides with the “norm topology” of
Sec. 19.2.

Problem 9. Let E be a topological linear space, and let b* be the strong
topology in E** and = the natural mapping of E into E**. Prove that =
is continuous. '

Hint. The topology b* induces a topology w=(b*) in the space E, in
which a set G < E is said to be open if its image n(G) is the intersection of
7(E) with an open subset of (E**, b¥). Show that ==1(b*) is stronger than
the original topology in E.

Problem 10. Prove that every closed subspace of a reflexive space is itself
reflexive.

20. The Weak Topology and Weak Convergence

20.1. The weak topology in a topological linear space. Let E be a topo-
logical linear space, with conjugate space E*. Given any € > 0 and any
finite set of continuous linear functionals f;, . . . , f, € E*, the set

U=U,, =A@ <e.... L& << (1)

is open in E and contains the point zero, i.e., U is a neighborhood of zero.
Let A, be the system of all sets of the form (1). Then .44 is a neighborhood
base at zero, generating a topology in E which is again the topology of a
topological linear space (the details are left as an exercise). This topology is
called the weak topology in E. Every subset of E which is open in the weak
topology is also open in the original topology of E, but the converse may
not be true, i.e., 4, may not be a neighborhood base at zero for the original
topology in E. In other words, the weak topology is weaker (as defined on
p. 80) than the original topology, as anticipated by the terminology.
Clearly, the weak topology in E is the weakest topology © with the property
that every linear functional continuous with respect to the original topology
is also continuous with respect to 7.

20.2. Weak convergence. The weak topology in E may not satisfy the
first axiom of countability, even in the case where E is a normed linear space.
Hence the weak topology cannot in general be described in the language of
convergent sequences. Nevertheless, the weak topology determines an
important kind of convergence in E, called weak convergence. By contrast,
the convergence in E determined by the original topology (by the norm, if
E is a normed linear space) is called strong convergence.
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THEOREM 1. A sequence {x,} of elements in a topological linear space
E is weakly convergent to an element x, € E if and only if the numerical
sequence {f(x,)} converges to f(x,) for every fe E*, ie., for every
continuous linear functional f on E.

Proof. Clearly, there is no loss of generality in assuming that x, = 0.
Suppose f(x,) — 0 for every fe E*. Then, given any “weak neighbor-
hood” (1), let N, be such that | f;(x,)] < eforalln > N, (i=1,...,r),
and let N = max {N,,..., N,}. Then x,€ U for all n > N, i.e., {x,}
converges to x, in the weak topology.

Conversely, suppose that for each neighborhood (1), there is an inte-
ger N = N(U)such that x, € Ufor alln > N. Then obviously f(x,) —0
for any given f € E*, as we see by choosing f'to be one of the functionals
Jfi, ..., f; figuring in the definition of U. ||

Specializing to the case where E is a normed linear space, we have

THEOREM 2. Let {x,} be a weakly convergent sequence of elements in
a normed linear space E. Then {x,} is bounded, i.e., there is a constant C

h th
s <€ @=1,2,..).
Proof. Suppose {x,,} is unbounded. Then {x,} is unbounded on every

closed sphere Slfo, el ={f1f—fol < ¢}

in E*, in the sense that the set of numbers

{(fs x):feSlfp,el,n=1,2,...}

is unbounded for every S[f;, €] = E*. In fact, if the sequence {x,} is
bounded on S[f;, €], then it is also bounded on the sphere

S[0, ] = {g:lgl < ¢},
since if g € S[0, €], then
Jo+8€Slfo el
(ga xn) = (.ﬂ) + &> xn) - (ﬁ)? x,,),

where the numbers (f;, x,) are bounded, by the weak convergence of
{x,}. Butif |(g, x,)| < Cfor all g € S[0, €], then, by the isometry of the
natural mapping of E into E**,

o |0

1
”xn" = Sup I(g7 x-n)l = Sup I(g’ xn)l <
lfglh<1 € ligli<e

so that {x,} is unbounded, contrary to assumption. It follows that if {x,}
is unbounded, then {x,} is unbounded on every closed sphere in E*.
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Next, choosing any closed sphere S, = E*, we find an integer », and
an element f € S, such that

I(fs %)l > 1. 2

Since (f, x) depends continuously on x, the inequality (2) holds for all
belonging to some closed sphere S; < S,. Repeating this argument, we
find an integer n, and a closed sphere S, < S; such that

[(fs xp )l > 2

for all f€ S,, and so on, where in general there is an integer n; and a
closed sphere S; < §;_, such that

I(fs xa 1 > K

for all f€ S,. At the same time, we can obviously see to it that the
‘radius of the sphere S, approaches zero ask - «. Since E* is complete,
by Theorem 1, p. 187, it follows from the nested sphere theorem
(Theorem 2, p. 60) that there is an element f' contained in all the
spheres S;. But then

(foxa ) >k (k=1,2,...),
contrary to the assumed weak convergence of the sequence {x,}. [

CorOLLARY 1. Let {x,} be a sequence of elements in a normed linear
space E such that the numerical sequence {(f, x,,)} is bounded for every
f€ E*. Then {x,} is bounded.

Proof. In proving Theorem 2, the weak convergence of {x,} was
invoked only to infer the boundedness of the sequence {(f;, x,)}. 1

Generalizing Corollary 1, we get

COROLLARY 2. Let M be a weakly bounded subset of a normed linear
space E, i.e., a subset bounded in the weak topology. Then M is strongly
bounded, i.e., M is contained in some closed sphere.

Proof. Suppose M contains a sequence {x,} such that | x,|| - «,and
let M’ be the set of all points x, (n =1,2,...). Since M is weakly
bounded, so is M’. This means that M’ is “absorbed” by any weak
neighborhood of zero, in particular by any neighborhood

U= {x:1(fi0l <1,feE",

in the sense that there is a number « > 0 such that M’ < «U. But then
[(f, x,)| < «for all n, which, by Corollary 1, contradicts the assumption
that [|x,[| —0. §
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COROLLARY 3. A necessary and sufficien: condition for a subset M of
a normed linear space E to be (strongly) bounded is that every continuous
linear functional f € E* be bounded on M.

Proof. The necessity follows at once from the inequality

IS0l < 171 %1

while the sufficiency is an immediate consequence of Corollary 2 and the
meaning of weak boundedness. [

A useful test for weak convergence of a sequence is given by

THEOREM 3. A bounded sequence {x,} of elements in a normed linear
space E is weakly convergent to an element x € E if f(x,) —f(x) for
every f € A, where A is any set whose linear hull is everywhere dense in E*.

Proof. Let ¢ be an arbitrary element of E*, and let {¢,} be a sequence
of linear combinations of elements of A converging to ¢ (such a sequence
exists, since A is everywhere dense in E¥). Let C be such that

x| < C, Ix.] < C (n=1,2,..)).

Moreover, given any € > 0, choose k so large that |¢ — .|l < ¢ (this
is possible, since ¢, — ¢). Then

[o(x,) — @(N)| < [9(x,) — (x| + [9x(x,) — Pi(x)]
+ @p(x) — (x)|
< Ce + Ce + [ gu(x,) — 9(X)]- 3)

But ¢,(x,) = @.(x) as n — o, since ¢, is a linear combination of
elements of A, and f(x,) — f(x) for every f€ A, by hypothesis. There-
fore we can make the right-hand side of (3) as small as we please, by
choosing ¢ sufficiently small and » sufficiently large. It follows that
@(x,) = ¢(x) for every o € E*, i.e., {x,} converges weakly to x. [

The meaning of weak convergence in various spaces is illustrated by the
following examples:

Example 1. Given a finite-dimensional Euclidean space R”, lete,, . . . , e,
be any orthonormal basis in R”, and let {x'®} be a sequence in R" converging
weakly to a vector x = (x,, ..., x,) € R". Then
x®e)=xP>(x,e)=x; (i=1,...,n),

i.e., for every j the sequence {x'®} of components of the vectors x‘*) converges
to the corresponding component of the limit vector x. But then

P, x) = \/ S — x,)t >0
k=1
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as k — oo, so that {x®} converges strongly to x. On the other hand, strong
convergence obviously implies weak convergence in any space. Thus we see
that weak convergence and strong convergence are equivalent concepts in R".

Example 2. Let {x'*)} be a (strongly) bounded sequence of elements of /.
Then {x*} converges weakly to an element x € J, if

h (™, e)=xP—>(x,e)=x;, (j=12..),
wnere
e, =(1,0,0,..), e=1(0,1,0,..),...

is an orthonormal basis in /,. This follows from Theorem 3, since linear
combinations of the elements ey, e,, . . . are everywhere dense in /,, which
coincides with its own conjugate space (recall Problem 2a, p. 194). Thus
weak convergence in /, has the same interpretation in terms of components
as in R", i.e., for every j the sequence {x/®} of components of the vectors
x® converges to the corresponding component of the limit vector x. How-
ever, the concepts of weak convergence and strong convergence no longer
coincide in J,. In fact, although obviously not strongly convergent, the
sequence of basis vectors {e,} converges weakly to zero. To see this, we note
that by Theorem 2, p. 188, every continuous linear functional f on /, can be
written as a scalar product

f(x)=(x,9)
of a variable vector x € /, with a fixed vector a = (a,,...,4a,,...) €L, s0
that in particular
Sf(er) = a;.

But @, — 0 as k — « for every a € I,, and hence f(e;) — 0 = f(0).

Example 3. Consider the space Cp,,, of all functions continuous on
[a, b], and let {x,(#)} be a sequence of functions in Cy, ,; converging weakly
to a function x(¢) € C, ;. Among the continuous linear functionals on Cig 5,
we have the functionals 3, , a < f, < b (see Example 5, p. 179), where 3,
assigns to each function x(¢t) € C,  its value at the fixed point #,. Clearly,

8, (xn) — St,,(x)
means that
x,(to) — x(to).
Hence, if the sequence {x,(t)} is weakly convergent, then

1) {x,(¢)} is uniformly bounded on [a, b], i.c., there is a constant C such
that |x, ()] < Cforalln=1,2,...and all ¢ € [a, b];®

2) {x,(t)} is pointwise convergent on [a, b], i.e., {x,(£)} is a convergent
numerical sequence for every fixed ¢ € [a, b].

® This follows from Theorem 2.
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20.3. The weak topology and weak convergence in a conjugate space. Let
E be a topological linear space, with conjugate space E*. Suppose that
in Definition 2, p. 190, we require A4 to be finite instead of bounded. Then
the resulting topology, generated by the neighborhood base at zero consisting
of all sets of the form

Uye={f:1f(x)] < ¢ for all 4} (C))]

for some number ¢ > 0 and finite set 4 < E, is called the weak topology in
E* instead of the strong topology. Clearly, the set (4) can also be written as

le,...,xn;e = UA.: = {f If(xl)l <& ..., ]f(x")l < €} (4')

for some ¢ > 0 and points x,, ..., X, € E. Since every finite set 4 < E is
bounded, while in general there are bounded infinite sets in E, the weak
topology in E* is in fact weaker than the strong topology in E* (and in
general does not coincide with the strong topology).

The weak topology in E* determines a kind of convergence in E*, called
weak convergence (of functionals). Weak convergence of functionals plays
an important role in many problems of functional analysis, in particular in
the theory of generalized functions (to be discussed in the next section).
Obviously, a sequence {f,} of functionals f,, € E* is weakly convergent to a
functional f € E* if and only if {f,(x)} converges to f(x) for every x € E.

For weakly convergent sequences of functionals, we have the following
analogues of Theorems 2 and 3:

THEOREM 2'. Let {f,} be a weakly convergent sequence of continuous
linear functionals on a Banach space E. Then {f,} is bounded, i.e., there is
a constant C such that

Ifal<C  (m=1,2,...).

Proof. The proof is the exact analogue of that of Theorem 2." Note
that this time we must specify that E is a complete normed linear space
(i.e., a Banach space). |

THEOREM 3'. A bounded sequence {f,} of continuous linear functionals
on a Banach space E is weakly convergent to a functional f € E* if f,(x) —
S (x) for every x € A, where A is any set whose linear hull is everywhere
dense in E.

Proof. The exact analogue of the proof of Theorem 3. |

Example. Let E be the space C, ) of all functions continuous on [a, b],

and consider the functional
3y, (x) = x(t), (%)

as in Example 3 above. For simplicity (and without loss of generality), we
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assume that t, = 0 € (a, b), so that (5) becomes
3o(x) = x(0). (6)
Let {f,,(#)} be a sequence of functions continuous on [a, b] such that!®

1

1) f.(1) is positive if |¢| < land zero if |t] > —,
h n

2 [ fuydr=1foralin=12,...,

and let
87(x) = [*fu(tyx(v d.

Then 3{ is a continuous linear functional on C,,; (recall Example 4,
p. 179). Moreover, given any function x(t) € C, 5, we have

87 = [ fuox i = [ f.0x(0 di = x@) [ .0 dt = x()
for some t € [—1/n, 1/n], by the mean value theorem for integrals, and hence

35" (x) = x(0) = 8¢(x) M

as n — . Thus the sequence of functionals {3{} converges weakly to the
functional 3,. Suppose we write (6) in the form

80 = ["8(x() dt,

in terms of the “delta function’” 3(¢), as in Example 3, p. 124. Then, loosely
speaking, (7) says that ““the generalized function 8(1) is the weak limit of the
sequence of ordinary functions £, (¢).”

20.4. The weak* topology. There are two ways of regarding the space E*
of continuous linear functionals on a given space E, either as the space
conjugate to the original space E, or else as an ‘“‘original space” in its own
right, with conjugate space E**. Correspondingly, there are two ways of
introducing a weak topology into E*, either by using neighborhoods of the
form (4'), or else by using the values of functionals in E** on the space E*,
as in Sec. 20.1. Clearly, the two topologies will be the same if and only if
E is reflexive (why?). Suppose E is nonreflexive. Then, to avoid confusion,
the weak topology determined in E* with the aid of E** will be called simply
the weak topology, while the topology determined in E* with the aid of E

10 As an exercise, give an explicit example of such a sequence {f,(¢)}.
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will be called the weak* topology.!t Clearly, the weak* topology in E* is
weaker than the weak topology in E*, i.e., the weak* topology has fewer
open sets than the weak topology. Note that weak convergence as defined
in Sec. 20.3 now means weak* convergence.

The following theorem is important in various applications of the
concept of weak convergence of functionals:

THEOREM 4. Every bounded sequence { f,} of functionals in the space E*
conjugate to a separable normed linear space E contains a weakly* conver-
gent subsequence.

Proof. Since E is separable, there is a countable set of points
X1, Xg, - - - s Xp» « . . €verywhere dense in E. Suppose the sequence {f,}
of functionals in E*, i.e., continuous linear functionals on E, is bounded
(in norm). Then the numerical sequence

f1(x1)’f2(x1)’ G :fn(x1), e

is bounded, and hence, by the Bolzano-Weierstrass theorem (see p. 101),
{f,.} contains a subsequence

(1) (1) (1)
PARY A SRR S

such that the numerical sequence

fg.l)(xl)afg)(xl)$ v :fg)(xl)’ LY
converges. By the same token, the subsequence {f‘1} in turn contains a
subsequence

f(12) f(22) (2)
. 3 e« oy noy e e
such that the sequence

SPG), [y (),

converges. Continuing this construction, we get a system of subse-
quences {f¥}, k = 1,2, ... such that

1) {f%} is a subsequence of {f¥} forall k = 1,2,...;
2) {f¥} converges at the points Xy, X,, . . . , X
Heuce, taking the “diagonal sequence”
W,

we get a sequence of continuous linear functionals on E such that
T, [ (3,

11 Read “‘weak*” as ‘“‘weak star.”
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converges for all n. But then, by Theorem 3’, the sequence

S, f200), ..
converges for all x e E. ||

COROLLARY 1. Every bounded set in the space E* conjugate to a
separable normed linear space E is relatively countably compact in the

weak* topology.

Proof. An immediate consequence of Theorem 4 and the meaning of
relative countable compactness (see Sec. 10.4). ||

COROLLARY 2. A4 subset of the space E* conjugate to a separable
Banach space E is bounded if and only if it is relatively countably compact
in the weak* topology.

Proof. An immediate consequence of Theorem 2’ and Corollary

| |

As we will see in a moment, the word “countably” is superfluous in
Corollaries 1 and 2. First we need

THEOREM 5. Given a separable normed linear space E, let S be the
closed unit sphere in E and S* the closed unit sphere in the conjugate space
E*. Then the topology induced in S* by the weak* topology in E* is the
same as that induced by the metric

o) =227"1(f = & xl,
=
where {xy, ..., X,, ...} is any countable set everywhere dense in S.

Proof. Clearly, o(f, g) has all the properties of a metric, and moreover
is invariant under shifts, in the sense that

p(f+ b, g + 1) = o(f, 8).
Hence we need only verify that
1) Every “open sphere”
Q.= {/:p(/,0) <&}

contains the intersection of S* with some weak neighborhood of
zero in E*;

2) Every weak neighborhood of zero in E* contains the intersection
of S with some Q..
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Let N be such that 2~V < ¢/2, and consider the weak neighborhood of
zero

U=Us. s = {f: ol <5 (] < £}

Then f€ §* N U implies
N

o(f, 0) = 327" (f; x,)] +7§+12-" 1> %)

n=1
c N ©
ST 227" 3 27T"<,
2 n=1 n=N+1
and hence S* N U < Q,. This proves 1).
To prove 2), this time let

Vs 8 {fl(f,)ﬁ)] < 83 e ey I(f’ym)l < 8}

be any weak neighborhood of zero in E*, where it can clearly be assumed
that [yl < 1,..., [yl <1. Since {x;,...,x,,...} is everywhere
dense in S, there are indices n,, . . . , i, such that

.....

3
"ylc_xnk"<£ (k=1,...,m).

Let
N =max{n,,...,n,}, gE=—".
Then f€ $* N Q, implies
22 (f Xl <

and hence

I(fs xa)l <27,
in particular

o7

(s o] < 2% < 2% =2,

N

Therefore f € S* N Q, implies
i 3
Iyl < 1 %adl + (s e — X1 < 5+ WA Y — X I <3,

sothat S* N Q, < U. ||

We can now drop the word “countably’” in Corollaries 1 and 2:

COoROLLARY 1", Every bounded set in the space E* conjugate to a separ-
able normed linear space E is relatively compact in the weak* topology.
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Proof. Use Theorem 5 and the fact that compactness and countable
compactness are equivalent concepts in a metric space (see Sec. 11.2.). i

COROLLARY 2. A subset of the space E* conjugate to a separable
Banach space E is bounded if and only if it is relatively compact in the weak *

topology.
Proof. Identical with that of Corollary 1’.
Finally we prove

THEOREM 6. Every closed sphere in the space (E*, b) conjugate to a
separable normed linear space E is compact in the weak* topology.

Proof. Every closed sphere in the space (E*, b) is closed in the weak*
topology. In fact, since a shift in E* carries every closed set (in the
weak* topology) into another closed set, we need only prove the assertion
for every sphere of the form

S, ={f1fl < )

Suppose f, ¢ S,. Then, by the definition of the norm of the functional
/o, there is an element x € E such that | x| = 1 and

filx)=a>c

U={ff(x)> ¥+ o)}

is a weak* neighborhood of f; containing no elements of S,. Therefore
S, is closed in the weak* topology, and hence compact in the weak*

topology, by Corollary 1". ||

But then the set

Remark. Theorem 6 is a special case of the following more general
theorem, which will not be proved here: Every bounded subset of the space
(E*, b) conjugate to a locally convex topological linear space E is relatively
compact in the weak* topology.

Problem 1. Given a topological linear space E, suppose E has sufficiently
many continuous linear functionals. Prove that E is a Hausdorff space, when
equipped with the weak topology.

Problem 2. Let {x,} be a sequence of elements in a Hilbert space H such
that

1) {x,} converges weakly to an element x € H;
2) [x,ll — llx|l as n— co.

Prove that {x,} converges strongly to x, i.e., [|x, — x|| >0 asn — o,
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Problem 3. Prove that the conclusion of the preceding problem remains
valid if the condition 2) is replaced by either of the following conditions:

2 Ix,l < llx] for all n;
2" Tim |lx, ) < [x[l.

Problem 4. Let H be a (separable) Hilbert space and M a bounded subset
of H. Prove that the topology in M induced by the weak topology in H can
be specified by a metric.

Problem 5. Prove that every closed convex subset of a Hilbert space H
is closed in the weak topology (so that, in particular, every closed linear
subspace of H is weakly closed). Give an example of a closed set in H which
is not weakly closed.

Problem 6. Show that the two conditions in Example 3, p. 199 are
sufficient as well as necessary for weak convergence of a sequence {x,(f)} in
Cla,5) Give an example of a weakly convergent sequence in C, ,; which is
not strongly convergent.

[a,b]

21. Generalized Functions

21.1. Preliminary remarks. The degree of generality attaching to the
notion of “function” varies from problem to problem. Some problems
involve continuous functions, others involve functions differentiable one or
more times, and so on. However, there are a number of situations in which
the classical notion of a function turns out to be inadequate, even when
understood in the most general sense (i.e., as an arbitrary rule f assigning a
number f(x) to each element x in the domain of definition of f). Here are
two such cases:

1) A linear mass distribution can be conveniently characterized by giving
the density of the distribution. However, no “ordinary” function can
specify the density corresponding to one or more points with positive
mass.

2) In many problems, situations arise in which various mathematical
operations cannot be carried out. For example, a function with no
derivative (at certain, possibly all, points) cannot be differentiated if
the derivative is interpreted in the usual way, as an “‘ordinary”
function. Of course, such difficulties can be avoided without relin-
quishing classical definitions, by suitably restricting the class of
“admissible functions,” for example, by considering only analytic
functions. However, restricting the class of admissible functions in
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this way is often quite undesirable. Fortunately, it turns out that
difficulties of this kind can be overcome, and just as successfully at
that, by enlarging (rather than restricting) the class of admissible
functions, i.e., by introducing the notion of a “generalized function,”
not encountered in classical analysis. In doing so, a key role will be
played by the concept of a conjugate space, considered earlier in this
chapter.

Remark. It cannot be emphasized too strongly that the introduction of
generalized functions is motivated by the need to solve perfectly concrete
problems of analysis, and not merely by a desire to see how far the notion
of function can be pushed.

Before going into details, we indicate the basic idea behind the theory
of generalized functions. Let f be a fixed function on the real line, integrable
on every finite interval, and let ¢ be any continuous function vanishing outside
some finite interval (such a function ¢ is said to be finite!*). Suppose each
¢ is assigned the number

(o) =[" () dx, )

involving the given function f, where the integration is in effect only over a
finite interval, because of the finiteness of ¢. In other words, the function
f can be regarded as a functional (a linear functional, because of the basic
properties of the integral) defined on some space K of finite functions.
However, there are many other linear functionals on K besides functionals
of the form (1). For example, by assigning each function ¢ its value at the
point x = 0, we get a linear functional which cannot be represented in the
form (1). In this sense, the functions f can be regarded as part of a much
larger set, namely the set of all possible linear functionals on K. The space
K of “test functions” ¢ can be chosen in various ways. For example, K
might consist of all continuous finite functions, as above. However, as will
soon be apparent, it makes sense to require the test functions 1o satisfy rather
stringent smoothness conditions (besides being continuous and finite).

21.2. The test space and test functions. Generalized functions. Turning
now to details, let K be the set of all finite functions ¢ on (—c0,00) with
continuous derivatives of all orders (equivalently, the set of all infinitely
differentiable functions), where every function ¢ € K, being finite, vanishes
outside some interval depending on the choice of ¢. Clearly K is a linear

2 Do not confuse the notion of a finite function (which vanishes outside some finite
interval) with the notion of a bounded function (whose range is contained in some finite
interval). Finite functions are often called “‘functions of finite (or compact) support.”
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space, when equipped with the usual operations of addition of functions and
multiplication of functions by numbers. Although the space K is not
normable, there is a natural way of introducing the notion of convergence in K:

DEFINITION 1. A sequence {¢,} of functions in K is said to converge to
a function ¢ € K if
1) There exists an interval outside which all the functions ¢, vanish;
2) The sequence {9} of derivatives of order k converges uniformly
on this interval to ¢'® for every k =0,1,2,... .13

The linear space K equipped with this notion of convergence is called the
test space (or fundamental space), and the functions in K are called test
Sunctions (or fundamental functions).

DEFINITION 2. Every continuous linear functional T(p) on the test
space K is called a generalized function on (— o, «), where continuity of
T() means that ¢, — ¢ in K implies T(¢,) — T(¢p).

Let f(x) be a locally integrable function, i.e., a function integrable on
every finite interval. Then f(x) generates a generalized function via the
expression

(o) = (/s 9) = [* f)e(x) dx, )

which is clearly a continuous linear functional on K. Generalized functions
of this type will be called regular, and all other generalized functions, i.e.,
those not representable in the form (2), will be called singular. The following
are all examples of singular generalized functions:

Example 1. The “delta function”
T(¢) = (0) 3

is a continuous linear functional on K, i.e., a generalized function in the
sense of Definition 2. This functional can be written in the form

T(e) = [ 59 dx, @

where 3(x) is a “fictitious’ function,! equal to zero everywhere except at
x = 0 and such that

[ 3G dx =1
—w
13 As always, q);:)) = ¢, ¢ = .

14 The term “‘delta function” will be applied to both the generalized function 7'(p) and
the fictitious function 3(x) generating T(¢) via the representation (4).
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(these properties are of course paradoxical), since then we have, purely
formally,

T(9) = [ 80)0(x) dx = 9(0) [ 5(x) dx = 9(0).

The advantage of regarding the delta function as a functional on the test
space K rather than on the space Cy,,, as in Example 3, p. 124 will soon
be apparent.

Example 2. Generalizing (3) and (4), we can write the functional

; T(9) = ¢(a) (3"
in the form

T(p) = [7 80x — @)o(x) dx, @)

in terms of the “shifted delta function” 3(x — a).

21.3. Operations on generalized functions. Addition of generalized func-
tions and multiplication of generalized functions by numbers are defined
in the same way as for linear functionals in general, i.e., by the obvious
analogue of Definition 1, p. 183 (with ¢ and K playing the roles of x and E).
In the case of regular generalized functions, these are just the operations
associated with the corresponding operations for “ordinary” functions. More
exactly, if

o) = [ e dx,  Te) = [ gx)o(x) dx,
where f and g are locally integrable and ¢ € KX, then clearly
(T; + T)(e) = Ti(9) + T,(9) = Try(9)

(T ) () = aT,(9) = T,((9)

and

for any number «.

DEFINITION 3. A sequence of generalized functions {T,} is said to con-
verge to a generalized function T if T,(¢) — T(9p) for every ¢ € K. The
space of generalized functions equipped with this notion of convergence
is denoted by K*.

Remark. In other words, convergence of generalized functions is just
weak* convergence of continuous linear functionals on K.

We will often denote a generalized function by the symbol f, as if a
representation of the form

(o) =[" f)ex) dx 5)
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existed, even in the case where the generalized function is singular. Let f be
a regular generalized function, and let « = «(x) be an infinitely differentiable
“ordinary” function. Then (5) implies

@f, o) =] @)/ ()e() dx
= f:o fxa(x)p(x) dx = (f, x9p),

where ag obviously belongs to K. Carrying this over to the singular case,
we get

DEFINITION 4. The product of of an infinitely differentiable function «
and a generalized function f is the functional defined by the formula

@f, @) = (f, 29). (6)

Remark. 1t follows from (6) that the functional «f'is linear and continuous,
and hence itself a generalized function.

Again let T be a regular generalized function of the form

(@) =[" f(x)e() dx, )

and suppose the derivative f’ exists and is locally integrable. Then it is
natural to define the derivative of T as the functional

Loy =J° reem ax. ™

Integrating (7) by parts and using the fact that every test function ¢ vanishes
outside some finite interval, we find at once that

T =—J" 10veax ®

thereby obtaining an expression for dT/dx which does not involve the deri-
vative of f. Carrying this over to the singular case, we get

DEFINITION 5. The derivative dT|dx of a generalized function T is the
functional defined by the formula

d
S@ =T ©)

Remark 1. The functional (9) is obviously linear and continuous, and
hence itself a generalized function. Second, third and higher-order derivatives
are defined in the same way.
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Remark 2. If a generalized function is denoted by the symbol f; as in (6),
then its derivative is denoted by f’, and (9) takes the form

(o) =—0h9) ®)

It is an immediate consequence of Definition 5 that

1) Every generalized function has derivatives of all orders;

2) If a sequence of generalized functions {f,} converges to a generalized
function f (in the sense of Definition 3), then the sequence of deri-
vatives {f,} converges to the derivative /' of the limit function.

Example 1. If f is a regular generalized function whose derivative exists
and is locally integrable (in particular, continuous or piecewise continuous),
then the derivative of f'as a generalized function coincides with its derivative
in the ordinary sense. In fact, integrating (8) by parts, we get back (7).

Example 2. As in Example 1, p. 208, consider the delta function

T() = [ 3(x)0(x) dx.
It follows from Definition 5 that
aT o , ,
@) = =309 dr = —¢ .

Example 3. Consider the “step function”

0 if x<0,
S ={ (10

1 if x>0,
defining the linear functional

(o) = |7 fx)e() dx = [ o(x) dx.
It follows from Definition § that
dT o N
@ == ( dx = 40

since ¢ vanishes at infinity. Hence the derivative of (10) is just the delta
function 3(x).

21.4. Differential equations and generalized functions. The development
of the theory of generalized functions was to a large extent motivated by

* Equivalently, every convergent series of generalized functions can be differentiated
term by term any number of times.
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problems involving differential equations, particularly partial differential
equations. We now discuss a few simple ideas concerning generalized
functions and ordinary differential equations. The application of generalized
functions to partial differential equations is a subject lying beyond the scope
of this book.1

LEMMA 1. A test function @, can be represented as the derivative of
another test function ¢, if and only if

f_wm%(x) dx =0. (11)

Proof. If 4(x) = @,(x), where o, is a test function, then

[2 e dx = (%) li,= 0.

Conversely,
o) = [ ey dr

is an infinitely differentiable function, with derivative ¢,(x), and in fact
a finite function if (11) holds, since then ¢, and ¢; vanish outside the
same interval. J}

LEMMA 2. Let ¢, be a fixed test function such that

[2 ey dx=1. (12)
Then an arbitrary test function ¢ can be represented in the form

¢ = Po + CP1,

where ¢ is a constant and @, is a test function which is the derivative of
another test function.

Proof. Let

¢= f_i‘P(x) dx, 0o(X) = ¢(x) — @1(X)f_°:° o(x) dx.
Then

[Z em ax=o,

and the proof follows from Lemma 1. |}

16 See e.g., A. Friedman, Generalized Functions and Partial Differential Equations,
Prentice-Hall, Inc., Englewood Cliffs, N.J. (1963). A key role in the development of the
theory of generalized functions was played by the pioneer work of L. Schwartz, Théorie
des Distributions, Hermann et Cie., Paris, Volume 1 (1957), Volume 2 (1959).
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THEOREM 1. Every solution of the differential equation
y =0 (13)
(in the space K* of generalized functions) is a constant.
Proof. Equation (13) means that
0 =0, —¢)=0 (14

for every ¢ € K. This determines the value of the functional

o= f_wwy@(x) dx

for every function in the space K’ < K of all test functions which are
derivatives of other test functions. In fact,

> 90 =0

for every ¢, € K'. Let ¢ be an arbitrary test function. By Lemma 2,
¢ = @o + ¢y, where ¢, € K" and ¢, is a fixed test function satisfying
the condition (12). We are free to give (y, ¢,) any value at all, without
violating (14). Let

(¥, ¢1) = a = const.
Then

0> @) = (s Po + ¢ = (> Po) + (¥, ¢1) = ac = const,
and moreover y satisfies the differential equation (13). In fact, ¢ € K
implies — ¢’ € K" and hence
0 =0 —¢)=0 1

CoROLLARY. If two generalized functions f and g have the same deriva-
tive, then f = g -+ const.

Proof. Obvious, since (f —g)’ =0. |

THEOREM 2. Given any generalized function f, there is another
generalized function y satisfying the differential equation

Y =f: (15)

Proof. Any generalized function satisfying (15) is called an anti-
derivative of f. Equation (15) means that

v 9 =0 - == (£ [ s0d) (16)

for every ¢ € K. This determines the value of the functional (y, ¢) for
every function in the space K’ < K of all test functions which are
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derivatives of other test functions. In fact,

s 90) = (f, —J7 at) dt)

for every @, € K. Let ¢ be an arbitrary test function. By Lemma 2,
¢ = @, + ¢, where ¢, € K’ and ¢, is a fixed test function satisfving
(12). We are free to give (y, ¢,) any value at all, without violating (16).
Let

(y, ¢1) = & = const.

Then y satisfies the differential equation (15). In fact, ¢ € K implies
—¢’ € K’ and hence

0,9 =0 —¢)= (ﬁ ffwcp’(t) dt) =he |

COROLLARY. Any two antiderivatives of a generalized function f differ
only by a constant.

Proof. Obvious by construction or from the corollary to Theorem

1.1

21.5. Further developments. We now sketch some of the many extensions
and modifications of the notion of generalized functions.

a) Generalized functions of several variables. Let K" be the set of all
functions ¢(xy, ..., x,) of n variables with partial derivatives of all orders
with respect to all arguments, such that every ¢ € K" vanishes outside some
parallelepiped

a<x,<b, (i=1,...,n) 17
in n-space. Then K™ is a linear space, with addition of functions and multi-
plication of functions by numbers defined in the usual way. We introduce

convergence in K" by the natural generalization of Definition 1, i.e., a
sequence {¢,} of functions in K" is said to converge to a function ¢ € K™ if

1) There exists a parallelepiped (17) outside which all the functions ¢,
vanish;
2) The sequence of partial derivatives

0" @y <
{ax:1~ : ~ax:"} (z T )

converges uniformly on this parallelepiped to the partial derivative
"¢
Oxyte - Oxon
forallr, ey, ..., a,
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Every continuous linear functional on K is then called a generalized function
of n variables, and moreover every “‘ordinary” function f(x,, ..., x,) of n
variables integrable on every parallelepiped can be regarded as a generalized
function, in fact the one giving rise to the functional

@ = [ f)o(x) dx,
where
X = (X105 Xn), dx =dx, - - dx,

and the integral is over all of n-space. Convergence of generalized functions
is defined by the obvious analogue of Definition 3, while partial derivatives
of generalized functions are defined by the formula

It is clear that every generalized function of n variables has partial derivatives
of all orders.

b) Complex generalized functions. So far we have only considered real
generalized functions. Suppose the test functions are now allowed to be
complex-valued, but still finite and infinitely differentiable. Then every
continuous linear functional on the corresponding test space K is called a
complex generalized function. If (f, ¢) is such a functional, then

(f «p) = a(f, 9).

We can also consider conjugate-linear functionals on K, satisfying the
condition (cf. p. 123)
(s 29) = a(f, ¢),

where the overbar denotes the complex conjugate. If f is an “ordinary”
complex-valued function on the line, there are two natural ways of associating
linear functionals with f, i.e.,

o =[" fx)0() dx,

(s 9o = [ F@e(x) dx,

and two natural ways of associating conjugate-linear functionals with f:
s s = [ F()90x) dx,

(s @ = [ TCI90) d.
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Each of these four choices corresponds to a possible way of embedding the
space of “ordinary” functions in the space of generalized functions. Opera-
tions on complex generalized functions are defined by analogy with the real
case.

c) Generalized functions on the circle. Sometimes it is convenient to
consider generalized functions defined on a bounded set. As a simple example,
consider generalized functions on a circle C, choosing the test space K¢ to
be the set of all infinitely differentiable functions on C, equipped with the
usual operations of addition of functions and multiplication of functions by
numbers. (Note that the test functions are now automatically finite, since C
is bounded.) Then every continuous linear functional on K, is called a
generalized function on the circle. Every “ordinary” function on C can be
regarded as a periodic function on the line. In the same way, we regard
every generalized function on the circle as a periodic generalized function,
where a generalized function f'is said to be periodic, with period a, if

(f(x), ¢(x — @) = (f(x), 9(x))
for every test function ¢ € K.

d) Other test spaces. There are many possible choices of the test space
other than the space of infinitely differentiable finite functions. For example,
we can choose the test space to be the somewhat larger space S, of all
infinitely differentiable functions which, together with all their derivatives,
approach zero faster than any power of 1/[x|. More exactly, a function ¢
belongs to S, if and only if, given any p,q =0, 1,2, . .. , there is a constant
C,, (depending on p, g and ¢) such that?’

[xPp@(x)] < Cp (—oo <x < o)
A sequence {¢,} of functions in S, is said to converge to a function ¢ € S if

1) The sequence {¢'?'} converges uniformly to ¢@ on every finite interval;
2) The constants C,, in the inequalities

X920 < Cpy
can be chosen independently of n.

There are somewhat fewer continuous linear functionals on S than on K.
For example, the function f(x) = e** corresponds to a continuous linear
functional (f, @) on K but not on S,.

Remark. As the theory of generalized functions has evolved, it has
become apparent that there is no need to commit oneself once and for all
to any definite choice of test space. Rather it is best to choose a test space

17 As an exercise, verify that this is the same space S, as in Problem 12b, p. 172 .
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which is most suitable for solving the class of problems at hand. In general,
the smaller the test space, the greater the freedom in carrying out various
analytical operations (differentiation, passage to the limit, etc.) and the larger
the number of continuous linear functionals on the space (why?). However,
we must make sure not to make the test space too small, i.e., we must require
not only that the test functions be “sufficiently smooth’ but also that there be
“sufficiently many” of them (in the sense of Problem 9) to allow us to “tell
ordinary functions'® apart.”

Problem 1. In the test space K of all infinitely differentiable finite func-
tions, let 4, be the neighborhood base at zero consisting of all sets of the
form

Ugyoooopn = {229 €K, [@(X)] < ¥o(X), + -+, [9 (X)] < () for all x}

Yo
for some positive functions vy, . . . , v, continuous on (— «, ). Prove that
the topology generated in K by .4, leads to the same kind of convergence
in K as in Definition 1.

Comment. There are other topologies in K leading to the same conver-
gence.

Problem 2. Let K be the test space of all infinitely differentiable finite
functions, and let K, be the subspace of K consisting of all functions ¢ € K
vanishing outside the interval [—m, m]. We can make K, into a countably
normed space by setting

lell, = sup [¢®x)] (n=0,1,2,...)
S

(cf. Problem 12a, p. 171). Verify that the topology induced in K,, by the
system of norms |||, coincides with the topology induced in K,, by the
topology of Problem 1. Verify that the convergence in K,, induced in K,
by the norms |||, coincides with the convergence induced in K,, by the

convergence in Definition 1. Clearly K; <« Ky < --- < K, < ---, and
o0
K =UK,.
m=1

Show that a set @ < K is bounded with respect to the topology in X if and
only if there is an integer m such that Q is a bounded subset of the countably
normed space K,,.

Problem 3. Let K and K,, be the same as in Problem 2, and let T be a
linear functional on K. Prove that the following four conditions are

18 More exactly, regular generalized functions.
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equivalent:

a) T is continuous with respect to the topology of the space K;

b) T is bounded on every bounded subset Q < K;

c) If ¢,€K and ¢,—0, then T(¢,) — 0 (provided convergence of
sequences is defined as in Definition 1);

d) The restriction T,, of the functional T to the space K,, < K is a
continuous functional on K, foreverym =1,2,. ..

Problem 4. Let
o 1
T(9) = [ - o(x) dx (18)

for every ¢ in the test space K. Prove that T(¢) is a generalized function
if the integral is understood in the sense of the Cauchy principal value.
Hint. If ¢ vanishes outside the interval [a, b], write
© v @(x) — ¢(0 0
f 1({)(X)dx=jb‘p() CP()dx+fb‘P()dx.
—° X e x ¢ X
Problem 5. Prove that the delta function and its derivative are singular
generalized functions. Prove that the same is true of (18).

Problem 6. Prove that addition of two generalized functions and
multiplication of a generalized function by an infinitely differentiable
function « (in particular, a constant) are continuous operations in the sense
that f, —f, f,—f implies f, + f, —f+ f, of, > af. Prove that there
is no way of similarly defining a continnous product of two generalized
functions, unless the functions are regular, in which case the appropriate
definition is T}, = T;T, where

(o) = [* f@edx,  T(e) = [ g0e(x) dx,
To(@) = [ f0)8x)9(x) dx.

