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Editorial Preface 

George Boolos (1940-1996) designed this book shortly before his untimely 

death. He provided the title, and a table of contents, but not the kind 

of introductory notes now common in such volumes, relating the selected 

papers to each other and to the larger literature. John Burgess has provided 

such introductions here, together with an afterword surveying George’s 

work on provability logic. 

Of the thirty items selected, one has not been published or scheduled for 

publication elsewhere, while five have been previously anthologized, four of 

these in William Demopoulos’ collection Frege ’s Philosophy of Mathematics. 

For these five items the text here follows the reprint. A technical appendix 

accompanying one item has been omitted here. 

In addition to the works mentioned in the text, the Bibliography for this 

volume includes George’s complete bibliography, compiled by him. 

There are two systematic departures from the form of the original articles: 

Throughout, we have used a uniform modern notation for logical symbols, 

and all quotation marks are double quotes (except in one article that is 

about quotation marks, where the usage of the original has been followed 

exactly). 

Part. Dof the present collection contains papers on the related subjects of 

set theory and second-order logic, including articles on the logic of plurals. 

Part H contains contributions to Frege studies. Part IP contains articles 

on mathematical iuduction, examples on the lengths of proofs, and artieles 

relating to Gédel’s incompleteness theorems. George identified the last two 

items in this part as “lighter papers.” We have changed George’s ordering 

in one instance, moving the one other item identified as a “lighter paper,” 

a recent popular piece on Frege, from its original antepenultimate position 

in the collection to a position at the beginning of Part II, where it serves 

to supplement the introductory note. 

One of the publisher’s referees, besides affirming that introductory notes 

would be desirable even if these could not come from the George’s hand, 

suggested that such notes should be divided into sections corresponding to 

the parts of the volume. We have followed this suggestion. The same referee 

suggested that such notes should be supplemented with an account of some 

of the more technical papers that were not included. The largest body 

of excluded material (nineteen out of the thirty-five papers not included, 
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viii 

plus two books) is work on applications of modal logic to proof theory, 

the subject now known as provability logic. For this subject the single best 

account is George’s book, The Logic of Provability. But an afterword about 

George’s work in this subject has been supplied as suggested, at the end of 

this volume. 

George was as modest about making claims for himself as he was generous 

in acknowledging the contributions of others, and in writing of his works in 

our introductory notes we have tried to be as matter-of-fact in tone as he 

would have been himself. This preface provides a more appropriate place 

to speak briefly of the importance of his contributions. 

While his work on the subject is beyond the scope of the present collec- 

tion, he has indisputably been one of the major players in provability logic, 

both as an author of technical papers, and as the author both of the first 

and of the latest books on the subject. His work on Frege forms the core of 

Demopoulos’ anthology, and his unique and irreplaceable role as a leader 

in the new direction in Frege studies is universally recognized. His work on 

plural quantifiers is of interest to philosophers and logicians and linguists 

alike, and is justly celebrated; it has moreover been the starting point for 

ambitious further projects by others. If in these last decades the iterative 

conception of set, long scarcely known to philosophers, has attracted much 

attention, and if during the same period second-order logic, long viewed 

suspiciously, has regained its respectability, no single influence has done 

more to bring about these changes than that of his early papers on these 

topics. 

In suin, in virtually every area in which he has worked, his contributions 

are widely and gratefully acknowledged. And yet. the full magnitude of 

his contribution to logie only becomes apparent when bis papers in diverse 

areas are brought together, as they are for the first time here, 

LPB. and Rub
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I Studies on Set Theory 

and the Nature of Logic



Introduction 

Set Theory 

Georg Cantor, the founder of set theory, published neither explicit axioms 

nor an intuitive account of the conception of set he was assuming. Gottlob 
Frege, the founder of modern logic, did give explicit axioms in the logical 

system he proposed as a foundation for mathematics. Unfortunately, he 

assumed a naive conception of set, on which for any condition there is a set 

whose elements are all and only the things for which that condition holds; 

and such a conception leads to contradiction when applied to the condition 

“is a set that is not an element of itself.” If we assume that there is a set 
whose elements are all and only the things for which this condition holds, 

inconsistency results when we ask whether the condition holds for that set 

itself, whether that set itself is an element of itself. The answer seems to 

be that it is if and only if it isn’t. This paradox was noted by Bertrand 
Russell, after whom it is named, and by Ernst Zermelo. 

Russell proposed a formal system of lis own as a foundation for math- 

ematics, aud Zermelo proposed a list of axioms for set theory, which with 
additions and amendments due to Abraham Fraenkel is generally accepted 
hy set theorists today. Though Zermelo at. first only clainied for his axioms 
that they seem to yield the theorems of Cantor while avoiding the paradox 

of Russell, he later gave an intuitive account of the underlying conception 
of set he was assuming, which also is widely accepted among set theorists 

today. It is instructive to compare the Russellian and Zermelodic concep- 

tions, which may also be called the stratified and cumulative conceptions. 

On both conceptions sets form a hierarchy, with some sets lying at higher 

levels than others. Sometimes the temporal metaphor of sets formed at 

later and later stages is used in place of the spatial metaphor of sets ly- 

ing at higher and higher levels, in which case one speaks of the iterative 

conception. 

On the stratified conception, the elements of any set must come from the 
level immediately below. At the bottom or level zero are whatever indi- 

viduals or non-sets there are assumed to be; and for purposes of providing 

a framework for mathematics one must assume there are infinitely many 

3



4 I. Studies on Set Theory and the Nature of Logic 

of them. Above these at level one lie sets whose elements come from level 

zero. Among these is the empty set 9, for instance. Above these at level 

two lie sets whose elements come from level one. Among these is the unit 

set of the empty set {Q}, for instance. Above these at level three lie sets 

whose elements come from level two. Among these is the unit set of the 

unit set of the empty set {{@}}, for instance. And so on. There is no top. 
On the cumulative conception, the elements of any set must come from 

levels below, and may come from any levels below. At the bottom or level 

zero are any individuals or non-sets there are assumed to be; though for 

purposes of providing a framework for mathematics one need not assume 

there are any. Above these at level one lie sets whose elements come from 

level zero. Above these at level two lie sets whose elements include items 

from level one, but may also include items from level zero. Above these at 

level three lie sets whose elements include items from level two, but may 

also include items from levels one or zero. And so on. Above all finite levels 

at level omega lie sets whose elements include items from arbitrarily high 

finite levels, and may contain elements from any finite level. Among these 

is for instance the set {9, {0}, {{@}},...}. Above these at level omega plus 
one lie sets whose elements include items from level omega, but may also 

include items from finite levels. And so on. There is no top. 

Article 1 had as its first aim to provide philosophers with au accessi- 

ble acceunt of the cumulative or iterative conception. For in the early 

1970s this conception, though familiar to set theorists, was little known to 

philosophers, who tended to assume that the only intuitive conception of 

sect was the inconsistent naive one, and that the generally accepted axioms 

were merely an ad hoe list. The article had as a sccoud aim to argue that 

while the axioms of what is known as Zermelo set theory or Z are indeed 

implicit. in the iterative conception of set, the remaining two axioms of the 

set theory generally accepted today are uot iuplied by that conception, 

however attractive or plausible they may be ou other grounds. Oue of 

these axioms is called replacement, and since its addition was proposed by 

Fraenkel, the result of adding it Zermelo set theory Z is called Zermelo— 

Fraenkel set theory or ZF. The other is the aziom of choice or AC, Z+AC 

and ZF+AC being called ZC and ZFC respectively. Z is, though differ- 

ent in form from Russell’s system, of roughly equal strength with it; ZF is 

stronger. Z is probably sufficient for mainstream core mathematics; ZFC is 

certainly needed for higher set theory. 
Many other commentators have taken a more expansive view, considering 

it to be part of the iterative conception that the hierarchy of sets is supposed 
to be as “high” as possible, with as many levels of sets as there possibly 
could be, and as “wide” as possible, with as many sets at a given level 
as there possibly could be given what sets there are at lower levels, and
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considering replacement to be in some sense implicit in the demand for 

“height,” and choice in the demand for “width.” One reason given in 

the article for nonetheless regarding choice and replacement as additions 

to, rather than implications of, the iterative conception, is that one can 

write down explicit axioms for a theory of levels or stages—-this is done 

in the article—corresponding closely to what is explicitly said in informal 

expositions of the iterative conception, which axioms do in a strict logical 

sense imply the axioms of Z but do not so imply the remaining axioms 

of ZFC. The status of choice and replacement, and more generally of set 

theory, is a question revisited in three later articles in this part. 

Article 6 presents an improved list of axioms for the theory of levels or 

stages, deriving from work of Dana Scott (discussed further in Article 24 of 

Part ITI). It contrasts these with a “limitation of size” conception of sets, 

deriving from work on Frege (reported in Article 11 of Part II), represented 

by an axiom that may be called the small extensions principle, according 

to which for any condition there is a set of all and only the things for which 

the conditions holds provided there are not too many such things. It is 

argued that some axioms of ZFC follow from the theory of levels or stages 

and some from the theory of small extensions, but that there is no single, 

unified conception of set from which all the axioms follow. 

Article 7 is an introduction to a posthumously published lecture of Kurt 

Godel. Introductions should not. themselves require introductions, lest an 

infinite regress develop. But it may be said here that some of the “basic the- 

oreins on foundations of mathematics” whose “implications” are discussed 

by Godel are relevant to the concerns of this part, and that while the aim 

of the article is to introduce Gédel’s views rather tlian to dispute them, oc- 

casion does arise to take issue with Gédel’s view that all the axioms of ZFC 

“force themselves upon us as true,” arguing that even if they force them- 
selves upon us as corresponding to some natural and intuitive conception, 

which is as may be, they do not force themselves upon as corresponding to 

anything real. 