Problem 7. Let f be a piecewise continuous function on (— oo, o),
differentiable everywhere except at the points x;, X5, ..., X,, ..., where it
has jumps

fGat0) —fGn— 0 =h, (r=1,2,..).

Prove that the generalized derivative of f (i.e., the derivative of f regarded as
a generalized function) is the sum of its ordinary derivative (at the points
where it exists) and the generalized function

g(x) = é}h,ﬁ(x — x).

Comment. Note that (g, ¢) reduces to a finite sum for every test function ¢.
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Problem 8. Find the generalized derivative of the function of period 2w
equal to

“;x if 0<x<m,
J(x)=10 if x=0, (19)
—F;x if —m<x<0

in the interval [—m, =].

Ans. f'((x)=—%+ = E d(x — 2nm).

n=—c

Comment. The function (19) is the sum of the trigonometric series

2 sin nx

(20)

n=1 R
Differentiating (20) term by term, we get the divergent series

[

> cos nx.
n=1

Hence the concept of a generalized function allows us to ascribe a definite
meaning to a series that diverges in the ordinary sense. The same can be
done for many divergent integrals (like those encountered in quantum field
theory and other branches of theoretical physics).

Problem 9. Prove that the test space K of all infinitely differentiable finite
functions has “sufficiently many” functions in the sense that, given any two
distinct continuous functions f; and f;, there exists a function ¢ € K such that

[7 A0 dx # [ fux)e(x) dx.

Hint. Since f(x) = fi(x) — fa(x) £ 0, there is a point x, such that
f(x¢) 7~ 0, and hence an interval [a, B] in which f(x) does not change sign.
Let

Ve =1/(z-B)* if «<x<B,
Nﬂ={

0 otherwise.
Then ¢ € K and
[2 reem dx = [ feore() dx .

Comment. This result can be extended to functions more general than
continuous functions, with the help of the concept of the Lebesgue integral
(introduced in Sec. 29).
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Probiem 10. Consider the homogeneous system of n linear differential
equations

Vi = éla,k<x)yk G=1,....n) @1)

innunknowns y,, . . . , y,, where the a;, are infinitely differentiable functions.
Prove that every solution of (21) in the class K* of generalized functions is a
set of “ordinary” (in fact, infinitely differentiable) functions.

Comment. This can be expressed by saying that every “generalized
solution” of (21) is also a “classical solution.”

Problem 11. Consider the nonhomogeneous system of n linear differential
equations

Vi =k§::1‘7z'k(x)J’k + fi(x) (i=1...,n), (22)

where the a;; are infinitely differentiable functions and the f; are generalized
functions. Prove that (22) has a generalized solution, which is unique to
within a solution of the homogeneous system (21). What happens if the f;
are “‘ordinary” functions?

Probiem 12. Interpret
f(x) = i COS nX
as a periodic generalized function. "
Hint. Recall Problem 8.
Problem 13. Show that S becomes a countably normed space when
equipped with the system of norms
lol, =%  sup (1 + xP)e”(x)l.

PHg=n —o<zx<o00
0<i<»p
0<5<q
Prove that convergence of sequences in this countably normed space is

equivalent to convergence of sequences in S, as defined on p. 216.
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LINEAR OPERATORS

22. Basic Concepts

22.1. Definitions and examples. Given two topological linear spaces E and
E,, any mapping
y=Ax (xeE,y€E)

of a subset of E (possibly E itself) into E, is called an operator (from E to
E;). The operator 4 is said to be linear if

A(axy + Bxg) = adx, + BAx,.

Let D, be the set of all x € E for which 4 is defined. Then D is called the
domain (of definition) of the operator 4. Although in general D, need not
equal E, we will always assume that D is a linear subspace of E, i.e., that
x,y € D, implies ax +- By € D, for all « and §.

The operator 4 is said to be continuous at the point x, € D if, given any
neighborhood ¥ of the point y, = AX,, there is a neighborhood U of the point
xo such that Ax € ¥V for all xe U N D,. We say that the operator 4 is
continuous if it is continuous at every point x, € D 4.

Remark I. Suppose E and E, are normed linear spaces. Then it is easy
to see that A is continuous if and only if, given any € > 0, thereisa 8 > 0
such that
[x" — x"]] <3 (x', x" € Dy)
implies
[Ax" — Ax"|| < e.
221
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Remark 2. In the case where E, is the real line, the concept of a linear
operator reduces to that of a linear functional, and the definition of continuity
reduces to that given on p. 175. As we will see below, much of the theory
of linear functionals carries over in a straightforward way to the case of
linear operators.

Example 1. Given a topological linear space E, let Ix = x for all x € E.
Then I'is a continuous linear operator, called the identity (or unit) operator,
carrying each element of E into itself.

Example 2. Let E and E; be arbitrary topological linear spaces, and let
Ox = 0 for all x € E, where 0 is the zero element of the space E,. Then O
is a continuous linear operator, called the zero operator.

Example 3. Suppose A is a linear operator mapping the m-dimensional
space R™ with basis e,, . .., e, into the n-dimensional space R™ with basis

’

e,...e, If xisan arbitrary vector in R™, then

m
x = x;e

and hence, by the linearity of 4, =
y = Ax = x,Ae,.
j=1

Thus the operator 4 is completely determined once we know the vectors in
R” into which A4 carries the basis vectors ey, ..., e,. Suppose we expand
each vector Ae, with respect to the basis e, . . . , e,, obtaining

s Cpo

n
Ae, =3 ae;.
i=1
Then
n m m n
y= Z vy =2 x;Ae; =3 x; 3 ae
i=1 j=1 J=1 =1
and hence
m
Vi =2 ai;X;
j=1
i.e., the operator 4 is completely determined by the matrix | a;|| made up of
the coefficients a;;.

Example 4. Let H, be any subspace of a Hilbert space H, and let
H, = H o H, be the orthogonal complement of H;, so that an arbitrary
element 4 € H has a unique representation of the form

h=h + h, (hy € Hy, hy € Hy)
(see Theorem 14, p. 158). Let
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Then P is a continuous linear operator, called a projection operator. Inter-
preted geometrically, P “projects the whole space H onto the subspace H;.”

22.2. Continuity and boundedness. A linear operator mapping E into E,
is said to be bounded if it maps every bounded subset of E into a bounded
subset of E;. The operator analogue of Theorem 3, p. 176 for functionals is
given by

THEOREM 1. A necessary condition for a linear operator A to be con-
tinuous on a topological linear space E is that A be bounded. The condition
is also sufficient if E satisfies the first axiom of countability.

Proof. To prove the necessity, suppose 4 is continuous and suppose
there is a bounded set M in E; whose image AM = {y:y = Ax, x € M}
is unbounded in E,;. Then there is a neighborhood ¥ of zero in E, such
that none of the sets

T (n=12..)
n

is contained in V. Hence there is a sequence {x,} of elements of M such
that none of the elements

1Ax,, (n=12,..)

n

belongs to V. But then the sequence

=

converges to zero in E (recall Problem 6b, p. 170), while the sequence

e

fails to converge to zero in E,, contrary to the assumption that A4 is
continuous.
As for the sufficiency, let {U,} be a countable neighborhood base at
zero in E such that
UID U2: e e D UnD

If A fails to be continuous on E, then, by the operator analogue of
Theorem 1, p. 175,  thereis a neighborhood ¥ of zeroin E, and a sequence
{x,} in E such that

xne-l-U,,, Ax, ¢V (n=1,2,..).
n

1 As an exercise, state and prove this analogue.
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The sequence {nx,} is bounded in E (and even converges to zero), while
the sequence {rA4x,} is unbounded in E,, since it is contained in none
of the sets nV. But then A fails to be bounded on the bounded set
{1, X, . .. , X,, . . .}, contrary to hypothesis. [

Next we consider the operator analogues of Definition 2 and Theorem 4,
p- 177. Suppose E and E, are both normed linear spaces, so that in particular,
E satisfies the first axiom of countability. Then, by Theorem 1, a linear
operator A mapping E into E, is continuous if and only if it is bounded.
But by a bounded set in a normed linear space we mean a set contained in
some closed sphere ||x|| < C. Therefore a linear operator 4 on.a normed
linear space is bounded (and hence continuous) if and only if it is bounded
on every closed sphere | x| < C, or equivalently on the closed unit sphere
x| < 1, because of the linearity of 4. In other words, 4 is bounded if

and only if the number

4]l = sup [l Ax]| M
o lzll <1
is finite.

DEFINITION. Given a bounded linear operator mapping a normed linear
space E into another normed linear space E,, the number (1), equal to the
least upper bound of || Ax|| on the closed unit sphere ||x|| < 1, is called the
norm of A.

THEOREM 2. The norm | A| has the following two properties:

A
141 = sup L4xL @
£#0 ||x||
lAx]| < |40 Ix] for all x € E. 3

Proof. Clearly,
4] = sup [|Ax|] = sup [Ax]|

lz|l<1 Hell=1
(why 7). But the set of all vectors in E of norm 1 coincides with the set of
all vectors

o (x€E, x+#0), 4)
(B
and hence
41 = sup 1 4x] = sup ( X ) laxl
flxM w0 ||x|]

which proves (2). Moreover, since the vectors (4) all have norm 1, it
follows from (1) that
lAx|l

A(u%n) Il

which implies (3) for x 7 0. The validity of (3) for x = 0is obvious. [

< [14] (x€E,x#0),
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22.3. Sums and products of operators. Let A and B be two operators from
one topological linear space E to another topological linear space E;. Then
by the sum of A and B, denoted by 4 4 B, we mean the operator assigning

the element y=Ax + Bx€E,

to each x € E. The domain D of the sum C = A + B is just the intersection
D4 N Dy of the domains of 4 and B. It is clear that C is linear if A and B
are linear, and continuous if 4 and B are continuous. Let E and E, be normed
linear spaces, and suppose 4 and B are bounded operators. ThenC =4 + B
is also bounded, with norm

ICl < 141 + 1B,

since, by Theorem 2 and Problem 10,
ICx|| = | Ax + Bx| < l|4x]| + [Bx|l < (14§ + I B]) I

for every x € E.

Next, given three topological linear spaces E, E, and E,, let 4 be an
operator from E to E, and B an operator from E, to E,. Then by the product
of 4 and B, denoted by BA (in that order), we mean the operator assigning

the element z = B(Ax) € E,

to each x € E. The domain D of the product C = BA consists of those
x € D, for which Ax € Dg. Again it is clear that C is linear if 4 and B are
linear, and continuous if 4 and B are continuous. Let E, E; and E, be normed
linear spaces, and suppose 4 and B are bounded operators. Then C = B4 is
also bounded, with norm
ICI < 4] 18I,
since
ICxll = I BAX)| < Bl 4]l < [IBI| 4] |x].

Remark 1. Sums and products of three or more operators are defined
in the natural way, e.g.,

CBA = C(BA) = (CB)A,
A+B+C=A+B+C)=A+B)+C.

Note that addition of operators is associative and commutative, while
multiplication of operators is associative but in general not commutative
(give an example where AB 7% BA).

Remark 2. By the product a4 of the operator 4 and the number « is
meant the operator assigning the element aAx to each x € E. Let #(E, E,)
be the set of all continuous linear operators mapping E into E;. Then Z(E, E,)
is clearly a linear space when equipped with the operations of addition of
operators and multiplication of operators by numbers.
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Problem 1. Prove that every linear operator on a finite-dimensional space
is automatically continuous (cf. Problem 2, p. 181).

Problem 2. Let A be a linear operator mapping m-space R™ into n-space
R™. Prove that the image of R™, i.e., the set {y:y = 4x, x € R}, has di-
mension no greater than m.

Problem 3. Let C, ., be the linear space of functions continuous on the
interval a < x < b, equipped with the norm

I£1 = max | f(x)].

a<a<h

Let K(x, y) be a fixed function of two variables, continuous on the square
a<x<b,a<y<b,andlet 4 be the operator defined by

8(0) = 4F(x) = | 'K(x, )1 (3) dy.

Prove that 4 is a continuous linear operator mapping Ci, , into itself.

Problem 4. Let C[2a "

equipped with the norm

be the space of functions continuous on [a, b],

Il = \/ [ o) dx,

and let 4 be the same as in the prcceding problem. Prove that 4 is a con-
tinuous linear operator mapping Cf, ,;into itself.

Problem 5. Given a fixed function ¢(x) continuous on [a, b], let 4 be the
mapping defined by

g(x) = Af (x) = 9(x) f(x).

Prove that 4 is a continuous linear operator on both spaces C(, ;) and Cg, ,;,
mapping each space into itself.

Problem 6. Let C{M,, be the set of all continuously differentiable functions
on [a, b], and let D be the differentiation operator, defined by

Df (x) = f'(x)
for all f € C{),. Prove that

a) C [a ), is a linear space;
b) D is a linear operator mapping C{3),; onto Cp, 43
¢) D is not continuous on Cp, 41
d) D is continuous with respect to the norm

£, = max | f()] + max | f'(x)|.

ase<h a<e<d
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Problem 7. Let K, ., be the space of infinitely differentiable functions
on [a, b], equipped with the topology generated by the countable system of
norms

Iflla = sup 1f® )]
a<z<b
0<k<n

(cf. Problem 12a, p. 171). Prove that the differentiation operator D is a
continuous linear operator on K, ;;, mapping K, ;) onto itself.

Problem 8. Interpret the differentiation operator as a continuous linear
operator on the space of all generalized functions.

Hint. Take continuity to mean that.if a sequence of generalized functions
{fa(x)} converges to a generalized function f(x), then {f,/ (x)} converges to

S'(x).
Problem 9. Prove that

a) The operators in Problems 3-7 and Examples 1-4, p. 222 are all
bounded;

b) A linear operator on a countably normed space is continuous if and
only if it is bounded.

Problem 10. Let A be a bounded linear operator mapping a normed
linear space E into another normed linear space E,. Suppose | 4] is defined
as the smallest number C such that |4f|| < C | f] for all x € E. Prove that
Al is the same number as in the definition on p. 224. Particularize this to
the case of a bounded linear functional on E.

Problem 11. Let E and E, be normed linear spaces, and let £ (E, E,) be
the same as in Remark 2 above. Prove that

a) £ (E, E,) is a normed linear space;
b) If E, is complete, so is Z(E, E);
c) If E, is complete, 4, € #(E, E;) and

e
2 14l < oo,
k=1
then the series
=<}
2 A
k=1

converges to an operator 4 € #(E, E,) and

2 A
k=1

14] = <§1 14,1
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23. Inverse and Adjoint Operators

23.1. The inverse operator. Invertibility. Given two topological linear
spaces Eand E,, let 4 be an operator from E to E;, with domain D, < E and
range R, ={y:y = Ax,x e D,}. Then A is said to be invertible if the
equation

Ax =y D

has a unique solution for every y € R,. If A is invertible, we can associate
the unique solution of (1) with each y € R,. This gives an operator, with
domain R4, called the inverse of A4 and denoted by A1,

THEOREM 1. The inverse A= of a linear operator A is itself linear.

Proof. If
A%y =y, Axy =y,
then
A7y = x,, A7tyy = X,
and hence

a A7y 4w A7y = oyXy + opXs. )]

On the other hand,
A(uyxy + o) = o1yy + 5P,

by the linearity of 4, and hence
Ao yy + %oys) = %y + aaX,. 3
Comparing (2) and (3), we get
Aoy + wys) = 0 A7y + A7y, |

LemMa. If M is an everywhere dense subset of a normed linear space E,
then every nonzero element y € E is the sum of a series of the form
y=ntyt-otyetoo,
where y, € M and

Iyl < 20— 10,

Proof. Since M is everywhere dense in E, given any y € E, there is an
element y, € M such that

_ Iyl
ly —»l < 5



SEC. 23 INVERSE AND ADJOINT OPERATORS 229

By the same token, there are elements yg, y3, ..., V4, . . . such that

ly —»n—yl<

..................

..................

Then

converges to y. Moreover =
Inll=1ly,—y+yl <ly:—yl+ Iyl < ”2L”+ Iyl = %
el =y + yr =y +y =yl
<ly—=yi—yall + 1y =l < lﬁl+%ﬂ=§%,
and in general,
el =M+ ymat +n—y+y—y—""—yeal
<ly=—n—=wnl+ly—yi—" =yl
M+ﬂy_ll=3llyll 1

26 okt ok
THEOREM 2 (Banach). Let A be an invertible bounded linear operator

mapping a Banach space E onto another Banach space E,. Then the
inverse operator A~ is itself bounded.

Proof. Let M, be the subset of E, consisting of all y € E, such that
47yl < K Iyl

Every element in E; belongs to some M,, i..,

El = U Mk‘
k=1
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By Baire’s theorem (Theorem 3, p. 61), at least one of the sets M,,
say M,, is dense in some (open) sphere S < E;. Choosing a point
Yo €S N M, we can find numbers « and f (« < B) such that S contains
the spherical layer

= {zia < |z — yoll < B,z €M),

Shifting P so that its center coincides with the origin, we get another
spherical layer Po. Some set M is dense in P,. Infact,ifze P N M,
then z — y, € Py and

1475z — yll < 147z + 147wl < n(lz]l + lIyol))
< n(llz — yoll + 2 [Iyol)

=nlz— yoll(l + i"—yi) <nlz— yoll(l + 2 "y°">

[z — yoll
. 4
where the quantity
= n(l 42 nyou)
x
is independent of z. Let
N=1+1]

(recall footnote 4, p. 8). Then, by (4), z — yo € My. Hence My is
dense in P,, since M, is dense in P.

Now, given any nonzero element y € E;, we can always find a number
A % Osuch that @ < |Ay| < B, i.e., such that Ay € P,. Since M is dense
in P,, there is a sequence {7}, 7, € My converging to Ay. Then {x,/A}
converges to y. Clearly, if v, € My, then w,/A € My for any A # 0.
Therefore My is dense in E; — {0} and hence in E, itself. It follows
from the lemma that y is the sum of a series of the form

y=n+y:+-"+y+-

where y, € My and

3|yl
2k

Iyell <

Consider the series
2 X (5)
=1

with terms x, = A~'y, € E, equal to the preimages of the elements
i € E;. Since
3yl

lxell = A7 yell < N lyell < N = o

b
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the series (5) converges to an element x € E, where

Ixl < Zlnd < 3N 1513, =38 Iyl

Since (5) is convergent and the operator 4 is continuous on E (being
bounded), we can apply 4 term by term to (5), obtaining

Ax=AX, + A%+ + A+ =ttt t+ =0,

which implies
x = A7y,
Moreover,
A7l = lIxIl < 3N |yl

for all y 5 0, and hence A~ is bounded. |

THEOREM 3. Let A, be an invertible bounded linear operator mapping
a Banach space E into another Banach space E,, and let AA be a bounded
linear operator mapping E into E, such that

1
451

A=Ag+ A4

1ad] <

(6

Then the operator

maps E onto E, and has a bounded inverse.

Proof. Let y be a fixed element of E,, and consider the mapping B of
the space E into itself defined by

Bx = Ay'y — A" AAx.

It follows from (6) that B is a contraction mapping. Hence, by Theorem
1, p. 66, B has a unique fixed point x such that

x = Bx = A’y — A;"'AAx. @)
But (7) implies
Ax = Apx + Adx = y.

Clearly, if Ax’ = y, then x’ is also a fixed point of B, and hence x’ = x.
Therefore, given any y € E;, the equation Ax = y has a unique solution
in E, i.e., the operator A is invertible with inverse 4. Moreover, 47*
is bounded, by Theorem 2. |

THEOREM 4. Let E be a Banach space, and let I be the identity operator
on E. Suppose A is a bounded linear operator mapping E into itself, such
that

4] < 1. ®)
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Then the operator (I — A)™ exists, is bounded and can be represented in
the form

(I — Ay =§0Ak. ©)

Proof. The existence and boundedness of (I — 4)™ follows from
Theorem 3 (and will also emerge in the course of the proof). It follows
from (8) that

Sia < S art <

But then, by the completeness of E, the sum of the series
>4
k=0
is a bounded linear operator (see Problem 1lc, p. 227). Given any n,
we have
U—AJA=FA4U—A)=1— 4"
k=0 k=0

Hence, taking the limit as # — o and bearing in mind that

4™ < [ 4)+*—0,
we get
(I—-IA =1,

k=0

which implies (9). §

23.2. The adjoint operator. Given two topological linear spaces E and
E,, let 4 be a continuous linear operator mapping E into E;, and let g be a
continuous linear functional on Ej, i.e., an element of the conjugate space
E}. Suppose we apply g to the element y = Ax, thereby obtaining a new
functional

fx) =gdx)  (x€E). (10)

Clearly, f is continuous and linear (why?), and hence an element of the
conjugate space E*. Thus (10) associates a functional fe E* with each
functional g € EY, i.e., (10) defines an operator mapping E} into E*. This
operator is called the adjoint of 4, and is denoted by 4*. Using the symmetric
notation (f, x) for the functional f(x), we can write (10) in the form

(8, 4%) = (f, %)-

(g, Ax) = (4*g, x). (11)

Equation (11) can be regarded as a concise definition of the adjoint of 4.

or
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Example. As in Example 3, p. 222, suppose 4 is a linear operator with
matrix ||a,;|| mapping m-space R™ into n-space R". Then the mappingy = Ax
can be written as a system of equations

m
Vs =zla”xj (i=1,...,n), (12)
=

while the functional f(x) can be written in the form

£ =3 fix

where f; = f(e,) in terms of a basis e;, . . . , e,, in R™, Since

n n m m n
f(x) = g(Ax) = Zlgi.Vi =2 2 80yX; = zlxj Elgiaij;
i= j= 1=

i=1j=1
we find that

n
fi= zlaﬁgi’
Fs

or
fo= zlaﬁgi (13)
j=

after interchanging the roles of the indices 7/ and j. But f = 4*g, and hence
comparing (12) and (13), we see that the matrix of the operator 4* is ||a,,|,
i.e., the transpose of the matrix of 4.

It follows at once from the definition of the adjoint of an operator that
1) A* is linear;

2) (A + B)* = A* + B¥;

3) (ad)* = aA4* for arbitrary complex o.

A somewhat less obvious property of the adjoint operator is given by

THEOREM 5. Let A be a bounded linear operator mapping a Banach
space E into another Banach space E,, and let A* be the adjoint of A.
Then A* is bounded and

4*] = 14]. (14)

Proof. By the properties of the norm of an operator, we have

I(4*g, )| = 1(g, 40)I < ligll 11 4] IxIl,
which implies
l4*gl < 141 lgls
and hence
I4*I < 4] (15)
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Suppose x € E, Ax # 0, and let
Ax

Yo = MEE]’

so that, in particular, [y,|| = 1. Let g be the functional such that

g(A\yo) =2

ontheset L < E; of all elements of the form Ay,. Thenclearly (g, y,) =1,
lgllon = 1. Using the Hahn-Banach theorem, we can extend g to a
functional on the whole space E, such that |g|| = 1 and

& yo) =1, le, (g Ax)=|4x].
Therefore

x| = (g, 4x) = [(4*g, ¥)| < [|A*gl x| < 1 4*[| gl Ixll = 14*] }x],

which implies
4l < l4*]. (16)

Comparing (15) and (16), we get (14). §

23.3. The adjoint operator in Hilbert space. Self-adjoint operators. Next
we consider the case where 4 is a bounded linear operator mapping a (real
or complex) Hilbert space H into itself. According to the corollary to
Theorem 2, p. 188, the mapping 7 assigning the linear functional

) = (x,)

to every y € H establishes an isomorphism between H and the conjugate
space H*.2 Let A* be the adjoint of the operator 4. Then clearly the
mapping 4* = v4*r is a bounded linear operator mapping H into itself,
such that

(Ax, y) = (x, ‘Z*y) amn

forall x, y € H. Moreover | 4*|| = | A||,since | 4*| = | 4] and the mappings
7 and v! are isometric.

We now establish the following convention: If H is a Hilbert space, then
by the adjoint of an operator 4 mapping H into H, we mean the operator
A* defined by (17). Note that A*, like 4, maps H into H. To keep the
notation simple, we will henceforth drop the tilde, writing 4* instead of
A*. Replacing A* by A* in (17), we get

(Ax,y) = (x, 4*y) anm)
for all x, y € H.

2 Or a “conjugate-linear isomorphism” in the case where H is complex (see Problem 6,
p. 194).
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Remark. It should be emphasized that this definition of 4* differs from
the definition of the adjoint of an operator 4 mapping an arbitrary Banach
space E into itself, in which case 4* is defined on the conjugate space E*
rather than on the space E itself. The context will always make it clear
whether 4* is the operator defined by (11) or the operator defined by (17°).

Let A be a bounded linear operator mapping a Hilbert space H into itself.
Then it makes sense to ask whether or not 4 = 4*, since 4 and A* are
defined on the same space. This leads to the following

DEFINITION. A bounded linear operator A mapping a Hilbert space H
into itself is said to be self-adjoint if A = A*, i.e., if

(4x,y) = (x, 4y)
forall x,ye H.

Remark. Everything said above continues to hold if we replace H by the
real n-space R" or complex n-space C".

23.4. The spectrum of an operator. The resolvent.. In the theory of linear
operators and their applications, a central role is played by the notion of
the “spectrum” of an operator.® Let 4 be a linear operator mapping a
topological linear space E into itself. Then a number 2 is called an eigenvalue
of 4 if the equation

Ax = Ax

has at least one nonzero solution, and every such solution x is called an
eigenvector of A (corresponding to the eigenvalue 2A). Suppose E is finite-
dimensional. Then the set of all eigenvalues of 4 is called the spectrum of
A, and all other values of A are said to be regular (points). In other words,
A is regular if and only if the operator 4 — Al is invertible. The operator
(4 — AI)™ is then automatically bounded, like every operator on a finite-
dimensional space (cf. Problem 1, p. 226). Thus there are just two possibilities
in the finite-dimensional case:

1) The equation Ax = Ax has a nonzero solution, i.e., A is an eigenvalue
of 4, so that the operator (4 — M)~ fails to exist;

2) The operator (4 — M)~ exists and is bounded, i.e., A is a regular
point.

However, in the case where E is infinite-dimensional, there is a third
possibility:

3) The operator (4 — M) exists (i.e., the equation 4x = Ax has no
nonzero solutions), but.is not bounded.

3 In talking about the spectrum of an operator, it will always be tacitly assumed that
the operator is defined on a complex space.
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To describe this more general situation, we introduce some new terminology
and make an important modification in the definition of the spectrum.
Given an operator 4 mapping a (complex) topological linear space E into

itself, the operator R = (4 — D)™ (18)

is called the resolvent of A. The values of A for which R, is defined for all
E and continuous are said to be regular (points) of A, and the set of all other
values of A is called the spectrum of A. The eigenvalues of 4 still belong to
the spectrum, since if (4 — A)x = 0 for some x 7 0, then (18) fails to exist.
The set of all these eigenvalues is now called the point spectrum, and the rest
of the spectrum is called the continuous spectrum. In other words, the con-
tinuous spectrum consists of all A for which (18) exists but fails to be
continuous. Thus there are now exactly three possibilities for any given value
of A:

1) A is a regular point;
2) A is an eigenvalue;
3) A is a point of the continuous spectrum.

The possibility of an operator having a continuous spectrum is a character-
istic feature of the theory of operators in infinite-dimensional spaces, dis-
tinguishing it from the finite-dimensional case.

THEOREM 6. Let A be a linear operator mapping a Banach space E
into itself. Then the set A of all regular points of A is open (equivalently,
the complement of A is closed).

Proof. If A is regular, the operator (4 — AJ)~* exists and is bounded.
Hence, for sufficiently small 3, the operator (4 — (A + 3)I)™* also exists
and is bounded, by Theorem 3. In other words, the point X 4 & is reg-
ular for sufficiently small 3. J§

THEOREM 7. If A is a bounded linear operator mapping a Banach space
E into itself and if |\ > ||All, then \ is a regular point. In other words,
the spectrum of A is contained in the disk of radius | A| with center at the
origin.

Proof. Obviously
A—AN = —)\(I —é),
A

and

_ 1 AV
Ri=(A—-N)"=—=(I-=) .
= ) )\( 7\)

If | Al <X, then |4/A| <1, and hence R, exists and is bounded, by
Theorem 4. |
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Example 1. In the space C = C, ,;, consider the operator 4 defined by
Ax(1) = p()x(),
where w.(7) is a fixed function continuous on [0, 1]. Then

(A — M)x(2) = (w(t) — Nx(1),

1
w(t) — A
Hence the spectrum of A consists of all A such that w(f) — A vanishes for
some ¢ in the interval [0, 1], i.e., the spectrum is the range of the function

().

Example 2. Suppose u(t) = ¢ in the preceding example. Then the spec-
trum is just the interval [0, 1]. On the other hand, there are obviously no
eigenvalues. Thus the operator 4 defined by

Ax(t) = 1x(¢)

and

A — )% = x(1).

is an example of an operator with a purely continuous spectrum.

Finally, for self-adjoint operators in a Hilbert space, we have the following
analogue of a well-known result for finite-dimensional Euclidean spaces
(proved in exactly the same way):

THEOREM 8. Let A be a self-adjoint operator mapping a (complex)
Hilbert space H into itself. Then all the eigenvalues of A are real, and two
eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof. 1f
Ax = \x (x £ 0),
then
Mx, x) = (dx, x) = (x, Ax) = (x, Ax) = i(x, x),

and hence A = A. Moreover, if

Ax =, Ay=pw (AF#p),
then
Mx, y) = (4%, p) = (x, 4) = (x, wy) = p(x, y) = w(x, y),

and hence
(X, J’) = 0,

i.e., the vectors x and y are orthogonal. J

Problem 1. Given two normed linear spaces E and E,, a linear operator
A from E to E;, with domain D, is said to be closed if x, € D, x, — x,
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Ax, —y implies x € D4, Ax = y. Prove that every bounded operator is
closed.

Problem 2. Let E and E, be normed linear spaces, with norms || and
Il-l, respectively. By the direct (or Cartesian) product of E and E,, denoted
by E x E;, we mean the set of all ordered pairs (x, ), x € E, y € E;. Prove
that E X E, is a normed linear space when equipped with the norm

G, = 1%l + [1yllx

(addition of elements and multiplication of elements by numbers being defined
in the obvious way). By the graph of a linear operator 4 from E to E; we
mean the subset of E x E, equal to

Gy ={(x,y):xe Dy, y = Ax}.
Prove that

a) G, is a linear subspace of E X E;;

b) G is closed if and only if the operator A is closed;

c) If E and E, are Banach spaces and if 4 is closed and defined for all
x € E, so that D, = E, then A is bounded (this is Banach’s closed
graph theorem).

Hint. In c) apply Theorem 2 to the projection operator P carrying each
ordered pair (x, 4x) € G, into the element x € E.

Problem 3. Prove that if 4 is an invertible continuous linear operator
mapping a complete countably normed space E into another complete
countably normed space E;, then the inverse operator A= is itself continuous.
State and prove the closed graph theorem for countably normed spaces.

Problem 4. Let A be a continuous linear operator mapping a Banach
space E onto another Banach space E;. Prove that there is a constant « > 0
such if B e #(E, E,) and |4 — B|| < «, then B also maps E onto (all of) E,.

Problem 5. Let 4 be an operator mapping a Hilbert space H into itself.
Then a subspace M < H is said to be invariant under 4 if x € M implies
Ax € M. Prove that if M is invariant under 4, then its orthogonal com-
plement M’'= H © M is invariant under the adjoint operator 4* (in
particular, under A itself if A is self-adjoint).

Problem 6. Let A and B be bounded linear operators mapping a complex
Hilbert space H into itself. Prove that

a) (xa + BB)* = xd* + BB*;

b) (4B)* = B*A4*,

Q) (4%)* = 4;

d) I* = I, where [ is the identity operator.
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Problem 7. Give an example of an operator whose spectrum consists of
a single point.

Problem 8. Given a bounded linear operator 4 mapping a Banach space
E into itself, prove that the limit
r=lim V|| A"
n— o0
exists. Show that the spectrum of A4 is contained in the disk of radius r
with center at the origin.

Comment. The quantity r is called the spectral radius of the operator A.
This result contains Theorem 8 as a special case, since |47 < [ 4]".

Problem 9. Let R, = (4 — M) and R, = (4 — pI)™ be the resolvents
corresponding to the points A and p.. Prove that R,R, = R R, and

R, — R, = (» — MR,R,. 19
Hint. Multiply both sides of (19) by (4 — A)(4 — wlI).

Comment. It follows from (19) that if A, is a regular point of 4, then
the derivative of R, with respect to A at the point A, i.e., the limit

lim Ryyran — Ry,
A0 A\

(in the sense of convergence with respect to the operator norm) exists and
equals RS .

Problem 10. Let A be a bounded self-adjoint operator mapping a complex
Hilbert space H into itself. Prove that the spectrum of 4 is a closed bounded
subset of the real line.

Problem 11. Prove that every bounded linear operator defined on a com-
plex Banach space with at least one nonzero element has a nonempty
spectrum.

24. Completely Continuous Operators

24.1. Definitionsand examples, We now discussa class of operators which
closely resemble operators acting in a finite-dimensional space and at the
same time are very important from the standpoint of applications:

DERINITION. A linear operator A mapping a Banach space E into
itself is said to be completely continuous if it maps every bounded set into
a relatively compact set.
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Remark 1. If E is finite-dimensional, then every linear operator 4
mapping E into E is completely continuous. In fact, 4 maps bounded sets
into bounded sets (recall Problem 1, p. 226) and hence maps bounded sets
into relatively compact sets (why?).

Remark 2. In an infinite-dimensional space, complete continuity of an
operator is a stronger requirement than merely being continuous (ie.,
bounded). For example, the identity operator in an infinite-dimensional
space is continuous but not completely continuous (see Example 1 below).

LEMMA. Let x,, Xy, . .. be linearly independent vectors in a normed
linear space E, and let E, be the subspace generated by the vectors
X1, + .., X,. Then thereare vectors yy, y,, ... suchthat y, € E,, ||y, =1
and*

p(E'n-—l, yn) = inf [x — y'ﬂu > %
XELip~1

Proof. Since the vectors x;, x,, . . . are linearly independent, we have

x, ¢ E,_; and hence
p(E'n—l’ xn) =« > 0

(recall Problem 5a, p. 141). Let x* be a vector in E,_, such that

%, — x*|| < 2a.
Then
P(En—D Xn — x*) =,
and the vectors

. *
=L, =Tt (1=2,3,..)
™

Y1 =

"xn - X 7"

satisfy all the conditions of the lemma. J
Example 1. The identity operator I in an infinite-dimensional Banach
space E is not completely continuous. In fact, we need only show that the
closed unit sphere S in E (which is obviously carried into itself by-7) is not
compact. This follows at once from the lemma, since S contains a sequence

of vectors y;, s, . . . such that

90’,;—1, yn) > %:
and such a sequence clearly cannot contain a convergent subsequence.

Example 2. Let A be a continuous linear operator on an infinite-dimen-
sional Banach space E, where 4 is “degenerate’ in the sense that it maps
E into a finite-dimensional subspace of E. Then 4 is completely continuous,

¢ The quantity p(E._,, ya) is, of course, just the distance between the set E,_, and the
point y, (cf. Problem 9, p. 54).
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since it maps every bounded subset M/ < E into a bounded subset of a
finite-dimensional space, and hence into a relatively compact set.

Turning to the space Claty of functions continuous on the interval [a, 8],
we now establish conditions under which the “integral operator”” 4 defined

by
b
) = (49 = ["K(x, y)e0) dy v
is completely continuous.
THEOREM 1. Suppose the kernel K(x, y) is such that

1) K(x,y) is bounded on the square a < x < b,a < y < b;
2) The discontinuities (if any) of K(x, y) all lie on a finite number of
curves
y=fk(x) (k=1"",n)’

where the functions f, are continuous.

Then (1) is a completely continuous operator mapping Ci, y, into Cp, p;.

Proof. First we note that the conditions 1) and 2) guarantee the
existence of the integral (1) for every x € [a, b], so that $(x) is defined
on [a, b]. Let Rbe thesquare a < x < b,a < y < b, and let

M = sup |K(x, y)|. (2
(z,9)e R

Moreover, let G be the set of all points (x, y) € R such that

g
[y =il < oM

for at least one integer k =1,...,n, and let F= R — G. Since F is
compact (why ?) and K(x, y) is continuous on F, given any ¢ > 0, there is
a 8 > 0 such that

€

K(x', y) — K(x", < 3
IKG,9) = KG9l < 35 3

for any two points (x’, y), (x”, y) € F satisfying the condition
X' —x"| <8 C))]

(recall Theorem 1, p. 109).
Now suppose (4) holds. Then

19) — bl < [P IKG, 9) — KG )l o)l dy. ()
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To estimate the integral on the right, we divide the intervala < y < b
into the set

"

P= U{y ly ﬁ<x>l<W}ka{{y v = 12M}

and the complementary set Q = [a, b] — P. Using (2) and noting that
P is a union of intervals of total length no greater than ¢/3M, we have

’ " 2
[JKG ) = K el dy < el ©)
where, as usual,
ol = sup [e(MI.

as<Y<h

On the other hand, it follows from (3) and (4) that
JJKG ) = K pl 9] dy < £ lell. (7)

Comparing (5)-(7), we find that (4) implies
[(x) — ) <<l ®)

In particular, {§ is continuous on [a, b], so that the operator 4 defined by
(1) actually maps the space Cy, ,; into itself. Moreover, it follows from
(8) and from the‘estimate.

190 = sup [4(1 < sup_ ['1KGx, )l 1)1 dy < M(b — a) [

asa<h ase<<h

that 4 carries any (uniformly) bounded set of functions ® < C, ; into
a (uniformly) bounded equicontinuous set ¥ = C,, ,, (recall Definitions
3 and 4, p. 102). But then ¥V is relatively compact, by Arzela’s theorem
(Theorem 4, p. 102), and hence 4 is completely continuous. [

Remark 1. The requirement that the discontinuities of the kernel K(x, y)
lie on a finite number of curves, each intersecting the lines x = const in a
single point, is essential. For example, let K(x, y) be the function
1 if x <3,
K(x,y) =

0 if x>1,

defined on the square 0 < x < 1,0 < y < 1. Then K(x, y) is discontinuous
at every point of the line segment x = 4, 0 < y < 1, and the operator (1)
with this kernel maps the function x(f) = 1 into a discontinuous function.

Remark 2. If K(x, y) = 0 for y > x, then (1) takes the form

) = (A9 = [TKEx, () dy.
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Suppose K(x, y) is continuous for y < x. Then it follows from Theorem 1
that the operator 4, called a Volterra operator, is completely continuous.

24.2. Basic properties of completely continuous operators. We begin with

THEOREM 2. Given a sequence {A,} of completely continuous operators
mapping a Banach space E into itself, suppose {A,} converges in norm to an
operator A, i.e., suppose |A — A, —0 as n —~ co. Then A is itself
completely continuous.

Proof. To prove that 4 is completely continuous, we need only show
that the sequence {4x,} contains a convergent subsequence whenever
the sequence {x,} of elements x,, € E is bounded, i.e., such that

%l < M ©)

for some M >0and all n =1,2,... (why is 4 linear?). Since 4, is
completely continuous, the sequence {4,x,} contains a convergent
subsequence. In other words, there is a subsequence {x{!'} of the sequence
{x,} such that {4,x{1'} converges. Similarly, since 4, is completely con-
tinuous, the sequence {4,x{"} in turn contains a convergent subsequence.
Thus there is a subsequence {x{?'} of the sequence {x{1'} such that {4,x?}
converges. Then obviously {4,x(»'} also converges. Continuing this
argument, we find a subsequence {x{¥} of the sequence {x{?} such that
{4;x}, {4;xP}, {A4;x®} all converge, and so on. Consider the
“diagonal sequence”

xP X xim
The clearly each of the operators 4,, 4,,...,A4,,... maps this

sequence into a convergent sequence.

We now show that the sequence {4x{™} also converges, thereby
completing the proof. Since the space E is complete, it is enough to show
that {4x{™} is a Cauchy sequence. Clearly

l4x" — A2l < 1AXD — AP+ A — A
+ 4 — Ax(Pl. (10)
Given any ¢ > 0, first choose k such that
g
;‘]\‘4‘ .
Next, using the fact that {4,x!™} converges and hence is a Cauchy
sequence, choose N such that

4 — Al < (11)

I 4px) — A4x| < -§ (12)
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for all n, n’ > N. Then it follows from (9)—(12) that
Ax® — Ax® ) <S4 By B
|l Ax% I 3 + 3 + 3=°

for all sufficiently large n and #’, i.e., {4x(™} is a Cauchy sequence. J

Not only is the set of completely continuous operators closed (algebra-
ically) under operator multiplication, but we have the following much stronger
result:

THEOREM 3. Let A be a completely continuous operator and B a
bounded operator mapping a Banach space E into itself. Then the operators
AB and BA are completely continuous.

Proof. If the set M < Eis bounded, then BM = {y:y = Bx, x € M}
is also bounded. Therefore ABM is relatively compact, and hence 4B
is completely continuous. Moreover, if M is bounded, then AM is
relatively compact, and hence BAM is also relatively compact by the
continuity of B, i.e., B4 is completely continuous. §

COROLLARY. A completely continuous operator A mapping a Banach
space E into itself cannot have a bounded inverse if E is infinite-dimensional.

Proof. If A7* were bounded, then, by Theorem 3, the identity
operator I = 474 would be completely continuous. But this is im-
possible, by Example 1, p. 240. §

THEOREM 4. Let A be a completely continuous operator mapping a
Banach space E into itself. Then the adjoint operator A* is also completely
continuous.

Proof. We must show that 4* carries every bounded subset of the
conjugate space E* into a relatively compact set. Since every bounded
subset of a normed linear space is contained in some closed sphere, it
is enough to show that A* maps every closed sphere into a relatively
compact set. In fact, by the linearity of 4*, we need only show that the
image A*S* of the closed unit sphere S* < E* is relatively compact.

Now suppose we regard the elements of E* as functionals not on the
whole space E but only on the compactum [4S] equal to the closure of
the image of the closed unit sphere under the operator 4. Then the set ®
of functionals on [4S] corresponding to those in $* is uniformly bounded
and equicontinuous, since | @[ < 1 implies

sup |e(x)| = sup|e(x)| < [l¢ll sup 4x] < [4]
d ze[ 48] zed S zeS
an

lo(x) — o(x") < llell Ix" — x" < Ix" — x"|I.
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Hence, by Arzeld’s theorem (Theorem 4, p. 102), @ is relatively compact
in the space Cy4g; of all continuous linear functionals on [4S]. But the
set @, with the metric induced by the usual metric of C4g;, is isometric
to the set 4*S*, with the metric induced by the norm of the space E*.
In fact, if gy, g, € S*, then

A*g, — A*g,| = sup |(A¥g, — A”gs, X)| = sup [(gy — g2, AX)|
xeS reS
=sup|(g, — 82 2)| = sup [(g, — 82 2)| = (81 82)-
2€dS 2e[ AS]

Being relatively compact, the set @ is totally bounded, by Theorem 3,
p. 101. Therefore the set A*S* isometric to ® is also totally bounded,
and hence relatively compact, by the same theorem. J

THEOREM 5. Let A be a completely continuous operator mapping a
Banach space E into itself. Then, given any o > 0, there are only finitely
many linearly independent eigenvectors of A corresponding to eigenvalues
of absolute value greater than .

Proof. Given nonzero eigenvalue A of 4, let E, be the subspace of E
consisting of all eigenvectors of A4 corresponding to A.° Then E, is
finite-dimensional, since otherwise 4 would fail to be completely con-
tinuous in E, and hence in E itself, by virtually the same argument as in
Example 1, p. 240. Therefore, to complete the proof, we need only show
that if {A,} is any sequence of distinct eigenvalues of A4, then A, — 0 as
rn — oo, This in turn will be proved once we show that theie is no infinite
sequence {A,} of distinct eigenvalues of A such that the sequence {1/A,}
is bounded.

Thus, suppose there is a sequence {A,} of distinct eigenvalues of 4
such that {I1/A,} is bounded, and let x, be an eigenvector of A4 corre-
sponding to the eigenvalue A,. Then the vectors x,, x,, . . . are linearly
independent, by the same argument as in the case where E is finite-
dimensional.® Let E, be the subspace generated by X;, ..., x,, i.e., the
set of all elements of the form

n
y :k.z“kxk-
For every y € E,,, we have
n n n—1
y_iA.V=z°‘kxk— zﬁxk:z“k(l—ﬁ)xk,
%=1 =1 A A

A, =1 A k=1

* Note that Ej, is invariant under A in the sense that x € E, implies Ax € E, (cf. Problem
5, p. 238).
8 See e.g., G. E. Shilov, op. cit.,, Lemma 1, p. 182,
g P P
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so that

1
— —Ay€E,__,.
y )\ y n—1

Let {y,} be a sequence such that y, € E,, ||y, =1 and

n

p(En—l’ yn) = inf ”x - yn” > J".’:
zeE,_1

(such a sequence exists by the lemma on p. 240). Then {y,/A,} is a

bounded sequence in E, since the numerical sequence {1/A,} is bounded.

But at the same time the sequence {4(y,/},)} cannot contain a convergent

subsequence, contrary to the complete continuity of 4, since

G ()

for all p > ¢, since

1
>_.
2

1
Vo — ;A}@-{*A(%)

i q

Vo — ;]—Ay«,, + A(%) €E, .

‘P q

This contradiction proves the theorem. §

24.3. Completely continuous operators in Hilbert space. Specializing to
the case of completely continuous operators mapping a Hilbert space into
itself, we have

THEOREM 6. Let A be a linear operator mapping a Hilbert space H
into itself. Then A is completely continuous if and only if

1) A maps every relatively compact set in the weak topology into a
relatively compact set in the strong topology;

2) A maps every weakly convergent sequence into a strongly convergent
sequence.

Proof. To prove 1), we merely note that H is the conjugate of a
separable space, since H = H*, and hence, by Corollary 2’, p. 205, a
subset of H is bounded if and only if it is relatively compact in the weak
topology.

To prove 2), suppose 4 maps every weakly convergent sequence
into a strongly convergent sequence, and let M be a bounded closed sub-
set of H. Then M contains a weakly convergent sequence and hence AM
contains a strongly convergent sequence, i.e., 4M is relatively compact
in the strong topology. It follows that A is completely continuous.
Conversely, if 4 is completely continuous, let {x,} be a weakly convergent
sequence with weak limit x. Then {4x,} contains a strongly convergent
subsequence. At the same time, {4x,} converges weakly to Ax, by the
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continuity of 4, so that {4x,} cannot have more than one limit point.
Therefore {4x,} is a strongly convergent sequence. J

Let A be a self-adjoint operator in a finite-dimensional complex Euclidean
space, and suppose 4 has matrix |a,| (recall Example 3, p. 222). Then it
will be recalled from linear algebra that [a;| can be reduced to diagonal
form with respect to a suitable orthonormal basis.” We now generalize this
result to the case of a completely continuous self-adjoint operator in a (real
or complex) Hilbert space (see Theorem 7 below), after first proving two
preliminary lemmas:

LemMA 1. Let A be a completely continuous self-adjoint operator
mapping a Hilbert space H into itself, and let {x,} be a sequence in H
converging weakly to x. Then

(Ax,, X5) = (4X, X) (13)
asn— oo,
Proof. Clearly,
](Axn’ xn) - (AX, X)] < I(Axw xn) - (AX, Xn.)] + I(AX, xn) - (AX, X)l

But
[(Axg5 xp) — (A%, x )| < [x,]l [4(x, — X)],
and
’(Ax’ xn) - (AX, X)[ = I(X, A(xn - X))I < ”Xll “A(xn - x)”,

where the numbers |x,|l, n =1,2,... are bounded, by Theorem 2,
p- 196, and [|4(x,, — x)I| — 0 by Theorem 6. Therefore

I(Axn’ xn) - (Ax, x)l —0
as n — oo, which is equivalent to (13). §

LEMMA 2. Given a bounded linear operator A mapping a Hilbert space
H into itself, let A be self-adjoint and suppose the least upper bound of the
functional

Q)| = [(4x, x)|
on the closed unit sphere | x| < 1 is achieved at the point x = x,. Then
(%0, ) =0 (14)
implies
(4x,, )") = (Xo, Ay) = 0.

In particular, x, is an eigenvector of A.

"Se¢ e.g., V. 1. Smirnov, Linear Algebra and Group Theory (translated by R. A.
Silverman), McGraw-Hill Book Co., New York (1961), Sec. 40. Dover reprint (19/0).
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Proof. Obviously,
%l = 1. (15)
Let
x = Xo + ay ,
V14 1al® Iyl
where a is an arbitrary complex number. Then | x| =1, because of
(14) and (15). Since

0(x) = ——

1+ lal® lyl®
we have

Q(x) = Q(xo) + 2 Re a(4x, y) + 0(lal”) (16)

for small |a|. But it is clear from (16) that if (4x,, y) 7 0, then a can be
chosen to make |Q(x)| > [Q(x,)|, contrary to the assumption that the
least upper bound of |Q(x)| on the closed unit sphere is achieved at the
point x = x,. Therefore (4x,, y) = 0 as asserted, i.e., 4 is orthogonal
to every vector orthogonal to x,. It follows that Ax, and x, are pro-
portional (why?), so that x, is an eigenvector of 4. §

[Q(xe) 4 2 Re a(4x,, y) + lal* (1),

THEOREM 7 (Hilbert-Schmidt). Let A be a completely continuous self-
adjoint operator mapping a Hilbert space H into itself. Then there is an
orthonormal system ¢, @, .. . of eigenvectors of A, with corresponding

nonzero eigenvalues My, X, . . . , such that every element x € H has a unique
representation of the form®
x =2 ¢t X, an
where x' satisfies the condition Ax' = 0. Moreover
Ax =3 M@, (18)
and
lima, =0
n—=aw

in the case where there are infinitely many nonzero eigenvalues.

Proof. Let
Ml = sup l(Ax’ x)'»

Izl
and let {x,} be a sequence of elements of H such that ||x,|| = 1 and
](Axn’ xn)l - Ml
as n — oo. Since the closed unit sphere in H is weakly compact (recall

8 As will appear in the course of the proof, the sums in (17) and (18) may be finite or
infinite, and x’ may vanish.
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Corollary 2', p. 205), we can find a subsequence of {x,} which converges
weakly to an element y € H, where clearly [[y|l < 1. By Lemma 1,

[(Ay, )| = M,

and hence, by Lemma 2, y is an eigenvector of 4. Moreover |yl =1,
since if |[y|| < 1, then choosing

f_ Y

y =
Iyl
we would have |y’ = 1 and

14y, Yl > M,

contrary to the meaning of M;. We choose y as our first eigenvector ¢,.
Let A; be the corresponding eigenvalue, so that

Aey = Moy
Then
Ml = [(Aey, o) = M,

Next let E, be the subspace of H consisting of all vectors of the form
a@,, and let E; = H © E, be the orthogonal complement of E;. Clearly
E; is again a Hilbert space, mapped into itself by the operator 4 (this
follows from Problem 5, p. 238 and the fact that 4 is self-adjoint). Let

M, = sup |(4x, x)|. (19)
llell<1
2eE1
Then, by the same argument as before, we can find an eigenvector ¢, of
A such that ¢, € E, || ¢.|| = 1. Let A, be the corresponding eigenvalue,
so that
Apr = oo
Then
ol = [(Aps, @5)] = My,
and hence
Ml > Aol
since H = E; implies
M, = sup |(4x, x)| > sup |(4x, x)| = M,.
Tzl <1 |2l <1
eced zeE]
By its very construction, ¢, is orthogonal to ¢,.
To construct further eigenvectors of 4, we argue inductively, re-
placing (19) by
M,,, = sup [(Ax, x)| n=1,2,...),

e <t
xeE,
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where E;, = H © E,, is the orthogonal complement of the subspace E,
generated by the previously constructed eigenvectors ¢y, ¢, ..., @,.
Then E, is again a Hilbert space mapped into itself by 4, and there is an
eigenvector ¢,,; € E; of unit norm, with corresponding eigenvalue
Ay satisfying the inequality
I)\nl > I)‘MII (n = la 2, .. )
In this way, we construct an orthonormal system {¢,} of eigenvectors of 4.
There are now just two possibilities, which we examine in turn:

Case 1. Suppose the construction of the sequence {¢,,} terminatesafter
a finite number of steps, i.e., suppose there is a positive integer n, such
that (4x, x) =0 on E; . Then it follows from Lemma 2 that 4 maps
the whole space E, into the zero vector. According to Theorem 14,
p- 158, every element x € H has a unique representation of the form

x=h+x,

where h e Eq, x'e E, . and hence of the form

X = Copp X',
where the sum is finite (consisting of n, terms) and 4x" = 0. Obviously
we have
thereby completing the proof in this case.

Case 2. Suppose the construction of the sequence {¢,} never termi-
nates, i.e., suppose (4x,x)=% O0Oon E, foralln=1,2,.... We then
have infinitely many nonzero eigenvalues Ay, Ay, ... , A, . ... Clearly
A, —0asn — . In fact, the sequence {¢,} converges weakly to zero,
like any sequence of orthonormal vectors (why?), and hence the se-
quence {A¢,} converges to zero in norm, so that | 4¢,] — 0 and hence
Ih.@.ll = IA,] = 0. Let E,, be the subspace of H generated by all the
eigenvectors ¢y, Py, « « - 5 Pus - - - » i.6., the set of all linear combinations
of the form

D CnPns

n=1

and let
E,=HOE,=MNE,
n=1
If E', = {0}, then H = E,, and x obviously has a representation of the
form (17) with x’ = 0 (so that Ax’ = O trivially). If E_, % 0, let x be any
nonzero element of E,. Then
[(dx, x)| < [Aql [Ix]?
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for all n=1,2,...,and hence (4x, x) =0 on E.. It follows from
Lemma 2 that 4 maps the whole space E, into the zero vector. The rest
of the proof is the same as in Case 1, where (18) follows from (17) by
the continuity of 4. [

COROLLARY. Let A be a completely continuous self-adjoint operator
mapping a Hilbert space H into itself. Then there is an orthonormal
system {{,,} of eigenvectors of A such that every element x € H has a unique
representation of the form

X = E Calin-

n=1

Moreover
(=]
Ax =Y Nepd,
n=1

where M, As, . . . are the eigenvalues corresponding to {y, s, . .

Proof. Noting that every element of E, o1 E|, is an eigenvector of 4
corresponding to the eigenvalue A =0, Tet {4} consist of the ortho-
normal system {¢,} constructed in the proof of Theorem 7, together
with an arbitrary orthonormal basis in E,, or E,.

Problem 1. Prove that the projection operator of Example 4, p. 222 is
completely continuous if and only if the subspace H, is finite-dimensional.

Problem 2. Prove that the operator 4 mapping the point
X = (X3, Xg5 00 sXps-+.)Ely

x x
Ax=(x1,—2,..., z ...)El2

into the point

2 gn—1 ’
is completely continuous. More generally, suppose
Ax = (@yX1, Q3Xgy o oo 5 ApXpy - - 2)-
Under what conditions on the sequence {a,} is 4 completely continuous ?

Hint. Since every bounded set in /, is contained in some closed sphere,
it is enough to show that the images of spheres are relatively compact. In
fact, by the linearity of 4, it need only be shown that the image of the unit
sphere is compact. In this regard, recall Example 5, p. 98.

Problerm 3. Let A4 be the integral operator on C;_, ;; defined by
$0) = (A9)) =" 9(3) dy.

Prove that 4 maps the closed unit sphere in C;_, ;) into 2 noncompact set.
Reconcile this with Theorem 1.
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Hint. Let
0 if —1<x<0,
: 1
ey =" T 0<x<-—,
o 1
1 if —<x<1.
h
Then ¢, € Ci_y 1}, || ¢l = 1 for all n, and
0 if —1<x<0,
1 2 N 1
"pn(x) = (A(pn)(x) = '2'nx if 0<x< ;;’

The sequence {{,} converges in C_; ; to the function

) 0 if -1<x<0,
X)) =
x if 0<xx<l,
which, having a discontinuous derivative, cannot be the image under 4 of
any function in Cp_; y;.

Problem 4. Let A be a completely continuous operator mapping a
reflexive Banach space E (¢.g. a Hilbert space) into itself. Prove that 4 maps
the closed unit sphere in E into a compact set. Reconcile this with the pre-
ceding problem.

Hint. Use Theorem 6, p. 205.
Problem 5. Prove that

a) A linear combination of completely continuous operators is itself a
completely continuous operator;

b) The set €(E, E) of all completely continuous operators mapping a
Banach space E into itself is a closed subspace of the linear space
Z(E, E) of all bounded linear operators mapping E into E.

Problem 6. Let €(E, E) and Z(E, E) be the same as in the preceding
problem. Prove that besides being a linear space, £(E, E) is also a ring
when equipped with the usual operations of addition and multiplication of
operators. Prove that ¥(E, E) is a two-sided ideal in Z(E, E).

Comment. By a two-sided ideal in a ring # is meant a subring &/ < %
such that a € &/, re Z implies are &, rae .
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Problem 7. Let ® and A*S* be the same as in the proof of Theorem 4.
Show that @ is closed and hence compact. Deduce from this that 4*S* is
compact, even though as shown in Problem 3, the image of the closed unit
sphere under a completely continuous operator need not be compact.

Problem 8. Discuss the connection between Theorem 4 and the theory of
Sec. 20.4, in particular Corollary 1’, p. 204.

Problem 9. Let A be a bounded linear operator mapping a Banach space
E into itself. Show that if A* is completely continuous, then so is 4.

Problem 10. Prove that a linear operator 4 mapping a Hilbert space H
into itself is completely continuous if and only if its adjoint (in the sense
of Sec. 23.3) is completely continuous.

Problem 11. Give an example of a completely continuous operator 4
mapping a Hilbert space H into itself, such that 4 has no eigenvectors.
Reconcile this with Theorem 7.

Hint. Let A be the operator in /, such that

Ax:A(x,,xz,xa,...,x,,,.,.)=(O,xl,ﬁ,...,h,...).
2 n—1
Then Ax = \x implies
! X
)\x1=0,)\x2=x1,)\x3=x—2,...,7\x,,= =
2 n—1

and hence x = 0.

Comment. This situation differs from the finite-dimensional case, where
every linear operator (self-adjoint or not) has at least one eigenvector.
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MEASURE

The concept of the measure w(E) of a set E is a natural generalization of
such concepts as

1) The length /(A) of a line segment A;

2) The area A(F) of a plane figure F;

3) The volume V(G) of a space figure G;

4) The increment ¢(b) — ¢(a) of a nondecreasing function ¢(¢) over a
half-open interval [a, b);

5) The integral of a nonnegative function over a set on the line or over
a region in the plane or in space.

Although the notion of measure first arose in the theory of functions of a
real variable, it was subsequently used extensively in functional analysis,
probability theory, the theory of dynamical systems, and other branches
of mathematics. In Sec. 25 we discuss the measure of plane sets, starting
from the notion of the area of a rectangle. Measure in general will then
be studied in Secs. 26 and 27. The reader will easily confirm that the con-
siderations in Sec. 25 are of a general nature and carry over to the case of
the more abstract theory without essential changes.

25. Measure in the Plane

25.1. Measure of elementary sets. Consider the system & of sets in the
xy-plane, each defined by one of the inequalities
a<x<b, a<x<b, a< x<b, a<x<b
254
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and-one of the inequalities
e<y<d, c¢<y<d, c<y<d, c<y<d,

where a, b, ¢ and d are arbitrary real numbers. The sets in % will be called
rectangles. The closed rectangle defined by the inequalities

a<x<bd c<y<d

is a rectangle in the usual sense (including its boundary) if a < b and ¢ < d,
a line segment (including its end points) if @ = b and ¢ < dor if 2 < b and
¢ =d, apointifa = b, ¢ =d, or even the empty setif a > b or ¢ > d. The
open rectangle

a<x<b, c<y<d

is either a rectangle in the usual sense (without its boundary) if 2 < b and
¢ < d or the empty set if a > b or ¢ > d. Each of the rectangles of the
remaining types will be called Aalf-open and is an ordinary rectangle minus
one, two or three sides, a line segment minus one or two end points, or
possibly the empty set.

In keeping with the concept of area familiar from elementary geometry,
we now define the measure of each set in % as follows:

1) The measure of the empty set equals 0;
2) The measure of the nonempty rectangle (closed, open or half-open)
specified by the numbers a, b, ¢, and d equals

(b —a)d— o).

Thus with each rectangle P € & we associate a number m(P), called its
measure, where clearly

1) m(P) is real and nonnegative;
2) m(P) is additive in the sense that if

P:UPIa Pkmpz=g
k=1
then

n
m(P) =Y m(Py).
k=1
Our problem is to define the concept of measure for sets more general than
rectangles, while preserving these two properties. The first step in this
direction is to define measure for elementary sets, where by an elementary
set we mean any set which can be represented in at least one way as a union
of a finite number of pairwise disjoint rectangles. First we prove

THEOREM 1. The union, intersection, difference and symmetric
difference of two elementary sets are again elementary sets.
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Proof. 1If
4=Up, B=Upyg,
k

12
are two elementary sets, then clearly

AnB=UP,nNnQ)
k1l

is also an elementary set, since each P, N @, is obviously either a
rectangle or the empty set. Moreover, it is easy to see that the difference
of two rectangles is an elementary set. Hence, subtracting an elementary
set from a rectangle gives another elementary set (as an intersection of
elementary sets). Suppose 4 and B are elementary sets, and let P be a
rectangle containing both of them (such a rectangle obviously exists).
It follows from what has just been proved that
AUB=P—[(P—A4) N (P — B)]
is an elementary set. It is then an easy consequence of the formulas
A—B=AN(P—B),
AAB=(4VUB)— (4 NB)

that the difference and symmetric difference of two elementary sets is
again an elementary set. §

Remark. In other words, the system of all elementary sets is a ring %,
as defined on p. 31.

We now define measure for elementary sets:

DEFINITION 1. Given an elementary set A, suppose
4=Up,
k

where the P, are pairwise disjoint rectangles. Then by the measure of A,
denoted by m(A), is meant the number

m(A) = 3, m(Py), 0

k

where m(P,) is the measure of the rectangle P.

Remark. Clearly, i(4)is nonnegative and additive. Moreover, in defining
(A), we have tacitly relied on the fact that the sum (1) does not depend on
how A is represented as a union of sets. To verify this, suppose

A=U-Pk=UQb
x 1

where P, and Q, are rectangles such that
P,NP;=g, 2:.NQY, =0 @ #D.
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Since the intersection P, N Q, of two rectangles is itself a rectangle, it follows
from the additivity of the measure of rectangles that

zm(Pk = Z m(P, N Q) = 2 m(Qy).

k k1 14

THEOREM 2. If A is an elementary set and {A,} is a finite or countable
system of elementary sets such that

A< U4,
then "
M(A) < 3 m(A,). (2)

Proof. Given any € > 0, there is a closed elementary set A contained
in A4 and satisfying the condition

#(A) > m(4) — ; :

In fact, to get A we need only replace each of the k rectangles P; making
up 4 by a closed rectangle contained in P; of area no less than

m(P;) — ;—k .

Moreover, for each 4,, there is clearly an open elementary set 4,, contain-
ing A, and satisfying the condition

€
on+l :

m(d,) < m(4,) +
Obviously,
A=U 4,
Hence, by the Heine-Borel theorem (recall p. 92), there is a finite
system A, , ..., 4, covering A, where
w(A) < 3 m(d,),
=1

since otherwise 4 would be covered by a finite number of rectangles of
total area less than #(A), which is impossible. Therefore

$

A(A) < () + 5 < 3 A, + 2 < DA, + 2
< Sl + 3ot = D) + e

which implies (2), since € > 0 is arbitrary. [
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25.2. Lebesgue measure of plane sets. Elementary sets are, of course, far
from being the most general plane sets considered in geometry and analysis.
Thus we naturally arrive at the problem of extending the concept of measure
(while preserving its basic properties) to sets more general than finite unions
of rectangles with sides parallel to the coordinate axes. This problem is
solved in a definitive way by Lebesgue’s theory of measure, in which we
consider countably infinite unions of rectangles, as well as finite unions.
To avoid sets of “infinite measure,” we restrict our discussion to subsets
of the closed unit square E, defined by the inequalities

0<x<l, O<yx1
(this restriction is dropped in Remarks 2 and 3, p. 267).

DEFINITION 2. By the outer measure of a set A < E is meant the
number

w¥(4) = inf X m(P,),

A<UP; &
k

where the greatest lower bound is taken over all coverings of A by a finite
or countable system of rectangles P;.

DEFINITION 3. By the inner measure of a set A < E is meant the
number
b (A) = 1 — p*(E — A).

THEOREM 3. The inequality

e (A4) < p*(4)
holds for any set A < E.

Proof. Suppose
P (4) > p*),

w*(4) + u*E — 4) < 1.

Then, by the definition of a greatest lower bound, there are systems of
rectangles {P;} and {Q,} covering 4 and E — 4, respectively, such that

Sm(P) + 3 m(@) < L.
) k
Let {R;} denote the union of the systems {P;} and {Q,}. Then
E< UR,
l

i.e.,

while
,,
contrary to Theorem 2. J
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DEFINITION 4. A set A is said to be (Lebesgue) measurable if
o () = ©*(4),
i.e., if its inner and outer measures coincide.

DEFINITION 5. If a set A is measurable, the number y(A) equal to the
common value of k. (A) and w*(A) is called the (Lebesgue) measure of A.

For outer measure, we have the following analogue of Theorem 2:

THEOREM 4. If A is any set and {A,} is a finite or countable system of
sets such that
A< Uu4,,
then "
BHA) < 3 prA,). @)

Proof. Given any € > 0, for each 4, there is a finite or countable
system of rectangles {P,,} such that

AnCUPnk
r

and
z 'n(Pnk) < H*(An) + EE; t

k
by the definition of outer measure. Then
A<UUr,
and nE
A < 2 X m(Py) < 3 u*4,) + &,
n k n
which implies (2'), since € > 0 is arbitrary. }

COROLLARY. If A is any measurable set and {A,} is a finite or count-
able system of measurable sets such that

A< U4,
then "
W) < X u(4,). 2"
Proof. Merely replace p.* by win (2°). §i

Next we show that the Lebesgue measure of an elementary set coincides
with its measure as previously defined:

THEOREM 5. Every elementary set A < E is measurable, with Lebesgue
measure u(A) equal to the measure M(A) introduced in Definition 1.
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Proof. Suppose A is the union of the pairwise disjoint rectangles
Py,..., P, Then

k

m(A) =3 m(P)),

=1
by Definition 1. Therefore, since the rectangles Py, ... , P, obviously
cover A,

wH(4) < ; m(P;) = m(A), (3)

by Definition 2. Moreover, if {Q;} is any finite or countable system of
rectangles covering 4, we have

m(d) < 3 m(Q,)
7
by Theorem 2, and hence
m(d) < p*(4), “)
by Definition 2 again. Comparing (3) and (4), we get
() = p*(A4).
Now E — A is also an elementary set, and hence
M(E — A) = u*(E — A).
But
m(E — 4) = 1 — m(4),

while
RHE — A) =1 — py(A).

It follows that
m(A) = py(4),
and hence
m(d) = py(4) = p*(4). i

COROLLARY. Theorem?2 is a special case of Theorem 4.
Proof. Merely replace w* by /# in (2") or w by /i in (2"). §
LemMa. The inequality
u*(4) — u*(B)| < u*(4 A B) ®)
holds for any two sets A and B.

Proof. Since
A< BU(4AB)

it follows from Theorem 4 that
p¥(4) < p*(B) + w*(4 & B). )
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This implies (5) if u*(4) > u*(B). If u*(4) < w*(B), we deduce (5)
from the inequality
p*(B) < p*(4) + u*(4 & B)

obtained by interchanging the roles of 4 and B in (6). J

THEOREM 6. A set A is measurable if and only if, given any & > 0,
there is an elementary set B such that

u*(4 A B)<e. @)

Proof. Suppose that given any € > 0, there is an elementary set B
such that (7) holds. Then, by the lemma,

[ () — p*B)| = lu*(4) — m(B)| <e, ®
and similarly
|w*(E — 4) — M(E — B)| <k, ©)

since
(E—A)A(E—B)=AAB.

Bearing in mind that

#(B) -+ M(E — B) = m(E) = 1,
we deduce from (8) and (9) that

luw*(4) — w*(E — 4) — 1] <2,

and hence that
p*(d) + p*(E - 4) =1, (10)

since € > 0 is arbitrary. But then p,(4) = p*(4), so that A4 is
measurable.

Conversely, suppose 4 is measurable, i.e., suppose (10) holds. Then,
given any € > 0, there are systems of rectangles {B,} and {C,} covering
A and E — A, respectively, such that
S m(B) < wrA) + 3, (11

n

zmwa<ww—AH§. (12)

n

Moreover, since >, m(B,) < oo, there is an N such that
n

> m(B,n)<§.

n>N
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We now show that (7) holds for the elementary set

N
B=U3,.
Clearly, the set "
p=UB,
n>N
contains 4 — B, while the set
e=U®nc)
contains B — A, and hence "
AAB<SPUQ. (13)
Moreover,
WP < 3 m(B,) < §. (14)

To estimate w*(Q), we note that

and hence (L"J Bn) 7 (LnJ (€= B)) =E,

S m(B,) + 3 #(C, — B)> 1. (15)
But (11) and (12) imply

S mB,) + 3 m(C,) < wHA) + uHE — A) + 2; —1+%. ae
Subtracting (15) from (16), we get
i.e., " ! "
* 2e
i@ < 3 17

Finally, comparing (13), (16) and (17), we find that
w A A B < (PUQ)<uP)+u*Q <e 1

THEOREM 7. The union and intersection of a finite number of measurable
sets are again measurable sets.

Proof. It is enough to prove the theorem for two sets. Thus suppose
A, and A4, are measurable sets. Then, by Theorem 6, there are elementary
sets B; and B, such that

14 €
w*(4, A By) < 5> w¥(dz A By) < 5
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Since
(Ay U A) A (By Y By) © (41 A BY U (4; A By,
we have

p¥[(4y U 4y) & (By U Bl < p*(4y A By + p¥(4: A By) <.

But B, U B, is an elementary set, and hence 4; U 4, is measurable, by
Theorem 6 again. Moreover, a set 4 is measurable if and only if

wHd) + p*E -4 =1,

and hence if 4 is measurable, so is E — A. Therefore the measurability
of A; N A, follows from that of 4, U 4, and the formula

A, N Ay =E— [(E—A4) V(E—4)] 1

COROLLARY. The difference and symmetric difference of two measur-
able sets are again measurable sets. '
Proof. An immediate consequence of Theorem 7 and the formulas
A, — Ay = A4, N (E — A4y),
Ay AAdy= (A, —A) U (4, — 4,). 1

THEOREM 8. If Ay, . .., Ay are pairwise disjoint measurable sets, then
N N
u( U An) = Su(d,).
- oy

Proof. As in the proof of Theorem 7, we need only consider the case
n = 2. By Theorem 6, given any € > 0, there are elementary sets B,
and B, such that

p*¥(d A B) <e, w4 A B)<e (18)

Let
A=A4,9V4,, B=B UB,
Then A4 is measurable, by Theorem 7. Since 4, and 4, are disjoint, we
have
By N By, < (A1 & By Y (4: A By),
and hence
(B, N By) < 2e. 19

Moreover, it follows from (18) and the lemma on p. 260 that
[7(By) — p*(A)l <e,  [#(By) — u*(4y)| <. (20)

Since measure is additive on elementary sets, it follows from (19) and
(20) that

m(B) = m(By) + M(By) — M(By N By) > p*(4y) + p*(4y) — 4e.
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Noting also that
AAB< (41 &2 B) U (4, A By,
we have

w*(4) > m(B) — u*(4 A B) > m(B) — 2e > p*(A4y) + u*(4y) — 6e.

Therefore
pw*() > p*(4y + p*(42), 1

since € > 0 can be made arbitrarily small. On the other hand, it follows
from A = A; U A, and Theorem 4 that

p*(4) < p*(4y) + p*(4y). (22)
Comparing (21) and (22), we get

p¥(4) = p*(4y) + u*(4y),
where p.* can be replaced by w, since 4,, 4p, and A4 are measurable. J

THEOREM 9. The union and intersection of a countable number of
measurable sets are again measurable sets.

Proof. Given a countable system of measurable sets {4,}, let

A=U4,,
n=1
and let
n—1

Aj=A4,, A,=A4,—-U4, ®=23..)).
k=1

Then the sets A,, are pairwise disjoint, and

0
A=U4.,.

n=1
By Theorem 7 and its corollary, the sets A4, are all measurable. More-
over, by Theorems 4 and 8,

N N
3 u(d) = u( lglA;.) < w¥A)
for every N =1,2,... . Therefore the series
glu(A;)

converges, and hence, givenany € > 0, there isan integer v > 0 such that

T < § : (23)
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Since the set

is measurable, being the union of a finite number of measurable sets,
there is an elementary set B such that

u*(C A B) < g . (24)
Moreover, since
AAB< (CAB U (UA;,),
n>v
it follows from (23) and (24) that
p*(d A B) <e.
Therefore A4 is measurable, by Theorem 6. Finally, since complements of
measurable sets are themselves measurable, the intersection
N4, =E—-U(E—-4)
n=1 n=1
is measurable. J

Theorem 9 generalizes Theorem 7 to the case of a countable number of
measurable sets. The corresponding generalization of Theorem 8 is given by

THEOREM 10. If Ay, A, . . ., A, . . . are pairwise disjoint measurable
sets, then

00 <
u( L_JlAn) = S (). 25)
Proof. Let
A=Uu4,.
n=1
Then, since
N
U4,<c4
n=1

forevery N =1, 2,.. ., it follows from Theorem 8 and the corollary to
Theorem 4 that

éuw - u( gA,.) < w(A).

Taking the limit as N — o, we get

%L(A,.) < w(4). (26)
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On the other hand, since obviously

A< U4,

n=1

it follows from the same corollary that

W) < 3 p(4,). @7
Comparing (26) and (27), we get

w4) = T (4.),
or equivalently (25).

The key property of the measure p expressed by (25) is described by
saying that p is countably additive or c-additive.

THEOREM 11. Let {A,} be a sequence of measurable sets which is
decreasing in the sense that

A13A23...3A D e

n

Then
lim u(4,) = w(4), (28)
where
A=0NA4,
n=1

Proof. We need only consider the case 4 = &, to which the general
case reduces if 4, is replaced by 4,, — 4. Clearly
A=A —A)V (A —A) V-,
and
A= (A —App) YV (Apyy — 4ppp) V- .

Therefore, by the c-additivity of v,

W) = Sy — Ay 29)
and
w(4,) :kg w4y — Ags)- (30)

Since the series (29) converges, its remainder (30) approaches O as n — co.
It follows that

limu(4,) = 0=wu(2). &

7 — o0
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COROLLARY. Let {A,} be a sequence of measurable sets which is in-
creasing in the sense that

Ay c 4, << 4, <
Then
lim p(4,) = u(4), (28)

n—* 0

where

4=U4,.

n=1
Proof. Apply Theorem 11 to the complements of the sets 4,.

The property of the measure u expressed by (28) and (28’) is described
by saying that . is continuous.

Remark 1. To recapitulate, starting from a measure m defined on the
class & of all rectangles (with sides parallel to the coordinate axes), we
have succeeded in extending m first to a measure /% defined on the larger
class %, of all elementary sets and then to a Lebesgue measure p defined
on the still larger class &, of all measurable sets. The class & is closed
under the operations of taking countable unions and intersections. Moreover,
the measure (@ is c-additive on .

Remark 2. So far we have required all our sets to be subsets of the closed
unit square
E={(x0<x<1,0<y< 1}

It is easy to get rid of this restriction. For example, representing the whole
plane as the union of the squares
Epp=A{(x,p)m<x<m+1Ln<y<n+l}

where m and n are arbitrary integers, we say that a plane set 4 is measurable
if its intersection 4,,, = 4 N E,,, with every square E,,, is measurable as
previously defined and if the series

> w(Amn)

m,n

converges. The measure of A is then defined as

WA) = 3 wl(Aon)- (3D

m,n

All the properties of measure proved above carry over to this more general
case in a straightforward way (give the details).

Remark 3. We might go still further, calling a set 4 measurable with
“infinite measure”” if every 4,,, is measurable and if the series (31) diverges.
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Alternatively, we can regard the whole plane as the union of the squares
E,={(x,y:—n<x<n—-n<y<n}

calling a plane set measurable, with (possibly infinite) measure

w(4) = lim x(4,) (32)
if its intersection 4, = 4 N E, with every square E, is measurable as
previously defined. As an exercise, prove the consistency of (31) and (32).

Problem 1. Let E be the closed unit square. Prove that

a) Every open subset of E is measurable;

b) Every closed subset of E is measurable;

c) Every set obtained from open and closed subsets of E by forming no
more than a countable number of unions, intersections and com-
plements is measurable.

Comment. There are measurable subsets of E which are not of the type c).

Problem 2. Construct a theory of Lebesgue measure for sets on the line,
starting from intervals (closed, open and half-open) instead of rectangles.
Do the same for

a) Sets on the circumference of a circle;
b) Three-dimensional sets;
c) Sets in R".

Problem 3. Prove that the set of all rational points on the line is measur-
able, with measure zero.

Problem 4. Prove that the Cantor set constructed in Example 4, p. 52
is measurable, with measure zero.

Problem 5. Prove that every set of positive measure in the interval [0, 1]
contains a pair of points whose distance apart is a rational number.

Problem 6. Show that the power of the set of all measurable subsets of
the interval [0, 1] is greater than the power of the continuum.

Problem 7. Let C be a circle of circumference 1, and let « be an irrational
number. Let all points of C which can be obtained from each other by
rotating C through an angle nam (where n is any integer, positive, negative
or zero) be assigned to the same class. (Clearly, each such class contains
countably many points.) Let @, be any set containing one point from each
class. Prove that @, is nonmeasurable.



SEC. 26 GENERAL MEASURE THEORY 269

Hint. Let @, be the set obtained by rotating @, through the angle no.
Then

and
o, NO, =g (m # n).

If ®, were measurable, the congruent sets @, would also be measurable.
This would imply

by the oc-additivity of . But congruent sets must have the same measure,
i.e., if @, were measurable, then

p'((bﬂ) = P-(q)o)»
which contradicts (33).

26. General Measure Theory

26.1. Measure on a semiring. In Sec. 25 we constructed a theory of
measure of plane sets, starting from a measure (area) m defined on the class
&, of all rectangles (with sides parallel to the coordinate axes) and then
extending m to a Lebesgue measure . defined on the much larger class &,
of all measurable sets. The explicit formula for the area of a rectangle played
no role in this construction. In fact, a moment’s thought shows that we only
used the following properties of the set function m:

1) The domain of definition &, of m, i.e., the class of all rectangles,
is a semiring;!

2) m is real and nonnegative;

3) m is additive in the sense that if P is a rectangle such that

p=Upr,
k=1

where Py, . .., P, are pairwise disjoint rectangles, then

m(P) =3 m(Py).

As will be shown in this section and the next, the construction given in
Sec. 25 for the case of plane sets can be carried out in an abstract setting,
whose very generality greatly enhances its range of applicability.

1 We now draw freely from the material in Sec. 4, on systems of sets.
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Guided by the above properties of m, we introduce

DEFINITION 1. A set function u(A) is called a measure if

1) The domain of definition &, of u. is a semiring;
2) w is real and nonnegative;

3) . is additive in the sense that if A is a set in &, such that

A=U 4,
Fe==1

where Ay, . .., A, are pairwise disjoint sets in &, then

wA) = 3 (4.
Remark. 1t follows from @ = @ U & that

w(2) = 2u(2),
and hence

w(@) =0.

THEOREM 1. Let y be a measure on a semiring <, and suppose the
sets A, Ay, ..., A,, where Ay, . . . , A, are disjoint subsets of A, all belong
to ,. Then

3 v < w().
Proof. By Lemma 1, p. 33, there is a finite expansion

A=0Ak (s>n)

k=1

with 4,, ..., 4, as its first n terms, where
Ay e &, A, NA, =@ k#1D
forallk,/=1,2,... . Hence

n

3 w(A) < 3 uA) = u(A),

k=1
since p is nonnegative and additive. |

THEOREM 2. Let . be a measure on a semiring &,, and suppose the
sets A, Ay, ..., A, all belong to &, and satisfy the condition

A< U 4,
k=1
Then

n

W) < 3 w(4y).

k=1
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Proof. According to Lemma 2, p. 33, there is a finite system of
pairwise disjoint sets By, ..., B, belonging to &, such that each of the
sets A, 4;, ..., A, has a finite expansion

A=UB, 4,=UB, (k=1,...,n
€M SEMy
with respect to certain of the sets B,, where each index s € M, belongs to
at least one of the sets M, (recall footnote 16, p. 33). Hence each term
in the sum

> w(B)

seMy

appears at least once in the double sum

> 2 wB)
k=1 s€ My

It follows that
WA = > wWB) <Y 3 wB)=3u). I
k=1 seM; k=1

seMo
COROLLARY. If A < A’, then u(4d) < p(4’).
Proof. Choosen=1. }

It will be recalled that the first step in constructing Lebesgue measure of
plane sets was to extend measure from rectangles to elementary sets, i.e., to
finite unions of disjoint rectangles. We now consider the abstract analogue
of this process:

DEFINITION 2. A measure . is called an extension of a measure m if
I © F, and u(A) = m(A) for every A€ ,,.