Article 8 answers the question of its title, “Must we believe in set the- 

ory?” in the way one might expect from what has been said about some of 

the earlier papers: “Not all of it!” One argument for an answer of an unre- 

stricted “Yes!” is the “phenomenological” one that given a certain picture 

of sets the usual axioms of set theory force themselves upon us. To this the 

response was indicated already in the preceding article. Another argument 

is the “pragmatic” one that mathematics, for which set theory provides the 

accepted framework, is indispensable for science. To this the response is 

made that in fact nothing like the whole of ZFC is needed for the develop- 

ment of scientifically applicable mathematics, Z being more than enough 

for such a purpose.
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The article also takes note of a consideration advanced by David Lewis, 

that given the comparative historical records of success and failure in math- 

ematics and philosophy, it would be comically immodest for philosophers 

to claim to have disproved accepted mathematics. It also takes note of a 

not unrelated argument, deriving ultimately from Rudolf Carnap, claim- 

ing that so long as we acquiesce in accepted mathematical criteria for an- 

swering questions in a branch of mathematics, then there is enough agree- 

ment about criteria for evaluating answers to give our question a meaning; 

whereas things are quite otherwise if we begin appealing to extra-scientific 

philosophical criteria. The article agrees that the Ludovician considerations 

have force against finitists and nominalists who reject any set theory at all, 

but insists that the Carnapian argument does not force us to accept every 

axiom of generally accepted set theory. (Actually, the Carnapian argument 

is called “rubbish.” ) 
The article ends expressing regret in a footnote that there has not been 

time to discuss explicitly the views of Solomon Feferman and Penelope 

Maddy. Feferman has been a sympathetic commentator on a restrictive 

view known as predicativism, which accepts much less than Z, and Maddy 

on an expansive view known as cabalism, which accepts much more than 

ZFC—of which views a bit more will be said below. It is indeed to be 

regretted that a symposium involving the author and such representatives 

of more restrictive and more expansive views never took placc.' 

Second-Order Logic 

We assume the reader has some fatuiliarity with first-order logic, the logic 

of all modern textbooks, [t has two levels, sentential logic, or the logic 

of the truth-funetional counectives of constant truth, constant falsehood, 

negation, conjunction, disjunction, and the conditional and biconditional 

(T,4,7,A,V,—7,), and predicate logic, or the logic of the universal and 

existential quantifiers (V, 3). A convenient formulation takes L,—,V as the 

only primitive logical particles, with everything else considered a defini- 

tional abbreviation. (For instance, —.A abbreviates A — 1, dz Uz abbrevi- 

ates ~Vzr-Uz.) 

1To mention some other work of the author related to the material in this section, 
Gédel proves that if ZFC is consistent then so is ZFC+CH, where CH is Cantor’s con- 
tinuum hypothesis, which was up to Gédel’s time the most famous unproved conjecture 
in set theory. The iterative conception of set heuristically underlies this proof of Gédel’s, 
which proceeds by producing a constructible hierarchy of sets within the full cumula- 
tive hierarchy. The constructible hierarchy in effect allows at a given level not arbitrary 
sets of elements from lower levels, but only ones that are appropriately definable. The 
author's earliest work, in the articles (Boolos and Putnam, 1968) and (Boolos, 1970a), 
was an examination under a hand lens of the finer structure of Gédel’s constructible 
hierarchy (which Ronald B. Jensen was to examine under an elect vos ron microscope, with 
very surprising results).
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The theory of first-order logic, or first-order meta-logic, has two sides. 

The syntactic or proof-theoretic side gives a characterization of the logical 

theoremhood of a formula in terms of the existence of a derivation consti- 

tuting a proof of that formula. Here a derivation is a sequence of formulas 

or steps, each of which is either an axiom from a specified list or follows 

from earlier formulas in the sequence by a rule from a specified list, and a 

derivation constitutes a proof of the formula that is its last step. 

The semantic or model-theoretic side gives a characterization of the log- 

ical validity of a formula in terms of the non-existence of an interpretation 

constituting a counter-model for the formula. Here an interpretation con- 

sists of non-empty set, to serve as the universe of the interpretation, or 

domain over which variables range, plus an assignment to each relation- 

symbol in the language of some relation on that universe, to serve as the 

interpretation of that symbol; and an interpretation constitutes a model 

(respectively, counter-model) for a formula if that formula comes out true 
(respectively, false) under that interpretation. The Gédel completeness 

theorem, which says that theoremhood coincides with validity, connects 

the two sides of the theory. 

Now second-order logic allows not only first-order quantifications, exem- 

plified by Vr(Ur) or dx(Uzx) or Vedy(Rry A Sry) but also second-order 
quantifications, exemplified by VU(Uz) or JU(Uzx) or VRAS (Ray A Szy). 

Here quautifiers like VU with one-place U are called monadic. and quan- 

tifiers like VAR with two-place RF are called dyadic. There is a standard 

extension of the proof theory for first-order logic to second-order logic. The 

notion of derivation is changed only by the addition of new axioms, most 
importantly the scheme of comprehension, according to which for any for- 
muhe y. the following cottuts as an axiom: 

WVa(U ar o> pr) 

There is also a standard extension of tle model theory for first-order logic 

to second-order logic. The notion of interpretation is unchanged, but there 
is an added clause in the definition of what it is for a formula to be true in 

an interpretation, a clause to handle second-order quantifications. Its effect 

is as if one read 3U as “there is a subset U of the universe” and Uz as “x 

is an element of U.” Unfortunately, no completeness theorem holds, and 

second-order logic is in some other respects less tractable that first-order 
logic. Against this negative feature of lesser tractability must be set the 

Positive feature of greater expressiveness, best seen by a few examples. As 

a first example, the relation z = y of identity between first-order entities, 

which has to be taken as undefined when first-order logic is considered in 

isolation, becomes definable as follows: 

VaVy(2 = y + WU(Uz + Uy))
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It may be mentioned that the corresponding relation U = V of coex- 

tensiveness between second-order entities need not be taken as undefined 

either, since it is definable, and using only first-order quantification at that, 

as follows: 

VUW(U =V @ Va(Uz & V2)) 

As a second example, the relationship U © V of equinumerosity is defin- 

able only by using (dyadic) second-order quantification, as follows: 

AR(Va(Ua  ay(Vy AVz(Raz 4 z=y))) AVy(Vy — Ac(Uran 

V2(Rzy 4 2=<)))) 

This says that there is a function from the x such that Ux to the y such that 

Vy that is both one-to-one or injective, meaning that distinct arguments r 

and «’ are never assigned by the function the same value y, and also onto or 

surjective, meaning that every such y is the value of the function for some 
such x as argument. This means intuitively that there are just as many © 

such that Uz as there are y such that Vy. 

As a third example, consider the following three conditions, which may 
or may not hold for a given R: 

Reflexivity Vz(Rzzx) 
Symmetry V2Vy(Rary — Ryz) 
Transitivity WarVyVz((Rry A Ryz) > Rrz) 

Correspondingly there are three operations associating a given @ with the 

strongest S implied by 2 that is reflexive or svmunetric or transitive, the 

reflexive or symmetric or transitive closure pR oor o Ror 7 Roof RL These 

are defiuable as follows: 

Waly(pRaey o (r= yV Itry) 

Vavy(ohzy o (Ryz V Rey) 

VaVy(r Ray + VU (We (Rea! > Ux’) AV2N2'((Uz A R22!) > 
Uz')) > Uy)) 

Note that while the first two are definable using only first-order quantifi- 
cation, the third is definable only using (monadic) second-order quantifi- 
cation. To give the stock example, if Rry amounts to “z is a parent of 
y,” then 7Rzy amounts to “x is an ancestor of y.” This example explains 
the alternate name ancestral of R for 7R. To give another example, if Rry 
amounts to “natural number zx immediately precedes natural number y,” 
then 7 Rxry amounts to “natural number = is less than natural number y.” 
This example begins to indicate the importance of the notion of ancestral. 

Article 3 had as its first aim to provide philosophers with an account of 
second-order logic, and to argue for the genuinely logical character of such
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second-order notions as the ancestral, and of such second-order results as its 

transitivity. For as of the early 1970s second-order logic was little known 

to many philosophers, and regarded as not really logic by many others. 

Another aim was to argue for the claim that first-order but not second- 

order logic can be applied to set theory, a point argued at greater length in 

another article. 

Article 2, heretofore unpublished, was officially a reply to a paper by 

Charles Parsons, “Sets and classes,” (Parsons, 1983c), and unofficially also 

a reply to a paper by D. A. Martin of the same title, still unpublished. 

The question with which the paper is largely concerned is this. Does it 

make sense to use second-order quantifiers VU, 3U in a situation where the 

first-order quantifiers Vz, tx range over entities that do not form a set, as 

is the case if they are taken to range over all sets? 

Russell held that it does not make sense even to use first-order quantifiers 

to range over all sets. For he held that it makes sense to use quantifiers 

“for all such-and-such” or “for some such-and-such” only when the such- 

and-such form a set; and there is no set of all sets. In formulating his own 

system, whose underlying intuitive conception was described above, Russell 

accordingly had no variables ranging over all sets, but rather had separate 

styles of variables ranging over each level of sets. In its most illiberal 

form, Russell's doctrine leads to predicativism, which does not even permit 

quantification over al] sets at any one level, but requires that the levels be 

raunified into a hierarchy of orders, whose intricacies need not concer us 

here, In a much liberalized form, Russell's dectrince is compatible with the 

acceptance even of ZFC, subject to the reservation that one is never taken 

to be unambiquously quantifying over absolutely all sets, rather than just 

those up to same very high level in the hierarchy. Parsous in his paper 

defended something like a much liberalized version of Russells doctrine. 

Zermelo held that. it makes sense to use first-order quantifiers to range 

over all sets, and even to use second-order quantifiers when first-order quan- 

tifiers are so used. Indeed, he himself so used second-order quantifiers in 

stating one of his set-theoretic axioms, the following axiom of separation: 

VUVrdyV2(z € yo (z Ex AU2)) 

He read VU as “for every definite property U,” and read Uz as “z has 

the definite property U,” with “definite” meaning “not vague.” The later 

systems known in the literature as the Bernays—Gédel and Morse~Kelley 

systems retain this second-order axiom, but read VU as “for every class 

U,” and Uz as “z is a member of the class U.” They add explicit axioms 

for “classes,” which in effect make “classes” into just one additional layer 

added above the whole hierarchy of sets. Martin, a cabalist or member 

of the group of prominent set theorists who call themselves the “cabal,”
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adumbrated in his paper a novel theory of “classes” in which these are 

something more than just a top layer to the hierarchy of sets. 