THEOREM 3. Any measure m defined on a semiring <, has a unique
extension u defined on the ring (%), i.e., the minimal ring generated
by &,

Proof. By Theorem 3, p. 34, every set 4 € %(%,) has a finite
expansion

A=U B, (D

k=1
where the sets By, . .. , B, are pairwise disjoint and belong to ,,. Let
w(A) = S m(B). ®

Then p is obviously real, nonnegative and additive. Moreover, the
quantity u(4) defined by (2) is independent of the expansion (1). In fact,



272  MEASURE CHAP, 7

suppose 4 has another expansion of the form

$
4=Uc, @)
=1
where the sets Cy, . . . , C, are pairwise disjoint and belong to #,,. Then,
since the intersections B, N C, all belong to %, it follows from the
additivity of the measure m that

n

g m(B,) =3 3 m(B, 1 C) =z m(C),

=17=

and hence
721 m(Cy) = w(4),

as asserted. This proves the existence of the extension w. To prove the
uniqueness of ¢, suppose m has another extension ', and let 4 be the
set (1). Then, by the additivity of u’,

w(A) =k§u'(Bk) =z m(By) = u(A).

Hence, since every set 4 € #(,,) has a representation of the form (1),
the extensions p and @’ coincide. J§

Remark. As already noted, the proof of Theorem 3 is a repetition in
abstract language of the extension of measure from the semiring of rectangles
to the minimal ring generated by this semiring, i.e., the class of elementary
sets.

26.2. Countably additive measures. Many problems in analysis involve
unions of countably many sets, as well as unions of only finitely many sets.
Correspondingly, the (finite) additivity imposed on measures in Definition 1
turns out to be inadequate, and it is natural to introduce a stronger kind
of additivity:

DEFINITION 2. A measure . with domain of definition &, is said to be
countably additive or o-additive if

() = 2 u(4,)
Sorall sets A, Ay, . .., Ay, . .. € &, satisfying the conditions

A=U4, A n0d4;,=02 (i#])).

n=1

Example. According to Theorem 10, p. 265, Lebesgue measure in the
plane is c-additive.
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THEOREM 4. Suppose a c-additive measure m on a semiring <, is
extended to a measure p. on the ring %(%,,). Then y. is also c-additive.

Proof. Suppose

Ae A, B,e %(S) n=1,2,...)
and

where
B, NB =4 (k#D.

Then, by Theorem 3, p. 34, there exist finite expansions

A:UA::" B'nZUBm"
where ’ )
AN04,=93, B,NB, =9 (k~1).
Let
Ci; = B,; 0 A4;.

Then the sets C,,;; are pairwise disjoint and

A;= uu C'm'z"

B, = U Chrije
Therefore ’
m(d,) =3 Z m(Criy), 3
m(B,,) = Z m(Csy), C)
7
since m is o-additive on ,,, and moreover
w(d) = 3 m(4,), )

<

by the definition of the measure w. Comparing (3)-(6), we find that

i

(the sums over i and j are finite, while those over n are convergent). J§
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Next we generalize Theorems 1 and 2 to the case of s-additive measures:

THEOREM 1'. Let w be a c-additive measure on a semiring ¥, and
suppose the sets A, Ay, ..., Ay, ..., where Ay, . .., Ay, . .. are pairwise
disjoint subsets of A, all belong to ;. Then

2 w(Ay) < w(A). Q)
k=1
Proof. By Theorem 1,

élu(Ak) < u(d)

foralln =1,2,... . Taking the limit as n — =, we get (7). §

THEOREM 2'. Let w be a o-additive measure on a semiring <,, and
suppose the sets A, Ay, ..., Ay, ... all belong to &, and satisfy the
condition o

A< U4,

k=1

Then
W) < Suldy). ®)

Proof. By Theorem 4, we can assume that y is defined on the ring
R(,), instead of just on the semiring . In fact, if w is c-additive,
so is its extension on .%’(Vu), which we continue to denote by w, and the
validity of (8) on Z(,) obviously implies its validity on . The sets

n—1
Bn:(A‘ h An) :UAk
k=1
belong to #(,) and clearly satisfy the conditions

A=UB,, B,< A, B.NB =8 (k#£].
n=1
Therefore

m(A) = S m(B,) < 3 m(4,). I

Problem 1. Let X = {x,, X, . . .} be any countable set, and let p;, p,, . . .
be positive numbers such that

Spa=1.
n=1
On the set &, of all subsets of X, define a measure p. by the formula
pA =2 P (A<= X),

where the sum is over all n such that x, € A. Prove that y is a c-additive
measure, with p(X) = 1.
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Comment. This kind of measure arises quite naturally in many problems
of probability theory.

Problem 2. Let X be the set of all rational points in the closed unit
interval [0, 1], and let #, be the set of all intersections of the set X with
arbitrary closed, open and half-open subintervals of [0, 1], including the
degenerate closed intervals consisting of a single point. Prove that &, is a
semiring. Define a measure g on ¥, by the formula

wdaw) = b —a,

where A,, is the intersection of X with any of the intervals [a, b], (a, b),
(a, b], [a, b). Prove that y is additive, but not s-additive.

Hint. Although p(X) = 1, X is a countable union of single-element sets,
each of measure zero.

Problem 3. Let u. be a measure which is additive, but not s-additive.
Prove that

a) Theorem 1’ continues to hold for u;
b) Theorem 2’ fails to hold for w.

Hint. Use Problem 2.
Problem 4. Given a measure p. on a semiring &, suppose
@A) < Ju(4y)
k=1

whenever the sets A, 4,,..., A4, ... all belong to y; and satisfy the
condition

Prove that yu is c-additive.

Comment. It is often easier to verify that u has this property than to
prove the o-additivity of w directly.

27. Extensions of Measures

Any measure m defined on a semiring %, can be extended to a measure
defined on the ring #(%,), i.e., the minimal ring generated by #,. How-
ever, if m is o-additive, we can extend m to a measure defined on a much
larger class of sets than Z(,,). This is done by the abstract analogue of
the procedure used in Sec. 25.2 to construct Lebesgue measure in the plane.
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Assuming that &, has a unit,? we begin with the analogues of Definitions
2-5, pp. 259-260.

DEFINITION 1. Let m be a c-additive measure on a semiring &, with
a unit E. Then by the outer measure of a set A < E is meant the number

w*(4) = inf 3 m(B,),
AcUBy k

where the greatest lower bound is taken over all coverings of A by a finite
or countable system of sets B, € ..

DEFINITION 2. By the inner measure of a set A < E is meant the
number

g () = m(E) — p*(E — A).
Remark. By the exact analogue of Theorem 3, p. 258, it follows that
ta(4) < p*(A4).
DEFINTION 3. A set A is said to be (Lebesgue) measurable if
w4 (4) = p*(4),
i.e., if its inner and outer measures coincide.

DEFINITION 4. If a set A is measurable, the number u(A) equal to the
common value of w.,(A) and w*(A) is called the Lebesgue measure of A.

Remark. Clearly, a set A < E is measurable if and only if
w*(A) + wH(E — A) = m(E). M
In particular, it follows from (1) that if 4 is measurable, so is E — 4.

THEOREM 1. If A is any set and {A.} is any finite or countable system
of sets such that
A< U4,
then "
wH(4) < % w*(A4,).

Proof. Exactly analogous to that of Theorem 4, p. 259. §

2 The case where ¥, fails to have a unit will be discussed later (after Theorem 7).

3 It turns out, of course, that w is a measure as defined in Sec. 26.1 (see Theorem 5,
where the additivity of w is proved). In particular, this justifies the use of the notation
&, for the system of all measurable sets.
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THEOREM 2. Every set A € H(,,) is measurable, with Lebesgue
measure equal to m(A), where 1 is the extension of m from the semiring
&, to the ring A(%,,).

Proof. Exactly analogous to that of Theorem 5, p. 259. [

THEOREM 3. A set A is measurable if and only if, given any € > 0,
there is a set B € #(S,,) such that

u*(4 A B) <e.

Proof. Exactly analogous to that of Theorem 6, p. 261. §
TBEOREM 4. The system <, of all measurable sets is a ring.

Proof. Exactly analogous to that of Theorem 7, p. 262 and its
corollary. J§

Remark. Obviously E is the unit of &, so that ¥, is an algebra of
sets (see p. 31).

THEOREM 5. The set function u(A) is additive on .

Proof. Exactly analogous to that of Theorem 8, p. 263. §
THEOREM 6. The set function w(A) is c-additive on .
Proof. Exactly analogous to that of Theorem 10, p. 265. }§

Remark. Thus . is a c-additive measure of the system , of all measur-
able sets. This measure is called the Lebesgue extension of the original
measure m.

THEOREM 7. The system &, of all measurable sets is a Borel algebra
with unit E.

Proof. Recall from p. 35 that a Borel algebra is closed under the
operations of taking countable unions and intersections. The proof is
the exact analogue of that of Theorem 9, p. 264. |

It is interesting to note that an arbitrary measurable set can be approxi-
mated to within a set of measure zero by a set of a very special kind:

THEOREM 8. Given any set A € y;, there are sets
B,.e S, Byu<Bp< B, <)
and corresponding sets

B%=UBMCE5’; (BIDBZD---DBnD...)
k
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such that
A< B=MNB,,
n
w(4) = w(B).
Proof. Given any n, we can cover 4 by a union
Cn = U ANT
T

of sets A, € &, such that
1
BC) < p(A) + .

Let
n
B, = n C
k=1
so that, in particular, B, > B, > -+ ® B, D -- -, Then it is easy to
see that
Bn = U 8'ns,
where 3, € <,. Next let )
13
Bnk = U 87137
s=1
so that, in particular,
B,=UB,,.
k

Then obviously B,,€ %(%,) and B, < B,<:--<B,,<--:
Moreover

A< B=(B,

since B is an intersection of sets containing 4. It follows that
w(4) < w(B). @
On the other hand, B = B, < C, for every n, and therefore

1
w(B) < w(B,) < w(C,) < u(4) + e
Taking the limit as n — co, we get
®(B) < p(4),
which, together with (2), implies u(4) = p(B). §

Our construction of the Lebesgue extension of a measure m defined on a
semiring %, must be modified somewhat if &, fails to have a unit. We
continue to use Definition 1 to define the outer measure w*, but w* is now
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defined only on the system . of all sets with coverings
U B,’c (Bk € ym)
k

such that
> m(B,) < .
k

Since Definition 2 is meaningless in the absence of a unit, we now define
measurable sets by using the property figuring in Theorem 3:

DEFRINITION 3'. A set A is said to be (Lebesgue) measurable if, given
any € > 0, there is a set B € () such that p*(4 A B) < e.

DEFINITION 4. If a set A is measurable, the number p(A) equal to
its outer measure u.*(A) is called the (Lebesgue) measure of A.

Remark. Note that Definitions 3’ and 4’ are equivalent to Definitions 3
and 4 if &, has a unit.

In the case where %, has no unit, Theorems 4-6 continue to hold, since
the proofs of Theorems 5 and 6 do not require %, to have a unit, while the
proof of Theorem 4 can easily be freed of this requirement (see Problem 4).
However, Theorem 7 now takes a new form (see Problem 5). As before, the
c-additive measure (. on the system &, of all measurable sets is called the
Lebesgue extension of the original measure m.

Remark. There is an interesting analogy between the construction of the
Lebesgue extension of a measure m defined on a semiring %, and the process
of completing a metric space. Let 72 be the extension of m from the semiring
&, to the ring #(,), and suppose we regard /(4 A B) as the distance
between the elements 4, B € #(¥,). Then #(,,) becomes a metric space
(in general, incomplete), whose completion, according to Theorem 3, is just
the system , of all Lebesgue-measurable sets. However, note that from a
metric point of view, two sets 4, B€ &, are indistinguishable if .(4 A B) = 0.

Problem 1. Let m be a s-additive measure on a semiring %, with a unit
E, let u be the Lebesgue extension of m, and let { be an arbitrary s-additive
extension of m. Prove that p(4) = w(A) for every measurable set 4 on
which 1 is defined.

Hint. First show that p,(4) < p(4) < u*(4).

Problem 2. Let m be the same as in the preceding problem, and let 72 be
the extension of m to a measure defined on #(%,,). Prove that the outer
measure of a set 4 < E is given by

w*(4) = inf 3 m(By);
A4A<UBy &

k
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where the greatest lower bound is taken over all coverings of 4 by a finite
or countable system of sets B, € #(%,).

Problem 3. State and prove the analogues of Theorem 11, p. 266 and its
corollary for an arbitrary c-additive measure w defined on a Borel algebra
&, with unit E.

Problem 4. Give a proof of Theorem 7 valid in the case where & fails
to have a unit.

Hint. Suppose Ay, 4; € ,. Then 4; U 4, € ¥, by the same proof as
before (cf. p. 262). Moreover, there are sets By, B, € #(¥,,) such that

w¥(d; & By) < —; . w4 B < g :

But
(4, — 4,) Ao (B, — By) = (4, A B) U (4 A By),

and hence p*(4 A B) < e where B = B, — B, € %(%,,). Therefore 4, — 4,
€ ,. Toprovethat 4; N A, and 4; A A, belong to &, use the formulas

Al N A2 = Al - (Al b Ag),
Ay A Ay = (41 — 4p) U (4, — 4y).

Problem 5. Given a measure m on a semiring <, with no unit, let p.
be the Lebesgue extension of m and &, the corresponding system of all
measurable sets. Prove that

a) & is a d-ring (see p. 35);
b) The set
4=U 4, (A € )
k

belongs to &, if and only if there is a constant C > 0 such that

u(UAk) <cC 3)
k=1
foralln=1,2,...

Comment. The necessity of the condition (3) is obvious, since our
measures are always finite.

Problem 6. Let w and &, be the same as in the preceding problem.
Prove that the system of all sets B € &, which are subsets of a fixed set
A € &, is a Borel algebra with unit A4.

Problem 7. A measure u. is said to be complete if every subset of a set
of measure zero is measurable, i.e., if 4" < 4, u(4) =0 implies 4’ € y;
(If A’ € &, then obviously 1(4") = 0.) Prove that the Lebesgue extension
of any measure m is complete.
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Hint. If A’ < A and p(4) = 0, then p*(4) = 0. But @ € %(¥,) and
uHA' & @) = p¥(4) =0.

Problem 8. Let # be a measure defined on a ring #. For example,
might be the extension of a measure m originally defined on a semiring <,
to a measure defined on the minimal ring £ = %(¥,) generated by <,

Then a set A is said to be Jordan measurable if, given any € > 0, there are
sets A’, A" € & such that

AcAc A, mA —A)<e.

Prove that the system Z* of all Jordan-measurable sets is a ring containing
A.

Problem 9. Let m, % and #* be the same as in the preceding problem,
and let o7 be the system of all sets A such that there is a set B € Z containing
A. Given any set 4 €., let

w(4) = inf m(B),
B>4
BeR
(4) = sup (B)
- Bc4
BeR
(since @ < A, 4 always contains a set in Z%). Prove that

a) p(4) < p(4);
b) The ring Z* coincides with the system of all sets 4 € &/ for which
pw(d) = p(4);
c) If
A < U Ak,
k=1

where 4, Ay, ..., A, all belong to o7, then

i) < 3ay;

k=1

d) If 4,, ..., A, are pairwise disjoint sets contained in a set 4, then

W) > 3 plhy).

By the Jordan measure of a set A € Z*, we mean the number ©(4) equal to

the common value of £(4) and £(4). Prove that p.is a measure on £* = .

Comment. The measure p is called the Jordan extension of the measure
m. If m is itself an extension of a measure m originally defined on a semiring
., we write Z* = #*(H,) and call u the Jordan extension of the measure
m, as well as of the “intermediate’ measure 7.
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Problem 10. Given two measures 72; and #, defined on rings %, and %,,
let u; and p, be their Jordan extensions onto the larger rings #f = &, and
Ry = S,,. Prove that p; and ., coincide if and only if

c@l < ‘Zl-z’ fﬁl(A) = p.z(A) fOI' an A € -%1,
1, (A) = p,(A) for all 4 € A,.

R = S,

Problem 11. Let i be the measure defined in Sec. 25.1 on the ring £ of
all elementary sets (i.e., all finite unions of disjoint rectangles with sides
parallel to the coordinate axes), and let u be the Jordan extension of 7.
Prove that u does not depend on the particular choice of the underlying
rectangular coordinate system. In other words, prove that u (as well as
the corresponding ring #* = &) does not change if all the sets in % are
subjected to the same shift and rigid rotation.

Problem 12. We say that a set A is a set of uniqueness for a measure m if

1) There is an extension of m defined on 4;
2) If u, and y, are two such extensions, then u;(4) = py(A).

Prove that the system of sets of uniqueness of a measure m defined on a
semiring %, coincides with the ring £* = #*(,,) of sets which are Jordan
measurable (with respect to m). In other words, prove that the Jordan ex-
tension of a measure m originally defined on a semiring ,, is the unique
extension of m to a measure defined on #* = #*(¥,), but that the
extension of m to a larger system is no longer unique.

Problem 13. Prove that if a set 4 is Jordan measurable, then

a) A is Lebesgue measurable;
b) The Jordan and Lebesgue measures of A coincide.

Prove that every Jordan extension of a c-additive measure is s-additive.
Problem 14. Give an example of a set which is Lebesgue measurable, but
not Jordan measurable.

Problem 15. We say that a set A is a set of c-uniqueness for a c-additive
measure m if

1) There is a c-additive extension of m defined on 4;
2) If p, and y, are two such extensions, then y;(4) = w,(A4).

Prove that the system of sets of c-uniqueness of a c-additive measure m
defined on a semiring &, coincides with the system of sets which are
Lebesgue measurable (with respect to m).

Hint. To show that every Lebesgue-measurable set 4 is a set of o-
uniqueness for m, choose any € > 0. Then there is a set Be # = #(,,)
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such that p*(4 A B) <e. If p is any extension of m defined on 4 (and on
Z), then w(B) = m(B), where m is the unique extension of m onto £.
Moreover, (4 A B) < u*(4 A B) <e, and hence [pn(4) — m(B)| < «.
Therefore |u,(4) — wo(4)| < 2e if w; and p, are two c-additive extensions
of m defined on 4 (and on #%). Hence u,(4) = p,(A), by the arbitrariness
of .

Problem 16. Let m be a c-additive measure defined on a semiring <,
and let £ be the domain of the Lebesgue extension of m. Let m’ be a o-
additive extension of m to a semiring . such that

‘%ncym'c*’?,

and let ¥’ be the domain of the Lebesgue extension of m’. Prove that
L =2



3

INTEGRATION

28. Measurable Functions

28.1. Basic properties of measurable functions. Given any two sets X and
Y, let & be a system of subsets of X and &’ a system of subsets of ¥. Then
an abstract function y = f(x) defined on X and taking values in Y is said
to be (&, &')-measurable if A € &' implies f~1(4) € &.

Example. Let X and Y both be the real line R, so that y = f(x) is a
“function of a real variable.”” Moreover, let & and &’ both be the system
of all open (or closed) subsets of R:. Then our definition of measurability
reduces to that of continuity (recall Sec. 9.6). On the other hand, if we
choose both ¥ and &’ to be the system #* of all Borel sets on the real line
(recall p. 36), our definition becomes that of a Borel-measurable (or simply
B-measurable) function.

In what follows, we will be primarily concerned with the notion of real
functions measurable with respect to some underlying measure w, this being
the case of greatest interest from the standpoint of integration theory. More
exactly, let X be any set and Y the real line R*, with & = &, the domain of
definition of some c-additive measure w. and &%’ the system Z* of all Borel
sets B < R*. For simplicity, we assume that &, has a unit equal to X itself.
Moreover, since any c-additive measure can be extended onto a Borel algebra
(by Theorem 7, p. 277), we might as well assume from the outset that &,
is a Borel algebra. These considerations suggest

DEFINITION 1. Given a o-additive measure . defined on a Borel algebra
, of subsets of a set X, where X is the unit of &, let y = f(x) be a real

284
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function defined on X, and let 7" be the set of all Borel sets on the real
line. Then the function f is said to be p.-measurable (on X) if f~Y(4) € &,
Jor every A € B, or equivalently if f(B") < .

THEOREM 1. A function f is u-measurable if and only if the set
{x:f(x) < ¢} is y-measurable (i.e., belongs to &) for every real c.

Proof. If fis p-measurable, then obviously so is {x:f(x) < ¢}, since
(— o, ¢)is a Borel set. Conversely, let X be the system of all semi-infinite
intervals (—oo, ¢), and suppose f~4(Z) < . Since #(Z), the Borel
closure of X (see p. 36), coincides with the system %' of all Borel sets
on the line (why?), we have

SHAB) =fHBE) = BSHZ) < B(H)

(recall Problem 3e, p. 36). But #(S) = &, since &, is a Borel
algebra, and hence
(e <= <. 1

THEOREM 2. Let {f,} be a sequence of p-measurable functions on X,
and let f be a function on X such that

f(X) =lim f‘n(x)
for every x € X. Then f is itself u-measurable.
Proof. First we verify that

{x:f(x)<c}=UU N x:fm(x)<c—}c. )]

nm>n

In fact, if f(x) < c, there is an integer £ > 0 such that

2
f(x)<c_i_c’

and then for this k, there is an integer n > 0 so large that

Ful®) < ¢ — i @

for all m > n. Therefore every x belonging to the left-hand side of (1)

also belongs to the right-hand side. Conversely, if x belongs to the

right-hand side of (1), there is a k such that (2) holds for all sufficiently

large m. But then f(x) < ¢, i.e., x belongs to the left-hand side of (1).
Now, since the functions f,, are p-measurable, the sets

. 1
Xifn(x) <c A
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all belong to y;, and hence so does the right-hand side of (1), since .?;
is a Borel algebra. Therefore {x:f(x) < c}e€ . But then f is p-
measurable, by Theorem 1. J

THEOREM 3. A B-measurable function of a w-measurable function is
itself u-measurable.

Proof. Let f(x) = @[{(x)], where ¢ is B-measurable and ¢ is u-
measurable. If 4 = R! is any B-measurable set, then its preimage 4’ =
¢~1(4) is B-measurable, and hence the preimage 4" = {71(4') is u-
measurable. But 4" = f~1(4), and hence fis y-measurable. J

COROLLARY. A continuous function of a p-measurable function is
itself p-measurable.

Proof. A continuous function is clearly B-measurable. J

28.2. Simple functions. Algebraic operations on measurable functions.
A function f is said to be simple if it is u-measurable and takes no more
than countably many distinct values. This notion clearly depends on the
choice of the measure .

The structure of simple functions is clarified by

THEOREM 4. A function f taking no more than countably many distinct
values y;, ys, . . . is p-measurable if and only if the sets

A, = {x:f (x) = y,} n=12,..)
are p-measurable.

Proof. Since each single-element set {y,} is a Borel set, the set 4,,
being the preimage of {y,,}, is measurable if fis measurable.! Conversely,
suppose the sets 4, are all measurable. Then the preimage f~1(B) of any
Borel set B = R! is measurable, being a union

U4,

Yn€R3
of no more than countably many measurable sets 4,. But then f is
measurable, [

Therelation between measurable functions and simple functions is shown by

THEOREM 5. A4 function f is p-measurable if and only if it can be
represented as the limit of a uniformly convergent sequence of simple
Sfunctions.

! For simplicity, we often say ‘‘measurable” instead of *‘w-measurable,” omitting
explicit reference to the underlying measure p.
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Proof. If f is the (uniform) limit of a convergent sequence of simple
functions, then f is y-measurable by Theorem 2, since simple functions
are p-measurable by definition. Conversely, given any u-measurable
function f, let

m

fn(x):— m+1
n

if -<f()<

where m and n are positive integers. Then the functions f,, are simple
and moreover converge uniformly to fas n — o, since

() — fu0)] < % |

The next few theorems show that the class of measurable functions i

closed under the usual algebraic operations.
THEOREM 6. If f and g are measurable, then so is f + g.

Proof. First let f and g be simple functions, taking value y;, y,, . . .
and zy, z,, . . ., respectively. Then the sum 4 = f + g can only take the
values ¢;; = y; + z;, where each such value is taken on a set of the form

{x:h(x) = c;;} = U ({xfx) =y} 0 {xgx) =z. Q)
+25=0C5
There are no more than countably many values w of the function & =
f -+ g, and moreover each set {x:A(x) = c;} is measurable, since the
right-hand side of (3) is clearly measurable. Therefore # =f+ gis a
simple function.

Now let fand g be arbitrary measurable functions, and let {f,} and
{g.} be sequences of simple functions converging uniformly to f and g,
respectively, as in the proof of Theorem 5. Then the sequence of simple
functions {f, + g,} converges uniformly to f + g, and hence f + g is
measurable, by Theorem 5. ||

THEOREM 7. If f is measurable, then so is cf, where c is an arbitrary
constant.

Proof. Obviously, the product of a simple function and a constant is
again simple. But if {f,} is a sequence of simple functions converging
uniformly to f, then {c¢f,} converges uniformly to ¢f, and hence cf is
measurable, by Theorem 5. J

THEOREM 8. If f and g are measurable, then so is f — g.
Proof. An immediate consequence of Theorems 6 and 7. §

THEOREM 9. If f and g are measurable, then so is fg.
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Proof. Clearly,
1
fo=0+8 = U —9l

But the expression on the right is a measurable function, by Theorems
6-8 and the fact that the square of a measurable function is measurable
(this follows from the corollary to Theorem 3). §

THEOREM 10. If f is measurable, then so is 1[f, provided f does not
vanish.

Proof. We have

{ f(—) < c} - {x ) > ’} U {xif(x) < 0}

if ¢ >0,

{X:J%x) < c} = {x: % <f(x) < 0}

if¢ <0, and
— <) ={x:f(x) <c}
<)
if ¢ = 0. But in each case the set on the right is measurable. [

CoroLLARY. If fand g are measurable, then so is f[g, provided g does
not vanish.

Proof. An immediate consequence of Theorems 9 and 10. §

28.3. Equivalent functions. The values of a function can often be ne-
glected on a set of measure zero. This suggests

DEFINITION 2. Two functions f and g defined on the same set are said
to be equivalent (with respect to a measure ) if

wleif (x) # g(x)} = 0.

A property is said to hold almost everywhere (on E) if it holds at all points
(of E) except possibly on a set of measure zero. Thus two functions fand g
are said to be equivalent (written f~ g) if they coincide almost everywhere.

THEOREM 11. Given two functions f and g continuous on an interval E,
suppose f and g are equivalent (with respect to Lebesgue measure y. on the
line). Then f and g coincide.

Proof. Suppose f(x,) # g(x,) at some point x, € E, so that f(x,) —
g(xy) # 0. Since f — g is continuous, there is a neighborhood of x,
(possibly one-sided) in which f — g is nonzero. This neighborhood has
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positive measure, and hence

wlxif (%) # g(x)} > 0,
Le., fand g cannot be equivalent, contrary to hypothesis. J§

Remark. Thus two continuous functions cannot be equivalent if they
differ at even a single point. However, discontinuous functions can obviously
be equivalent without being identical. For example, the Dirichlet function

1 if x is rational,

J(x) =

0 if x is irrational

is equivalent to the function g(x) = 0 (recall Problem 3, p. 268).

THEOREM 12. A function f equivalent to a measurable function g is
itself measurable.

Proof. 1t follows from Definition 2 that the sets {x:f(x) < ¢} and
{x:g(x) < c}candiffer only by a set of measure zero. Hence if the second
set is measurable, so is the first set. The proof is now an immediate
consequence of Theorem 1. §

28.4. Convergence almost everywhere. Since the behavior of measurable
functions on sets of measure zero is often unimportant, it is natural to
introduce the following generalization of the ordinary notion of convergence
of a sequence of functions:

DEFINITION 3. A sequence of functions {f,(x)} defined on a space X
is said to converge almost everywhere to a function f(x) if

lim f,(x) = f(x) @

n-—w

Sor almost all x € X, i.e., if the set of points for which (4) fails to hold is
of measure zero,

Example. The sequence {f,(x)} = {(—x)"} defined on [0, 1] converges
almost everywhere to the function f(x) = 0, in fact everywhere except at the
point x = 1.

Theorem 2 now has the following generalization:

THEOREM 2'. Let {f,} be a sequence of w-measurable functions on X,
and let f be a function on X such that

S () =lim f,(x) ®

n—00
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almost everywhere on X. Then f is itself w-measurable, provided y is
complete.?

Proof. If A is the set on which (5) holds, then w(X — A4) = 0. The
function f is measurable on A4, by Theorem 2, and also on X — A, since
every function is measurable on a set of measure zero if p is complete
(why?). Hence fis measurable on the whole set X =4 U (X — 4). {

28.5. Egorov’s theorem. The following important theorem shows the
relation between the concepts of convergence almost everywhere and uniform
convergence:

THEOREM 12 (Egorov). Let {f,} be a sequence of measurable functions
converging almost everywhere on a measurable set E to a function f. Then,
given any 8 > 0, there exists a measurable set Eg <= E such that

1) w(Es) > w(E) — 3;
2) {f.} converges uniformly to f on E.

Proof. The function f is measurable, by Theorem 2’. Let
m 1
Ex =N {x: Ifi(x) — f0) < 7;} (6)
Thus, for fixed m and n, E™ is the set of all points x such that

1
1A = f Gl <

holds for all i > n. Moreover, let

Em=UEr.
n=1
It follows from (6) that
Ei”cE;"cH-cE’:cu.,

and hence, by the corollary to Theorem 11, p. 267,% given any m and
any & > 0, there is an ny(m) such that

3
WE™ — Engom) < 27 - @)

Let

©
m
Ea = n Evlo(m)‘
m=1

* See Problem 7, p. 280.
3 See also Problem 3, p. 280.



SEC. 28 MEASURABLE FUNCTIONS 29|

Then E; satisfies the two conditions of the theorem. The fact that the
sequence {f,} is uniformly convergent on Ej is almost obvious, since if
x € E, then, givenanym=1,2,...,

i) — Fo)l < L
m

for every i > ny(m).

To verify condition 2), we now estimate the measure of the set E — Ej,
noting first that w(E — E™) = 0 for every m. In fact, if x,€ E — E™,
then there are arbitrarily large values of 7 such that

i) — fGxal > =,
m

which means that the sequence {f,,} cannot converge to f at the point x,.
Therefore w(E — E™) = 0, as asserted, since {/,} converges to f almost
everywhere, by hypothesis. It follows from (7) that
m m m 8
\U'(E - Eno(m)) = (J'(E - Eno(m)) < 2_,,—; .
Therefore - -
“'(E - Eo) = (‘L(E - rJlE‘::)(m)) = 5"'( Li’l(E - E’::)(m)))

) ® 3
< z V’(E - E:{;(m)) < z am 8’

m=1 m=1 2"’
and hence w(E;) > w(E) — 3. 1
Problem 1. Prove that the Dirichlet function

f(X)={

0 if x is irrational

1 if x is rational,

is measurable on every interval [a, b].
Problem 2. Do the same for the function

! ifx=2is rational,
f) =14 q
0  if x is irrational.
Problem 3. Suppose f(x) is measurable on [a, b]. Is g(x) = ¢’ measur-
able on [a, b]?

Problem 4. Prove that if fis measurable, then so is | f].

Problem 5. Let {f,} be a sequence of measurable functions converging
almost everywhere to a function f. Prove that {f,} converges almost every-
where to a function g if and only if fand g are equivalent.
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Problem 6. A sequence {f,} of p.-measurable functions is said to converge
in measure to a function fif

lim p{x:[£,(0) — )] > 8} =0

n—- 0

for every 3 > 0. Prove that if a sequence {f,} of measurable functions
converges to f almost everywhere, then it converges to f in measure.

Hint. Let A4 be the set (of measure zero) on which {f,} fails to converge
to f, and let

E(3) = {x: [fu®) — ()] > 3},
R,(3) = U E(3), ®
k=n

M =R, ().

n=1

Then the sets (8) are all measurable (why?), and w(R,(8)) - w(M)asn — o,
since R;(8) @ Ry(8) @ -+ -. Prove that M < A and hence that u(M) =0
(as always, we assume that w is complete). It follows that w(R,(3)) — 0 as
n— . Now use the fact that E,(8) = R,(3).

Problem 7. Let {f,} be a sequence of measurable functions converging in
measure to a function f. Prove that {f,} converges in measure to a function
g if and only if fand g are equivalent.

Problem 8. Given any positive integer k, consider the function
TR e SO
fE(x) = k k
0 otherwise,
defined on the half-open interval (0, 1]. Show that the sequence

(1) £(2) £(2) (k) (k) (k)
1 1’f2 LERBERREEIVAD UEEIV AL BN B RL LIS IV A T B

converges in measure to zero, but does not converge at any point whatsoever.

Comment. Thus the converse of the proposition in Problem 6 is false.
Instead we have the weaker proposition considered in the next problem.

Problem 9. Prove that if a sequence {f,} of functions converges to f in
measure, then it contains a subsequence {f,} converging to f almost
everywhere.

Hint. Let {3,} be a sequence of positive numbers such that

lim$, = 0,

n—>
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and let {¢,} be a sequence of positive numbers such that

(2]
Se, < oo.
n=1
Let {n;} be a sequence of positive integers such that n, > n,_, and

pleilfa, () —fDI > 8 <&, (k=1,2,..)).

Moreover, let

R=0 (1m0 —f@i> 8 o=fr,

i=1

Then p(R,) — w(Q) as i — «, since Ry @ R, = - -+, On the other hand,

[‘L(R1) <Ir§1€k,

and hence w(R;) — 0, so that pn(Q) = 0. Now show that { S} converges to
fonE— Q.

Problem 10. Prove that a function f defined on a closed interval [a, b] is
u-measurable if and only if, given any € > 0, there is a continuous function
@ on [a, b] such that p{x:f(x) # ¢(x)} <e.

Hint. Use Egorov’s theorem.

Comment. This result, known as Luzin’s theorem, shows that a measurable
function ‘““can be made continuous by altering it on a set of arbitrarily small
measure.”

29. The Lebesgue Integral

The concept of the Riemann integral, familiar from calculus, applies
only to functions which are either continuous or else do not have “too many”
points of discontinuity. Hence we cannot form the Riemann integral of a
general measurable function f. In fact, f may be discontinuous everywhere,
or it may even be meaningless to talk about the continuity of fin the case
where f is defined on an abstract set. For such functions, there is another
fully developed notion of the integral, due to Lebesgue, which is more
flexible that the notion of the Riemann integral.

Let f be a function defined on a closed interval [a, b] of the x-axis.
Then to form the Riemann integral of f, we divide [a, b] into many sub-
intervals, thereby grouping together neighboring points of the x-axis. On
the other hand, as we will sece below, the Lebesgue integral is formed by
grouping together points of the x-axis at which the function f takes neigh-
boring values. In other words, the key idea of the theory of Lebesgue



294 INTEGRATION CHAP. 8

integration is to partition the range of the function frather than its domain.
This immediately makes it possible to extend the notion of integral to a very
large class of functions.

Another advantage of the Lebesgue integral is that it is constructed in
exactly the same way for functions defined on an abstract ‘“measure space”
(an arbitrary set X equipped with a measure) as for functions defined on the
real line. This is to be contrasted with the situation for the Riemann integral,
which is first introduced for functions of a single real variable and then
extended, with suitable modifications, to the case of functions of several
real variables, but fails to make any sense at all for functions defined on an
abstract measure space.

In what follows, unless the contrary is explicitly stated, we will consider
a c-additive measure y defined on a Borel algebra of subsets of a set X,
with X as the unit. We will assume that all sets under consideration are
u-measurable, and that all functions under consideration are defined and
w-measurable on X.

29.1. Definition and basic properties of the Lebesgue integral. Let f be a
simple function, i.e., a u-measurable function taking no more than countably
many distinct values

VisVos v s Varo oo (0))
Then by the (Lebesgue) integral of f over the set 4, denoted by
[ 0 du,
we mean the quantity
2 Va(4,) e

where
A, ={x:x€4d,f(x) =y},

provided the series (2) is absolutely convergent. If the Lebesgue integral
of fexists, we say that fis integrable or summable (with respect to the measure
w) on the set 4.

Example. Obviously,

Ll cdp = Ldp. = u(4).
We now get rid of the restriction that the numbers (1) be distinct:

LemMMA. Given a simple function f defined on a set A, suppose A is a
union
A=UB,
k
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of pairwise disjoint sets B, such that f takes only one value c, on B;. Then
[ is integrable on A if and only if the series

; co(By) 3

is absolutely convergent, in which case

[ du =3 cuuBy).
Proof. Each set
A, ={x:x€A,f(x) = y.}
is the union of the sets B, for which ¢, = y,. Therefore?
z y'np'(An) = z Yn Z;, [J'(Bk) = % Cky'(Bk)‘
n n Cx=Yn
Moreover, since @ is nonnegative, we have
2lyalud) =3 (7l 2 wBe) = 2 leil w(By),
n n k=VYn
so that the series (2) is absolutely convergent if and only if the series (3)
is absolutely convergent. J

THEOREM 1. Let f and g be simple functions integrable on a set A, and
let k be any constant. Then f + g and kf are integrable over A, and

Lo + golde = [ f(x) du+ [ () d, 4)

[ koo du = k[ () dg. (5)

Proof. Suppose f takes distinct values y; on sets F; < A4, while g
takes distinct values z; on sets G; < 4, where {,j = 1,2,... . Then

[ J6 du=3 yuucF, (6)

[ g9 du = 3 zu(G)). )

Clearly, f + g takes the values c; = y; + z; (not necessarily distinct)
on the pairwise disjoint sets B;; = F;, N G;. It follows from

wFy) = Z’ wF; NGy, w(Gy) = Z wF; NGy

4 The notation z calls for the sum over all  such that ¢, = y,.
Cr=Yn
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and the absolute convergence of the series (6) and (7) that the series

; Zj citu(B;;) =Ei ; (i + z)u(F; N Gy)

is absolutely convergent. Hence, by the lemma, f + g is integrable on
A and

L) + g du = 35 (0 + z)ulFi 0 6)
= ; ya(Fy) + ; z;(G;). (8)
Comparing (6)-(8), we get (4). The proof of (5) is trivial. [

THEOREM 2. Let fbe a bounded simple function on A, where | f(x)] < M
if x € A. Then f is integrable on A and

[/ du' < Mu(A).

Proof. If f takes values y, onsets 4, < 4 (n=1,2,...), then

I [ 7 du

where we have incidentally proved the integrability of fon 4 (how?). §

2 Yai(A,) | < X |yal u(d,) < M 3 u(4,) = Mu(4),

Next we remove the restriction that f be a simple function:

DEFINITION. A measurable function f is said to be integrable (or
summable) on a set A if there exists a sequence {f,} of integrable simple
Sunctions converging uniformly to f on A. The limit

lim [ /,(x) da. ©

is then called the (Lebesgue) integral of f over the set A, denoted by

[/ du.

This definition relies tacitly on the following conditions being met:

1) The limit (9) exists (and is finite) for any uniformly convergent sequence
of integrable simple functions on 4;

2) For any given f, this limit is independent of the choice of the sequence
{fa};

3) For simple functions, the definitions of integrability and of the integral
reduce to those given on p. 294.
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All these conditions are indeed satisfied. Condition 1) is an immediate
consequence of the estimate

[ fuy o — [ fux) du | = ] [JASEFAGIER
= (‘L(A) i:lzlt) Ifm(x) - fn(x)la

implied by Theorem 1 and 2. To prove 2), suppose the sequences {f,,} and
{f.¥} both converge uniformly to f, but

lim [ £,(x) du. #1im [ £ du.