Fraenkel proposed as an amendment to Zermelo to work in a purely 

first-order language. He proposed substituting for the second-order axiom 

of separation an axiom scheme of first-order separation. Here an axiom 

scheme is a rule according to which all formulas of a certain form are to 

count as axioms. The axiom scheme of first-order separation is the rule 

according to which for any first-order formula yp the following counts as an 

axiom: 

VaayV2(z Ey o (z € x Ay(z))) 

Fraenkel thus in effect took first-order but not second-order logic to be 

applicable to set theory. Such a position is explicitly defended in Article 2. 
An old observation of Georg Kreisel should be mentioned here. Kreisel 

noted that though it is common to use first-order quantifiers ranging over 

all sets, the standard definition of logical validity considers only interpreta- 

tions in which the first-order quantifiers range only over some set of things. 

He went on to note that there is really no problem here, because by the 

completeness theorem, validity as standardly defined coincides with theo- 

remhood as standardly defined, and it is clear that the axioms and rules 

involved in the standard definition of theoremhood are acceptable even 

wlien the first-order quantifiers range over all sets; but then he went on 

further to note that, no such solution is available in the case of second-order 

logic, where there is no completeness theorem.? 

Plural Quantification 

Articles 4 and 5 are closely related, both being concerned with plural quan- 

tification, “some things, the Us, are such that ...," as contrasted with 

singular quantification, “some thing x is such that ...” Quantificational 

constructions in natural language that resist formalization in first-order 

terms were a recognized topic in the literature of linguistics and logic, so 

it is somewhat surprising that plural quantification had prior to these pa- 

pers received little or no attention. That it is not formalizable in terms 

of first-order singular quantification is one of the points argued in these 

articles. 

2 Again to mention related work, articles (Boolos, 1970b) and (Boolos, 1973) concern 
the L6wenheim-Skolem and Beth theorems, two fundamental results about the tractabil 

ity of first-order logic, both worthy to be placed alongside the Godel completeness theo- 
rem, and both sometimes cited for their philosophical bearings. For second-order logic, 
the Léwenheim—Skolem theorem fails; but the Beth theorem, which is a substantial result 

at the first-order level, becomes a trivial truism at the second-order level. This perhaps 
shows that it is not zn all respects the case that first-order logic is always more tractable 

than second-order logic.
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Plural quantification provides an alternative interpretation of second- 

order logic. Recall that on a conventional interpretation, the first-order 

entities are elements of some set of things, the universe of the interpreta- 

tion, and the second-order entities are subsets of that universe. IU and Uz 

are read “there is a subset U of the universe” and “zx is an element of the 

set U.” On the alternative interpretation, the first-order entities are some 
things, which need not form a set, and there are no second-order entities. 

For second-order quantification is not interpreted as quantification over a 

different sort of thing, but rather as a different sort of quantification, plural 

rather than singular, over the same things. JU and Uz are read “there 

are some things, the Us” and “z is one of the Us.” The availability of this 

new interpretation makes reconsideration of some positions taken in earlier 

articles needful. For one thing, it is now not so clear that second-order logic 

cannot be applied to set theory. For another thing, it is now not so clear 

that the standard definition of validity in terms of models whose universes 

are sets is appropriate (as per Kreisel’s remarks recalled above). 
Some note should be taken here of a limitation, noted by the nominalist 

Hartry Field, especially since optimism about the potential role of plu- 

ral quantification recurs in some later articles, especially in Part II. The 

limitation is that plurals provide a reading of monadic second-order quan- 

tification, such as could replace quantification over one-place relations or 

collections of single elements of the universe, but not a reading of dyadic 

second-order quantification, such as could replace quantification over two- 

place relations or collections of ordered pairs of elements of the universe. 

This is a significant limitation in the general case, but not in the case of set 

theory, where the ordered pair of any two elements of the universe is itself 

already an eloment of the universe. 

Some note should also be taken here of another interpretation of second- 

order quantification that has sometimes been proposed: the theory of parts 

and wholes known as mereology (Stanislaw Lesniewski) or the calculus of 

individuals (Nelson Goodman). Suffice it to say here that this theory 
does supply another surrogate for monadic second-order logic, provided the 

things in the universe considered are non-overlapping, no two having any 

parts in common. Especially interesting in such a case is the combination of 

mereology and plural quantification, which provides a surrogate for monadic 

third-order logic. The power of this combination only becomes clear for the 

first time in the book of David Lewis, Parts of Classes (Lewis, 1991). In- 

deed it only becomes fully clear in the co-authored appendix thereto, where 

A. P. Hazen points out that monadic third-order logic provides a surrogate 
for dyadic second-order logic.3 

3 Again to mention related work, the author’s interest in natural language was evinced 

as early as article (Boolos, 1969). Topics pertaining to quantification in natural language 
were pursued in two squibs in Linguistic Inquiry, articles (Boolos, 1981a) and (Boolos, 
1984c), the latter being concerned with plural quantification.



  

The Iterative Conception of Set 

A set, according to Cantor, is “any collection...into a whole of definite, 

well-distinguished objects ...of our intuition or thought.”! Cantor also de- 

fined a set as a “many, which can be thought of as one, i.e., a totality of 

definite elements that can be combined into a whole by a law.”? One might 

object to the first definition on the grounds that it uses the concepts of col- 

lection and whole, which are notions no better understood than that of set, 

that there ought to be sets of objects that are not objects of our thought, 

that “intuition” is a term laden with a theory of knowledge that no one 

should believe, that any object is “definite,” that there should be sets of 

ill-distinguished objects, such as waves and trains, etc., etc. And one might 

object to the second on the grounds that “a many” is ungrammatical, that 

if something is “a many” it should hardly be thought of as one, that totality 

is as obscure as set, that. it is far from clear how laws can conibine anything 

into a whole, that there ought to be other combinations into a whole than 

those effected hy “laws,” etc., ctc. But it cannot be denied that Cantor’s 

definitions could be used by a person to identify and gain some understand- 

ing of the sort of object of which Cantor wished to treat. Moreover, they do 

suggest---although, it must be conceded, only very faintly—two important 

characteristics of sets: that a set is “determined” by its elements in the 

sense that sets with exactly the same elements are identical, and that, in a 

sense, the clarification of which is one of the principal objects of the theory 

whose rationale we shall give, the elements of a set are “prior to” it. 

It is not to be presumed that the concepts of set and member of can be 

Reprinted with the kind permission of the editors from The Journal of Philosophy 68 

(1971): 215-232. 

1Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten 

wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche 
die ‘Elemente’ von M genannt werden) zu einem Ganzen” (Cantor, 1932), p. 282. 

2« || jedes Viele, welches sich als Eines denken lasst, d-h. jeden Inbegriff bestimmter 
Elemente, welcher durch ein Gesetz zu einem Ganzen verbunden werden kann” (Cantor, 

1932), p. 204. 

13
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explained or defined by means of notions that are simpler or conceptually 

more basic. However, as a theory about sets might itself provide the sort 

of elucidation about sets and membership that good definitions might be 

hoped to offer, there is no reason for such a theory to begin with, or even 

contain, a definition of “set.” That we are unable to give informative defini- 

tions of not or for some does not and should not prevent the development of 

quantificational logic, which provides us with significant information about 

these concepts. 

I. Naive set theory 

Here is an idea about sets that might occur to us quite naturally, and is 

perhaps suggested by Cantor’s definition of a set as a totality of definite 

elements that can be combined into a whole by a law. 

By the law of excluded middle, any (one-place) predicate in any language 

either applies to a given object or does not. So, it would seem, to any 

predicate there correspond two sorts of thing: the sort of thing to which 

the predicate applies (of which it is true) and the sort of thing to which it 

does not apply. So, it would seem, for any predicate there is a set of all and 

only those things to which it applies (as well as a set of just those things to 

which it does not apply). Any set whose members are exactly the things to 

which the predicate applies—by the axiom of extensionality, there cannot 

be two such sets —-is called the extension of the predicate. Our thought 

might therefore be put: “Any predicate has an extension.” We shall call 

this proposition, together with the argument for it, the naive conception of 

sel, 

The argument has great force. How could there not be a collection, or set, 

of just those things to which any given predicate applied? [sn't anything 

to which a predicate applies similar to all other things to which it: applies 

in precisely the respect that it applies te them; aud how could there fail 

to be a set of all things similar to one another iu this respect? Wouldn't 

it be extremely implausible to say, of any particular predicate one might 

consider, that there weren’t two kinds of thing it determined, namely, a 

kind of thing of which it is true, and a kind of thing of which it is not true? 

And why should one not take these kinds of things to be sets? Aren’t kinds 

sets? If not, what is the difference? 

Let us denote by “K” a certain standardly formalized first-order language, 

whose variables range over all sets and individuals (= non-sets), and whose 

nonlogical constants are a one-place predicate letter “S” abbreviating “is a 

set,” and a two-place predicate letter “€”, abbreviating “is a member of.” 

Which sentences of this language, together with their consequences, do we 

believe state truths about sets? Otherwise put, which formulas of K should 

we take as axioms of a set theory on the strength of our beliefs about sets?
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If the naive conception of set is correct, there should (at least) be a set of 
just those things to which ¢ applies, if y is a formula of K. So (the universal 

closure of) "Ay(Sy AVz(x € y ++ y))"' should express a truth about sets (if 
no occurrence of “y” in ip is free). 

We call the theory whose axioms are the axiom of extensionality (to which 

we later recur), i.e., the sentence 

VaVy(Sx A SyAV2(zE€rezey) + r=y) 

and all formulas "Jy(Sy AVx(x € y ++ y))7 (where “y” does not occur free 
in y) naive set theory. 