Let {¢,} be the sequence
S S S s oo fun S

Then {¢,} converges uniformly to f, but

lim [, 0,(x) du

n—+w

fails to exist, contrary to condition 1). Finally, to prove 3), if f is simple,
we need only consider the trivial sequence {f,} with general term f,, = f.

THEOREM 1'. Theorem 1 continues to hold if f and g are arbitrary
measurable functions integrable on A.

Proof. Animmediate consequence of Theorem 1, after taking suitable
uniform limits of integrable simple functions. §

THEOREM 3. If @ is nonnegative and integrable on A and if | f(x)| <
@(x) almost everywhere on A, then f is also integrable on A and

[ du| < [ 00x) do. (10

Proof. If fand ¢ are simple functions, then, by subtracting a set of
measure zero from 4, we get a set A’ which can be represented as a
finite or countable union

A=U4,
of subsets 4, = A’ such that "

f(x) = Ay o(x) = bn
for all x e 4, and
la,| < b, n=1,2,...).

Since ¢ is integrable on 4, we have

3 laylu(d,) < Shuldn) = [ e@du= [ o(du (D)
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(see Problem 3b). Therefore f is also integrable on 4, and

[ S da| = [ 1) da

Comparing (11) and (12), we get (10).

In the case where f and ¢ are arbitrary measurable functions, let
{f..} and {¢,} be sequences of simple functions converging uniformly to f
and o, respectively, constructed in the4same way as in the proof of
Theorem 5, p. 286. Then clearly

a < ea(x)  (n=1,2,..))

on A’. Moreover each ¢, is integrable, since ¢ is integrable by hypoth-
esis. It follows that each f,, and hence fitself is integrable, where

[0 < [ @u() du.

Taking the limit as n — o, we again get (10). J

> au(d,)

< Yla,lu4,). (12)

CorOLLARY. If fis bounded and measurable on A, then f is integrable
on A.

Proof. Choose @(x) = M, where

M = sup [f(x)].
z€A

29.2. Some key theorems. We now prove some important properties of
the Lebesgue integral, regarded as a set function

F()= [, f(x) du (13)
defined on a system of measurable sets (with the integrand f held fixed).
THEOREM 4. Let

4=U4,

be a finite or countable union of pairwise disjoint sets A,,, and suppose f is
integrable on A. Then f is integrable on each A, and

[f@rda=3 [, re) e (14)

where the series on the right is absolutely convergent.

Proof. First let fbe a simple function, taking the values yy, y,, . . .
and let

By ={x:x€A,f(x) =y} B = {x:x € 4, f(x) = p:}.
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Then
[ da =3 yas(B) = 3 7. S (B
= ; % Yit(Bi) = ; L,, fx)dp.  (15)

Since fis integrable on 4, the series . y,u(B,) converges absolutely, and

k
hence so do the other series in (15). (Here we use the nonnegativity of
the measure w.) In particular, f'is integrable on each set 4,,.
Next let f'be an arbitrary measurable function integrable on 4. Then,
given any € > 0, there is a simple function g integrable on 4 such that

If(x) — g <e  (x€4d). (16)
For g we have

[g)du =3 [ gx)de. (a”)

as just shown, where g is integrable on each 4, and the series converges
absolutely. Hence, by (16), f'is also integrable on each 4, and

; ‘ f Wi (x) dp. — f 8 du) < g eu(4,) = su(4),

< eu(4),

| [ du — [ g(x) du
which, together with (17), implies the absolute convergence of the series

3 [ S0 de

and the estimate

[ de =3[, fo)du ’ < 2ep(A). (18)
But (18) implies (14), since ¢ > 0 is arbitrary. J

COROLLARY. If f is integrable on A, then f is integrable on every
measurable subset A' < A.

Proof. Think of 4 as the union of the disjoint sets 4’and 4 — 4’. J

Remark. A succinct way of expressing the property (14) is to say that
the set function (13) is c-additive.

THEOREM 5 (Chebyshev’s inequality). If f is nonnegative and integrable
on A, then

wlxixed, f(x) > ¢} < iLf(x) du.
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Proof. If
A ={xxed, f(x)> c},
then

[jwdu= [ ferdu+ [ seddus [ 10 du> eua)
(see Problem 4a). |}

COROLLARY. If
[reol du =0,
then f(x) = 0 almost everywhere.
Proof. By Chebyshev’s inequality,
1
%mxeAJf@M>—}<nLUthg=0
n
foralln=1,2,... . Therefore
w{x:x €4, f(x) # 0} < Zly.{x:x €4, |f(x)] > i} =0. }

THEOREM 6. If f'is integrable on a set A, then, given any € > 0, there
is a 8 > 0 such that

<e

e
for every measurable set E <= A of measure less than 3.

Proof. The proof is immediate if f is bounded, since then

[ 700 du \ < [l du < sup 1700l w(E)

(see Problem 4c). In the general case, let
A, ={xxed,n<|fX)| <n+1},

N
BN = U A’n’
n=0
Cy=A — By.

Then, by Theorem 4,
[rende=3 [ 170l do.
Let N be such that

> g
%+1 L,.If(x)l dp. = Jc,,lf(x)l du. < 5"

n=
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and let
0<d<—"n,
2N+ 1)
Then w(E) < 3 implies
Joreo du ] = [rerde= [ ifeldu+ [ 1709l du

€ €
< NV + DpE) + [ 10 de <+ f-e

Remark. The property figuring in Theorem 6 is expressed by saying that
the set function (13) is absolutely continuous with respect to the measure (.
Problem 1. Prove that the Dirichlet function
1 if x is rational,
Sf(x) =

0 if x is irrational

fails to have a Riemann integral over any interval [a, b]. Prove that the
Lebesgue integral of f over any measurable set 4 exists and equals zero.

Problem 2. Find the Lebesgue integral of the function

ifx=2is rational,

1
f(x) = {4 q
1 if x is irrational
over the interval [a, b].

Problem 3. Prove that

a) If fis integrable on a set Z of measure zero, then
[, 7 du=0;
b) If fis integrable on 4, then
[, r@ydu= [, 705 du
for every subset A" < A such that u(4 — 4’) = 0.
Comment. We can regard a) as a limiting case of Theorem 6.

Problem 4. Prove that

a) If fis nonnegative and integrable on 4, then

[ fedus o;
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b) If fand g are integrable on 4 and f(x) < g(x) almost everywhere, then

[ 7o du < [ g0 dus
c) If fis integrable on 4 and m < f(x) < M almost everywhere, then

mu(d) < [ () dp < Mu(A).

Problem 5. Prove that the existence of either of the integrals

[fede, 170 du
implies the existence of the other.
Problem 6. Let
A=U 4,

be a finite or countable union of pairwise disjoint sets 4,, and suppose f
is integrable on each A4, and satisfies the condition

> [ 1f@ldu < co. (19

Prove that fis integrable on A.
Hint. If fis simple, with values y;, y,, ..., let the sets B, and B, be
the same as in the proof of Theorem 4. Then

[ 7ol = [ 1l wBw.
The absolute convergence of (19) implies the convergence of

Z Z el w(Byp) = Z Vil Z w(B,y) = Zk:|yk| w(By),

n I k

and hence the integrability of f on A. In the general case, let g be a simple
function approximating f, and show that (19) implies the convergence

3 [, a0l du,
so that g, and hence f, is integrable on 4.
Comment. This is essentially the converse of Theorem 4.

Problem 7. Let p. be a c-additive measure defined on a Borel algebra &,
of subsets of a given set X, and let f be nonnegative and integrable on X
(with respect to w). Prove that the set function

F(4) = [ f(x)du
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is itself a c-additive measure on &, with the property that F(4) =0
whenever p(4) = 0.

Problem 8. Suppose fis integrable on sets 4,, Ay, ..., A,, ... such that

AIDAZD"'DA,;D"',
and let
A=N4,
Does .
[/ de
converge to
[ 760 du

30. Further Properties of the Lebesgue Integral

30.1. Passage to the limit in Lebesgue integrals. The problem of taking
limits behind the integral sign, or equivalently of integrating a convergent
series term by term, is often encountered in analysis. In the classical theory
of integration, it is proved that a sufficient condition for taking such a limit
is that the series (or sequence) in question be uniformly convergent. We
now examine the corresponding theorems for Lebesgue integrals, which
constitute a rather far-reaching generalization of their classical counterparts.

THEOREM 1 (Lebesgue’s bounded convergence theorem). Let {f,} be a
sequence of functions converging to a limit f on A, and suppose

/a0l < ox)  (x€4,n=1,2,..)),
where @ is integrable on A. Then f is integrable on A and

tim [, £, du = [, 55) .

Proof. Clearly | f(x)| < ¢(x), and hence f'is integrable, by Theorem 3,
p- 297. Let
A= {x:k — 1 < @(x) < k},

B, =U 4, = {x:¢(x) > m}.
k=m
By Theorem 4, p. 298,
[oedu=3 [ o du. (M
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where the series on the right is absolutely convergent. By the same token,

me<P(X) in =k;m f |, 00 du

Given any e > 0, there is an integer m such that
€
[y 00 de <2,

since the series (1) converges. Moreover, ¢(x) <m on 4 — B,. By
Egorov’s theorem (Theorem 12, p. 290), 4 — B,, can be represented in
the form

A—B,=CuUD,
where {f,} converges uniformly to fon C and
w(D) < — .

Sm
Let N be such that

€

5u(C)

[fa(x) — f(X)] <
on Cifn > N. Then

[0 =1 = | 1) = [ £+ [ £, de
— [, S @ du + [10) — f0N ds

and hence

o110 = [ fdu| = | [0 — reon s |
< meIfn(x)l du. + mel F(0)| du + fD| fu(0)] d.
+ [l du+ [ )/ = £ d

€

5u(C)

14 € € g
<44 =m4 = C)=c¢,

sttt t w(C)
which implies (1), since € > 0 is arbitrary. [

CorOLLARY. If | f(x)| < M and f, — f, then
lim [ £ du = [, f) du.

Proof. Choose ¢(x) = M, noting that every constant is integrable
ond. |}
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Remark. The values taken by a function on a set of measure zero have
no effect on its integral. Hence in Theorem 1 we need only assume that {f}
converges to f almost everywhere and that the inequality |f,(x)| < ¢(x)
holds almost everywhere.

TueoreM 2 (Levi). Suppose
A <f) <o <) <o
on a set A, where the functions f,, are all integrable and
Ltf,,(x)dp<M n=1,2,..) 2
for some constant M. Then the limit
f() =lim f,(x)

exists (and is finite) almost everywhere on A.> Moreover, f is integrable
and

tim [ £, du =[£G du.

Proof. It can be assumed that f;(x) > 0, since otherwise we need
only replace the f, by f,, — f1. Let

Q= {x:x € 4, f,(x) > ©}.
Then clearly

Q=NUuU Q"
where "
QP = {x:x€ A, f,(x) > r}.

It follows from (2) and Chebyshev’s inequality (Theorem 5, p. 299) that

@ < 2.
r
Moreover
u-(U Q‘;’) <M
”n r
since
QY)C Qé"’c---c Q;")c
But
acuQy
n

5 The function f can be defined in an arbitrary way on the set E where the limit (2)
fails to exist, for example, by setting f(x) = 0 on E.
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for any r, and hence
w(L2) < M.
r
Since r can be arbitrarily large, this implies
w(Q) =0,

thereby showing that the sequence {f,(x)} has a finite limit f(x) for
almost all x € 4.
Now Jet
A, ={xr—1<f(x)<r},

and let ¢ be the simple function such that

p(x) =rif x e 4, r=1,2,...).
Moreover, let

$
B,=U4,.
r=1
Since the functions f, and fare bounded on B, and since

e(x) <f(x) + 1,

we have
fyﬂ(x) dp < fB,f(x) du + u(A)
= lim fB,fn(X) dp. + wW(A) < M + w(4),

where we use the corollary to Theorem 1. But

st<P(X) dy. = Z ru(4,),

=

and hence

Srud) < M+ u(d)

r=1
foralls =1,2,... . Therefore
2 ru(4,) < o,
=1

i.e., ¢ is integrable on 4, with integral

[ 909 du = 5 ruca.

Since f,(x) < ¢(x), the validity of (3) is now an immediate consequence
of Lebesgue’s bounded convergence theorem (Theorem 1).
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COROLLARY. If @u(x) > 0 and

S f d
> X < 00,
& A(P!c( ) d.

then the series

i (Pk(x)
k=1

converges almost everywhere on A and

é fA@k(x) du = f 4 (é%(X)) dy.

Proof. Apply Theorem 2 to the functions

Fulx) = z ().

THEOREM 3 (Fatou). Let {f,} be a sequence of nonnegative functions
integrable on a set A, such that

[ fdu<M (=12

Suppose {f,} converges almost everywhere on A to a function f. Then f is
integrable on A and

L () du < M.

Proof. Let

Pu(x) = Inf fi(x).

Then ¢, is measurable, since -
{x:9.(x) <c} =kp {x:fi(x) < c}.

Moreover -

0 < ¢a(x) < fu(x),
and hence ¢, is integrable, by Theorem 3, p. 297, with

[joamdu< [ fidu<M (=12,

Clearly
P < ()< < @) <,

lim ¢,(x) = f(x)

n—+ow

and

almost everywhere. Applying Theorem 2 to the sequence {¢,}, we find
that f'is integrable and

[ s du=1im [ 0,0 du < m. 1
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30.2. The Lebesgue integral over a set of infinite measure. So far all our
measures have been finite (except for Remark 3, p. 267), and hence everything
said about the Lebesgue integral and its properties has been tacitly understood
to apply only to the case of functions defined on sets of finite measure.
However, one often deals with functions defined on a set X of infinite measure,
for example, the real line equipped with ordinary Lebesgue measure. We
will confine ourselves to the case of greatest practical interest, where X can
be represented as a union

x=UX, uwX)<w 3

of countably many sets X,, each of finite measure with respect to some
c-additive measure . defined on a o-ring of subsets of X (the sets of finite
measure). Such a measure is called o-finite. For example, Lebesgue measure
on the line, in the plane, or more generally in n-space is o-finite. For
simplicity, and without loss of generality (why?), we will assume that the
sequence {X,} is increasing, i.e., that

chch"'anC"" (4)

A sequence {X,,} satisfying the conditions (3) and (4) will be called exhaustive.
For example, the sequence {E,,} in Remark 3, p. 267 is an exhaustive sequence
(with respect to ordinary Lebesgue measure), whose unjon is the whole
plane.

Now let f'be a measurable function on X.¢ Then fis said to be integrable
(or summable) on X if it is integrable on every measurable subset 4 < X
and if the limit

lim [ /() dy s)

exists (and is finite) for every exhaustive sequence {X,}. The limit (5) is then
called the (Lebesgue) integral of f over the set X, denoted by

[ f) du.

Remark 1. The limit (5) is independent of the choice of the exhaustive
sequence {X,}. In fact, suppose

tim [0 dp#lim [, f(x) d,

¢ A real function y = f(x) is now said to be measurable if the set f~*(4) N X, is
measurable for every X, and every Borel set A4 (this being the obvious slight generalization
of Definition 1, p. 284).
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where {X*} is another exhaustive sequence. Define a new sequence {Q,}
such that

Q= X,

Q,, is any set of {X}} containing Q,, ;,

Q.14 is any set of {X,} containing Qg
(why do such sets exist?). Then {Q,} is exhaustive, but

lim [, f(x) dy
n—w n
fails to exist, contrary to hypothesis.

Remark 2. The integral of a simple function is defined in the same way
as on p. 294. It is clear that a necessary (but not sufficient) condition for
integrability of a simple function f'is that f take every nonzero value on a set
of finite measure.

30.3. The Lebesgue integral vs. the Riemann integral. Finally we examine
the relation between the Lebesgue integral and the Riemann integral,
restricting ourselves to the case of ordinary Lebesgue measure on the line:

THEOREM 4. If the Riemann integral

I=Lbf(x)dx

exists, then f is Lebesgue integrable on [a, b] and

dp=1.
Joy 760) )
Proof. Introducing the points of subdivision

smat ) k=12,

we partition [a, b] into 2" subintervals. Let

b—alZ
An = n zMnlv
2" k=t
b—a X
871 = n z Moy
2" 5

be the corresponding Darboux sums, where M, is the least upper bound
and m,,, the greatest lower bound on f on the subinterval x,_; < x < Xy.
By the definition of the Riemann integral,

I=limA, =1im3,.

n-=o n—ow
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Consider the functions
fn(x) = Mnk if X1 < X < Xy,
_fn(x) =My if X, < x < x4,

Then clearly

P du=8n [ () du=3, (7)

[a,b]

AR > f(¥) > > i) > > f(x),
S <fe() <o < ful) <00 < S0,

Moreover,

and hence
lim /,(x) = /() > f(2)
lim £,() = f() < [(2).

Using (7) and Theorem 2, we find that

f =i f, du. =1lmA, =1
., 76 du lim [, 72 () du =1ima,

n—+o

=lim8, =lm [ f)du=][ fC)du (8)

n—=+ow

(see also Problem 2). Therefore

J~[a,b] ]f(X) —_.f(x)l d“‘ = J; {f(X) __f(X)} dp, = 0,

a.bl
and hence .
fx) — fx) = 0
almost everywhere, by the corollary on p. 300. In other words,
fx) =f(x)=[f(x) ©)

almost everywhere. Comparing (8) and (9), we get (6). [
Problem 1. Prove that

lim [ 1,008 s = [, f(x) du()

if the sequence {f,} satisfies the conditions of Theorem 1 (as stated miore
generally in the remark on p. 305) and if g is essentially bounded on A in
the sense that there is a constant M > 0 such that [g(x)| < M almost every-
where on 4.
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Comment. If g is essentially bounded on 4, then the quantity

esssup [g(v)| = inf { sup |g(x)|},
reA Zc A4 \2cd-Z
u.(Z)=0

called the essential supremum of g on A, is finite.
Problem 2. Prove that Theorem 2 remains valid if

LX) > fi(¥) = > fulx) > o
and if (2) is replaced by the condition

L fu®)du>M (n=1,2,...).

Problem 3. Consider the system & of all subsets of the real line con-
taining only finitely many points, and let the measure w(4) of a set 4 € &
be defined as the number of points in 4. Prove that

a) & is a ring without a unit;
b) @ is not o-finite.

Problem 4. Why do we talk about a o-ring rather than a c-algebra on
p. 308?

Problem 5. Prove that if a function f vanishes outside a set of finite
measure, then its Lebesgue integral as defined on p. 308 coincides with its
Lebesgue integral as previously defined.

Problem 6. Show that the analogue of the definition on p. 296 cannot be
used to define the Lebesgue integral in the case where 4 is of infinite measure.

Hint. Give an example of a uniformly convergent sequence {f,} of
integrable simple functions such that

lim [ /,00) de.
fails to exist.

Problem 7. Which of the theorems of Sec. 29 continue to hold for
integrals over sets of infinite measure ?

Hint. The corollary on p. 298 fails if 4 is of infinite measure.

Problem 8. Verify that Theorems 1-3 of Sec. 30.1 continue to hold for
integrals over sets of infinite measure.

Problem 9. Given a nonnegative function f, suppose the Riemann integral

[P fexax
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exists for every € > 0 and approaches a finite limit as ¢ — 0+, so that the
improper Riemann integral

[ fexydx =tim [° f(x) dx (10)
e g0+ v o+e

exists. Prove that f is Lebesgue integrable on [, b] and

f[a,b] J&x)du = f: f(x) dx.

Comment. On the other hand, if fis of variable sign and if

lim |° x)| dx = o0,
51+0L+E|f( )I *

then the Lebesgue integral of f over [a, b] fails to exist, even if the improper
Riemann integral (10) exists. In fact, by Problem 5, p. 302, summability
of f would imply that of | f].

Problem 10. Prove that the integral
f 1 sin 1 dx
0 x x
exists as an improper Riemann integral, but not as a Lebesgue integral.

Problem 11. Suppose f is Riemann integrable over an infinite interval
(such an integral can exist only in the improper sense). Prove that f is
Lebesgue integrable over the same interval if and only if the improper
integral converges absolutely.

Comment. For example, the function
sin x
Jx)=—
x

is not Lebesgue integrable over (— o, c0), since
J‘ o
-
On the other hand, f has an improper Riemann integral equal to

J‘oo sin x
Tt =r
—o X

sin x

dx = o0.
x



9

DIFFERENTIATION

Let f be a summable function defined on a space X, equipped with a
c-additive measure . Then the (Lebesgue) integral

s du ()

exists for every measurable E < X, thereby defining a set function on the
system &, of all measurable subsets of X. If X is the real line, equipped
with ordinary Lebesgue measure w, and if E = [a, b] is a closed interval, we
write (1) simply as

[P re ax,

or equivalently as
[ryas 2

in terms of the new dummy variable of integration ¢ (here we anticipate
subsequent notational convenience). Then (2) is clearly a function of the
lower limit of integration a and the upper limit of integration . Suppose we
fix a, but leave b variable, indicating this by replacing » by the symbol x.
Then (2) reduces to the “indefinite Lebesgue integral”

f; ® 1) dt,

with its upper limit of integration variable.
Now let f be continuous, and let F have a continuous derivative. Then
it will be recalled from elementary calculus that the connection between

313
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the operations of differentiation and integration is expressed by the familiar
formulas

d [«
= rrwa=re, 3)

fa *F(1) dt = F(x) — F(a). (4)

This immediately suggests two questions:

1) Does (3) continue to hold for an arbitrary summable function f?
2) What is the largest class of functions for which (4) holds?

These questions will be answered in Secs. 31-33. The study of the general
set function (1) will be resumed in Sec. 34.

31. Differentiation of the Indefinite Lebesgue Integral

31.1. Basic properties of monotonic functions. We begin our study of the
indefinite Lebesgue integral

Fx) = [*1( ar (1)

as a function of its upper limit by making the following obvious but important
observation. If f is nonnegative, then (1) is a nondecreasing function.
Moreover, since every summable function f(¢) is the difference

SO =f0) =7

of two nonnegative summable functions (which?), the integral (1) is
the difference between two nondecreasing functions. Hence, the study of the
Lebesgue integral as a function of its upper limit is closely related to the
study of monotonic functions. Monotonic functions are interesting in their
own right, and have a number of simple and important properties which
we now discuss. Here all functions will be regarded as defined on some
fixed interval [a, b] unless the contrary is explicitly stated.

DEFINITION 1, A function f is said to be nondecreasing if x, < x,
implies f(x1) < f(xo) and nonincreasing if x, < x, implies f(x;) > f(x,).
By a monotonic function is meant a function which is either nondecreasing
or nonincreasing.

DEFINITION 2. Given any function f, the limit

lim f(xo + €)
e—0

e>0
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(provided it exists) is called the right-hand limit of f at the point x,,
denoted by

S (xo + 0).
Similarly, the limit
lim f(xy — €)

=0
£>0

is called the left-hand limit of f at x,, denoted by
S (xo—0).

f(xo+0) = f(x, — 0),

then clearly f is either continuous at x, or has a removable discontinuity
at x,.

Remark. If

DEFINITION 3. A function f is said to be continuous from the right at
Xo if
f(xo) =f(x0 + O)s

and continuous from the left at x, if

S (Xo) = f (%0 — 0).

DEFRINITION 4. By a discontinuity point of the first kind of a function f
is meant a point x, at which the limits f (x, + 0) and f (x, — 0) exist but are
unequal. The difference

S(xo+0) — f(xo — 0)
is then called the jump of f at x,.

Example. Given no more than countably many points

X1y Xgy ooy Xps oo s
in the interval [a, b], let
hl,hz,...,hn,.-.
be corresponding positive numbers such that
> h, < .
Then the function "
fx) =2 hn, )

where the sum is over all » such that x,, < x, is obviously nondecreasing.
A monotonic function of this particularly simple type is called a jump
function. A jump function such that

X< Xyl LX<,
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is called a step function. For an example of a jump function which is not
a step function, see Problem 1.

We now establish the basic properties of monotonic functions. To be
explicit, we will talk about nondecreasing functions, but clearly everything
carries over automatically to the case of nonincreasing functions.

THEOREM 1. Every nondecreasing function f on [a, b] is measurable
and bounded, and hence summable.

Proof. Since f(x) < f(b) for all x € [a, b], f is obviously bounded.

Consider the set
E, = {x:f(x) <c}

If E, is-empty, then E, is (trivially) measurable. If E, is nonempty, let
d be the least upper bound of all x € E,. Then E, is either the closed
interval [c, d], if d € E,, or the half-open interval [a,d) if d¢ E,. In
either case, E, is measurable. J

THEOREM 2. Every discontinuity point of a nondecreasing function is
of the first kind.

Proof. Let x be any point of [a 5], and let {x,} be any sequence
such that x,, < X, x, — %,. Then { f(x,)} is a nondecreasing sequence
bounded from above, e.g., by the number f(x,). Therefore lim f(x,)

n— 0

exists for any such sequence, i.e., f(xo — 0) exists. The existence of
f(xo + 0) is proved in the same way. |
Obviously, a nondecreasing function need not be continuous. However,
we have
THEOREM 3. A nondecreasing function can have no more than countably
many points of discontinuity.
Proof. The sum of the jumps of f on the interval [a, b] cannot exceed

f(®) — f(a). LetJ, be the set of all jumps greater than 1/n, and let J be
the set of all jumps régardless of size. Then obviously

J =0
n=1
where each J,, is a finite set. Hence J has no more than countably many
elements.
THEOREM 4. The jump function (2) is continuous from the left. More-
over, all the discontinuity points of f are of the first kind, with the jump at x,,
equal to h,,.

! See the corollary on p. 298.
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Proof. Clearly,
f(x—0)= llmf(x —¢)=1m > b,

=0 zy<x—€
t>0 £>0

But if x, < x, then x, < x — ¢ for sufficiently small € > 0. Therefore

lim > bh,=f(x),

=0 2p<z—€
£>0

and hence

fx—=0=f.
If x coincides with one of the points x,,, say with x,, , then

f(x,,o—I—O)—l)mf(x,,o—}—s)—hm > h,= > h,

€20 2p<wngte xnézno

Sy +0) = f (X0 —0) = . 1

THEOREM S. If f is continuous from the left and nondecreasing, then
f is the sum of a continuous nondecreasing function ¢ and a jump func-
tion {.

which implies

Proof. If x;, X,. ... are the discontinuity points of f, with corre-
sponding jumps hy, ks, . . . , let
$(x) = 2 h,

¢(x) = f(*) — b(x).
e(x") — o(x) = [f(x") — f(N] — [b(x") — $(xN)],

where the expression on the right is the difference between the total
increment of f on the interval [x’, x"] and the sum of its jumps on
[x', x"], ie., (x") — @(x) is the measure of the set of values taken by
fatits continuity points in [x’, x"]. This quantity is clearly nonnegative,
and hence ¢ is nondecreasing. Moreover, given any point x € [a, b], we
have

cp(x—O):limf(x—s)—lin; U(x —2) = f(x — 0) — Z /.

Then

€>0 e>0 o<

<p(x+0)=limf(x+s)—]ing Y(x + <) = f(x + 0) — z B
e—0 e TS
e>0 e>0

and hence
e(x +0) — ¢(x —0)=f(x+0) —f(x —0) —h =0,

where h is the jump of ¢ at x. It follows that ¢ is continuous at every
point x € [a, b]. 1
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31.2. Differentiation of a monotonic function. The key result of this
section (see Theorem 6 below) will be to show that a monotonic function f
defined on an interval [a, b} has a finite derivative almost everywhere on [a, b].
Before proving this proposition, due to Lebesgue, we must first introduce
some further definitions and then establish three preliminary lemmas.

The derivative of a function f at a point x, is defined in the familiar way
as the limit of the ratio

f(x) f(xo) (3)

X—XO

as x — xo. Even if this limit fails to exist, the following four quantities
(which may take infinite values) always exist:

1) The lower limit of (3) as x — x, from the left, denoted by A ;

2) The upper limit of (3) as x — x, from the left, denoted by A ;2
3) The lower limit of (3) as x — x, from the right, denoted by Ag;
4) The upper limit of (3) as x — x, from the right, denoted by Ap.

These four quantities, with the geometric meaning shown in Figure 17, are
called the derived numbers of f at x,.% It is clear that the inequalities

A< Ag, A < Ag “

always hold. If Ay and A exist and are equal, their common value is just
the left-hand derivative of f at x,. Similarly, if Az and Ay exist and are
equal, their common value is just the right-hand derivative of f at x,. More-
over, f has a derivative at x, if and only if all four derived numbers Ay, A,

A

|
|
|
l
|
1
0 Xo

FiGURre 17

2 Upper and lower limits are defined on p. 111.
3 To distinguish these quantities further, we can call A, the left-hand lower derived number,
Ag the right-hand upper derived number, and so on.
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Ar and Ajp exist and are equal at x,. Hence the italicized assertion at the
beginning of this section can be restated as follows: For a monotonic function
defined on an interval [a, b}, the formula

holds almost everywhere on [a, b].

DEFINITION 5. Let f be a continuous function defined on an interval
[a, b]. Then a point x, € [a, b] is said to be invisible from the right (with
respect to f) if there is a point & such that x, < & < b and f(xo) < f(8),
and invisible from the left if there is a point € such that a < & < xoand
Fxo) < f(E).

Example. In Figure 18, the points belonging to the intervals [a;, b;) and
(as, b,) are invisible from the right (interpret the word “invisible’).

LemMA 1 (F. Riesz). The set of all points invisible from the right with
respect to a function f continuous on [a, b] is the union of no more than
countably many pairwise disjoint open intervals (ay, by),* such that

f(ak) <.f(blc) (k = ]’ 2, .. ')' (5)

Proof. If x, is invisible from the right with respect to f, then the
same is true of any point sufficiently close to xo, by the continuity of f.
Hence the set of all points invisible from the right is an open set G. It
follows from Theorem 6, p. 51 that G is the union of a finite or countable
system of pairwise disjoint open intervals. Let (a,, b;) be one of these
intervals, and suppose

Sflaw) > f(by). (6)
AANE
I/
Voo
SRR N
| | [N\ ya
TN\
aza; b a, b, AN

FIGURE 18

4 However, if a; = a (say), then in some cases (a,, b,) should be rep}aced by the half-
open interval [ay, 6,), as in Figure 18. This is permissible, since [a,, by) is open relative to
[a, b].
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Then there is an (interior) point X, € (a;, b;) such that f(x,) > f(b;).
Of the points x € (a,, b;) such that f(x) = f(x,), let x* be the one with
largest abscissa (x* may coincide with x,). Since x* belongs to (ay, b;)
and hence is invisible from the right, there is a point § > x* such that
f(&) > f(x¥). Clearly & cannot belong to (a,, b), since x* is the point
x with largest abscissa for which f(x) = f(x,), while f(b;) < f(x,), so
that & € (a,, b,) would imply the existence of a point x > x* such that
f(x) =f(x,). On the other hand, the inequality § > b, is also im-
possible, since it would imply f(b,) < f(x,) < f(E) despite the fact that
b, is not invisible from the right. Thus (6) leads to a contradiction
(obviously & = b,). It follows that f(a;) < f(by). 1

LemMA 1'. The set of all points invisible from the left with respect to
a function f continuous on [a, b} is the union of no more than countably
many pairwise disjoint open intervals (ay, by), such that

fla) > fby (k=1,2,..).
Proof. Virtually the same as that of Lemma 1. J

LemMMA 2. Let f be a continuous nondecreasing function on [a, b, with
A, and Ay, as two of its derived numbers. Given any numbers ¢, C and p
such that

0<e<C< oo, e

Ols

let E, be the set
= {x:7\L <ec, AR> C}.
Then
p{x:xe E N (o, B)} < p(B — @)

for every open interval («, B) < [a, b].

Proof. Let x, be a point of («, B) for which Ay < ¢. Then there is a
point & < x such that
fE) —f(x) _

& —xp

f(E&) — ¢ > f(xg) — cxo.

Therefore x, is invisible from the left with respect to the function
f(x) — cx. Hence, by Lemma 1’, the set of all such x, is the union of
no more than countably many pairwise disjoint open intervals (o, B;) <
(«, B), where

i.e., such that

o) — coy > f(Br) — By
SB0 — flo) < c(Br — ). M

or equivalently
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Let G, be the set of points in (a,, B,) for which Ap > C. Then, by
virtually the same argument together with Lemma 1, G, is the union of
no more than countably many pairwise disjoint open intervals (e, Bz.)
where

Bk,, — &g, < [f (Bk” (“k,,)] (8)

(why ?). Clearly E, N («, 8) is covered by the system of intervals (o, 8z,)-
Moreover, it follows from (7) and (8) that

S Br = m) < ¢ 3 [/(Bu) = f(am,)

ézww < £3 B— o) < B — o). W

We are now in a position to prove

THEOREM 6 (Lebesgue). A monotonic function f defined on an interval
[a, b] has a finite derivative almost everywhere on [a, b].

Proof. There is no loss of generality in assuming that f is non-
decreasing, since if f is nonincreasing, then obviously —f is nondecreas-
ing. But if —f has a derivative almost everywhere, then so does f. We
also assume that f is continuous, dropping this restriction at the end of
the proof. It will be enough to show that the two inequalities

Arp <+ ®
and

AL > Ag (10)

hold almost everywhere on [a, b], for any continuous nondecreasing
function. In fact, setting f*(x) = —f(—x), we see that £ * is continuous
and nondecreasing, like fitself. Moreover, it is easily verified that

7\2=7\R, A;ZAL,

where Af and A}, are the indicated derived numbers of f*. Therefore,
applying (10) to f*, we get

AL > A;
or

Ap>Ar., 8}
Combining the inequalities (10) and (11), we obtain

Ap <M < AL <Ag < Ag,
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after using (4). Thus if (9) and (10) hold almost everywhere, we have®
"‘CO<7\L=AL=)\R=AR<+w

almost everywhere, and the theorem is proved.

To prove that Ap < 4 oo almost everywhere, we argue as follows:
If Az = + oo at some point x,, then, given any constant C > 0, there is
a point € > x, such that

f(g) — f(xo)

— > C,
£ — X,

J&) — f(x0) > C(E — xo),

FE) — C& > f(x0) — Cx,.

Thus x, is invisible from the right with respect to the function f(x) — Cx.
Hence, by Lemma 1, the set of all points x, at which Ar = + o0 is the
union of no more than countably many open intervals (a,, b;), whose
end points satisfy the inequalities

f(ay) — Ca, < f(by) — Cb,

S — flan) > C(by — ap).
Dividing by C and summing over all the intervals (a, b;), we get

— f(ay) < f(b) — f(a)
C C '

ie.,

or equivalently

or

k

k

But C can be made arbitrarily large. Hence the set of points where Ap =
+ oo can be covered by a collection of intervals the sum of whose lengths
is arbitrarily small. It follows that this set is of measure zero, i.e., that
Ap < + o almost everywhere.

To prove that Ay > Ay almost everywhere, let the numbers ¢, C,
p and the set E, be the same as in Lemma 2. It will then follow that
Ar > Ap almost everywhere if we succeed in showing that w(E)) =0,
since the set of points where A;, < Ap can clearly be represented as the
union of no more than countably many sets of the form E, (why?).
Let [.L(Ep) = r. Then, given any € > 0, there is an open set G, equal
to the union of no more than countably many open intervals (a, b,)
such that E, < G and

Dby —ay) <t+e
-

® Note that A, cannot equal — o, since the difference quotient (3) is inherently non-
negative if f is nondecreasing.
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(this follows from the very definition of Lebesgue measure on the line).
If

ty = r[E, O (ax, bp)l,

t=2%
But t;, < p(b, — a;), by Lemma 2. Hence
t< e (b — ag) < e(t +¢),
k

then

which imp]ies t < pt, since € > 0 i$ arbitrary. This in turn implies
t =0, since 0 < p < 1. Therefore Ay > Ap almost everywhere, as
asserted.

Finally, to drop the requirement that f be continuous, we need only
generalize Lemmas 1 and 1" in the way indicated in Problem 6, noting that
the proof continues to go through (check details).® [

Remark. Despite its apparent complexity, the proof of Theorem 6 is
based on simple intuitive ideas. For example, the finiteness of Ay (and Ay)
almost everywhere is easily made plausible. In fact, let f be continuous and
nondecreasing on [a, b]. Then f maps [a, b] into the interval [ f{a), f(b)], at
the same time subjecting a small interval [x, £] at x to a “magnification”
approximately equal to
JE) —fx f &)

£
But the interval [ f(a), f(b)] is finite, and hence y(x) cannot be infinite on a
set of positive measure. As for the part of the proof based on Lemma 2,
it merely says that if the intersection of a subset A < [a, b] with every interval
(&, B) has measure no greater than p(f — «) for some fixed number p < 1,
then A cannot have positive measure.

y(x) =

31.3. Differentiation of anintegral with respect to its upper limit. Returning
to the problem of differentiating the indefinite Lebesgue integral, we have

THEOREM 7. Let f be any function summable on [a, b]. Then

d (e
» f 1) dt (12)

exists and is finite for almost all x.
Proof. As noted at the beginning of Sec. 31.1
O =£0) — £,

¢ For an alternative proof, see Problems 7-9.
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where f, and f_ are nonnegative summable functions, so that

F(x) = [*fydt = ["fu0 dt = [*£.(0)dt = Fi(») — Fy()

is the difference between two nondecreasing functions F, and F,. But F;
and F, have finite derivatives almost everywhere, by Theorem 6, and
hence so does F. |

We now evaluate the derivative (12), thereby giving an affirmative answer
to the first of the two questions posed on p. 314:

THEOREM 8. Let f be any function summable on [a, b]. Then

d (=
= i dr= 7o
almost everywhere.
Proof. Let

F(x) = f ® 1) dt.

Then it will be enough to show that
f(x) > F'(x) (13)

almost everywhere for any summable function. In fact, changing f(x)
to —f(x) in (13), we get
—f(x) > —F'(%)
() < F'(%). (14)
But (13) and (14) together imply the desired result

and hence

ey d (=
6y =F) =+ [*1)di

(almost everywhere).
To prove (13), we observe that if

Sx) < F'(x),
then there are rational numbers « and $ such that
fo) <a<B<Fx). (15)

Let E,; be the set of all x satisfying (15). Then, as we now show,
w(E,z) = 0. Since the number of sets E,g is countable, this will imply

ufx f(x) < F'(x)} =0
and hence that (13) holds almost everywhere.
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To prove that u(E,,) = 0, we first note that, given any ¢ > 0, there is
a 8 > 0 such that u(E) < 8 implies

I fE f(®) dt

(the existence of such a number 8§ follows from the absolute continuity
of the Lebesgue integral, proved in Theorem 6, p. 300).” Let G < [a, b]
be an open set, made up of no more than countably many pairwise
disjoint open intervals (a,, b,), such that

Epy< G, uG) <ulEy+3,
and let x, be any point in G, = E,3 N (@, by). Then
F(E) — F(xo) >
)
for any point & > x, sufficiently close to x,. Writing (16) in the form
F(&) — BE > F(xo) — o,

we see that the point x, is invisible from the right with respect to the
continuous function F(x) — Bx. It follows from Lemma 1 that G, is
the union of no more than countably many pairwise disjoint open
intervals (ay,, by, ), where

Fla,) — Bay, < F(by,) + Bby,»

F(b,) — Fla,) > B(be, — a),

<e

g (16)

ie.,

or equivalently

[ f @ dt > piby, — 4. n
If ’
5 = U (a,, bs,),

then clearly
Eg<cS<G, pS) < ulEg + 8.

Summing (17) over all the intervals (ay, , by, ), we get

[ rwai=3 [nf0di> 63 6, — ) = pul).

7 In particular, F(x) is continuous. In fact,

|F(x') — F(x)| = U:'f(z)dz[ <e
if |x — x| < 8.
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On the other hand,

Jorwai=[ s0ais [o, s
< oq(Eyp) + € < oau(S) + || & + . (18)
Comparing (17) and (18), we get
ap(S) + || 8 + & > Bu(S)
or

|| 8 + ¢
p.(S)<———B_a .

Therefore E,g is contained in an open set of arbitrarily small measure (it
can be assumed that |«| 8 < €). It follows that pu(E,z) = 0. [

Problem 1. Let x;, X,, ..., X,,... be the set of all rational points in
[a, b], enumerated in any way, and let A, = 1/2”. Prove that the jump
function

fx) =2 h,

is discontinuous at every rational point and continuous at every irrational
point.
Problem 2. Suppose we define a jump function by the formula
SfGo) = é By (19)
rather than by the formula (2). Prove that f is continuous from the right,
rather than from the left as in Theorem 4.