Some of the axioms of naive set theory are the formulas 

dy(Sy AVa(z EywrxrFA#z)) 

dy(SyAVa(e Eye (x=zVr=w))) 

dy(Sy AVa(z € y + dw(c € w Aw E z))) 

Ay(Sy A Vz(z € y + (St Ax =2))) 

The first of these formulas states that there is a set that contains no 

members. By the axiom of extensionality, there can be at most one such 

set. The second states that there is a set whose sole members are z and 

w; the third, that there is a set whose members are just the members of 

members of z. 

The last, which states that there is a set that contains all sets whatsoever, 

is rather anomalous; for if there is aset that contains all scts, a universal set, 

that set contains itself, and perhaps the iniud ought to boggle at the idea 
of something’s containing itself. Nevertheless, naive set theory is sinrple to 

state, clegant, initially quite credible, and natural in that it articulates a 

view about sets that might occur to one quite naturally. 

Alas, it is inconsistent. 

Proof of the inconsistency of naive set theory 

(Russell’s paradox) 
No set can contain all and only those sets which do not contain 

themselves. For if any such set existed, if it contained itself, 

then, as it contains only those sets which do not contain them- 

selves, it would not contain itself; but if it did not contain itself, 

then, as it contains all those sets which do not contain them- 

selves, it would contain itself. Thus any such set would have 

to contain itself if and only if it did not contain itself. Con- 

sequently, there is no set that contains all and only those sets 

which do not contain themselves.
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This argument, which uses no axioms of naive set theory, or 

any other set theory, shows that the sentence 

ady(Sy AVa(s € y (Sz A-2 € 2))) 

is logically valid and, hence, is a theorem of any theory that is 

expressed in K. But one of the axioms and, hence, one of the 

theorems, of naive set theory is the sentence 

Sy(Sy AVa(z € y (Sx Anz € 2))) 

Naive set theory is therefore inconsistent. 

IL. The iterative conception of set 

Faced with the inconsistency of naive set theory, one might come to believe 

that any decision to adopt a system of axioms about sets would be arbitrary 

in that no explanation could be given why the particular system adopted 

had any greater claim to describe what we conceive sets and the membership 

relation to be like than some other system, perhaps incompatible with the 

one chosen. One might think that no answer could be given to the question: 

why adopt this particular system rather than that or this other one? One 

might suppose that any apparently consistent theory of sets would have 

to be unnatural in some way or fragmentary, and that, if consistent, its 

consistency would be due to certain provisions that were laid down for 

the express purpose of avoiding the paradoxes that show naive sct theory 

inconsistent, but that lack any independent motivation. 

One inight imagine all this; but there is another view of sets: the iterative 

conception of set, as it is sometimes called, which often strikes people as 

entirely natural, free from artifiekuity, net at all ad hee, and one they might 

perhaps have formulated themselves. 

It is, perhaps, no more natural a conception than the naive conception, 

and certainly not quite so simple to describe. On the other hand, it is, as far 

as we know, consistent: not only are the sets whose existence would lead to 

contradiction not assumed to exist in the axioms of the theories that express 

the iterative conception, but the more than fifty years of experience that 

practicing set theorists have had with this conception have yielded a good 

understanding of what can and what cannot be proved in these theories, 

and at present there just is no suspicion at all that they are inconsistent.? 

3The conception is well known among logicians; a rather different version of it is 
sketched in (Shoenfield, 1967), ch. 10. I learned of it principally from Putnam, Kripke, 

and Donald Martin. Authors of set-theory texts either omit it or relegate it to back 

pages; philosophers, in the main, seem to be unaware of it, or of the preeminence of ZF, 

which may be said to embody it. It is due primarily to Zermelo and Russell.
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The standard, first-order theory that expresses the iterative conception 

of set as fully as a first-order theory in the language L£ of set theory* can, is 

known as Zermelo—Fraenkel set theory, or “ZF” for short. There are other 

theories besides ZF that embody the iterative conception: one of them, Zer- 

melo set theory, or “Z”, which will occupy us shortly, is a subsystem of ZF 

in the sense that any theorem of Z is also a theorem of ZF; two others, von 

Neumann-—Bernays-Gédel set theory and Morse—Kelley set theory, are su- 

persystems (or extensions) of ZF, but they are most commonly formulated 

as second-order theories, 

Other theories of sets, incompatible with ZF, have been proposed.° These 

theories appear to lack a motivation that is independent of the paradoxes 

in the following sense: they are not, as Russell has written, “such as even 

the cleverest logician would have thought of if he had not known of the 

contradictions.”® A final and satisfying resolution to the set-theoretical 

paradoxes cannot be embodied in a theory that blocks their derivation by 

artificial technical restrictions on the set of axioms that are imposed only 

because paradox would otherwise ensue; these other theories survive only 

through such artificial devices. ZF alone (together with its extensions and 

subsystems) is not only a consistent (apparently) but also an independently 

motivated theory of sets: there is, so to speak, a “thought behind it” about 

the nature of sets which might have been put forth even if, impossibly, naive 

set theory had been consistent. The thought, moreover, can be described in 

a rough, but inforinative way without first stating the theory the thought 

is behind. 

In order to see why a conception of set other than the naive concep- 
tion might be desired even if the naive conception were consistent, let. us 

take another look at naive set. theory and the anomealousness of its axiom, 

“dy(Sy A Vale & yer (Sa Aw = a))).” 

According to this axiom there is a set that contains all sets, aud therefore 

there is a set that contains itself. It is important to realize how odd the 

idea of something’s containing itself is. Of course a set can and must 

include itself (as a subset). But contain itself? Whatever tenuous hold 
on the concepts of set and member were given one by Cantor’s definitions 

of “set” and one’s ordinary understanding of “element,” “set,” “collection,” 

etc. is altogether lost if one is to suppose that some sets are members of 

themselves. The idea is paradoxical not in the sense that it is contradictory 

to suppose that some set is a member of itself, for, after all, “Aa(SaAz € x)” 

is obviously consistent, but that if one understands “ec” as meaning “is a 

4 contains (countably many) variables, ranging over (pure) sets, “=”, and “€”, which 
is its sole nonlogical constant. 

5For example, Quine’s systems NF and ML. 
§(Russell, 1959), p. 80.
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member of,” it is very, very peculiar to suppose it true. For when one 

is told that a set is a collection into a whole of definite elements of our 

thought, one thinks: Here are some things. Now we bind them up into a 

whole.? Now we have a set. We don’t suppose that what we come up with 

after combining some elements into a whole could have been one of the 

very things we combined (not, at least, if we are combining two or more 

elements). 
Tf da(S2 Az € xz), then drdy(SzA SyAzeyAy € zx). The supposition 

that there are sets x and y each of which belongs to the other is almost as 

strange as the supposition that some set is a selfmember. There is of course 

an infinite sequence of such cyclical pathologies: drdyiz(SztzASyASzAz € 
yAy€zANz€Ez), etc. Only slightly less pathological are the suppositions 

that there is an ungrounded set,® or that there is an infinite sequence of 

sets 29,21, 22,--- , each term of which belongs to the previous one. 

There does not seem to be any argument that is guaranteed to persuade 

someone who really does not see the peculiarity of a set’s belonging to itself, 

or to one of its members, etc., that these states of affairs are peculiar. But 

it is in part the sense of their oddity that has led set-theorists to favor 

conceptions of set, such as the iterative conception, according to which 

what they find odd does not occur. 

We describe this conception now. Our description will have three parts. 

The first is a rough statement of the idea. It contains such expressions 

as “stage,” “is formed at,” “earlier than,” “keep on going,” which must 

be exorcised from any formal theory of sets. From the rough description it 

sounds as if sets were continually being created, which is not. the case. In the 

second part, we present an axiomatic theory which partially formalizes the 

idea roughly stated in the first. part. Kor reference, let as call this theory the 

stage theory, The third part consists in a derivation from the stage theory 

of the axioms of a theory of sets. These axioms are formulas of £2, the 
language of set theory, and contain none of the metaphorical expressions 

which are employed in the rough statement and of which abbreviations are 

found in the language in which the stage theory is expressed. 

Here is the idea, roughly stated: 

A set is any collection that is formed at some stage of the following process: 

Begin with individuals (if there are any). An individual is an object that 
is not a set; individuals do not contain members. At stage zero (we count 
from zero instead of one) form all possible collections of individuals. If 
there are no individuals, only one collection, the null set, which contains no 

7We put a “lasso” around them, in a figure of Kripke’s. 

82 is ungrounded if z belongs to some set z, each of whose members has a member in 

common with z.
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members, is formed at this Oth stage. If there is only one individual, two 

sets are formed: the null set and the set containing just that one individual. 

If there are two individuals, four sets are formed; and in general, if there 

are n individuals, 2” sets are formed. Perhaps there are infinitely many 

individuals. Still, we assume that one of the collections formed at stage 

zero is the collection of all individuals, however many of them there may 

be. 

At stage one, form all possible collections of individuals and sets formed 

at stage zero. If there are any individuals, at stage one some sets are formed 

that contain both individuals and sets formed at stage zero. Of course some 

sets are formed that contain only sets formed at stage zero. At stage two, 

form all possible collections of individuals, sets formed at stage zero, and 

sets formed at stage one. At stage three, form all possible collections of 

individuals and sets formed at stages zero, one, and two. At stage four, 

form all possible collections of individuals and sets formed at stages zero, 

one, two, and three. Keep on going in this way, at each stage forming all 

possible collections of individuals and sets formed at earlier stages. 

Immediately after all of stages zero, one, two, three, ..., there is a stage; 

call it stage omega. At stage omega, form all possible collections of indi- 

viduals formed at stages zero, one, two, ... One of these collections will be 

the set of all sets formed at stages zero, one, two, .. 

After stage omega there is a stage omega plus one. At stage omega plus 

one form all possible collections of individuals and sets formed at stages 

zero, one, two, ..., and omega. At stage omega plus two form all possible 

collections of individuals and sets formed at stages zero, one, two, ..., 

omega, aud omega plus one. At stage omega plus three form all possible 

collections of individuals and sets formed at carlicr stages. Keep on going 

in this way. 

Immediately after all of stages zero, one, two, ..., omega, omega plus one, 

omega plus two, ..., there is a stage, call it stage omega plus omega (or 

omega times two). At stage omega plus omega form all possible collections 

of individuals and sets formed at earlier stages. At stage omega plus omega 

plus one... ... 

...omega plus omega plus omega (or omega times three) ... 

.-. (omega times four) ... 

...omega times omega... ... 

Keep on going in this way ... 

According to this description, sets are formed over and over again: in 

fact, according to it, a set is formed at every stage later than that at which 

it is first formed. We could continue to say this if we liked; instead we shall 

say that a set is formed only once, namely, at the earliest stage at which, 

on our old way of speaking, it would have been said to be formed.
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That is a rough statement of the iterative conception of set. According 

to this conception, no set belongs to itself, and hence there is no set of ail 

sets; for every set is formed at some earliest stage, and has as members 

only individuals or sets formed at still earlier stages. Moreover, there are 

not two sets x and y, each of which belongs to the other. For if y belonged 

to x, y would have had to be formed at an earlier stage than the earliest 

stage at which x was formed, and if x belonged to y, x would have had to 

be formed at an earlier stage than the earliest stage at which y was formed. 

So xz would have had to be formed at an earlier stage than the earliest stage 

at which it was formed, which is impossible. Similarly, there are no sets x, 

y, and z such that x belongs to y, y to z, and z to x. And in general, there 

are no sets £9, 21, 22,..-,2%n such that xp belongs to 21, 21 to %2,...,%n—1 

to Zp, and Zp to Xg. Furthermore it would appear that there is no sequence 

of sets 2p, 21, 22,23,..-, such that 2, belongs to x9, ze belongs to 2, x3 

belongs to z2, and so forth. Thus, if sets are as the iterative conception 

has them, the anomalous situations do not arise in which sets belong to 

themselves or to others that in turn belong to them. 

The sets of which ZF in its usual formulation speaks (“quantifies over” ) 

are not all the sets there are, if we assume that there are some individuals, 

but only those which are formed at some stage under the assumption that 

there are no individuals. These sets are called pure sets. All members of a 

pure set are pure sets, and any set, all of whose members are pure, is itself 

pure. It may not be obvious that any pure sets are ever formed, but. the 

set A, which contains no members at all, is pure, and is formed at. stage 

0. {A} and {{A}} are also both pure aud are formed at stages 1 and 2, 
respectively, There are many others. From now on, we shall use the word 

“set” to mean “pure set.” 

Let. us now try tostate a theory, the stage theory, that precisely expresses 

auch, but not all, of the content of the iterative conception, We shall use a 

language, 7, in which there are two sorts of variables: variables “ir”, “y”, 

“2”, “w", ..., which rauge over sets, and variables “r”, “s”, “t”, which 

range over stages. In addition to the predicate letters “E” and “=” of £, 

J also contains two new two-place predicate letters “EH”, read “is earlier 

than,” and “f”, read “is formed at.” The rules of formation of J are 

perfectly standard. 

Here are some axioms governing the sequence of stages: 

(I) Vs-sEs (No stage is earlier than itself.) 

(II) VrVsVi((rEs A sEt) > rEt) (Earlier than is transitive.) 

(IIT) VsVé(sEé V s = ¢ V tEs) (Earlier than is connected.) 

(IV) asVi(t 4 s — sEt) (There is an earliest stage.)
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(V) Vsdt(sEt A Vr(rEt — (rEs V r = s))) (Immediately after any stage 
there is another.) 

Here are some axioms describing when sets and their members are formed: 

(VI) as(SttEsAVi(tEs — Ir(tErArEs))) (There is a stage, not the earliest 
one, which is not immediately after any one stage. In the rough 

description, stage omega was such a stage.) 

(VII) Veds(aFs A Vi(aFi — ¢ = s)) (Every set is formed at some unique 
stage.) 

(VIII) V2VyVsVe((y € 2 A 2Fs A yFt) — tEs) (Every member of a set is 
formed before, i.e., at an earlier stage than, the set.) 

(IX) VaVeVi(2Fs A tEs > dydr(y € 2 AyFr A (é =r V tEr))) (If a set is 
formed at a stage, then, at or after any earlier stage, at least one of 

its members is formed. So it never happens that ail the members of 

a set are formed before some stage, but the set is not formed at that 

stage, if it has not been formed already.) 

We may capture part of the content of the idea that at any stage every 

possible collection (or set) of sets formed at earlier stages is formed (if it 
has not. yet been formed) by taking as axioms all formulas "Vs3yVa(xr € 
yo (x ASt(tEs AxFt)))", where x is a formula of the language 7 in which 
no occurrence of “y” is free. Any such axiom will say that for any stage 

there is a set. of just those sets to which y applies that are formed before 

that stage. Let us call these axioms specification axioms. 

There is still one important feature contained in our rough description 

that has not yet been expressed in the stage theory: the analogy between 

the way sets are inductively generated by the procedure described in the 

rough statement and the way the natural numbers 0, 1, 2, ... are inductively 

generated from 0 by the repeated application of the successor operation. 

One way to characterize this feature is to assert a suitable induction princi- 

ple concerning sets and stages; for, as Frege, Dedekind, Peano, and others 

have enabled us to see, the content of the idea that objects of a certain kind 

are inductively generated in a certain way is just the proposition than an 

appropriate induction principle holds of those objects. 

The principle of mathematical induction, the induction principle govern- 

ing the natural numbers, has two forms, which are interderivable on certain 
assumptions about the natural numbers. The first version of the principle 

is the statement 

VP[(P0A Yn[Pn — PSn]) > Vn Pn]
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which may be read, “If 0 has a property and if whenever a natural number 

has the property its successor does, then every natural number has the 

property.” The second version is the statement 

VP[vn(Vm[m <n — Pm] + Pn) > Vn Pn] 

It may be read, “If each natural number has a property provided that all 

smaller natural numbers have it, then every natural number has the prop- 

erty.” 

The induction principle about sets and stages that we should like to assert 

is modeled after the second form of the principle of mathematical induction. 

Let us say that a stage s is covered by a predicate if the predicate applies to 

every set formed at s. Our analogue for sets and stages of the second form 

of mathematical induction says that if each stage is covered by a predicate 

provided that all earlier stages are covered by it, then every stage is covered 

by the predicate. The full force of this assertion can be expressed only with 

a second-order quantifier. However, we can capture some of its content by 

taking as axioms all formulas 

"Vs(Vt(tEs + Va(zFt > @)) > Va(2Fs > x)) > VsVr(2Fs > x)" 

where x is a formula of ,.7 that contains no occurrences of “t” and @ is just 

like x except for containing a free occurrence of “t” wherever , contains a 

free occurrence of “s”. [Observe that “Vr(rFs — x)” says that , applies 

to every set formed at stage s and, hence, that 3 is covered by ,.| We call 

these axioms induction axioms. 

Ill. Zermelo set theory 

We complete the description of the iterative conception of set by showing 

how to derive the axioms of a theory of sets from the stage theory. The 
axioms we derive speak only about sets and membership: they are formulas 

of L. 

The axiom of the null set: JyVz-z € y. (There is a set with no 

members.) 

Derivation. Let x = “x = x”. Then 

VsdyVz(z € yo (cx = cA St(tEs AzFt))) 

is a specification axiom, according to which, for any stage, there is a set 

of all sets formed at earlier stages. As there is an earliest stage, stage 0, 

before which no sets are formed, there is a set that contains no members. 

Note that, by axiom (IX) of the stage theory, any set with no members
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is formed at stage 0; for if it were formed later, it would have to have a 

member (that was formed at or after stage 0). 

The axiom of pairs: VzVwiyVr(z € yo (rx = zV2r=w)). (For any 
sets v and w, not necessarily distinct, there is a set whose sole members are 

z and w.) 

Derivation. Let x = “(x4 = z V2 = w)”. Then 

VsdyVa2(2 € yo (x = zV 2 =w) AFét(tEs A xFt))) 

is a specification axiom, according to which, for any stage, there is a set of 

all sets formed at earlier stages that are identical with either z or w. Any 

set is formed at some stage. Let r be the stage at which z is formed; s, the 

stage at which w is formed. Let ¢ be a stage later than both r and s. Then 

there is a set of all sets formed at stages earlier than t that are identical 

with z or w. So there is a set containing just z and w. 

The axiom of unions: VziyV2(x € y @ dw(z E wAw Ee z)). (For any 
set z, there is a set whose members are just the members of members of z.) 

Derivation. “WsiyVx(2 € y + (Aw(2 € wAw € z) AAt(tEs AzFt)))” isa 
specification axiom, according to which, for any stage, there is a set of all 

members of members of z formed at earlier stages. Let s be the stage at 

which z is formed. Every member of z is formed before s, and hence every 

member of a member of z is also formed before s. Thus there is a set of all 
members of members of z. 

The power-set axiom: VzdyVr(r € y  Vie(w er we 2z)). (For 

any sel.z. there is a set whose members are just the subsets of z.) 

Derivation. “Wsdya(r Ey (Welw € 2 w € 2) Adt(tEs A rF2)))” is 
a specification axiom, according to which, for any stage, there is a set of 

all subsets of z formed at earlier stages. Let ¢ be the stage at which z is 

formed and let s be the next later stage. If z is a subset of z, then z is 

formed before s. For otherwise, by axiom (IX), there would be a member 
of x that was formed at or after ¢ and, hence, that was not a member of z. 

So there is a set of all subsets of z formed before s, and hence a set of all 

subsets of z. 