Problem 3. Find the derived numbers of the function
x sin 1 if x>0,
f(x) = x

0 if x<0
at the point x = 0.

Problem 4. Find the points invisible from the left in Figure 18, p. 319,
Problem 5. In Lemma 1, show that f(a,) = f(b,) if a), # a.

Problem 6. Prove that the requirement that f be continuous on [a, b] can
be dropped in Lemma 1, provided that

1) The discontinuity points of f are all of the first kind;
2) A point x, € [a, b] is said to be invisible from the right (with respect
to f) if there is a point § such that x, < § < b and

max {f(xo — 0), f (x0), [ (xo - O} <f(8);
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3) The inequality (5) is replaced by
f (@, + 0) < max { f(b, — 0),f(bp), f (b + 0)}.

State and prove the corresponding generalization of Lemma 1".

Problem 7. Let ©
gow(x) =f(x) (20)

be an everywhere convergent series, whose general term ¢, (x) is nondecreasing
(alternatively, nonincreasing) on [a, b]. Prove that (20) can be differentiated
term by term almost everywhere, i.e., that

2 on(x) = f'(x)
almost everywhere. =0
Problem 8. Prove that every jump function has a zero derivative almost
everywhere.
Hint. Use Problem 7.

Problem 9. Prove that the assumption that f be continuous from the left
in Theorem S can be dropped if we define a jump function as a sum of a
“left jump function” like (2) and a “right jump function” like (19). Use
this fact and Problem 8 to complete the proof of Theorem 6 without recourse
to Problem 6.

Hint. Use Problem 8 and Theorem 5.

Problem 10. Following van der Waerden, let

x if 0<x<i,
Po(x) = )
1—x if I<x<l,
and continue ¢, by periodicity, with period 1, over the whole x-axis. Then
let

1
47; <P0(4nx) (n = 17 2, .. ')a

69 =3 )

(Pn(x) =

Prove that
a) The function f is continuous everywhere;
b) The derivative of f fails to exist at every point x,€ (— o0, ).

Hint. Consider the increments

£ ) — 76

il
4n
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32. Functions of Bounded Variation

The problem of differentiating a Lebesgue integral with respect to its
upper limit has led us to consider functions that can be represented as
differences between two monotonic functions. We now give a different
description of such functions (independent of the notion of monotonicity),
afterwards studying some of their properties.

DEFINITION 1. A function f defined on an interval [a, b] is said to be
of bounded variation if there is a constant C > 0 such that

3 1f6w) = fGu)l < € 0
for every partition -
Aa=Xy <X <+ <Xx,=0b )]
of [a, b] by points of subdivision Xy, Xy, . .. , Xp.

Example. Every monotonic function is of bounded variation, since the
left-hand side of (1) equals | f(b) — f(a)| regardless of the choice of partition.

DEFINITION 2. Let f be a function of bounded variation. Then by the
total variation of f on [a, b], denoted by V(f), is meant the quantity

Ve(f) =sup i | f () — f(oe)l 3)

where the least upper bound is taken over all (finite) partitions (2) of the
interval [a, b].

Remark 1. A function f defined on the whole real line (— oo, o) is said
to be of bounded variation if there is a constant C > 0 such that

viN<c
for every pair of real numbers a and b (a < b). The quantity
lim V2(f)

a——ow
b—®

is then called the total variation of f on (— o0, ), denoted by V2, (f).

Remark 2. It is an immediate consequence of (3) that

Valaf) = lal Vo(f) C))
for any constant a.
TueoreM 1. If f and g are functions of bounded variation on [a, b},
then so is f + g and
Volf + 8) < Vo) + V(@) (%)



SEC. 32 FUNCTIONS OF BOUNDED VARIATION 329

Proof. For any partition of the interval [a, b], we have
211 0a) + g0xe) — f(¥—1) — gl
k
< 210 — f )l + % |g(x) — (%)l
k
Taking the least upper bound of both sides over all partitions of
[a, b], and noting that
sup {x + y:xed,yeB} < sup {x:xe A} + sup {y:y € B},
we immediately get (5). §

It follows from (4) and (5) that any linear combination of functions of
bounded variation is itself a function of bounded variation. In other words,
the set of all functions of bounded variation on a given interval is a linear
space (unlike the set of all monotonic functions).

THEOREM 2. If a < b < c, then
Vi) =Vaf) + Vi) (6)
Proof. First we consider a partition of the interval [a, c] such that
b is one of the points of subdivision, say x, = 5. Then

S17630 = £

- éllﬂxk) — f )l +k§ 1 Ge) — Ol < V) + V). (D)

=r+1

Now consider an arbitrary partition of [a, c]. It is clear that adding an
extra point of subdivision to this partition can never decrease the sum

k§1lf (x) — f el
Therefore (7) holds for any subdivision of [a, c], and hence

Va(f) < Vo) + Vi(f). (8)

On the other hand, given any € > 0, there are partitions of the intervals
[a, b] and [b, c], respectively, such that

SIG) = Ol > Vel = 5,

TG — F5-)l > Vi) — ;
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Combining all points of subdivision x;, x;, we get a partition of the
interval [a, ¢], with points of subdivision x,, such that

glf (x) — f(a)l = ; [f(x) — fG + ; |f(xD) — fGei-0)
> Vo(f) + Vi(f) — =
Since ¢ > 0 is arbitrary, it follows that
V) = V) + vilf). 9)
Comparing (8) and (9), we get (6). [

COROLLARY. The function

v(x) = Va(f) (10)

is nondecreasing.

Proof. An immediate consequence of (6), since the total variation of
any function of bounded variation on any interval is nonnegative. |

THEOREM 3. Let f be a function of bounded variation on [a, b}, and let
v be the function (10). Then if f is continuous from the left at a point x*,
50 is v.

Proof. Given any € > 0, use the fact that f'is continuous from the left
to choose a 8 > 0 such that

Fe* = f9l <2 (11)
whenever x* — x < 8. Then choose a partition
a=xg<x < <x,=x*
such that
AGEDIVCAESCIESS (12)

Here it can be assumed that
x* — Xpe1 < 8’

since otherwise we need only add an extra point of subdivision which can
never increase the left-hand side of (12). It follows from (11) and (12)
that

n—1
Vaz*(f) _kZ] If(xk) — [l <,
and hence -

Va) — VEN(f) <e

v(x*) — o(x,1) < e

a fortiori, i.e.,
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But then, since v is nondecreasing,

v(x*) —o(x) < e
for all x such that x,,_; < x < x*. In other words, v is continuous from
the left at x*, |

Remark. Virtually the same argument shows that if f is continuous from
the right at x*, then so is v. Together with Theorem 3, this shows that if
fis continuous at x*, or on the whole interval [a, b], then so is v.

THEOREM 4. If f is of bounded variation on [a, b, then f can be rep-
resented as the difference between two nondecreasing functions on [a, b].
Proof. Let
o(x) = Vi f),

g=v—f
Then g is nondecreasing. In fact, if x" < x”, then

g(x") — g(x") = [o(x") — v(x")] — [fx") — f(x)]. (13)

&) = fN < v(x") — v(x),
by the very definition of v, and hence the right-hand side of (13) is
nonnegative. Writing

and consider the function

But

f=v—g
we get the desired representation of f as the difference between two
nondecreasing functions. [

COROLLARY 1. Every function of boundedvariation has a finite derivative
almost everywhere.

Proof. An immediate consequence of Theorem 6, p. 321. |

COROLLARY 2. If f is summable on [a, b], then the indefinite integral

o) = [*f(eyde
is a function of bounded variation on [a, b].
Proof. Recall the remarks at the beginning of Sec. 9.1. |
Problem 1. Prove that V¢(f) = 0 if and only if f(x) = const on [a, b].
Problem 2. Prove that the function
sin% if 0<x<l,
Jx) = x

0 if x=0
is of bounded variation on [0, 1] if « > $ but not if & < B.
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Problem 3. Suppose f has a bounded derivative on [a, b], so that f’(x)
exists and satisfies an inequality | f'(x)] < C at every point x € [a, b]. Prove
that f'is of bounded variation and

VUf) < C(b — a).

Problem 4. Prove that if fand g are functions of bounded variation on
[a, b], then so is fg and

Vife) < ViIS) sup lg(x)| + VIg) sup | f(x)I.

Problem 5. Let f be a function of bounded variation on [a, b] such that
f(x)=c>0.

Prove that 1/f is also a function of bounded variation and

VZ(JI;) < ciz Vo(f).

Problem 6. Prove the converse of Theorem 4.
Problem 7. Prove that a curve
y=f(x) (@<x<b
is rectifiable, i.e., has finite length, as defined in Problem 3, p. 114, if and
only if fis of bounded variation on [a, b].

Problem 8. Let f be a function of bounded variation on [a, b]. Prove that

1A = va(f)
has all the properties of a norm (cf. p. 138) if we impose the extra condition
f(a)=0.

Comment. Thus the space V{, ;, of all functions of bounded variation
on [a, b] equipped with this norm and vanishing at x =a is a normed
linear space (addition of functions and multiplication of functions by
numbers being defined in the usual way).

Problem 9. Prove that the space V7, , defined in the preceding comment
is complete.

Problem 10. Does there exist a continuous function which is not of
bounded variation on any interval?

Hint. Recall Problem 10, p. 327 and Corollary 1 above.
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33. Reconstruction of a Function from Its Derivative

33.1. Statement of the problem. We now address ourselves to the second
of the problems posed on p. 314, i.e., we look for the largest class of functions
F such that

f:F'(t) dt = F(x) — F(a), 0

or equivalently

F(x) = F(@) + ["F'(0) dr. ©)

(As we know from calculus, these formulas hold if F is continuously differ-
entiable.) From the outset, we must restrict ourselves to functions F which
are differentiable (i.e., have a finite derivative) almost everywhere, since
otherwise (2) would be meaningless. Every function of bounded variation
has this property (see Corollary 1, p. 331). Moreover, the right-hand side of
(2) is a function of bounded variation (see Corollary 2, p. 331). It follows
that the largest class of functions satisfying (2) must be some subset of the
class of functions of bounded variation. Since every function of bounded
variation is the difference between two nondecreasing functions (see Theorem
4, p. 331), we begin by studying nondecreasing functions from the standpoint
of formula (1).

THEOREM 1. Let F be a nondecreasing function on [a, b]. Then the
derivative F' is summable on [a, b] and

fa "F(t) dt < F(b) — F(a). 3)
Proof. Let

O () — n[F(t + i) — F(t)} n=1,2,..),

where, to make @,(¢) meaningful for all ¢ € [a, b], we get F(z) = F(b)
for b <t < b + 1, by definition.® Clearly

1y
F’(t)=limF(t+ ) i

n—+oo

= lim @,(7)

n—+00

N =S

almost everywhere on [a, b]. Since F'is summable on [a, b], by Theorem

® Verify that this does not affect the validity of the proof.



334 DIFFERENTIATION CHAP. 9

1, p. 316, so is every @,. Integrating ®,,, we get

() L 1\ _ b+(1/n) e
[, dt=n]" [F(t—}— n) F(t)j' dt— n[ [remrayar- [ F(t)dt]
_ n[ [ EGy ar— [*F dt} < F(b) — F(a),
where in the last step we use the fact that F is nondecreasing. The
summability of F'and the inequality (3) now follow at once from Fatou’s

theorem (Theorem 3, p. 307). §

Example 1. 1t is easy to find nondecreasing functions F for which (3)
becomes a strict inequality, i.e., such that

['F(t) dt < F(b) — F(a). (4)
For example, let
0 if 0<t<y,
F@t) =
1 if I<t< L

Then
0= f:F'(t) dt < F(1) — F(0) = 1.

Example 2 (The Cantor function). In the preceding example, F is discontin-
uous. However, it is also possible to find continuous nondecreasing functions
satisfying the strict inequality (4). To this end, let

[aM), b] = [4, %]
be the middle third of the interval [0, 1], let

[0, b1 =[5, 8], [a, 671 =[5, %
be the middle thirds of the intervals remaining after deleting [a{*), b{"'] from
[0, 1], let
[0, b¥] = [Fr, 571, [at?, bP] = [37, 77],
[, b = [3%. 381, [a®, bYP] = 33, §3]
be the middle thirds of the intervals remaining after deleting [a{V, bM'],
[4®, 6] and [aPb{®] from [0, 1], and so on, with

L

”f

[ (n) bin)]’ e [ ;n) b(")}, . [ fﬁl (7&) ]

being the 2™ intervals deleted at the nth stage. Note that the complement of
union of all the intervals [a{”, b{™] . is the set of all “points of the second
kind” of the Cantor set constructed in Example 4, p. 52, i.e., all points of the
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Cantor set except the end points
09 19%3%9%’%)%’5%,'.. (5)

of the deleted intervals (together with the points 0 and 1).
Now define a function

Fo=220 i re el o),
so that

Fy= }t if §<t<4

Fo) 1 if f<r<i,
 if §<t<4$,
3 if & <t<s,

) = H I:f < t< o,
yif <<y,
v i B<r<$s,

and so on, as shown scheinatically in Figure 19. Then F is defined everywhere
on [0, 1] except at points of the second kind of the Cantor set. Given any
such point t*, let {t,} be an increasing sequence of points of the type (5)
converging to t*, and let {r,} be a decreasing sequence of points of the same
type converging to t* (why do such sequences exist?). Then let

F(t*) =lim F(¢,) =lim F(t;)
n- o kud]
(justify the equality of the limits). Completing the definition of F in this way,
we obtain a continuous nondecreasing function on the whole interval [0, 1],
known as the Cantor function. (Fill in some missing details.) The derivative
F’ obviously vanishes at every interior point of the intervals [a{™, b{], and

FIGURE 19



336  DIFFERENTIATION CHAP. 9

hence vanishes almost everywhere, since the sum of the lengths of these
intervals equals
PHi+AH =1
(the Cantor set is of measure zero). It follows that
0= fo 'F(f) dt < F(1) — F(0) = 1.

33.2. Absolutely continuous functions. We have just given examples of
functions for which formula (1) does not hold. To describe the class of
functions satisfying (1), or equivalently (2), we will need the following

DEFINITION. A function f defined on an interval [a, b] is said to be
absolutely continuous on [a, b) if, given any € > 0, thereisa 3 > 0 such that

kgllf(bk) —fla]l <e
for every finite system of pairwise disjoint subintervals

(@, b)) < [a, 8] (k=1,...,n)
of total length

S (by — a)
k=1

less than 3.

Remark 1. Clearly every absolutely continuous function is uniformly
continuous, as we see by choosing a single subinterval (a,, b;) < [a, b].
However, a uniformly continuous function need not be absolutely continuous.
For example, the Cantor function F constructed in Example 2 of the preceding
section is continuous (and hence uniformly continuous) on [0, 1], but not
absolutely continuous on [0, 1]. In fact, the Cantor set can be covered by a
finite system of subintervals (a;, b,) of arbitrarily small total length (why?).
But obviously

g IF(by) — F(ay)| = 1

for every such system. The same example shows that a function of bounded
variation need not be absolutely continuous. On the other hand, an absolutely
continuous function is necessarily of bounded variation (see Theorem 2).

Remark 2. In the definition, we can change “finite” to *“finite or count-
able.” In fact, suppose that given any € > 0, there is a § > 0 such that

Si7b) —pianl < <

for every finite system of pairwise disjoint intervals (g, b;) < [a, b] of total
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length less than 3, and consider any countable system of pairwise disjoint
intervals (ay, B;) < [a, b] of total length less than 3. Then obviously

g /B — fla)] <

for every n. Hence, taking the limit as n — oo, we get

SIAE) el <& <

THEOREM 2. If f is absolutely continuous on [a, b], then f is of bounded
variation on [a, b].

Proof. Given any ¢ > 0, there is a § > 0 such that

z £ (b — fla)] < ¢

for every system of pairwise disjoint intervals (a;, b,) < [a, b] such that

(b, — a) <.
k=1
Hence if [, B] is any interval of length less than &, we have

VAS) < e
Let -
a=.x0<x1<"'<xN=b

be a partition of [a, b] into N subintervals [x,_,, x,] all of length less
than 3. Then, by Theorem 2, p. 329,

VAf)< Ne< oo. §

THEOREM 3. If fis absolutely continuous on [a, b], then so is af, where
o is any constant. Moreover, if f and g are absolutely continuous on [a, b},

then so is f -+ g.

Proof. An immediate consequence of the definition of absolute con-
tinuity and obvious properties of the absolute value. [

1t follows from Theorems 2 and 3 (together with Remark 1) that the set
of all absolutely continuous functions on [a, b] is a proper subspace of the
linear space of all functions of bounded variation on [a, b].

THEOREM 4. If f is absolutely continuous on [a, b], then f can be repre-
sented as the difference between two absolutely continuous nondecreasing

Sfunctions on [a, b].
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Proof. By Theorem 2, f'is of bounded variation on [a, b], and hence
can be represented in the form

f= v—g,
where

o) =Ve(f), g=v—f
are the same nondecreasing functions as in Theorem 4, p. 331. We now

verify that v and g are absolutely continuous. Givenanye > 0,let 3 > 0
be such that

kglf (be) —flay)| <€ <e

for every finite system of pairwise disjoint subintervals (a,, b,) < [a, b]
of total length less than 3. Consider the sum

z lo(be) — v(ay)| =§ [o(by) — o(ay)],

equal to the least upper bound of the sums - -

n Mg
2 2 1 fCer) — fxpa-n) (6)
k=11=1
taken over all possible finite partitions
a; = X0 < X113 < < Xy,m, = by,
G = X0 < Xpg3 < < X, = by,
anzx'n,0<x'n,1 < <xnm-._bn
of the intervals (a,, by), . . . , (a,, b,). The total length of all the intervals

(Xg,1-15 X1,,) figuring in (6) is clearly less than 8, and hence the sum (6) is
less than &', by the absolute continuity of f. Therefore

lev(bk) —v(a)l <€ <g

k=

i.e., v is absolutely continuous on [a, b]. It follows from Theorem 3
that g = v — fis also absolutely continuous on [a, b]. §

We now study the close connection between absolute continuity and the
indefinite Lebesgue integral:

THEOREM 5. The indefinite integral

F(x) = f (1) dt

of a summable function f is absolutely continuous.
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Proof. Given any finite collection of pairwise disjoint intervals
(ay, b,), we have

n n

ZIF(bk) - F(ak)l =k21

k=1 =

Lbkf(t) dt‘ <1§1 L”]qf(t)l dt = fU(ak.bk) |f()] dt.

But the last expression on the right approaches zero as the total length
of the intervals (a,, b,) approaches zero, by the absolute continuity of
the Lebesgue integral (Theorem 6, p. 300). §

LemMA. Let f be an absolutely continuous nondecreasing function on
[a, b] such that f'(x) = 0 almost everywhere. Then f(x) = const.

Proof. Since fis continuous and nondecreasing, its range is the closed
interval [ f(a), f(b)]. We will show that the length of this interval is zero
if f’(x) = 0 almost everywhere, thereby proving the lemma. Let E be
the set of points x € [a, b] such that f'(x) = 0, and let Z = [a, b] — E,
where (Z) = 0, by hypothesis. Given any € > 0, we find § > 0 such
that

; 1/ (b)) — flapl << (M

for any finite or countable system of pairwise disjoint intervals (ay, b;) <
[a, b] of length less than & (recall Remark 2, p. 336), and then cover Z
by an openset of measure less than 3 (this is possible, since Z is of measure
zero). In other words, we cover Z by a finite or countable system of
intervals (a,, b,) of total length less than 8. It then follows from (7) that
the whole system of intervals, and hence (a fortiori) the set

Zc< U (alc’ bk),
k

is mapped into a set of measure less than e. But then u[f(Z)] =0,
since € > 0 is arbitrary.

Next consider the set E = [a, b)] — Z, and let x, € E. Then, since
f'(x4) = 0, we have

f(x) -f(xo) <e

X — X,
for all x > x, sufficiently near x,, i.e.,

S = f(xo) < e(x — xo)
exo — f(Xo) < ex — f(x).

Therefore the point x, is invisible from the right with respect to the
function ex — f(x). It follows from Lemma 1, p. 319 that E is the
union of no more than countably many pairwise disjoint intervals («;, B,),

or
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with end points satisfying the inequalities

e — f (o) < eBr — f(Br)
SBr) — flow) < eBr — a)-

or

But then -
2B — fle)] < e X (Br — %) < e(b — a).
k k
In other words, f maps E into a set covered by a system of intervals of
total length less than (b — a). Therefore w[f(E)] = 0, since ¢ >0
is arbitrary.

We have just shown that the sets f{Z) and f(E) are both of measure
zero. But the interval [f(a), f(b)] is the union of f(Z) and f(E). It
follows that [ f(a), f(b)] is of length zero, i.e., that f(x) = const. §

We are now in a position to prove
THEOREM 6 (Lebesgue). If F is absolutely continuous on |a, b], then
the derivative F’ is summable on [a, b] and
F(x) = F(a) + f ® Fi(f) dt. (8)
Proof. We need only consider the case of nondecreasing F (why ?).

Then F” is summable, by Theorem 1, and the function
®(x) = F(x) — f ® Fi(f) dt ©9)
is also nondecreasing. In fact, if x” > x’, then
O(x") — B(x') = F(x") — F(x') — f:,'F'(z) dt > 0,

where we again use Theorem 1. Moreover, @ is absolutely continuous,

being the difference between two absolutely continuous functions (recall

Theorems 3 and 5), and @’(x) = 0 almost everywhere, by Theorem 8,

p. 324. It follows from the lemma that ®(x) = const. Setting x = a,

we find that this constant equals F(a). Replacing @(x) by F(a) in (9),

we get (8). §

Remark. Combining Theorems 5 and 6, we can now give a definitive

answer to the second of the questions posed on p. 314 (see also p. 333):
The formula

[P at= Fex) - Fla),

or equivalently,
F(x) = F(a) + [*F'(¢) dt,

holds for all x € [a, b if and only if F is absolutely continuous on [a, b].
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33.3. The Lebesgue decomposition. Let f be a function of bounded varia-
tion on [a, b]. Then it follows from Theorem 4, p. 331 and Problem 9, p. 327
that f can (in general) be represented as a sum

J&x) = o(x) + $(x), (10)
where ¢ is a continuous function of bounded variation and ¢ is a jump
function.® Now let

@) = ["g0 ar, an

P2(x) = @(x) — px(x).
Then ¢, is absolutely continuous, while ¢, is a continuous function of bounded
variation such that

#e) = 9 ()~ [rewar=o0

almost everywhere. A continuous function of bounded variation is said to
be singular if its derivative vanishes almost everywhere. For example, the
Cantor function F constructed in Example 2, p. 334 is singular. Combining
(10) and (11), we find that a function f of bounded variation can (in general)
be represented as a sum

S&) = a1(x) + @2(x) + $(x) (12)

of an absolutely continuous function ¢,, a singular function ¢, and a jump
function ¢. Formula (12) is known as the Lebesgue decomposition.

Remark. Differentiating (12), we get
S (x) = oi(x)

almost everywhere. Thus integration of the derivative of a function of
bounded variation does not restore the function itself, but only its absolutely
continuous ‘‘component,” while the other two components, i.e., the singular
function and the jump function, “disappear without a trace.”

Problem 1. Prove that a function f is absolutely continuous on [a, b] if
and only if it is a continuous function of bounded variation mapping every
subset Z <[a, b] of measure zero into a set of measure zero.

9 Generalizing Problem 9, p. 327, by a jump function, we now mean a function of

the form
2 b+ Y h,
T, <@ o<
where the numbers Ay, ..., An, .. .and A}, ..., h,, ... corresponding to the discon-
tinuity points X, . . ., Xn, . . . and xy, . . ., X», . . . satisfy the conditions

Slhal <0,  Ylhl <o
n

n
(we now allow negative hn, hv).
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Problem 2. Verify directly from the definition on p. 336 that the function

xsin—l- if x#0,
fx) = x
0 if x=0

fails to be absolutely continuous on any interval [a, b] containing the point
x=0.

Problem 3. Prove that if a function f satisfies a Lipschitz condition
| Ay = )] < K 1% — "

for all x’, x” € [a, b], then f is absolutely continuous on [a, b].

Problem 4. Prove that each of the terms ¢, ¢, and ¢ in the Lebesgue
decomposition (12) is unique to within an additive constant.

Comment. The stipulation “to within an additive constant’” can be
dropped if we require the function fand its “components’ to vanish at x = a,
say, or if we agree to regard all functions differing by a constant as equivalent.

Problem 5. Let A}, . be the space of all absolutely continuous functions
f defined on [a, b], satisfying the condition f(@) = 0. Prove that Alypy 18
a closed subspace of the space V[ ,; of all functions of bounded variation

on [a, b] satisfying the same condition, equipped with the norm || f'|| = V(f).

Comment. There is no need for the condition f(a) = 0 if we regard all
functions differing by a constant as equivalent. We then have | f|| = 0 if
and only if f = const.

Problem 6. Starting from a locally summable function f, i.e., a function
summable on every finite interval, defined the corresponding generalized
function f and generalized derivative f’ by the formulas

(o) = [ f)e) dx,

(f, ) = ~f_ww f(x)9'(x) dx

as in Sec. 21.2. (Here ¢ is any test function, i.e., any infinitely differentiable
function of finite support.) Prove that the generalized derivative f* determines
Jf to within an additive constant. Apply this to the case of the function

0 if x<0,
f(x) = {F(x) if 0<xx<l,
1 if x>1,

where F is the Cantor function constructed in Example 2, p. 334.
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Hint. See Theorem 1, p. 213.

Problem 7. Let f and f’ be the same as in the preceding problem, and
suppose f is of bounded variation on (—oo, c0). Then f has an ordinary
derivative almost everywhere. Let f; be the generalized function corre-
sponding to df [dx, so that

0

Voo = 7 % ) dx.

® dx
Prove that

a) In general, f; does not equal the generalized derivative f*;

b) If fis absolutely continuous, then f; = f*;

¢) If f, =f", then fis equivalent to an absolutely continuous-function'®
and, in particular, is absolutely continuous if it is continuous.

Hini. In a), consider the function
0 if x<0O,
1 if x>0.

f(x) =

Comment. Problems 6 and 7 further illustrate the situation discussed
on pp. 206-207. To carry out the operations of analysis (in this case, recon-
struction of a function from its derivative), we can either restrict the class of
admissible functions (by requiring them to be absolutely continuous) or else
extend the notion of function itself (at the same time, extending the notion
of a derivative).

34. The Lebesgue Integral as a Set Function

34.1. Charges. The Hahn and Jordan decompositions. As we now show,
the theory developed in Secs. 31-33 for functions defined on the real line
(—oc0, c0) continues to make sense in a much more general setting. Let X
be a space (i.e., some “master set’’) equipped with a measure w, and let f
be a p-summable function defined on X. Then f is summable on every
measurable subset E < X, so that the integral

OE) = [, 1) du M

(for fixed f) defines a set function on the system &, of all y-measurable
subsets of X. By Theorem 4, p. 298, @ is c-additive, i.e., if a measurable
set E is a finite or countable union

E=UE,
n

10 Le., coincides almost everywhere with an absolutely continuous function.
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of pairwise disjoint measurable sets E,,, then
O(E) = 2 V(E,).

In other words, the set function (1) has all the properties of a s-additive
measure except that it may not be nonnegative in the case where f takes
negative values. These considerations suggest

DerFINITION 1. A c-additive set function @ defined on a o-ring (in
particular, a c-algebra) of subsets of a space X and in general taking
values of both signs is called a signed measure or charge (on X).

Remark. Thus the notion of a measure is equivalent to that of a non-
negative charge.

In the case of electrical charge distributed on a surface, we can divide
the surface into two regions, one carrying positive charge (i.e., such that
every part of the region is positively charged) and one carrying negative
charge. We will establish the mathematical equivalent of this fact in a
moment, after first introducing

DEFINITION 2. Let ® be a charge defined on a c-algebra & of subsets
of a space X. Then a set A < X is said to be negative with respect to @
ifENAeS and D(E N 4) < O for every E€ . Similarly, A is said
to be positive with respect to ® if ENAe % and O(E N A) > 0 for
every E€ &.

THEOREM 1. Given a charge @ on a space X, there is a measurable set
A~ < X such that A~ is negative and A+ = X — A~ is positive with
respect to @.

Proof. Let
a = inf ©(4),

where the greatest lower bound is taken over all measurable negative
sets 4. Let {4,} be a sequence of measurable negative sets such that

lim®(4,) = A.
Then e
A-=U4,

is a measurable negative set such that
O(4)=a
(why?). To show that 4~ is the required set, we must now prove that

A+t = X — A~ is positive. Suppose 4+ is not positive. Then A+ contains
a measurable subset B, such that ®(B,) < 0. However, B, cannot be
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negative, since if it were, the set 4 = 4~ U B, would be a negative set
such that ®(4) < a, which is impossible. Hence there is a least positive
integer k, such that B, contains a subset B, satisfying the condition

1
O(B -,
( 1)>k1

Obviously B; # B,. Applying the same argument to the set By — B,
we find a least positive integer &, such that B, — B, contains a subset B,
satisfying the inequality

1

O(B,) > — (kg > ky)

ke
(explain why k, > k;), a least positiveinteger k; such that (B, — B;) — B,
contains a subset B; satisfying the inequality

1
O(B;) > ; (k3 > k),
and so on. Now let ’

F=B,—UB,.

n=1
Clearly F is nonempty, since ®(B,) < 0 while ®(B,) > 0 foralln > 1.
Moreover, F is negative by construction (think things through). Hence
theset 4 = A— U Fis againnegativeand ®(4) < a, which is impossible.
This contradiction shows that A+ = X — 4~ must be positive. [
Thus we can represent X as a unijon
X=A4+0V A4~ ¥))]
of two disjoint measurable sets 4+ and 4~, where A+ is positive and A~ is
negative with respect to the charge ®. The representation (2) is called the
Hahn decomposition of X, and may not be unique. However, if
X = AT U A7, X = A} v Af
are two distinct Hahn decompositions of X, then
DENA)=DE N 43), DENADH=DE N AY) 3)
for every E € &. In fact,

EN(AT] — A7) € EN AT @)
and at the same time
E N (A7 — A7) < E N Af. (%)
But (4) implies
DQE NAFT — 43)) <0,
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while (5) implies

O(E N (47 — 47)) > 0.
Therefore

Q(E N (47 — 43)) =0, (6)
and similarly

O(E O (47 — A7) =0. Q)

It follows from (6) and (7) that
OE N A7) = D(E N (A7 — 43)) + Q(E N (47 N 453))
=0 N (47 — 4)) + D(E N (4] N 43)) = D(E N 453),

which proves the first of the formulas (3). The second formula is proved

in exactly the same way.
Thus a charge @ on a space X uniquely determines two nonnegative set

functions, namely
QHE)=D(E N 4%), O ()= —DP(ENA),

called the positive variation and negative variation of @, respectively. It is
clear that
D O=0+r— 0
2) @+ and @~ are nonnegative o-additive set functions, i.e., measures;
3) The set function |®| = O+ + O, called the total variation of @, is
also a measure.
The representation
O =0+ — O~
a charge @ as the difference between its positive and negative variations
is called the Jordan decomposition of ®.

34.2. Classification of charges. The Radon-Nikodym theorem. We now
classify charges on a space X equipped with a measure:

DEFINITION 3. Let u be a c-additive measure on a c-algebra &, of
(u-measurable) subsets of a space X, and let @ be a charge defined on .
Then O is said to be concentrated on a set A€ &, if O(E) = 0 for every
measurable set E < X — A.

DEFINITION 4. Let 1, &, X and @ be the same as in Definition 3.
Then O is said to be

1) Continuous if ®(E)= 0 for every single-element set E <. X of
measure zero;
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2) Singular if © is concentrated on a set of measure zero;

3) Discrete if O is concentrated on a finite or countable set of measure
zero,

4) Absolutely continuous (with respect to ) if ®(E) = 0 for every
measurable set E such that n.(E) = 0.

Clearly, the Lebesgue integral
O(E) = [ o) du

of a fixed summable function ¢ is absolutely continuous with respect to the
measure (.. As we will see in a moment, every absolutely continuous charge
can be represented in this form. But first we need the following

LEMMA. Let p. be a c-additive measure defined on a c-algebra &, of
subsets of a space X, and let @ be another such measure defined on .
Suppose D is absolutely continuous with respect to . and is not identically
zero. Then there is a positive integer nand a set A € &, such that u(4) >0
and A is positive with respect to the charge ® — (1/n)p..

Proof. Let
X=4,v4f m=12..)

be the Hahn decomposition corresponding to the charge © — (1/n)w,
and let

Ay =N4,, Af=U4t.

n=1 n=1
Then
_ 1 _
D(47) < ;H(Ao)
for all n=1,2,...,ie., ®(45) =0, and hence ®(4}) >0 since

X = 4; U A} and @ is not identically zero. But then w(43) > 0, by
the absolute continuity of w. Hence there is an n such that u(4}) > 0
(why?). This n and the set 4 = A4}, satisfy the conditions of the lemma.

THEOREM 2 (Radon-Nikodym). Let \. be a c-additive measure defined
on a c-algebra ¥, of subsets of a space X, and let ® be a charge defined on
. Suppose © is absolutely continuous with respect to .. Then there is a
u-summable function ¢ on X such that

O(E) = [ o) dy (8)

for every E€ . The function ¢ is unique to within its values on a set
of u-measure zero.
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Proof. We can assume that @ is not identically zero, since otherwise
we need only choose ¢ to be any function equal to zero almost everywhere
(discuss the uniqueness of ¢ in this case). Let K be the set of all p-
summable functions on X such that

[,769 du < o(E)
for every E € &, and let
M = du.
sup [ /() ds

Moreover, let {f,} be a sequence of functions in K such that

lim [ f,(0)du = M, ©)

n-w ¥

g.(x) = max {fi(x), ..., f(x)}.

and let

Then clearly
S < gx) < <gx) <.
Moreover,

J, &) du < 0(E) (10)

for every E € . In fact, E can be written in the form
n
E=VUE,
k=1

where the sets Ey, ..., E, are pairwise disjoint and g,(x) = fi.(x) on
E,, and hence

| du =3 [ fux) dp < SO(E,) = (E).
2 k=1"E =1
In particular, it follows from (10) that g, € X, so that

fx galx)du < M.
But then

lim | g,()du = M,

since otherwise
lim [ £ dp <lim [ g, () dp < M,
contrary to (10). Writing
¢(x) = sup g.(x),

we find that
o(x) =1lim g,(x),
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and hence, by Levi’s theorem (Theorem 2, p. 305),

[codu=lim [ g,()du = . (n

Next we show that ¢ is the required function, figuring in the repre-
sentation (8). By construction, the set function

AE) = O(E) — [ o) dy

is nonnegative and in fact is a c-additive measure. If A(E)=£ O, then,
by the lemma, there is an € > 0 and a set 4 € &, such that u(4) >0

and
e(ENA) < MEN A)

for every E€ . Let
h(x) = ¢(x) + ex4(x),
where!!

) 1 if xed,
X) =

x4 0 ifx¢A
Then

fEh(x) dp. = fEcp(X) du + eu(E N 4)

< [ o) du + E N 4) < 0(B),

so that & belongs to the set K introduced at the beginning of the proof.
On the other hand, it follows from (11) that

J 1) du = [ o) du + ep(d) > M,

contrary to the definition of M. Therefore A(E) = 0, which is equivalent

to (8).
Finally, to prove that ¢ is unique to within its values on a set of

measure zero, suppose
O(E) = [ o(x) du = [ ¢*(x) dp

for all E e &,. Then, by Chebyshev’s inequality (Theorem 5, p. 299),
we have

wAy) < m| [o(x) — ")l dp =0

11y, is called the characteristic function of the set A,



350  DIFFERENTIATION CHAP. 9

for every set

Ay = {x:cp(x) — ¥ > i} m=1,2,..),

and similarly
w(B,) =0

for every set

B, = {x:q;*(x) — o(x) > i} (rn=1,2,...).
But
{x:9(x) # ¢¥(x)} = (U Am) u (U Bn),
and hence " "

pix:e(x) # ¢*(x)} =0,

ie., (x) = ¢*(x) almost everywhere. [

Remark 1. The function ¢ figuring in the representation (8) is called the
Radon-Nikodym derivative (or simply the density) of the charge @ with
respect to the measure w, and is denoted

do

du
Clearly, Theorem 2 is the natural generalizaiion of Lebesgue’s theorem
(Theorem 6, p. 340), which states that an absolutely continuous function
F is the integral of its own derivative F’. However, in the case of a function

F defined on the real line there is an explicit procedure for finding the
derivative of F at a point x,, namely evaluation of the limit

lim AF — lim F(xy + Ax) — F(x,) ,
Az—0 AX Ar=0 Ax

whereas the Radon-Nikodym theorem only establishes the existence of the
derivative d®/du, without telling how to find it. However, an explicit
procedure can be given for evaluating d®/du. at a point x, € X by calculating
the limit
D(4.)
&0 {J'(Ae) ’

where {4} is a system of sets “converging to the point x,”" as ¢ — 0, in a
suitably defined sense.?

12 For the details, see G. E. Shilov and B. L. Gurevich, Integral, Measure and Deriv-
ative: A Unified Approach (translated by R. A. Silverman), Prentice-Hall, Inc., Englewood
Cliffs, N.J. (1966), Chap. 10.
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Remark 2. Tt can also be shown?® that an arbitrary charge @ has a unique
representation as the sum

Q(E) = A(E) + S(E) + D(E)

of an absolutely continuous charge A4, a singular charge S and a discrete
charge D. This is the exact analogue of the Lebesgue decomposition on
p- 341.

Problem 1. Given any charge @ defined on a s-algebra &, prove that
there is a constant M > 0 such that |®(E)| < M for all E€ <.

Problem 2. Give an example of two distinct Hahn decompositions of a
space X.

Problem 3. Prove that a charge ® vanishes identically if it is both
absolutely continuous and singular with respect to a measure (.

Problem 4. Prove that if a charge @ is concentrated on a set 4,, then so
are its positive, negative and total variations.

Problem 5. Prove that

a) Every absolutely continuous charge is continuous;
b) Every discrete charge is singular.

Problem 6. Prove that if a charge @ is absolutely continuous (with
respect to a measure ), then so are its positive, negative and total variations.

Problem 7. Prove that if a charge @ is discrete, then there are no more

than countably many points X, X5, ..., X,,... and corresponding real
numbers A, Ay, . .., h,, ... such that u({x,}) = 0 and
O(E)= I h,
zoeE

Write expressions for the positive, negative and total variations of .

Problem 8. Let X be the square 0 < x < 1, 0 < y < 1 equipped with
ordinary two-dimensional Lebesgue measure 1, and let @(E) be the ordinary
one-dimensional Lebesgue measure of the intersection of E with the interval
0 < x < 1. Prove that @ is continuous and singular, but not absolutely
continuous.

3 G. E. Shilov and B. L. Gurevich, op. cit., Chap. 9.
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MORE ON INTEGRATION

35. Product Measures. Fubini’s Theorem

The problem of reducing double (or multiple) integrals to iterated integrals
plays an important role in classical analysis. In the Lebesgue theory, the key
result along these lines is Fubini’s theorem, proved in Sec. 35.3. En route
to Fubini’s theorem we will need the preliminary topics treated in Secs. 35.1
and 35.2, which are also of interest in their own right.

35.1. Direct products of sets and measures. By the direct (or Cartesian)
product of two sets X and Y, denoted by X x Y, we mean the set of all
ordered pairs (x, y) where x € X, y € Y. Similarly, by the direct product of
n sets X, Xz, ..., X, denoted by

Xy X Xy X - x X, €))
we mean the set of all ordered n-tuples (x;, x,, ..., x,), where x, € X,
X, €X,, ..., x, €X,. In particular, if

X1=X2:.":X'n:Xs

we write (1) simply as X™, the “nth power of X.”

Example 1. Real n-space R" is the nth power of the real line R, as
anticipated by the notation.