The axiom of infinity: 

Ay(A2(2 € y AWz72z € 2) AVa(2 € y > Az(z EY AVu(we ze 

(w €zVw=2))))) 
(Call a set null if it has no members. Call z a successor of x if the members 

of z are just those of x and & itself. Then there is a set which contains a 

null set and which contains a successor of any set it contains.)
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Derivation. Let us first observe that every set + has a successor. For let 

y be a set containing just «+ and x (axiom of pairs), and let w be a set 

containing just x and y (axiom of pairs again), and let z contain just the 

members of members of w (axiom of unions). Then z is a successor of x, for 
its members are just z and x’s members. Next, note that if z is a successor 

of x, x is formed at r, and t is the next stage after r, then z is formed at 

t. For every member of z is formed before ¢. So z is formed at or before 

t, by axiom (IX). But 2, which is in z, is formed at r. So z cannot be 

formed at or before r. So z cannot be formed before ¢ Now, by axiom 

(V1), there is a stage s, not the earliest one, which is not immediately after 

any stage. “VsdyVa(x € y — (x = x A dt(tEs A xFt)))” is a specification 
axiom, according to which, for any stage, there is a set of all sets formed 

at earlier stages. So there is a set y of all sets formed before s. y thus 

contains all sets formed at stage 0, and hence contains a null set. And if y 

contains x, y contains all successors of x (and there are some), for all these 
are formed at stages immediately after stages before s and, hence, at stages 

themselves before s. 

Axioms of separation (Aussonderungsaxioms): All formulas 

"VzdyVa(2 eye (re zAy))! 

where ts a formula of £ in which no occurrence of “y” is free. 

Derivation. If y is a formula of £ in which no occurrence of “y” is free, 

then "WsdyVar(ar € y  ((a © s Ay) A St(tEs A Ft)))7 is a specification 
axiom, which we may read, “for any stage s, there is a set of all sets formed 

at. earlier stages, which belong to 2 and to which y applies.” Let s be the 

stage at which z is formed. All members of + are formed before s, Se, for 

any 2, there is a set of just those members of z to whieh y applies, which 

we would write, "WzdyWa(ie € yo (#7 & 2Ay))*. A formal derivation of 
an Aussonderungsaxiom would use the specification axiom described and 

axioms (VII) and (VIII) of the stage theory. 

Axioms of regularity: All formulas 

"dap > dr(p AVy(y € x > Hp) 

where y does not contain “y” at all and w is just like p except for containing 

an occurrence of “y” wherever (p contains a free occurrence of “x”. 

Derivation. The idea: Suppose y applies to some set x’. 2’ is formed at 

some stage. That stage is therefore not covered by '=y". By an induction 

axiom, there is then a stage s not covered by '-y", although all stages 

earlier than s are covered by "-y". Since s is not covered by "-p", there 

is an x, formed at s, to which "yy" does not apply, i.e., to which y applies.
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If y is in x, however, y is formed before s, and hence the stage at which it 

is formed is covered by "=~". So "-" applies to y (which is what "yw" 

says). 
For a formal derivation, contrapose, reletter, and simplify the induction 

axiom 

"Va(Vt(tEs — Va(r4Ft > -)) > Vr(2Fs — 2y)) > 
VsVa(2Fs > 7p)" 

so as to obtain 

TAsda(2Fs Ay) — dsd2(2Fs Ap AVyVt(tEs AyFt > 7y))" 

Assume "Jz. Use axiom (VII) and modus ponens to obtain 

TAsdz(aFs Ap A VyVt(tEs A yFt > -W))7 

Use axioms (VII) and (VIII) to obtain "Ar(y A Vy(y € x — -w))7 from 
this. 

The axioms of regularity (partially) express the analogue for sets of the 

version of mathematical induction called the least-number principle: if there 

is a number that has a property, then there is a least number with that 

property. The analogue itself has been called the principle of set theoretical 

induction.® Here is an application of set-theoretical induction. 

Theorem No sei belongs to itself. 

Proof. Suppose that some set belongs to itself, Le., that Sara © x. 

Are ¢ ro ar(r € eA Vy(y € 0 3 my € y)) 

is an axiom of regularity. By modus ponens, then, sonie set z belongs 

to itself though no member of x (not even x) belongs to itself. This is a 
contradiction. @ 

The axioms whose derivations we have given are those statements which 

are often taken as axioms of ZF and which are deducible from all! (suf- 
ficiently strong!) theories that can fairly be called formalizations of the 

iterative conception, as roughly described. (The axiom of extensionality 

has a special status, which we discuss below.) Other axioms than those 

we have given could have been taken as axioms of the stage theory. For 

example, we could have fairly taken as an axiom a statement asserting the 

®By Tarski, among others. 
10 “Sufficiently strong” may here be taken to mean “at least as strong as the stage 

theory.”
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existence of a stage, not immediately later than any stage, but later than 

some stage that is itself neither the earliest stage nor immediately later 

than any stage. Such an axiom would have enabled us to deduce a stronger 

axiom of infinity than the one whose derivation we have given, but this 

stronger statement is not commonly taken as an axiom of ZF. We could 

also have derived other statements from the stage theory, such as the state- 

ment that no set belongs to any of its members, but this statement is never 

taken as an axiom of ZF. We do not believe that the axioms of replacement 

or choice can be inferred from the iterative conception. 

One of the axioms of regularity, 

Vz(ara €z—- Agr(x € zAVyly € x > 7y € z))) 

is sometimes called the axiom of regularity; in the presence of other axioms 

of ZF, all the other axioms of regularity follow from it. The name “Zermelo 

set theory” is perhaps most commonly given to the theory whose axioms are 

WaVy(W2(z €x++2z2€ y) +2=y),” ie., the axiom of extensionality, and 

the axioms of the null set, pairs, and unions, the power-set axiom. the axiom 

of infinity, all the Aussonderungsaxioms, and the axiom of regularity.!! 

With the exception of the axiom of extensionality, then, all the axioms of 

Zermelo set theory follow from the stage theory. 

IV. Zermelo—Fraenkel set theory 

The axioms of replacement. ZF is the theory whose axioins are those of 

Zermelo set theory and all axioms of replacement.!? A formula of £ is an 

axiom of replacement. if it is the translation into £2 of the result “subst itut- 

ing” a formula of £ for “Fin 

Fisa function + V2 dyvaGr 6 yes dint es A Fw) 2) 

There is an exteusion of the stage theory from which the axioms of re- 

placement could have been derived. We could have taken as axionis all 

instances (that can be expressed in 7) of a principle which may be put, 

“If each set is correlated with at least one stage (no matter how), then for 

any set z there is a stage s such that for each member w of z, s is later 

than some stage with which w is correlated.” This bounding or cofinality 

principle is an attractive further thought about the interrelation of sets and 

stages, but it does seem to us to be a further thought, and not one that 

can be said to have been meant in the rough description of the iterative 

11(Zermelo, 1908) took as axioms versions of the axioms of extensionality, the null 

set, pairs (and unit set), unions, the power-set axiom, the axiom of infinity, the Ausson- 

derungsaxioms, and the axiom of choice. 

12Sometimes the axiom of choice is also considered one of the axioms of ZF.
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conception. For that there are exactly w, stages does not seem to be ex- 

cluded by anything said in the rough description; it would seem that R,,, 

(see below) is a model for any statement of £ that can (fairly) be said to 
have been implied by the rough description, and not all of the axioms of 

replacement hold in R,,,.'° Thus the axioms of replacement do not seem 
to us to follow from the iterative conception. 

Adding the axioms of replacement to those of Zermelo set theory enables 

us to define a sequence of sets, {R,}, with which the stages of the stage 

theory may be identified. Suppose we put Ro = the null set; Roi = ReU 

the power set of R,, and Ry, = UgerRg (A a limit ordinal)—axioms of 

replacement ensure that the operation is well-defined—and say that s is 

a stage if das = Rg, that z is formed at s if x is subset but not a member 

of s, and that s is earlier than ¢ if, for some a, 6, s = Ra, t = Rg, and 

a < (. Then we can prove as theorems of ZF not only the translations 

into the language of set theory of the axioms of the stage theory, but also 

those of all those stronger axioms asserting the existence of stages further 

and further “out” that might have been suggested by the rough description 

(and those of the instances of the bounding principle which are expressible 

in J as well). ZF thus enables us to describe and assert the full first-order 

content of the iterative conception within the language of set theory. 

Although they are not derived from the iterative conception, the reason 

for adopting the axioms of replacement is quite simple: they have many 

desirable consequences and (apparently) no undesirable ones. In addition 
to theorems about. the iterative conception, the consequences of replacement 

include a satisfactory if not ideal'4 theory of infinite numbers, and a highly 

desirable result that justifies inductive definitions on well-founded relations. 

The ariom of cxtensionality. The axiom of extensionality enjoys a spe- 

cial epistemological status shared by none of the other axioms of ZF. Were 

someone to deny another of the axioms of ZF, we would be rather more 

inclined to suppose, on the basis of his denial alone, that he believed that 

axiom false than we would if he denied the axiom of extensionality. Al- 

though “there are unmarried bachelors” and “there are no bachelors” are 

equally preposterous things to say, if someone were to say the former, he 

would far more invite the suspicion that he did not mean what he said than 

someone who said the latter. Similarly, if someone were to say, “there are 

distinct sets with the same members,” he would thereby justify us in think- 

ing his usage nonstandard far more than someone who asserted the denial 

of some other axiom. Because of this difference, one might be tempted to 

13Worse yet, Rs, would also seem to be such a model. (6; is the first nonrecursive 

ordinal.) 

14 An ideal theory would decide the continuum hypothesis, at least.
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call the axiom of extensionality “analytic,” true by virtue of the meanings 

of the words contained in it, but not to consider the other axioms analytic. 

It has been persuasively argued, by Quine and others, however, that until 

we have an acceptable explanation of how a sentence (or what it says) can be 

true in virtue of meanings, we should refrain from calling anything analytic. 

It seems probable, nevertheless, that whatever justification for accepting 

the axiom of extensionality there may be, it is more likely to resemble 

the justification for accepting most of the classical examples of analytic 

sentences, such as “all bachelors are unmarried” or “siblings have siblings” 

than is the justification for accepting the other axioms of set theory. That 

the concepts of set and being a member of obey the axiom of extensionality 

is a far more central feature of our use of them than is the fact that they 

obey any other axiom. A theory that denied, or even failed to affirm, some 

of the other axioms of ZF might still be called a set theory, albeit a deviant 

or fragmentary one. But a theory that did not affirm that the objects with 

which it dealt were identical if they had the same members would only by 

charity be called a theory of sets alone. 

The aziom of choice. One form of the axiom of choice, sometimes called 

the “multiplicative axiom,” is the statement, “For any z, if x is a set of 

nonempty disjoint sets (two scts are disjoint if nothing is a member of 

both), then there is a set, called a choice set for .r, that contains exactly 

one meinber of each of the members of wr.” 

It seems that, unfortunately, the iterative conception is neutral with. re- 

spect to the axiomn of choice. It is easy to show that, since, as is now known, 

neither the axiom of choice nor its negation is a theorentof ZE, neither the 

axiout nor its negation can be derived from the stage theery. Of course the 
stage theory, which is stuspposed to formalize the rongl: description, could 

be extended so as to decide the axiow. But it seems that ne additional 
axiom, which would decide choice, can be inferred from the rough descrip- 

tion without the assumption of the axiom of choice itself, or some equally 

uncertain principle, in the inference. The difficulty with the axiom of choice 

is that the decision whether to regard the rough description as implying a 

principle about sets and stages from which the axiom could be derived is 

as difficult a decision, because essentially the same decision, as the decision 

whether to accept the axiom. 

Suppose that we tried to derive the axiom by arguing in this manner: 

Let x be a set of nonempty disjoint sets. z is formed at some stage s. The 

members of members of x are formed at earlier stages than s. Hence, at 

s, if not earlier, there is a set formed that contains exactly one member of 

each member of x. But to assert this is to beg the question. How do we 

know that such a choice set ts formed? If a choice set is formed, it is indeed
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formed at or before s. But how do we know that one is formed at all? To 

argue that at s we can choose one member from each member of x and so 

form a choice set for x is also to beg the question: “we can’t choose” one 

member from each member of x if there is no choice set for x. 

To say this is not to say that the axiom of choice is not both obvious and 

indispensable. It is only to say that the justification for its acceptance is 

not to be found in the iterative conception of set.
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Reply to Charles Parsons’ 

“Sets and Classes” 

I want to begin by discussing the considerations which lead Professor Par- 

sons to a conception of set theory on which “the language of set theory is 

systematically ambiguous.” I shall concern myself only with those of his 

views that are discussed in his present paper, and not with those that are 

set forth in his other, recent articles on truth, ontology, and the paradoxes. 

Parsons mentions a “general maxim in set theory that any set theory we 

can formulate can plausibly be extended by assuming that there is a set 

that is a (standard) model of it,” from which it follows that we could pro- 

duce no discourse in the language which could be interpreted as true if 

and only if the quantifiers range over absolutely all sets. Now this maxiin 

has an obvious problematical feature: it appears not to be consistently in- 

corporable into set. theory. Both the second incompleteness theorem and 

the well-foundedness of “C" prevent on consistent set theory from implying 

the existence of a standard model of itself, Presumably, though, a “general 

maxim inset. theory” is only a rule or ficense or whatever about what is per- 

inissible in doing set theory and not a statement about. sets and sets alone. 

What I find disturbing is what this maxim suggests to Parsons about the 

inscrutability of reference. Suppose that you and I are “discoursing,” and 

that our “discourse” consists of enunciations in the language of ZF: 

You: Every set has a power set! 

Me: No fooling! Sets are the same if they have the same members!! 

You: Wow!! No set contains all sets!!! 

Etc. If discourses are finite, the reflection principle implies that the quanti- 

fiers in any such discourse can be reinterpreted to range over the members 

of some one fixed set, salva veritate; the general maxim is needed only 

This paper was written in 1974 and is here published for the first time. Charles Parsons’ 

article can be found in (Parsons, 1983c). 

30



2. Reply to Charles Parsons’ “Sets and Classes” 31 

for “infinite discourses.” But salva veritate is not synonymous with salvis 

omnibus; that truth is preserved does not mean that anything whatsoever 

is. In particular the speakers may have been talking about all sets, and 

reinterpreting what they say in such a way that it is not about all sets is 

changing the meaning of what was said if not the truth value; to report our 

speakers as having spoken only about the members of some set would be to 

misrepresent what they said. (Notice, by the way, that no dubious—or even 

doubted—notion of meaning is in question here; the references (ranges) of 

the quantifiers are being misrepresented.) Parsons asks whether an inter- 

pretation of such a discourse that makes the quantifiers range over a set 

would be incorrect. My inclination is to answer that it need not be incor- 

rect as far as the truth-values of the statements that were made go; but 

it would be an incorrect account of what might be called the referential 

content of the discourse. If our speakers were speaking about all sets, it 

would be incorrect “in respect of” what was said to report them as talking 

about the members of a standard model of ZF, or even the members of a 

natural model of ZF. If, as many believe, the axiom of constructibility is 

false, and Godel’s L is not Cantor’s paradise, then to suppose our speakers 

to be speaking about constructible sets alone if they were speaking about 

all sets is to make a mistaken supposition, even if the truth-values of what 

was said are unaffected. An interesting question is whether there are rea- 

sons for adopting a “relativist” view according to which there is a fact of 

the matter whether or not the range of the quantifiers in such a discourse 

is countable, but not whether or not the range is this or that natural model 

of ZF. 

Let ine belabor the point. Suppose that there were three interpreters 

of our discourse. According to one, the quantifiers in our discourse ranged 

aver the members of some suitably large R(a@), according to the second, over 

the members of some /2(8) that happened to be an elementary extension of 

R(a), and according to the third, over (absolutely) all sets. Does Parsons 

wish to maintain that both of the interpretations of the discourse offered by 

interpreters 1 and 2 could be correct (with respect to content)? If so, would 

an interpretation according to which the quantifiers range over members of 

a countable model be incorrect? And if not, why should we not suppose 

that an interpretation according to which the quantifiers ranged over the 

members of some set was incorrect after all? 

Doubtless one’s set-theoretic utterances can always be reinterpreted so 

that they are not about all sets but only about all members of some set. 

Doubtless too nothing can forestall claims to the effect that one was really 

talking only about the members of some set or force a hardened skeptic to 

cease claiming that no one can know that some particular quantification 

was really over all sets. And doubtless too not all philosophers will stop
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concluding from their inability to find an effective answer to a certain kind 

of skepticism that there is no fact of the relevant matter. But that truth- 

preserving reinterpretation of a discourse is always possible does not mean 

that it is ever obligatory. And the temptation to reinterpret is seldom 

particularly strong: if one learns of some startling new consequence of the 

existence of a measurable cardinal, one is not in the least tempted to think 

that the discoverer is speaking only about the members of some set that is 

a model of ZF or even that he may not be quantifying over absolutely as 

many sets as there really are. Professor Martin’s remark that. set theorists 

have made it clear that the range of variables in set theory can not be a 

set in some more inclusive concept of set. seems to me to be dead right. 

That much is clear, as is the extraordinary perversity of thinking, “Well, of 

course, not a set in any of those (set many) concepts to which Martin was 

referring.” 

Parsons considers the case of a person who, knowing no set theory other 

than ZF, comes to accept the existence of (strongly) inaccessible cardinals 
as at least plausible. Part of a commonly given argument for the existence 

of inaccessibles goes something like this: “Every number that is the sum 

or product of fewer than omega (two, zero) numbers that are themselves 

smaller than omega (two, zero) is smaller than omega (two, zero). No other 
finite numbers have this property (the product of zero zeros is one). It’s not 

plausible, is it, that. zero, two, and omega should be the only numbers with 

this property? And any such number larger than omega will be strongly 

inaccessible.” Suppose that Parsons’ ZF-ite comes to believe that there 

may well be inaccessibles because of some such argument as this, Parsons 

asks whether he has been persuaded of the possible truth of something left 
open by his theory “as it was" or has had his conception of set changed, 
and says, “We all know of arguments for there being ‘no fact of the matter’ 

about such i question.” 1 feel strongly tempted to say: (1) the ZF-ite 
has been persuaded of something left open by ZF; (2) his conception of 

set has probably been changed only in that he now believes something 

about the very same sets that he did not hitherto believe about them; his 

views about what sets are like will have changed, but he need not, as 

far as I can see, be holding views about new sets on that account alone. 

“However that may be,” continues Parsons, “it is hard to see how your 

understanding of the quantifiers of set theory could not at least be taken 

to be vague, so that reading them as ranging over sets of rank less than 
the first strong inaccessible would be an otherwise correct way of making 
them precise.” I find this statement particularly puzzling. Isn’t the person 
who is convinced by this argument convinced precisely that one of the 
objects he was quantifying over was an inaccessible cardinal? Is the idea 
this: at tp the ZF-ite quantifies over only sets of rank less than that of the
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least inaccessible cardinal (though he doesn’t know this); later, at t,, he 

quantifies over a larger domain which contains all the sets he quantified 

over at t together with an inaccessible; it is as the result of hearing the 

common argument for inaccessibles (or some other one) that he comes at 

ty to quantify over the larger domain? But why should we believe that this 

account of the matter is the correct one rather than the simpler one: that 

at to and # he quantified over the same sets and at t, believed something 

about those sets (viz., that one of them was an inaccessible) that he did 

not believe at fp? It seems to me that what’s (a little bit) less vague at 

% is not his understanding of the quantifiers of set theory, but his views 

about the way sets are, about the nature of the set-theoretic universe. Why 

does Parsons speak of an otherwise correct way of making [the quantifiers] 

more precise? Would reading them as ranging over the sets belonging (say) 

to the minimal model also be an otherwise correct way of making them 

more precise? Remember that our ZF-ite knows no set theory beyond 

ZF. Perhaps it will be replied that there is no fact of the matter about 

what the range of the quantifiers is, that any truth-value preserving way 

of reading the quantifiers is “as correct as” any other. Well, maybe there 

is no fact of the matter. But that there is none does not seem to me 

to have been established by the considerations offered by Parsons about 

inaccessible cardinals or the general maxim in set theory and I suppose I’m 

still not persuaded of the existence of a systematic ambiguity in the use of 

the language of set theory. 