Example 2. The unit cube I” in n-space, i.e., the set of all elements of R”
with coordinates satisfying the inequalities

0< x, <1 k=1,2,...,n),
is the nth power of the closed unit interval I* = [0, 1].
352
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Now let ¥, &, ..., %, be systems of subsets of the sets X3, Xz, . .
X, respectively. Then by

=X LHLX X

we mean the system of subsets of the direct product (1) which can be
represented in the form
A=A1XA2><"' XA",

*

where
A, e %, k=1,2,...,n).
If
K= Fym = = &,
then & is the “nth power of &,” written
S = £

For example, the system of all closed rectangular parallelepipeds in R” is the
nth power of the system of all closed intervals in R

THEOREM 1. If &, &,..., &, are semirings, then so is the set
E=FX KX XS

Proof. By the definition of a semiring (see p. 32), we must show that!

a) If 4, Be G, then 4 N Be G;
b) If 4,Be S and B < A4, then 4 can be represented as a finite
union

n
A=Uc®

k=1
of pairwise disjoint sets C*) € &, with B = C,

It is clearly enough to prove these assertions for the case » = 2. Thus
suppose A € # X %, B< A X F. Then

A =4, X 4, (4, € &, 4, € &)

Q@
B=B, X B, (Bie A, B, € &), )

and hence
AN B= (4, X Ay) N (By X By) = (4, N Ay) X (4; N B,).

But 4, N B € &K, 4, N B, e 4, since & and F; are semirings. It
follows that 4 N Be & X ;. This proves a).
To prove b), suppose that

B, < 4, B, < 4,,

! Note that the empty set & belongs to &, since & = & X @& x -+ X & (why?).
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in addition to (2). Then, since ¥ and ; are semirings, there are finite
expansions

Ay =B, UBM U UBY
Ay =B, UBY U--- UBY,
where the sets By, BY, ..., B{#) are pairwise disjoint and belong to &,
while the sets By, B, ..., B\ are pairwise disjoint and belong to ;.
Therefore
A=A, X Ay=(B, X By) U(B; X B") U-+- U(B, X BY")
U (B X By) V(B X By U -+ U(BM x BY)
U+ U(BY X By) U(BY” x BPY) U+ U(BY x BY)
is the desired finite expansion of 4; X A4,, where B; X B, is the first term

and the other terms are pairwise disjoint and belong to & =
Ax %

Now let 4, %, ..., <, be n semirings, equipped with measures

!J'I(Al)’ “2(‘42). AR ] “n(An) (Ak € ‘Zc), (3)

and let u be the measure on the semiring G = & X H X -+ X &,
defined by the formula

wA) = pa(Aua(4) - - pald,)

forevery 4 = A; X Ay X +++ X A,. Then p.iscalled the direct (or Cartesian)
product? of the measures (3), and is denoted by

B=pa X g X 70X e

To confirm that y is indeed a measure, we now show that p is additive (u is
obviously real and nonnegative). It will again be enough to consider the

case n = 2. Suppose
t
A=A4,x4,=UB®, (4)
k=1
where

B(i) N B(i) = (l ;é])
and

(k) () ()
B = By X B,".

According to Lemma 2, p. 33, there are finite expansions

7 s
4=Uc™, 4,=Uc",
n=1

m=1

* The term product measure will be used with a different meaning below.
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each involving pairwise disjoint sets, such that each B is a finite union
(k) )
BP = U ¢

‘meM
of certain of the sets C{™, while each B{* is a finite union
B(lc) U C(n)
neNy
of certain of the sets C{™ (here M, denotes some subset of theset{1,2,...,r}
and N, some subset of the set {1,2,...,s}). But then, by the additivity of

yq and u, we have

w(4) = w(ADpe(4s) = 2 I‘LI(C(M)) Z p.z(C("))

m=1

-5 > wlG") 3 w(C)

k_l meMy
=k§1 i(BYF)uo(BSY) =k§1 u(By),

which, when compared with (4), shows the additivity of u = p; X pa.
Example 3. Thus the additivity of area of rectangles in the plane follows
from the additivity of length of intervals on the line.
THEOREM 2. If the measures Wy, W, . . . , b, are c-additive, then so is
the measure g = Py X g X *** X .

Proof. Again we need only consider the case n = 2. Let A, denote the
Lebesgue extension of the measure ., and suppose

c=Uc,,
n=]
where the sets C, are pairwise disjoint and the sets C, C,, belong to
AX Jies o 4xp Ue &, Be ),

C,=4, X B, (A,,E.%,B,‘ES’;).
Moreover, let

fﬂ()_{p.z( D i xed,

if x¢Ad,
We then have

Zf,,(x) =uyB) if x€A4,

n=1

and hence, by the corollary on p. 307,

”21 J.A fn(x) d)\l = '[4}1-2(3) d)\l = XI(A)LLZ(B)
= w(Apa(B) = (0. (5)
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But
[ 1o0) b = a4, un(B,) = w(C,). ()
Substituting (6) into (5), we get

w(C) =3 w(C,). 1

Again let S, %, ..., J, be n semirings, this time equipped with
c-additive measures (3). Then it follows from Theorem 2 that the measure?®
m =g X g X X iy Q)
is g-additive on the semiring
CE=FX LKL x L

Therefore, as in Sec. 27, m has a Lebesgue extension yu defined on a o-ring
y; > &. This measure w is called the product measure of the measures (3),
and is denoted by

B=U ® U ® @ U (®)

The distinction between the meaning of the symbols X and ® in (7) and
(8) is crucial.

Example 4. Let
Py =g =""" =W, =,
where p! is ordinary Lebesgue measure on the line. Then the product
measure (8) is ordinary Lebesgue measure in n-space.

35.2. Evaluation of a product measure. Let G be a region in the xy-plane
bounded by the vertical lines x = a, x = b (a < b) and the curves y = f(x),
y = g(x), where f(x) < g(x). Then it will be recalled from calculus that the
area of G is given by the integral

["tet0 — sy ax,

where the difference g(x,) — f(x,) is just the length of the segment in which
the vertical line x = x, intersects the region G. As we now show, the natural
generalization of this method can be used to evaluate an arbitrary product
measure:

THEOREM 3. Let u be the product measure

B= ey ® Wy

* We change to the symbol m here, to “free” . for use in formula (8).
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of two measures ., and w, such that

1) y, is o-additive on a Borel algebra &, _of subsets of a set X;

2) w, is c-additive on a Borel algebra %ﬂ of subsets of a set Y;

3) wu, and p, are complete, in the sense that B < A and p(4) =0
implies that B is measurable (with measure zero), and similarly for
et

Then
w(d) = [ 14D do, = [ u.(4,) dy, ©)

for every u-measurable set A, where®
A, ={y:(x,y)ed} (x fixed),
A, = {x:(x,y)e A}  (y fixed).
Proof. We note in passing that the integral over X in (9) reduces to
an integral over the set of the form

U4,cx

v

outside which p,(4;) vanishes (and similarly for the integral over Y).
It will be enough to prove that

w(4) = [ 0400 du.. (10)
where
?_4()(3) = l"Ly(Aa:))

since the other part of (9) is proved in exactly the same way. Observe
that implicit in the theorem is the conclusion that the set 4, is p,-measur-
able for almost all x (in the sense of the measure w,) and that the function
¢.4(x) is p,-measurable, since otherwise (10) would be meaningless.
The measure y is the Lebesgue extension of the measure
m = g X Wy

defined on the semiring <, of all sets of the form

A=A4, X 4, (A€,
where &, is the Borel algebra of p-measurable subsets of X X Y. But
(10) obviously holds for all such sets, since for them

p(de) i x€4,,

Pal) = {0 it x¢d,.

4 The Lebesgue extension of any measure is complete (see Problem 7, p. 280).

$If X is the x-axis and Y the y-axis (so that X X Y is the xy-plane), then A, is the
projection onto the y-axis of the set in which the vertical line x = x, intersects the set 4
(and similarly for 4,,).
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Moreover, (10) carries over at once to the ring %#(%,,) generated by
&, since #(S,,) is just the system of all sets which can be represented
as finite unions of pairwise disjoint sets of %, (recall Theorem 3, p. 34).

To prove (10) for an arbitrary set 4 € &, we recall from Theorem 8,
p- 277 that there are sets

B, € #(%) (ByuS B S+ +<S B, <)
and corresponding sets
B,=UB, 4% (B> B,>--">B,> ")
k
such that
A< B=NB,,

w(4) = p(B). an
Clearly,

?5,(X) =’£im ?p,{(%), PEa(¥) < Pp,(X) < < @p,(X) <0,

¢p(x) =lim ¢p (x), ep(%) > 9p,(¥)> > g (x)> .

Hence we can invoke Levi’s theorem® to extend (10) from the ring %(%,,)
to the system of all sets B € ¥, of the form

NUB, (Buc ). (12)

n k

Moreover if u(4) = 0, then w(B) = 0, because of (11'), and hence
¢p(X) = 1y (Bz) =0

almost everywhere. Therefore 4, is measurable and
9a(X) = (4 =0

for almost all x, since 4, < B,. But then

[ 240 duae = 0 = ().

In other words, (10) holds for all sets of measure zero, as well as for all
sets of the form (12). But, according to (11), an arbitrary set 4 € <,

can be represented as
A=B—27,

where B is of the form (12) and Z is of measure zero. Therefore

B=4UVUZ A4NnzZ=g).

¢ See Theorem 2, p. 305 and Problem 2, p. 311.
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It follows that

w(4) = u(B) = [ op(x) du.

= [ 0a0) du, + [ 020 diy = [ 04(3) dss.
i.e., (10) holds for every 4 € <. 1

Example 1. Let M be any yu,-measurable set, and let f be an integruble
nonnegative function. Moreover, let Y be the y-axis, and let u, be ordinary
Lebesgue measure on the line. Consider the set

A={(x,):xeM0<y<fh (13)
Then
fx)  ifxed,

= u(4) =
?A(x) V'y( a:) {0 ifxgéA,

and hence, by Theorem 3,

p() = [ ou(x)du, = [ ) du.. (14)

This allows us to interpret the Lebesgue integral of a nonnegative function
over a set M < X in terms of the w-measure of the set (13), where p =

e ® .

Example 2. In the preceding example, let X be the x-axis and let M be a
closed interval [a, b]. Moreover, suppose f is nonnegative and Riemann-
integrable on [a, b]. Then (14) reduces to the familiar formula

w(d) = [*f() dx
for the area under the graph of the function y = f(x) between x = a4 and
x =b.

35.3. Fubini’s theorem. The next theorem is basic in the theory of
multiple integration:

THEOREM 4 (Fubini). Let u., and ., be the same as in Theorem 3, let
be the product measure p, @ W, and let f (x, y) be y-integrable on the set
A<= X X Y. Then

[oeopda=[ (] 16 du) du.= [ ([, 165 0de) dir (15)

Proof. Note that implicit in the theorem is the conclusion that the
““inner integrals” in parentheses exist for almost all values of the variable
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over which they are integrated (x in the first case, y in the second). We
begin by assuming temporarily that f(x, y) > 0. Consider the triple
Cartesian product
U=XXYXZ,

where Z is the real line, equipped with the product measure

oy = e ® Py ® U =0 @ p! =y ® (1, ® pt)
(see Problem 3), where p! is ordinary Lebesgue measure on the line.
Moreover, consider the set W < U defined by

W={(x,y,2):x€A,, y €A, 0< z<[f(x,))}

By (14),
wu(W) = fA f(x, y) dp. (16)
On the other hand, by Theorem 3,
p(W) = [ 2W,) dus, an
where
A =p, ®ul,

W= {((2):(x, 0, )W} (x fixed).
Using (14) again, we obtain
- MW) = L:f (% y) duy- (18)

Comparing (16)—(18), we get part of (15). The rest of (15) is proved in
exactly the same way. To remove the restriction that f(x, y) be non-
negative, we merely note that

f(x9 Y) =f+(x9 y) _f_(x7 y),

where the functions
N ) EgieR)
f (x5 y) - 2 >

- ,f(x’ y)l —f(x, .V)
2

S (x5
are both nonnegative. J

Remark. Thus Fubini’s theorem asserts that if the “double integral”

1= [, /Gy du @)

exists, then so do the “iterated integrals™

L= [ ([ e ) dus L= [ ([, 7600 du) v, ©0)

and moreover I = I, = I,.
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Problem 1. Give an example of a set in R? which is not a direct product
of any two sets in R™.

Problem 2. Prove that the direct product of two rings (or s-rings) need
not be a ring (or c-ring).

Problem 3. Given three spaces X, Y and Z, equipped with measures
tg» Wy, and ., respectively, prove that (4, ® u,) ® p, and p, ® (1, ® ¥,)
are identical measures on X X ¥ X Z.

Problem 4. Let A =[—1,1] X [—1, 1] and

S
f(x’ y) _‘(xz + yZ)Z *
Prove that
a) The iterated integrals (20) exist and are equal;

b) The double integral (19) fails to exist.

Hint. Since

f_ll S, p)ydx = f_ll flx, p)dy =0,

[y (Lo as)ay= ([ s av) as =o.

On the other hand, the double integral fails to exist, since

f—ll f_lllf(x’ ) dxdy > J;ldrfoznwde — zfol%' = o0,

after transforming to polar coordinates.

we have

Problem 5. Let A = [0, 1] x [0, 1] and

2 o1 1 1
27 if 2—n<x<-2—n—_—1, 2—n<y<;_—l,
fx, p) = > o1 1 1 1
2t f Py <x < E , o <y _2"_1 >
0 otherwise.

Prove that the iterated integrals (20) exist but are unequal.

Ans. fol(folf(x, y) dx) dy =0, J;I(J:f(x, y) dy) dx = 1.

Problem 6. The preceding two problems show that the existence of the
iterated integrals (20) does not imply either the existence of the double
integral (19) or the validity of formula (15). However, show that the
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existence of either of the integrals

fX(LE 1/, ) duy) dpt fy( L” Lf(x, p) duz) du, (1)

implies both the existence of (19) and the validity of (15).

Hint. Suppose the first of the integrals (21) exists and equals M. The
function

fn(x’.y) = min {lf(x,)’)l, n}

is measurable and bounded, and hence summable on 4. By Fubini’s theorem,

fA Ja(x, y) dp = f % ( fo JACR)! dp.y) du, < M.

Moreover, {f,(x, y)} is a nondecreasing sequence of functions converging
to | flx, p)l. Use Levi’s theorem to deduce the summability of | f(x, y)|
and hence that of f(x, y) on 4.

Problem 7. Show that Fubini’s theorem continues to hold for the case of
o-finite measures (cf. Sec. 30.2).

36. The Stieltjes Integral

36.1. Stieltjes measures. Let F be a nondecreasing function defined on a
closed interval [a, ], and suppose F is continuous from the left at every
point of (@, b]. Let & be the semiring of all subintervals (open, closed or
half-open) of [a, b), and let m be the measure on & defined by the formulas?

m(a, B) = F(B) — F(a + 0),
mlx, B] = F(B + 0) — F(x),
m(x, B] = F(B + 0) — F(« + 0),
mla, B) = F(B) — F(«).

Finally, let uz be the Lebesgue extension of m, defined on the s-algebra

.. of up-measurable sets. In particular, & contains all subintervals of

[a, b) and hence all Borel subsets of [a, b). Then uz is called the (Lebesgue-)
Stieltjes measure corresponding to the function F, and the function F itself

is called the generating function of ..

(1)

Example 1. The Stieltjes measure corresponding to the generating func-
tion F(x) = x is just ordinary Lebesgue measure on the line.

7 To avoid confusion, we omit “outer parentheses,” writing u(«, 8) instead of u((e, 8)),
and similarly in the rest of the formulas (1). Moreover, in ml«, 8], we allow the case

o« = 3.
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Example 2. Let F be a jump function, with discontinuity points

X1y Xgs « <« » Xp, ... and corresponding jumps Ay, Ay, ..., Ay, ... . Then
every subset 4 < [a, b) is pp-measurable, with measure
wr(4) = zAhn. (2

In fact, according to (1), every single-element set {x,} has measure A,, and
moreover it is clear that the measure of the complement of the set {x,,
Xy .+« »X,, ...} is zero. But then (2) holds, by the c-additivity of uz. A
Stieltjes measure p.z of this type, generated by a jump function, is said to be
discrete.

Example 3. Let F be an absolutely continuous nondecreasing function on
{a, b), with derivative f = F’. Then the Stieltjes measure p.z is defined on
all Lebesgue-measurable subsets 4 < [a, b) and

pr(d) = [ () dx. 6)
In fact, by Theorem 6, p. 340,

e, B) = F(B) — F(a) = [* f(x) dx 4

for every open interval («, ). But then (3) holds for every Lebesgue-
measurable set 4 < [a, b) since a Lebesgue extension of a s-additive measure
is uniquely determined by its values on the original semiring.® A Stieltjes
measure .z of this type, with an absolutely continuous generating function,
is itself said to be absolutely continuous.

Example 4. Let F be singular (and continuous) as on p. 341. Then the
corresponding Stieltjes measure pp is concentrated on the set of Lebesgue
measure zero where the derivative F' is nonzero or fails to exist. A Stieltjes
measure of this type is said to be singular.

Example 5. By the Lebesgue decomposition (p. 341), an arbitrary
generating function F can be represented as a sum

F(x) = D(x) + A(x) + S(x) )

of a jump function D, an absolutely continuous function 4 and a singular
function S (verify that D, 4 and S are themselves generating functions).
Moreover, each of the “components™ D, 4 and S is uniquely determined to
within an additive constant (see Problem 4, p. 342). But clearly

br = Wp + by + s

8 Give a more detailed argument, recalling Problem 1, p- 279. Note that in this case

m(a, B) = mla, B] = m(x, B] = mlx, B).
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It follows that an arbitrary Lebesgue-Stieltjes measure can be represented
as a sum of a discrete measure .5, an absolutely continuous measure w4 and
a singular measure ug. Moreover, this representation is unique (why?).

Remark. We can easily extend the notion of a Stieltjes measure on a
(finite) interval [a, b) to that of a Stieltjes measure on the whole line (— oo, o0).
Let F be a bounded nondecreasing function on (— o0, o), so that

m<Fx)< M (—oo <x < o).

Using the formulas (1) to define the measure of arbitrary intervals (open,
closed or half-open), not just subintervals of a fixed interval [a, b), we get a
finite measure pz on the whole line, called a (Lebesgue-) Stieltjes measure,
as before. In particular, we have

u(—o0, ) = F(w0) — F(—w©)
for the measure of the whole line, where

F(oo) =limF(x), F(—o) = lim F(x)

20 a——00
(the existence of the limits follows from the fact that F is bounded and
monotonic).

36.2. The Lebesgue-Stieltjes integral. Let uy be a Stieltjes measure on
the interval [a, b), corresponding to the generating function F, and let f be
a up-summable function. Then by the Lebesgue-Stieltjes integral of f (with
respect to F), denoted by

f: f(x) dF(x), 6)

we simply mean the Lebesgue integral
[, dur.

Example 1. Let F be the jump function
Fx)= 3 hy,

Tp<T

so that u g is a discrete measure. Then (6) reduces to the sum
2 f(x)hy
Example 2. If F is absolutely continuous, then

[rware = [P roF @ ax, )
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where the right-hand side is the integral of fF’ with respect to ordinary
Lebesgue measure on the line. In the case where f(x) = const, this is an
immediate consequence of (4). Moreover, by the c-additivity of integrals,
(7) can be extended to the case of any simple function f which is yg-
summable. More generally, let {f,} be a sequence of such simple functions
converging uniformly to f, so that {f,F'} converges uniformly to fF'. It can
be assumed without loss of generality that
fl(x) <f2(x) <t <f:n(x) <ttt ’

and hence that

JIOF(xX) < fl)F(x) < »+ < fu(F(x) < -+
Therefore, applying Levi’s theorem (Theorem 2, p. 305) to both sequences
{fa} and {f,F}, we get

ja ® £(x) dF(x) =lim f; fu(x)dF(x) = lim f: FuF/(x) dx = f ® F(x)F'(x) dx.

Example 3. Suppose
F(x) = D(x) + A(x),

where D is the jump function

D) =3 h,

<z

and A is absolutely continuous. Then it follows from Examples 1 and 2 that

[P 10 aFe) = 3 fxh, + [! F0)4'(x) dx.

In the case where F also contains a singular component, as in (5), there is no
such representation of the Lebesgue-Stieltjes integral (6) as the sum of a series
and an ordinary Lebesgue integral.

Remark. We can easily extend the notion of a Lebesgue-Stieltjes integral
with respect to a nondecreasing function F to that of a Lebesgue-Stieltjes
integral with respect to an arbitrary function of bounded variation ®. In
fact, as in Theorem 4, p. 331, let

D=v—g,
where v, the total variation of ® on the interval [a, x], and g = v — ® are
both nondecreasing. We then set

[ 7y d00x) = [? 1) do) — [ 1) dgx) ®)
by definition (see Problem 2).

36.3. Applications to probability theory. The Lebesgue-Stieltjes integral
is widely used in mathematical analysis and its applications. The concept
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plays a particularly important role in probability theory. Given a random
variable £,° let

F(x) = P{€ <x},

i.e., let F(x) be the probability that £ takes a value less than x. Then F is
clearly nondecreasing and continuous from the left. Moreover, F satisfies
the conditions

F(—0) =0, F(wo)=1

(why 7). Conversely, every such function f can be represented as the prob-
ability distribution of some random variable &.

Two basic numerical characteristics of a random variable £ are its
mathematical expectation or mean (value)

EE = [ x dF(x), (9)
and variance

Dt = [* (x — EE) dF(x) (10)
(however, see Problem 5).

Example 1. A random variable £ is said to be discrete if it can take no
more than countably many values x;, Xs,..., X,,... . For example, the
number of calls received on a given telephone line during a given time
interval is a discrete random variable. Let

pn=P{& =x,} n=12,..)

be the probability of the random variable & taking the value x,. Then the
distribution function of £ is just the jump function

F(x) = z Py
In this case, the integrals (9) and' (10) for the mean and variance of £ reduce
to the sums

EE = zxnpm
DE = 3 (x, — a)’p,  (a = EE).

Example 2. A random variable £ is said to be continuous if its distribu-
tion function F is absolutely continuous. The derivative

pO) = F'(x)

® We presuppose familiarity with the rudiments of probability theory. See e.g., Y. A.
Rozanov, Introductory Probability Theory (iranslated by R. A. Silverman), Prentice-Hall,
Inc., Englewood Cliffs, N.J. (1969).
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of the distribution function is then called the probability density of &. It
follows from Example 2, p. 364 that in this case the integrals (9) and (10)
for the mean and variance of £ reduce to the following integrals with respect
to ordinary Lebesgue measure on the line:

EZ = [ xp(x) dx,
D = f_ww(x — a)’p(x)dx  (a = E&).

36.4. The Riemann-Stieltjes integral. Besides the Lebesgue-Stieltjes inte-
gral introduced in Sec. 36.2 (which is in effect nothing but the difference
between two ordinary Lebesgue integrals with respect to two measures on the
real line'®), we can also introduce the Riemann-Stieltjes integral, defined
as a limit of certain approximating sums, analogous to those used to define
the ordinary Riemann integral. To this end, let f and ® be two functions on
[a, b], where @ is of bounded variation and continuous from the left, and let

Q=X <X <Xy <"+ <x,=0b

be a partition of the interval [a, ] by points of subdivision x4, X5, X, . . . ,
X,. Choosing an arbitrary point &, in each subinterval [x,_;, x.], we form
the sum

kZ JEID(x;) — O(x;._p)]- (11)
=1
Suppose that as the partition is “refined,” i.e., as the quantity

max {X; — Xo, Xz — X1, .. oy X — Xp_1} (12)

(equal to the maximum length of the subintervals) approaches zero, the sum
(11) approaches a limit independent of the choice of both the points of
subdivision x;, and the “intermediate points” £,. Then this limit is called
the Riemann-Stieltjes integral of f with respect to @, and is denoted by

[* £ a0
(just as in the case of the Lebesgue-Stieltjes integral).
Remark. If @ = @, + ®,, then

2760 a0 = [7 ) dy(x) + [ £ (x) dytx) (13)

(provided the integrals on the right exist). In fact, we need only write the

10 Recall formula (8).
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identity
3 SEI00x) — O]

=3 FEND(x) — O] + 3 FENDx) — Pulr )L,

and then pass to the limit as the quantity (12) approaches zero.

THEOREM 1. If f is continuous on [a, b}, then its Riemann-Stieltjes
integral exists and coincides with its Lebesgue-Stieltjes integral.

Proof. The sum (11) can be regarded as the Lebesgue-Stieltjes integral
of the step function

fux) =8, if x_; < x<x, k=1,...,n).
As the partition of [a, b] is refined, the sequence { f,,} converges uniformly

to f (why?). Hence, by the very definition of the Lebesgue integral
(recall p. 294),

lim j fu(x)dx =1,

where I is the Lebesgue-Stieltjes integral of f over [a, b). But then

lim Z SEP(x,) — Px)] = 1,

where the limit on the left is the Riemann-Stieltjes integral of f over
[a,5]. 1
THEOREM 2. If f is continuous on [a, b, then
| [} ) d0o) | < Vi) max 1o, (14)
where V:(CI)) is the total variation of ® on [a, b].

Proof. The inequality
kg f(ik)[CD(xk) — D(x;_p] l < glf(ik)l |D(x,) — D(x;_1)]
< max|f (X)IZICD(x,,) — (x| < V) max | f(x)]

a\z\b as<z<d
holds for any partition of the interval [a, b]. Taking the limit of the
left-hand side as max {x; — X, ..., X, — X1} = 0, we get (14). 1

Remark. If ®(x) = x, (14) reduces to the familiar estimate

| < (b — a) max| )]

e<TKD

for the ordinary Riemann integral.
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THEOREM 3. Let @ be a function of bounded variation on [a, b], different

JSrom zero at no more than countably many points ¢y, ¢z, . .., Cpy . .. in
(a, b). Then

fa > £(x) dB(x) = 0 (15)
Sfor any function f continuous on [a, b].

Proof. The assertion is obvious if ® is nonzero at only a single point
¢ € (a, b), since then

kzlf (@ (x) — D(x)] = 0
for an “arbitrarily fine” partition
A=Xg <X <"+ <Xx,=b,

i.e., a partition for which the quantity (12) is arbitrarily small, provided
we make sure that ¢, is not one of the points of subdivision x,, x;, . . . ,
x,.1' Hence, by (13), the assertion is also true if ® is nonzero at only
finitely many points in (@, b). Now suppose @ is different from zero at
countably many points

CisCoy v v v 3 Cpyen
in (a, b), and let

Vn = @(c,).
Then
leyul < oo,

since @ is of bounded variation. Givenanye > 0, we choose N such that

> Il <se,
n=N+1
and write @ in the form
D = D, | O*, (16)

where @, takes the values y,, ..., yy at the points ¢, ..., cy and is
zero elsewhere, while ®* takes the values yy,;, Yyys, - . - at the points
CNni1s Chgos - - - and is zero elsewhere. Then, as just shown,

fa > £(x) dDy(x) = 0. (17)

Moreover

Z f(Ek)[(D*(xk) - (I)*(xk-l) < 2M z Iyn] < 2M5,

n=N+1

11 Note that here we rely on the fact that ¢, is not an end point of [q, b].
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where M = max |f(x)],

asILY

or
| 7 o) do*) | < 2me

after taking the limit as m — co. This in turn implies

fa” f(x) dB(x) = 0, (18)

since € > 0 is arbitrary. Formula (15) now follows at once from (13)
and (16)-(18). §

36.5. Helly’s theorems. In Sec. 30.1 we found conditions insuring the
validity of passing to the limit in Lebesgue integrals, i.e., conditions under
which .

lim [ /G du = [, 700 d, (19)
where {f,} is a sequence of functions converging (almost everywhere) to a
function f and the integrals are all with respect to a fixed measure w. In
the case of Stieltjes integrals, we now ask a closely related but somewhat
different question: Under what conditions does the formula

tim [° /() d®,(x0) = [* f(x) d0(x) (20)

n-w V0
hold, where f'is continuous and {®,} is a sequence of functions of bounded
variation converging (everywhere) to a function ®? (Note that here, unlike
(19), the function f is fixed, and it is the function @, or the corresponding
Stieltjes measure, which varies.) The answer to this question is given by

THEOREM 4 (Helly’s convergence theorem). Let {®,} be a sequence of
Sfunctions of bounded variation on [a, b}, converging to a function @ at every
point of [a, bl. Suppose the sequence of total variations {V¥(®,)} is
bounded, so that

Vo)< C (n=1,2..) 21
for some constant C > 0. Then @ is also of bounded variation on [a, b],
and (20) holds for every function f.continuous on [a, b].

Proof. Let
Aa=Xg <X < " <X,=b

be any partition of the interval [a, b] by points of subdivision x,, x5, . . . ,
X,. Then

kgiq)(xk) - q)(x"—l)l = lim glcbﬂ(xk) - q)'ﬂ(xk—l)l <C,

n=w k=1
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and hence
Vi@ < C, (22)

i.e., @ is of bounded variation on [a, b], as asserted.
Next we show that (20) holds if fis a step function. Suppose

fx)y=n, if Xy < x < xg
Then

[} 16989, = 3 11, 05) — @,x,-0) 23)

and!?

[} 769 d0() = 3 hf@(x) — Dxp-)) (24)

where obviously (23) approaches (24)asn — 0. Nowlet f becontinuous
on [a, b]. Given any ¢ > 0, choose a step function f, such that

If(x) — £(x)] < 3—‘°'C- (a<x<b) (25)
(why is this possible ?). Then

| [0 70 a0 — [* 0 d0,0| < Il + 10+ 10, (26)

where

1= [" ) 4o — [* fiw) doo,
I, = [* £.0) 400 — [7 fx) d®, (),

I, = [ £.x) d0,(x) — [ f(x) d, ).

By the inequality (14), which clearly holds for Lebesgue-Stieltjes integrals
as well as for Riemann-Stieltjes integrals (why?), we have

Li< | - dO(x) < — Vi®) < <,
Il < 1) — £l doe) < S Vi@ < S
b € 14 (27)
Il < [M1A0) = S0, < = V@) < 2,
after using (21), (22) and (25). Moreover, as just shown,
) <= (28)

3
2 Think of (23) and (24) as Lebesgue-Stieltjes integrals.
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for sufficiently large n. It follows from (26)~(28) that

10 doe) — ['100 d0,0| <,
which implies (20), since € > 0 is arbitrary. [

Theorem 1 gives conditions under which we can take the limit of a se-
quence {®,} of functions of bounded variation inside a Stieltjes integral.
The next theorem gives conditions guaranteeing the existence of a sequence
{®@,} meeting the requirements of Theorem 4.

THEOREM 5 (Helly’s selection principle). Let ® be a family of functions
defined on an interval [a, b] and satisfying the conditions

Vi@ < C,  sup [o(x)] < M (29)
a<a<d
for suitable C and M. Then ® contains a sequence which converges for
every x € [a, b).

Proof. Itis enough to prove the theorem for nondecreasing functions.
In fact, let

p=v-2¢

where v is the total variation of ¢ on [a, x]. Then the functions v corre-
sponding to all ¢ € ® are nondecreasing and satisfy the conditions of
the theorem, since
VW) =Vie) < C.  sup Jo(x)] < C.
ase<h
Assuming that the theorem holds for nondecreasing functions, we choose
a sequence {¢,} from @ such that v, converges to a limit v* on [a, b].
Then the functions
8n = Vp — P
are also nondecreasing and satisfy the conditions of the theorem (why ?).
Therefore {¢,} contains a subsequence {¢, } such that {g, } converges
to a limit g* on [a, b]. But then
lim ¢,,(x) = ¢*(x),

n-— o

P¥(x) = v*(x) — g*(0)-
Thus we now proceed to prove the theorem for nondecreasing

functions. Let ry, ry, ..., r,,... be the rational points of [a, b]. It
follows from (29) that the set of numbers

o(r) (pe®)

where
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is bounded. Hence there is a sequence of functions {¢{"'} converging at
the point r,. Similarly, {¢{"'} contains a subsequence {p{*} converging
at the point r, as well as at r;, {p{} contains a subsequence {¢}
converging at the point rg as well as at r; and r,, and so on. The “diagonal

sequence’’
{n} = {oi

will then converge at every rational point of [a, b]. The limit of this
sequence is a nondecreasing function ¢, defined only at the points
F1sFas o s Fpse .. . We complete the definition of ¢ at the remaining
points of [a, b] by setting

$(x) = lim {i(r)if x is irrational.
r’;';ti;zgl

The resulting function ¢ is then the limit of {{,} at every continuity
point of ¢. In fact, let x* be such a point. Then, given any € > 0, there
is a 8 > 0 such that

4% — 9l < 2 (30)
if
|x* — x| < 8.
Let r and r’ be rational numbers such that
x* —d<r<x*<r<x*+4+3,
and let n be so large that

€

[4u(r) — 40 < g, I4nr) = 40 < 31
It follows from (30) and (31) that
[940) — dul)] < 2;

Since ¢, is a nondecreasing function, we have

$u(r) < $u(x*) < $a(r"),
and hence
[$(x*) — (M < [P(x*) — GO + 14(r) — (P
19a0) = a0 < S S ? —e.
Therefore

lim $a(x™) = $(x¥),

since € > 0 is arbitrary.
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Thus we have constructed a sequence {{,} of functions in ® con-
verging to a limit function  everywhere except possibly at discontinuity
points of . Since there are no more than countably many such points
(why ?), we can again use the ‘“‘diagonal process” to find a subsequence
of {{,,} which converges at these points as well, and hence converges
everywhere on [a, b]. [

36.6. The Riesz representation theorem. Next we show how Stieltjes
integrals can be used to represent the general linear functional on the space
Cia.ip of all functions continuous on the interval [a, b]:

-THEOREM 6 (F. Riesz). Every continuous linear functional ¢ on the
space Cy, ) can be represented in the form

o(f) = | f(x) dd), (32)
where @ is a function of bounded variation on [a, b], and moreover
el = VD). (33)

Proof. The space Ci, ;; can be regarded as a subspace of the space
My, 4, of all bounded functions on [a, b], with the same norm

I/l = sup | f(x)]

a<e<<h

as in Cp, ). Let ¢ be a continuous linear functional on Ci, ;;. By the
Hahn-Banach theorem (Theorem 5, p. 180), ¢ can be extended without
changing its norm from C, ;; onto the whole space M, ,;. In particular,
this extended functional will be defined on all functions of the form

1 if x<nm,
J() = , @< <b). (34)
0 if x>71

Let
O(7) = ¢(f). (35)

Then @ is of bounded variation on [a, b]. In fact, given any partition

a=xg<x < <x,=b 36)
of [a, b], let

o, = sgn [D(x,) — Dlx-p)] k=1,...,n),
where
1 if x>0,

sgn x = 0 if x=0,
—1 if x<O.
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Then
’Z:l |D(xz) — P(xp—y)| = glak[q)(xk) — O(xy)]

_ é_;la,,go(fx,, ) = o[ S~ Fur)

< |l ol

kélak(f L f xx—1) l

But the function
n .
kzlak(f;k _f‘:tk—’,)

can only take the values 0, +-1, and hence its norm equals 1. Therefore

k§1|®(xk) — O(x)l < o).
Since this is true for any partition of [a, b], we have

Va(@®) < lgll, (37

i.e., @ is of bounded variation on [a, b], as asserted.

We now show that the functional ¢ can be represented in the form of a
Stieltjes integral with respect to the function @ just constructed. Let f
be any function continuous on [a, b]. Given any € > 0, let 8 > 0 be
such that |x" — x"| <3 implies |f(x") — f(x")] <e. Suppose the
partition (36) is such that each subinterval [x,_,, x,] is of length less than
3, and consider the step function

fOX)=f(x) If xeua<x<x (k=1,...,n),

which can obviously be written in the form
JO® =2 fODfa®) = fara () (38)
where £ is the function defined by (34). Clearly,
/() =[Pl <e

for all x € [a, b],"% i.e.,

If—fe <e. (39)
It follows from (35) and (38) that

W) = 2SO = 9 fo )] = TS CIP(0) — Dl

13 We complete the definition of f(¢) by setting f{€)(b) = f(x,) = f(b) for every € > 0.
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i.e., (f) is an “approximating sum” of the Riemann-Stieltjes integral

[2 1) aoo).
Therefore
|<p(f“’) - fa"f(x) dd(x) | < e
for a “sufficiently fine” partition of the interval [a, b]. On the other
hand,
1) — e(f D < el I/ = /DI < llele
because of (39). But then

| o) — 1109 40| < (el + e,

which implies (32), since € > 0 is arbitrary. To prove (33), we merely
combine (37) with the opposite inequality

lell < VYD),

which is an immediate consequence of Theorem 2 and the representation

(32). 1

Problem 1. Let p. be an arbitrary finite c-additive measure on the real
line (— o0, o0). Represent w as the Stieltjes measure corresponding to some
generating function F.

Hint. Let F(x) = p.(— o0, x).

Comment. Thus the term “Stieltjes measure” does not refer to a special
kind of measure, but rather to a special way of constructing a measure (by
using a generating function).

Problem 2. Let @ be a function of bounded variation with two distinct
representations ® = v — g, & = »* — g*interms of nondecreasing functions
v, g, v* and g* (give an example). Prove that

2160 vy — [*fx) dee) = [*f0) o) — ['£(x) dg().

Comment. Thus in the definition (8) of the Lebesgue-Stieltjes integral
with respect to a function of bounded variation @, the particular representa-
tion of @ as a difference between two nondecreasing functions does not
matter, i.e., v need not be the total variation of ® on [a, x].
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Problem 3. Let £ be the number of spots obtained in throwing an unbiased
die. Find the mean and variance of &,

Ans. B§ =%, DE =35

Problem 4. Find the mean and variance of the random variable £ with
probability density

px) =4 (-0 < x < ).

Problem 5. Let & be the random variable with probability density
R T
(1 + x%)
Prove that E£ and DE fail to exist.

p(x) = (—o0 < x < o)

Problem 6. Discuss random variables which are neither discrete nor
continuous.

Problem 7. Given a random variable £ with distribution function F,
consider the new random variable v = ¢(&), where ¢ is a function summable
with respect to the Stieltjes measure @y generated by F. Express E§ and
DE in terms of F.

Hint. Consider the problem of changing variables in a Lebesgue integral.
Ans. For example, E§ = J:O ¢(x) dF(x).

Problem 8. Prove that if f is continuous on [a, b], then the Riemann-
Stieltjes integral

[27(x) a0 (40)
does not depend on the values taken by @ at its discontinuity points in (a, b).

Hint. Use Theorem 3 and formula (13).

Comment. Hence if f is continuous, we need not insist that @ be con-
tinuous from the left at its discontinuity points in (a, b). In fact, ® can be
assigned arbitrary values at these points.

Problem 9. Write formulas for the Riemann-Stieltjes integral (40) in the
case where f is continuous and

a) @ is a jump function;
b) @ is an absolutely continuous function with a Riemann-integrable
derivative.
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Problem 10. Evaluate the following Riemann-Stieltjes integrals:
0 if x=—1,

a) [* xdFG), where Fo) = { 1 if —1<x<2,
—1 if 2<x<3;
—1 if 0<x<4,

b) J‘:x2 dF(x), where F(x) =

[\
=
=
I
ol

<
if 0<x<i,

1 >
c dF(x), where F(x) =
) [} x* dFx) (x) 4 _x<l

™K~ %

Problem 11. Develop a theory of Riemann-Stieltjes integration on the

whole real line (— oo, 00).

Problem 12. Extend Theorem 4 to the case where a = — 0 or b =
(or both), assuming that f(x) approaches a limit as x — J-oo.

Problem 13. Let {®,} be the same as in Theorem 4, and let {f,} be a
sequence of continuous functions on [a, b] converging uniformly to a limit f.
Prove that

tim [£,0) d®,(0) = [(x) d(x).

Problem 14. Prove that there is a one-to-one correspondence between
the set of all continuous linear functionals ¢ on Cy,;; and the space V),
of Problem 8, p. 332, provided we identify any two elements of ¥;) ,, which
coincide at all their continuity points. Prove that the inequality

VYD) < |l

need not hold for every ® € V{3, corresponding to a given functional
¢ € Cp, 5, but that there is always at least one such element ® for which

the inequality holds.

37. The Spaces L, and L,

37.1. Definition and basic properties of L,. Let X be a space equipped
with a measure p., where the measure of X itself may be either finite or
infinite. Then by L,(X, w), or simply L,, we mean the set of all real functions
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Jf summable on X (however, see Problem 1). Clearly L, is a linear space
(with addition of functions and multiplication of functions by numbers
defined in the usual way), since a linear combination of summable functions
is again a summable function. To introduce a norm in L,, we define

171 = [1/60] ds, )

where, as in the rest of this section, the symbol | by itself denotes integration
over the whole space X. Of the various properties of a norm (see p. 138),
it follows at once from (1) that

I/1 >0,
laf Il = lacl IA1-
1A+ Al < 1AL+ 14,

and we need only verify that || f|| = 0 if and only if /= 0. To insure this,
we agree to regard equivalent functions (i.e., functions differing only on
a set of measure zero) as identical elements of the space L,. Thus the
elements of L, are, to,be perfectly exact, classes of equivalent summable
functions.* In particular, the zero element of L, is the class consisting of all
functions vanishing almost everywhere. With this understanding, we will

continue to talk (more casually) about “functions in L,.”
In L,, as in any normed linear space, we can use the formula

(L) =1f—gl

to define a distance. Let {f,} be a sequence of functions in L,. Then {f,}
is said to converge in the mean to a function f'e L, if p(f,,, f) — 0 as n— oo,

THEOREM 1. The space L, is complete.
Proof. Let {f,} be a Cauchy sequence in L,, so that
“fm —fn” —0asm,n— oo,

Then we can find a sequence of indices {n,} (where n; <n, <-:++ <
n, < - -+) such that

1
s = Foneal = [ 1) = Freei@N e <5 (k=1,2,..).
It follows from the corollary to Levi’s theorem (see p. 307) that the series

[ + 1Sy — S + -

14 Thus the precise definition of addition of two elements @, ¢, € L, is the following:
Let f; and f; be “representatives” of @, and o,, respectively, i.e., let f, € 1, f, € ¢,. Then
@1 + s is the class containing f; + f; (this class clearly does not depend on the particular

choice of f; and f5}.
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converges almost everywhere on X. Therefore the series

fn, +fnz _fn1 + e

also converges almost everywhere on X to some function
S(x) =lim f, (x).
k=

But {f,,} converges in the mean to the same function f. In fact, given
any € > 0,

[ 10 = i) du < )

for sufficiently large k and /, since {f,} is a Cauchy sequence. Hence,
by Fatou’s theorem (Theorem 3, p. 307), we can take the limit as / — o
behind the integral sign in (2), obtaining

[ 1) = f0 i < .

It follows that f € L, (why?) and thatf, — finthemean. Butifa Cauchy
sequence contains a subsequence converging to a limit, then the sequence
itself must converge to the same limit. Hence f,, — fin the mean. [§

According to the definition of the Lebesgue integral (see p. 296), given
any function f summable on X and any ¢ > 0, there is a summable simple
function ¢(x) such that

[1769) = el <=

Moreover, the Lebesgue integral of a summable simple function ¢ taking
values yy, Vs, - . . on sets Ey, E,, . .. is defined as the sum of the series

3 9uiE)

(assumed to converge absolutely). Therefore every summable simple function
can be represented as the limit in the mean (i.e., as the limit in the sense of
convergence in the mean) of a sequence of summable simple functions,
each taking only finitely many values. In fact, given any £ > 0, let N be
such that

@

z Iynl P'(En) <s
+1

n=N
and let!s
) ye If xeE,l1<k<N,
X)) =
o {0 otherwise.

15 Note that @y is a finite linear combination of characteristic functions, namely

() = yixz,(x) + - + Yz, (%)
(see footnote 11, p. 349).
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Then
[ 10(x) — en(0)l du < > il <.
n=N+1

In other words, the set of all simple functions taking only finitely many values
is everywhere dense in the space L.

THEOREM 2. Let X be a metric space equipped with a measure . such
that'®

1) Every open set and every closed set in X is measurable;
2) If a set M < X is measurable, then

w(M) = inf p(G), (3)
Mc<@

where the greatest lower bound is taken over all open sets G < X
containing M.

Then the set of all continuous functions on X is everywhere dense in
LI(X ’ P‘)'

Proof. We need only show that every simple function taking only
finitely many values is the limit in the mean of a sequence of continuous
functions. But every simple function taking only finitely many values is
a finite linear combination of characteristic functions of measurable sets,
and hence we need only show that every such characteristic function
¥ (x) is the limit in the mean of a sequence of continuous functions.
If M < Xis measurable, then (3) implies that given any € > 0, there is a
closed set Fj; and an open set G, such that

Fy© M < Gy, w(Gyp) — p(Fy) <e. “)
Now let!?
P(x) = o(X — Gy, )
Th ‘ P(X - GM’ x) + P(FMa x)
en

0 if xeX— Gy,
Pe(x) = { ,

1 if x € Fy.
Moreover, ¢, is continuous, since p(Fyp, x) and p(X — Gy, x) are both
continuous functions, with a nonvanishing sum. But |y, — ¢.| does not
exceed 1 on Gy — Fy, and vanishes outside this set. Using (4), we find that

J (%) — ()| dp <e. 1

16 These conditions are satisfied by ordinary Lebesgue measure in n-space, and in
many other cases of practical interest.

37 Asusual, p(4, x) denotes the distance between the set 4 and the point x (see Problem
9, p. 54).
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The space L,(X, w) depends on the choice of both the space X and the
measure p. For example, L,(X, p) is essentially a finite-dimensional space
if w is concentrated on a finite set of points (why?). In analysis, we are
mainly interested- in the case where L, is infinite-dimensional but has a
countable everywhere dense subset.!® To characterize such spaces, we
introduce the following concept, stemming from general measure theory:

DEFINITION. Suppose a space X equipped with a measure p. has a
countable system o of measurable subsets A,, A,, . . . such that given any
€ > 0 and any measurable subset M < X, there is a set A, € o satisfying
the inequality

p(M A Ay <e.

Then . is said to have a countable base, consisting of the sets Ay, A,, . . .

Example. Let p. be a Lebesgue extension of a measure m originally
defined on a countable semiring &,. Then the ring #(,) is obviously
itself countable, and hence, by Theorem 3, p. 277, is a countable base for .
In particular, ordinary Lebesgue measure on the line has a countable base,
since we can choose the original semiring <, to consist of all intervals (open,
closed and half-open) with rational end points.

THEOREM 3. Let X be a space equipped with a measure ., and suppose
w has a countable base Ay, As,... . Then L(X, ) has a countable
everywhere dense subset.

Proof. We will show that the set M of all finite linear combinations
of the form

Fehio), )

where f;, is the characteristic function of 4, and the numbers ¢y, .. ., ¢,
are rational, forms a countable everywhere dense subset of L, = L, (X, w).
The countability of M is obvious, and we need only show that M is
everywhere dense in L,. As already noted, the set of all simple functions
taking only finitely many values is everywhere dense in L. But every such
function can be approximated arbitrarily closely by a function of the same
type taking only rational values. Hence we need only show that every
function f taking rational values yy, ..., y, on pairwise disjoint sets
E,,...,E, (with X as their union) can be approximated arbitrarily
closely in the L,-metric by functions of the form (5). Clearly, there is
no loss of generality in assuming that the base 4,, 4,, . . . is closed under
the operations of taking differences and forming finite unions and
intersections (why ?).

18 So that L, is separable, as defined on p. 48.
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Now, according to the definition, given any € > 0, there are sets
Ay, ..., A, such that

ul(By — A) UV (4, — E)l <e k=1,...,n).
Let
A,’czAkaA, k=1,...,n),
<k
and define a function ’

v if xeAd,
* _ n
S O=1  if xex—-U0a
Then clearly =
wlxif () # /()

and hence the left-hand side of
[17G) = f*(0l de < 2 (max |y e/ (x) # f*(),

can be made arbitrarily small by choosing € > 0 sufficiently small. This
proves the theorem, since f* is a function of the form (5). §

37.2. Definition and basic properties of L,. As we have seen, the space
L, = Ly(X, p) is a Banach space, i.e., a complete normed linear space.
However, L, is not Euclidean, since its norm cannot be derived from any
scalar product. This follows from the *“parallelogram theorem’ (Theorem
15, p. 160). For example, if X' = [0, 2] and y is ordinary Lebesgue measure
on the line, then the condition

1S+ gl® + 1/ — gli* = 2(1 /1% + lgll®)

fails for the summable functions f(x) = 1, g(x) = sin x.1* To get a function
space which is not only a normed linear space but also a Euclidean space,
we now consider the set of functions whose squares are summable.

Thus let X be a space equipped with a measure (1, where we temporarily
assume that u(X) < 0. Then by Ly(X, ), or simply L,, we mean the set of
all real functions f whose squares are summable on X, i.e., which satisfy
the condition

[ de < o

(however, see Problem 6). As in the case of L;, we do not distinguish
between equivalent functions (i.e., functions differing only on a set of
measure Zero).

9 As an exercise, show that the same kind of counterexample works quite generally.
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THEOREM 4. If fand g belong to Ly, then so do of, f + g, and fg, where
o is an arbitrary constant. In particular, L, is a linear space.

Proof. Obviously af € L,, since

[ O dp. = o2 10x) de < 0.
The fact that fg € L, follows from the inequality
/8| < 3f*(x) + £°(0)] (6)
and Theorem 3, p. 297.2° But then f 4 g € L,, since
/%) + 8P < f3(x) + 2| f(x)g()] + %(x),
where each term on the right is summable. §

Next we define a scalar product in L,, setting

(f 8) = [ f(x)g(x) d.
This choice obviously has all the properties of a scalar product listed on
p. 142:
1) (f,f) > 0 where (f,f) = 0if and only if f = 0;
2) (f,8) =@&J));
3) . 8) =2, 8);
4 (6 + g) = (/.80 + (/. 8

(In asserting that (f,f) = 0 if and only if f = 0, we rely on the fact that
every function vanishing almost everywhere is identified with the zero element
of L,) Thus L, is a Euclidean space, with the norm defined by the usual
formula

1Al =N ()
(recall Theorem 1, p. 142). In the case of L,, (7) takes the form

I/l = \/ [72G3) d.

By the same token, the distance between two elements f, g € L, is just

()= 1=l = [[19 - g .

The quantity
JUr) — g du = 17— gf?

is called the mean square deviation of the functions fand g (from each other).

20 Setting g(x) = 1 in (6), we find that f€ L, implies f€ L, (provided that X is of finite
measure).
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Let {f,} be a sequence of functions in L,. Then {f,} is said to converge in
the mean square to a function f € L, if p(f,,f)— 0as n— co.
In L,, as in any other Euclidean space, we have the Schwarz inequality

(Al < 1N gl

which here takes the form

| [r)8(x) dn I < \/ [ £ du \/ [£%0) d. ®)
The Ly-version of the triangle inequality

If+ gl < 1AL+ lgl

is clearly

\/ f[f (x) + g du < \/ ff *(x) dp. + \/ fgz(x) d.
In particular, replacing f by | f| and setting g(x) = 1 in (8), we get

J 1601 dp < Vu®) [ [ £2x) i, ©

from which it is again apparent (cf. footnote 20) that fe€ L, implies fe€ L,
if u(X) < co.

THEOREM 5. The space L, is complete.
Proof. Let {f,} be a Cauchy sequence in L,, so that
|fm —f2ll =0 as m,n— oo,

Then, by (9), given any € > 0, we have

[ 17n0) = o0l dt < \/M—X)\/ [Un() = fu0)I d < /)

for sufficiently large m and n, i.e., {f,} is also a Cauchy sequence in the
L,-metric. Repeating the argument given in the proof of the completeness
of L, we choose a subsequence {f, } from {f,} converging almost
everywhere to some function f. Clearly, given any e > 0, we have

U = fu0F i < ¢ (10)

for sufficiently large k and /. Hence, by Fatou’s theorem (Theorem 3,
p- 307), we can take the limit as / — oo behind the integral sign in (10),
obtaining

f ) — P dp < e.
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It follows that f'€ L, (why?) and that f,, — fin the mean square. But if
a Cauchy sequence contains a subsequence converging to a limit, then the
sequence itself must converge to the same limit. Hence f, — f in the
mean square. [

We now drop the restriction p(X) < oo, allowing X to have infinite
measure. In the case w(X) = oo, it is no longer true that fe L, implies
f€ L, afact deduced from (6) or (9) in the case p(X) < . For example,
let X be the real line equipped with ordinary Lebesgue measure, and let

1
f(x)=—F7—=.
\/1 + x?
Then f belongs to L, but not to L,, since
[ S L S
_w\/1+x2 —w1+x2

Moreover, if a sequence {f,} converges to a limit f in the Lj,-metric, it
follows from (9) that {f,} also converges to fin the L;-metric if pu(X) < oo.
However, this conclusion fails if ¢.(X) = oo, as shown by the example

if x| <n,

fu(x) =

S N

if |x| > n,

where {f,,} approaches no limit in L, but approaches the zero function in L,
(give the details). Despite all this, we have®

THEOREM 5'. The space L, is complete even if p(X) = oo, provided
that . is o-finite.

Proof. As in Sec. 30.2, let
x=Ux, wX,<o,

where
XICch-..Cch...
Moreover, given any function ¢ on X, let
o(x) if xeX,,
¢M(x) =
0 if x¢X,,

*! Note that in the proof of the completeness of L, (Theorem 1), X can have either
finite or infinite measure.
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so that
— —1i [ — (n)
[ot dn = [ o) dp =lim [ o(x) dp=lim [ 9"(x) dg,

if @ is summable on X. Let {f,} be a Cauchy sequence in L,, so that,
given any € > 0,

[ — fiolt du < <
for all sufficiently large k and /. Then
fim [ (/060 =/ 00P de = [[A6) — i) du <=,

and hence, a fortiori,
S ) = 1P eor de <. ()

But Ly(X,,, ) is complete, by Theorem 5, since w(X,) < co. Therefore
{£{™} converges in the metric of L,(X,,, 1) to a function f™ € Ly(X,,, ).
Taking the limit as / — oo behind the integral sign in (11), we get

L6 — 5ol de < e (12)

(why is this justified ?). Since (12) holds for every n, we can now take
the limit as n — oo, obtaining

lim fX M) — fPP de < e. (13)
Now let e
) =f™x) if x€X,
Then (13) implies
JUhe) = fooldu < e.
It follows that f'e Ly(X, p) and f;, — fin the mean square. §

Problem 1. A complex function is said to be summable if its real and
imaginary parts are summable. Show that the considerations of Sec. 37.1
carry over verbatim to the case where L, consists of all complex summable
functions (defined on X).

Problem 2. Prove that if each of the measures y; and ., has a countable
base, then so does their direct product u = p; X ..

Comment. In particular, Lebesgue measure in the plane (or more
generally in n-space) has a countable base.
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Problem 3. Let X be the interval [g, b], and let w be ordinary Lebesgue
measure on the line. Prove that the set & of all polynomials on [a, 5] with
rational coefficients is everywhere dense in L, (X, w).

Hint. Use Theorem 2 and the fact that every function continuous on
[a, b] can be approximated in the mean (or even uniformly) by elements of 2.

Problem 4. Prove that Ly(X, p) is separable, i.e., has a countable every-
where dense subset, if p has a countable base.

Comment. Thus Ly(X, u) is a Hilbert space if p has a countable base
(we disregard the case where Ly(X, ) is finite-dimensional). It follows from
Theorem 11, p. 155 that all such spaces are isomorphic, in particular, that
L,(X, w) is isomorphic to the space /; of all sequences (xy, Xz, . .. , X5, . . .)
such that

> xi< .

n=1
(in fact, /, corresponds to the case where the measure p is concentrated on a
countable set of points).

Problem 5. Prove that every continuous linear functional ¢ on Ly(X, w),
where . has a countable base, can be represented in the form

o) = [ fx)8(x) du,
where g is a fixed element of Ly(X, u).
Hint. Recall Theorem 2, p. 188.

Problem 6. Show that the considerations of Sec. 37.2 carry over verbatim
to the case where L, consists of all complex functions f'satisfying the condition

[ 176G dp < oo,

provided the scalar product of two such functions f and g is now defined as

(f ) = [ f)E®) do.

Show that the resulting space L, is a complex Hilbert space if the measure ®
has a countable base (again disregard the finite-dimensional case).

Problem 7. Let {f,} be a sequence of functions defined on a space X
equipped with a measure p. such that u(X) < co. Prove that

a) If {f,} converges uniformly, then {f,} converges in the mean and in
the mean square;

b) If {f,} converges in the mean or in the mean square, then {f,} con-
verges in measure (as defined in Problem 6, p. 292);



SEC. 37 THE SPACES L, AND L, 389

c) If {f,} converges in the mean or in the mean square, then {f,} contains
a subsequence {f,,} which converges almost everywhere.

Hint. See Problem 9, p. 292. Alternatively, recall the proof of Theorem 1.

Problem 8. Prove that the sequence of functions constructed in Problem
8, p. 292 converges to f(x) = 0 in the mean and in the mean square, without
converging at a single point.

Problem 9. Give an example of a sequence of functions {f,} which con-
verges everywhere on [0, 1], but does not converge in the mean.

Hint. Let
n if xe(0,1/n),
Sa(x) =

0 otherwise.

Problem 10. Give an example of a sequence of functions {f,} which
converges uniformly, but does not converge in the mean or in the mean
square.

Hint. According to Problem 7a, we must have u(X) = oo. Let

1 .
£ = \/; if x| < n,

0 if |x| > n.

Problem 11. Show that convergence in the mean need not imply con-
vergence in the mean square, whether or not u(X) < oo,

Problem 12. Let L, (X, u) be the set of all classes of equivalent (real or
complex) functions f such that

flfl”du< © (I<p<x),

equipped with the norm
1/p
Il = ( [irr du)

Prove that L (X, w) is a Banach space.
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INDEX

A

Absolutely continuous charge, 347
Absolutely continuous function, 336
Absolutely summable sequence, 185
Adjoint operator, 232
in Hilbert space, 234
Aleph null, 16
Alexandroff, P. S., 90, 97
Algebra of sets, 31
Algebraic dimension, 128
Algebraic number, 19
Almost everywhere, 288
Angle between vectors, 143
Arzeld’s theorem, 102
generalization of, 107
Axiom of choice, 27
Axiom of countability:
first, 93
second, 82
Axiom of separation:
first, 85
Hausdorff, 85
second, 85

Baire’s theorem, 61
B-algebra (see Borel algebra)
Banach, S., 138, 229, 238
Banach space, 140
Base, 81

countable, 382

neighborhood (local), 83
Basis, 121

dual, 185

Basis (cont.):
Hamel, 128
orthogonal, 143
orthonormal, 143
Bessel’s inequality, 150, 165
Bicompactum, 96
Binary relation (see Relation)
Birkhoff, G., 28
Bolzano-Weierstrass theorem, 101
Borel algebra, 35
irreducible, 36
minimal, 36
Borel closure, 36
Borel sets, 36
Bounded linear functional, 177
norm of, 177
Bounded real function, 110
Bounded set, 65, 141, 169
locally, 169
strongly, 197
weakly, 197
B-set (see Borel set)

C

Cantor, G., 29
Cantor function, 335
Cantor set, 52
points of the first kind of, 53
points of the second kind of, 53
Cantor-Bernstein theorem, 17
Cardinal number, 24
Cartesian product (see Direct product)
Cauchy criterion, 56
Cauchy sequence, 56
Cauchy-Schwarz inequality, 38
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Chain, 28
maximal, 28
Characteristic function, 349
Charge, 344
absolutely continuous, 347
concentrated, on a set, 346
continuous, 346
density of, 350
discrete, 347
negative, 344
negative variation of, 346
positive, 344
positive variation of, 346
Radon-Nikodym derivative of, 350
singular, 347
total variation of, 346
Chebyshev’s inequality, 299
Choice function, 27
Classes, 6
equivalence, 8
Closed ball (see Closed sphere)
Closed graph theorem, 238
Closed set(s), 49
in a topological space, 79
on the real line, 51
unions and intersections of, 49
Closed sphere(s), 46
center of, 46
nested (or decreasing) sequence of,
59
radius of, 46
Closure, 46, 79
Closure operator, 46
properties of, 46
Codimension, 122
Cohen, P. J., 29
Compact space, 92
countably, 95
locally, 97
Compactness, 92
countable, 95
relative, 97
relative countable, 97
Compactum, 92, 96
metric, 96
Complement of a set, 3
Complete limit point, 97
Complete measure, 280
Completely continuous operator(s), 239 ff.
basic properties of, 243-246
in Hilbert space, 246-251
Completely regular space, 92

Completion (of a metric space), 62
Component (of an open set), 55
Conjugate space, 185
of a normed linear space, 184
second, 190
strong topology in, 190
third, 190
weak topology in, 200
weak* topology in, 202
Connected set, 55
Connected space, 84
Contact point, 46, 79
Continuity, 44, 87
from the left, 315
from the right, 315
uniform, 109
Continuous charge, 346
Continuous linear functional(s), 175 ff.
order of, 182
sufficiently many, 181
Continuum, 16
power of, 16
Contraction mapping(s), 66 ff.
and differential equations, 71-72
and integral equations, 74-76
and systems of differential equations,
72-74
principle of, 66
Convergence almost everywhere, 289
Convergence in measure, 292
Convergence in the mean, 379
Convergence in the mean square, 385
Convergent sequence:
in a metric space, 47
in a topological space, 84
Convex body, 129
Convex functional, 130, 134
Convex hull, 130
Convex set, 129
Convexity, 128
Countability of rational numbers, 11
Countable additivity, 266, 272
Countable base, 382
Countable set, 10
Countably compact space, 95
Countably Hilbert space, 173
Countably normed (linear) space, 171
complete, 173
Cover, 83
closed, 83
open, 83
Covering (see Cover)



Curve(s):
in a metric space, 112-113
length of, 114, 115
sequence of, 115
rectifiable, 332

D

Decomposition of a set into classes, 6-9
3-algebra, 35
3-ring, 35
Delta function, 124, 208
Dense set, 48
everywhere, 48
nowhere, 48, 61
Density, 350
Derived numbers, 318
left-hand lower, 318
right-hand upper, 318
Diameter of a set, 65
Difference between sets, 3
Differentiation :
of a monotonic function, 318-323
of an integral with respect to its upper
limit, 323-326
Dimension, 121
algebraic, 128
Dini’s theorem, 115
Direct product, 238, 352
of measures, 354
Directed set, 29
Dirichlet function, 289, 291, 301
Discontinuity point of the first kind, 315
Discrete charge, 347
Discrete space, 38
Disjoint sets, 2
pairwise, 2
Distance:
between a point and a set, 54
between two sets, 55
properties of, 37
symmetry of, 37
Domain (of definition), 4, 5, 221
Domain (open connected set), 71

E

Egorov’s theorem, 290
Eigenvalue, 235
Eigenvector, 235
Elementary set, 255
measure of, 256
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Empty set, 2
e-neighborhood, 46
e-net, 98
Equicontinuous family of functions, 102
Equivalence classes, 8
Equivalence relation, 7
Equivalent functions, 288
Equivalent sets, 13
Essential supremum, 311
Essentially bounded function, 310
Euclidean n-space, 38, 144
Euclidean space(s), 138, 142 ff.
characterization of, 160
complete, 153
norm of vector in, 164
orthogonal elements of, 164
components of elements of, 149
norm in, 142
separable, 146
Euler lines, 105
Exhaustive sequence of sets, 308
Extension of a functional, 132
Extension of a measure, 271, 277, 279
Jordan, 281

F

Factor space, 122
Fatou’s theorem, 307
Field, 37
Finite expansion, 33
Finite function, 208
Finite set, 10
First axiom of countability, 83
First axiom of separation, 85
Fixed point, 66
Fixed point theorem, 66
Fourier coefficients, 149, 152, 165
Fourier series, 149, 165
Fractional part, 8
Fraenkel, A. A., 25, 27
Fredholm equation, 74
homogeneous, 74
kernel of, 74
nonhomogeneous, 74
Friedman, A., 212
Fubini’s theorem, 359
Function space, 39, 108
Functional(s), 108, 123
addition of, 183
additive, 123
bounded linear (see Bounded linear
functional)
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Functional(s) (cont.):
conjugate-homogeneous, 123
conjugate-linear, 124
continuous, 175
continuous linear (see Continuous linear

functionals)
convex, 130, 134
extension of, 132
homogeneous, 123
linear, 124, 175 ff.
Minkowski, 131
null space of, 125
product of, with a number, 183
separation of sets by, 136

Function(s), 4 ff.
absolutely continuous, 336
Borel-measurable, 284
bounded (real), 110, 207
Cantor, 335
characteristic, 349
continuous, 44, 79

from the left, 315
from the right, 315
uniformly, 109
delta, 124, 208
domain (of definition of), 4, 5
equivalent, 288
essentially bounded, 310
finite, 207
general, §
generalized (see Generalized functions)
generating, 362
infinitely differentiable, 169
integrable, 294, 296, 308
locally, 208
inverse, 5
jump, 315, 341
jump of, 315
left-hand limit of, 315
lower limit of, 111
lower semicontinuous, 110
measurable, 284 ff.
monotonic, 314
nondecreasing, 314
nonincreasing, 314
of bounded variation, 328-332
one-to-one, 5
oscillation of, 111
range of, 4, 5
real, 4
right-hand limit of, 315
simple, 286

Function(s) (cont.):

singular, 341

step, 316

summable, 294, 296, 308

test, 208

uniformly continuous, 109

upper limit of, 111

upper semicontinuous, 110
Fundamental functions (see Test functions)
Fundamental parallelepiped, 98
Fundamental sequence (see Cauchy se-

quence)

Fundamental space (see Test space)

G

General measure theory, 269 ff.
Generalized function(s), 124, 206 ff.
and differential equations, 211-214
complex, 215
convergence of, 209
definition of, 208
derivative of, 210
of several variables, 214-215
on the circle, 216
operations on, 209-210
product of, with a number, 209
product of, with an infinitely differenti-
able function, 210
regular, 208
singular, 208
sum of, 209
Godel, K., 209
Graph, 238
Greatest lower bound (in a partially ordered
set), 30
Gurevich, B. L., 350, 351

H

Hahn decomposition, 345
Hahn-Banach theorem, 132, 180
complex version of, 134, 181

Hamel basis, 128

HausdorfT axiom of separation, 85
HausdorfT space, 85

Hausdorfl’s maximal principle, 28
Heine-Borel theorem, 92

Helly’s convergence theorem, 370
Helly’s selection principle, 372
Hereditary property, 87

Hilbert, D., 155



Hilbert cube, 98
Hilbert space(s), 155 ff.
complex, 165
countably, 173
isomorphic, 155, 165
linear manifold in, 156
closed, 156
subspace(s) of, 156
direct sum of orthogonal, 159
(mutually) orthogonal, 158
orthogonal complement of, 157
Hilbert-Schmidt theorem, 248
Halder’s inequality, 41
homogeneity of, 42
Hélder’s integral inequality, 45
Homeomorphic mapping, 44, 89
Homeomorphic spaces, 44, 89
Homeomorphism, 44, 89
Hyperplane, 127

Ideal, two-sided, 252
Image:
of an element, 5
of a set, 5
Infimum, 51
Infinite set, 10
Initial section, 25
Inner measure, 258, 276
Integrable function, 294, 296, 308
Integral part, 8
Interior, 128
Interior point, 50
Intersection of sets, 2
Into mapping, 5
Invariant subspace, 238
Inverse function, 5
Invisible point:
from the left, 319
from the right, 319
Isolated point, 47
Isometry, 44
Isomorphism, 21, 120, 155, 165
conjugate-linear, 194, 234
Isomorphism theorem, 155, 165

J

Jordan decomposition, 346
Jordan extension, 281
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Jordan measurable set, 281
Jordan measure, 281
Jump, 315

Jump function, 315, 341

K

Kelley, J. L., 87, 90, 92, 97
Kernel, 74

L

Lattice, 30
Least upper bound (in a partially ordered
set), 30
Lebesgue decomposition, 341, 351, 363
Lebesgue extension, 277, 279
Lebesgue integral, 293 ff.
absolute continuity of, 300-301
as a set function, 343-351
indefinite, 313 ff.
of a general measurable function, 296,
308
of a simple function, 294
over a set of infinite measure, 308
vs. Riemann integral, 293-294, 309-310
Lebesgue-integrable function (see Inte-
grable function)
Lebesgue-Stieltjes integral, 364
vs. Riemann-Stieltjes integral, 368
Lebesgue’s bounded convergence theorem,
303
Lebesgue’s theorem:
on differentiation of a monotonic func-
tion, 321
on integration of the derivative of an
absolutely continuous function, 340
Left-hand limit, 315
Levi’s theorem, 305
Limit of a sequence:
in a metric space, 47
in a topological space, 84
Limit point, 47, 79
complete, 97
Linear closure, 140
Linear combination, 120
Linear dependence, 120
Linear functional, 175 ff.
bounded (see Bounded linear func-
tional)
continuous (see Continuous linear func-
tionals)
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Linear hull, 122
Linear independence, 121
Linear manifold, 140, 156
Linear operator, 221
bounded, 223
norm of, 224
spectral radius of, 239
closed, 237
completely continuous (see Completely
continuous operators)
graph of, 238
Linear space(s), 118 ff.
basis in, 121
Hamel, 128
closed segment in, 128
complex, 119
countably normed, 171
dimension of, 121
algebraic, 128
finite-dimensional, 121
functionals on (see Functionals)
infinite-dimensional, 121
isomorphic, 120
linearly dependent elements of, 120
linearly independent elements of, 121
n-dimensional, 121
normed (see Normed linear spaces)
open segment in, 128
real, 119
subspace, 121
proper, 121
topological (see Topological linear space)
Linearly ordered set (see Ordered set)
Lipschitz condition, 55
Locally integrable function, 208
Lower limit, 111
Lower semicontinuous function, 110
Luzin’s theorem, 293

M

Mapping, 5 ff.

continuous, 44, 87

contraction, 66

fixed point of, 66

into, 5

natural, 191

one-to-one, 5

onto, §

order-preserving, 21
Mathematical expectation, 366
Mathematical induction, 28

Mean square deviation, 384
Mean (value), 366
Measurable function, 284 ff.
integration of, 294, 296, 308
Measurable set(s), 259 ff, 267
decreasing sequence of, 266
increasing sequence of, 267
Jordan, 281
Measure(s), 254 fT.
additivity of, 255, 263
complete, 280
continuity of, 267
countably (s-) additive, 266, 272
direct product of, 354
extension(s) of, 271, 275-283
inner, 258, 276
Jordan, 281
Lebesgue, 259, 276, 279
of an elementary set, 256
of a plane set, 259, 276
of a rectangle, 255
on a semiring, 270
outer, 258, 276
product, 354
o-finite, 308
signed, 344
Stieltjes (see Stieltjes measure)
with a countable base, 382
Measure space, 294
Method of successive approximations, 66,
67
Metric (see Distance)
Metric space(s), 37 fI.
complete, 56
completion of, 62
continuous curves in, 112-113
length of, 114, 115
sequence of, 115
continuous mapping of, 44
convergence in, 47
incomplete, 56
isometric, 44
isometric mapping of, 44
real functions on, 108
equivalent continuous, 113
uniformly continuous, 109
relatively compact subsets of, 101
separable, 48
subspace of, 43
total boundedness of, 97-99
compactness and, 99-101
Metrizable space, 90



Minkowski functional, 131
Minkowski’s inequality, 41
Minkowski’s integral inequality, 45
Monotonic function, 314

N

n-dimensional simplex, 137
k-dimensional face of, 137
vertices of, 137

n-dimensional (vector) space, 119

Negative set, 344

Neighborhood, 46, 79

Neighborhood base, 83
at zero, 168

Nested sphere theorem, 60

Noncomparable elements, 21

Nondecreasing function, 314

Nonincreasing function, 314

Nonmeasurable set, 268

Normal space, 86

Normed linear space(s), 138
bounded subset of, 141
complete, 140
complete set in, 140
conjugate space of, 184
direct product of, 238
subspaces of, 140

Norm(s), 138, 142, 163
compatible, 171
comparable, 172
equivalent, 141, 172
of a bounded linear functional, 177
of a bounded linear operator, 224
properties of, 138
stronger, 172
weaker, 172

n-space, 119

Null space, 125

0]

One-to-one correspondence, 5, 10, 13
One-to-one function, 5
Onto mapping, 5
Open ball (see Open sphere)
Open set(s), 50
component of, 55
in a topological space, 78
on the real line, 51
unions and intersections of, 50

INDEX

Open sphere, 45
center of, 46
radius of, 46
Operator(s), 221 ff.
adjoint, 232
in Hilbert space, 234
continuous, 221
degenerate, 240
domain (of definition) of, 221
eigenvalue of, 235
eigenvector of, 235
identity (or unit), 222
inverse, 228
invertible, 228
linear (see Linear operator)
product of, 225
with a number, 225
projection, 223
resolvent of, 236
self-adjoint, 235
spectrum of, 235
sum of, 225
zero, 222
Order type (see Type)
Ordered product, 23
Ordered set, 21
Ordered sum, 22
Order-preserving mapping, 21
Ordinal, 24
transfinite, 24
Ordinal number(s), 24
comparison of, 25
Orthogonal basis, 143
Orthogonal complement, 157
Orthogonal system, 143
complete, 143
Orthogonal vectors, 143
Orthogonalization, 148
Orthogonalization theorem, 147
Orthonormal basis, 143
Orthonormal system, 143
closed, 151
complete, 143
vs. closed, 151
Oscillation, 111
Oyter measure, 258, 276

P

Parseval’s theorem, 151
Partial ordering, 20
Partially ordered set(s), 20
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Partially ordered set(s) (cont.): Relation (cont.):

isomorphic, 21 reflexive, 7

maximal element of, 21 symmetric, 7

minimal element of, 21 transitive, 7

noncomparable elements of, 21 Relatively compact subset, 97
Partition of a set into classes, 6-9 Relatively countably compact subset, 97
Peano’s theorem, 104 Residue class, 122
Petrovski, 1. G., 76 Resolvent, 23€
Picard’s theorem, 71 Riemann integral, 293
Polygonal line, 55 vs. Lebesgue integral, 293-294, 309-310
Positive set, 344 Riemann-Stieltjes integral, 367
Power: vs. Lebesgue-Sticltjes integral, 368

of a set, 16 Riesz lemma, 319

of the continuum, 16 Riesz representation theorem, 374
Preimage: Riesz-Fischer theorem, 153

of a set, 5 Right-hand limit, 315

of an element, 5 Ring of sets, 31
Principle of contraction mapping, 66 minimal, generated by a semiring, 34
Probability density, 367 minimal, generated by a system of sets, 32
Product measure, 354, 356 Rozanov, Y. A., 366

evaluation of, 356-359
Projection operator, 223 S

Proper subspace, 121
Scalar product, 142

Q complex, 163
Schwartz, L., 212
Quotient space (see Factor space) Schwarz’s inequality, 40, 142
Second axiom of countability, 82
R Second axiom of separation, 85
Self-adjoint operator, 235
Radon-Nikodym derivative, 350 Semireflexive space, 191
Radon-Nikodym theorem, 347 Semiring of sets, 32
Random variable, 366 finite expansion in, 33
continuous, 366 minimal ring generated by, 34
discrete, 366 Separable (metric) space, 48
mathematical expectation of, 366 Set of s-uniqueness, 282
mean (value) of, 366 Set of uniqueness, 282
probability density of, 367 Set theory, 1-36
variance of, 366 naive vs. axiomatic, 29
Range. 4,5 Set(s), 1 ff.
Rectangle, 255 algebra of, 31
closed, 255 bounded, 65, 141
half-open, 255 totally, 98
measure of, 255 Cantor, 52
open, 255 closed, 49
Rectifiable curve, 332 closure of, 46
Reflexive space, 191 complement of, 3
Reflexivity, 7 connected, 55
Relation, 7 contact point of, 46
antisymmetric, 7 convex, 129
binary, 7 countable, 10

equivalence, 7 curly bracket notation for, 1



Set(s) (cont.):
decomposition of, 6
dense, 48

everywhere, 48
nowhere, 48, 61
diameter of, 65
difference between, 3
direct product of, 352
directed, 29
disjoint, 2
pairwise, 2
duality principle for, 4
elementary, 255
elements of, 1
empty, 2
equivalent, 13
exhaustive sequence of, 308
finite, 10
infinite, 10
interior of, 128
interior point of, 50
intersection of, 2
isolated point of, 47
Jordan measurable, 281
(Lebesgue) measurable, 259, 267, 276,
279
limit point of, 47
complete, 97
measure of, 259, 267, 276, 279
negative, 344
nonmeasurable, 268
of uniqueness, 282
of s-uniqueness, 282
open, 50
operations on, 2 ff.
ordered, 21
partially ordered, 20
partition of, 6
positive, 344
power of, 16
ring of, 31
semiring of, 32
subset of, 1
proper, 2
sum of, 2
symmetric, 171
symmetric difference of 3, 4
systems of, 31-36
totally bounded, 98
uncountable, 10
union of, 2
well-ordered, 23
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Shilov, G. E., 147, 155, 245, 350, 351
c-additivity (see Countable additivity)
c-algebra, 35

s-finite measure, 308

c-ring, 35

Signed measure, 344

Silverman, R. A., 76, 140, 147, 247, 350,

366

Simple function, 286

Simplex (see n-dimensional simplex)

Simply ordered set (see Ordered set)

Singular charge, 347

Singular function, 341

Smirnov, V. L, 247

Space:

c, 120

Co, 120

Clo.sp» 39, 57

Ci, 1. 40, 59

c, 119

C(l, R), 113

of isolated points, 38, 56
of rapidly decreasing sequences, 172
l5. 39, 57

Iy, 43

Ly, 378

L,, 383

m, 41, 120

R, 38, 56

R™, 38, 57

R*®, 120

R:, 41

Spectral radius, 239

Spectrum, 235
continuous, 236
point, 236
regular point of, 235

Step function, 211, 316

Stereographic projection, 14

Stieltjes integral (see Lebesgue-Stieltjes

integral)

Stieltjes measure, 362, 364
absolutely continuous, 363
discrete, 363
generating function of, 362
singular, 363

Strong convergence, 195

Strong topology, 184
in conjugate space, 190

Subcover, 83

Subset, 1
proper, 2
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Subspace, 121
closed, 140
generated by a set, 122
invariant, 238
proper, 121
Successive approximations, method of, 66,

Sum of sets, 2
Summable function, 294, 296, 308
complex, 387
Supremum, 41, 51
Symmetric difference, 3, 4
Symmetric set, 171
Symmetry, 7
System of sets, 31
centered, 92
trace of, 80
unit of, 31

T

Test functions, 208
convergence of, 208
Test space, 208, 216
Tolstov, G. P., 140, 145
Topological linear space, 138, 167 ff.
bounded subset of, 169
continuous mapping of, 87
functionals on, 175
continuous, 175
continuous linear, 175 ff.
linear, 175
locally bounded, 169
locally convex, 169
neighborhood base at zero of, 168
normable, 169
weak topology in, 195
Topological space(s), 78 ff.
base for, 81
bicompact, 96
closed sets of, 79
compact, 92
completely regular, 92
connected, 84
convergence in, 84
countably compact, 95
cover (covering) of, 83
hereditary property of, 87
locally compact, 97
metrizable, 90
normal, 86
open sets of, 78

Topological space(s) (cont.):
points of, 79
real functions on, 108
relatively compact subset of, 97
relatively countable compact subset of, 97
with a countable base, 82
Topology, 78
generated by a system of sets, 80
relative, 80
strong, 184, 190
stronger, 80
weak, 195, 200
weak*, 202
weaker, 80
Total variation, 328, 346
Totally bounded set, 98
Transcendental number, 19
Transfinite induction, 29
Transfinite ordinal, 24
Transitivity, 7
Triangle inequality, 37, 138
Ty-space, 85
T,-space, 85
Two-sided ideal, 252
Tychonoff space, 92
Type(s), 22
ordered sum of, 23
ordered product of, 23
vs. power, 22

U

Uncountability of real numbers, 15
Uncountable set, 10

Uniform continuity, 109

Uniformly bounded family of functions, 102
Union of sets, 2

Unit (of a system of sets), 31

Upper bound (in a partially ordered set), 28
Upper limit, 111

Upper semicontinuous function, 110
Urysohn’s lemma, 91

Urysohn’s metrization theorem, 90

Vv

van der Waerden, B. L., 327
Variance, 366
Variation:

bounded, 328

negative, 346

positive, 346

total, 328, 346



Vector space (see Linear space)
Volterra equation, 75
Volterra operator, 243

w

Weak convergence, 195
of functionals, 200
Weak* convergence, 202
Weak topology, 195
in conjugate space, 200
Weak™* topology, 202
Weierstrass’ approximation theorem, 140,
145

INDEX

Well-ordered set, 23
(initial) section of, 25
order type of, 24
remainder of, 25
smallest element of, 23

Well-ordering theorem, 27

Z

Zermelo, E., 27
Zero element, 118
Zorn’s lemma, 28
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