I now want. to discuss Parsons’ claim, endorsed by Martin, that the use of 

schematic letters in inscriptions that follow assertion-signs such as (“The- 

orem 7.19”) in treatises on set theory either involves the authors of those 
treatises in unintended and possibly unwanted quantification over classes 

or involves them in asserting that each of a certain infinite set of sentences 

is true, Parsons and Martin agree -and [ agree with them—that authors 

of set theory texts do not intend merely to indicate that each of a certain 

infinite set of sentences is provable in ZF (as it might be). As Parsons 

says, “the authors of the book want their readers to learn not just facts 

about provability in a certain formal system, but also the facts about sets 

expressed by such formulae when [understood] in the natural way.” Now 

I am by no means sure about the following line of argument, but I am 

not persuaded that set-theorists’ use of schematic letters is as embarrassing 

or guilty as Parsons and Martin think it is. What is not clear to me is 

that in writing “Theorem 7.19 A C On — Ord(U(A))” they are making 
any single statement or assertion at all. To be sure, by writing this they 

wish to indicate their acceptance of each of the propositions expressed by 

some instance of the schema following “7.19.” They may well also want 

their readers to accept those propositions too. Another way they might
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have achieved the same end might have been to have written down the 

conjunction of the first hundred instances of 7.19, perhaps with a diagram 

illustrating the structural similarity of those conjuncts and then written 

down “& ...” This would have had a number of disadvantages, the least of 
which is imprecision. But it is not clear to me that all that they ought to 

have wanted to do could not have been done in this manner. Parsons says 

that “the actual statements made by the material mode versions of such 

theorems” are ambiguous. 

I suppose I'm not clear why Parsons thinks that there are any such things 

as the actual statements made by the material-mode versions of such the- 

orems or at least why anyone who writes down “Theorem 7.19 ...” must 

be taken to be making any such statement. Parsons notes that if one takes 

the theorems as literally about classes, then a formalization of their lan- 

guage would involve quantification over classes; if one takes them as claims 

that every statement of a certain form is true, then a formalization would 

require a truth-predicate. Undeniably. But what I’m not certain about 

is whether formalization is in this instance formalization of an (informally 
made) assertion. Why must we take “A C On — Ord(U(A))” as expressing 
any generalization at all, whether about classes or truth? What is wrong 

with saying that by writing what they write they indicate their acceptance 

of each of an infinite class of propositions? Why must we suppose that. the 

only way they can do this is by writing something which must be taken 

to express a general assertion of some sort? In Set Theory and Its Logics 

Quine writes, “When I state a definition in terms of Or’, ty’, ‘Fur’. ete... 1 

mean it for all choices of sentences (of whatever theory we tay be working 

in) in the position of Fr.” Presumably the same weuld go for theorems 

as for definitions, What does Quine mean by °L men it for all choices of 

sentences’? [don't think he means, “Tomean that all instances are tree,” 
but vather something like “lL mean to be taken as asserting, oor to hive 

counnitted myself to cach instance.” Why can one not mean, or indi- 

cate acceptance of, each of infinitely many assertions without asserting a 

generalization about those assertions? 

A three-quarters serious suggestion that I should like to make is that we 

interpret authors of set theory texts as having irremediably bad handwrit- 

ing, and that we take inscriptions in those texts of so-called “schemata” 

or “metatheorems” such as “A C On — Ord(U(A))” to be badly produced 
tokens of an infinite paragraph type. The type would of course consist of 

infinitely many sentences together with their periods (there is no need to 

introduce infinitary languages), and each of the sentences would express 

only what could be expressed by a particular sentence of the language of 

1(Quine, 1969).
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ZF. This somewhat far-fetched way of looking at the matter enables us both 

to agree with Martin in saying that the set theorist seemingly succeeds in 

simultaneously asserting each of the propositions expressed by the instances 

of the schema and to avoid taking set theorists as quantifying over classes 

or using a truth or satisfaction-predicate. 

Let me try to be a little bit less fanciful. Obviously, no human being, not 

even a set theorist, can actually write down infinitely many sentences. It is 

because of such things as the shortness of human life, the atomic character of 

matter, the impossibility of traveling faster than the speed of light, etc. that 

no one can inscribe so many sentences. There is, however, a conventional 

way of signalling or indicating that one wishes to be committed to each 

proposition expressed by a sentence that is an instance of some one schema, 

and that is to write down the schema itself after the words “Theorem” or 

“Meta-theorem.” In doing so, it seems to me, one need not be taken as 

even hinting that one is either talking about classes or utilizing a truth- 

predicate, and we need not take anyone who so signals a commitment to 

infinitely many propositions as having asserted that he is so committed. We 

can take him as having asserted, or at least committed himself to, all of 

those infinitely many propositions in virtue of having done something other 

than making a general assertion. And since we can take him as having done 

this, why can we not regard that schema as expressing precisely what would 

have been expressed by that infinitely long paragraph, whose production 

we belicve to be physically inypossible? 

What now of classes? Parsons says that “it seems that a perspective is 

always possible according to which your classes are really sets.” Martin's 

tentative suggestion is that classes are given all at once, by the properties 

that determine which objects are members of them. On Martin’s theory, no 

Class is a set, but some classes will be inembers of others. One possible re- 

action to the introduction of classes- collections that are not sets-—is this: 

“Wait a ininute! I thought that set theory was supposed to be a theory 

about all, ‘absolutely’ all, the collections that there were and that ‘set’ was 

synonymous with ‘collection’.” If it is replied that Cantor, who ought to 

have known, asserted that a set was a collection into a whole of definite, 

well-differentiated objects of our intuition or thought, and thereby left open 

the possibility that there were collections which were not collections into a 

whole, and that Cantor later introduced the term “inconsistent multiplic- 

ity” which presumably applied to the collection of all sets, among many 

others, then we may ask why that particular inconsistent multiplicity— 

call it V—to which all sets belong is not itself a quite definite and very 

well differentiated object of our thought, and then why there is not a set 

containing (say) the null set and V? Unsatisfactory as ZF may be as far 

as its inability to discuss truth and satisfaction for its own language goes,
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it is no worse in that respect than any other presently known formalized 

theory. Kelley—Morse set theory cannot be the last word in set theories: 

the considerations that prompt its adoption prompt the adoption of a still 

stronger theory. And of a yet stronger one. If one admits that there are 

proper classes at all, oughtn’t one to take seriously the possibility of an it- 

eratively generated hierarchy of collection-theoretic universes in which the 

sets which ZF recognizes play the role of the ground-floor objects? I can’t 

believe that any such view of the nature of “Ee” can possibly be correct. 

Are the reasons for which one believes in classes really strong enough to 

make one believe in the possibility of such a hierarchy? 

My own view is a “nominalist” or a strict “settist” one: there are no 

classes—or at least we do not as yet have sufficiently strong reason to be- 

lieve that there are--and the only belongees that there are are the sets 

of which ZF (possibly ZF with individuals) treats. I could, I suppose, be 

brought to believe in classes if a theory such as the one sketched by Martin 

toward the end of his paper could be developed in a satisfactory way. I’m 

not sure whether such a theory could be satisfactory without disposing of 

the Epimenides paradox. How is this to be done? There are at least two 

points to be made about the Epimenides: the first is that an acceptable 

resolution must deal not just with “I am false” but also with “I am false 

or truth-valueless,” i.e., with “I am not true.” The second is that there 

are versions of the Epimienides which use only modus ponens, conditional- 

ization, substitution of equals for equals, and Tarski’s convention (T) for 

the derivation of a contradiction or an obvions falsehood. One such is dic 

to Curry: it involves considering the sentence named “Sam,” which is the 

sentence “If Sam is true, then 242 = 5.°) Principles of logie dealing with 
negation are not needed for producing certain semantic paradoxes, and re- 
jecting excluded middle alone does not suttice to bluck these. | suppose 

that what worries me about Martin's outline of a theory is that | don’t 

have even a hazy icea how allowing certain sentences to have indetermi- 

nate truth-values will enable us to get round the various versions of the 

Epimenides or the theorem on the indefinability of truth. Perhaps at some 

point in the discussion we might discuss how the outline is to be filled in.
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On Second-Order Logic 

I shail discuss some of the relations between second-order logic, first-order 

logic, and set theory. I am interested in two quasi-terminological questions, 

viz., the extent to which second-order logic is (or is to be counted as) logic, 

and the extent to which it is set theory. It is of little significance whether 

second-order logic may bear the (honorific) label “logic” or must bear “set 
theory.” What matter, of course, are the reasons that can be given on 

either side. It seems to be commonly supposed that the arguments of 

Quine and others for not regarding second- (and higher-) order logic as 

logic are decisive, and it is against this view that I want to argue here. I 

shall be concerned mainly with Quine’s critique of second-order logic and 

with some of the reasons that can be offered in support of applying neither, 

one, or both of the terms “logic” and “set theory” to second-order logic.! 
The first of Quine’s animadversions upon second-order logic that I shall 

discuss is to be found in the section of his Philosopky of Logic? called “Set 

Theory in Sheep's Clothing.” Much of this section is devoted to dispelling 

two confusions which we can casily agree with Quine in deploring: that 

of supposing that “(GF)” and “(£)” say that some (all) predicates (i.e., 

predicate-expressions) are thus and so, and that of supposing that quan- 

Reprinted with the kind permission of the editors from The Journal of Philosophy 72 

(1975): 509-527. 
I am grateful to Richard Cartwright, Oswaldo Chateaubriand, Fred Katz, and James 

Thomson for helpful criticism. 

1My motive in taking up this issue is that there is a way of associating a truth 

of second-order logic with each truth of arithmetic; this association can plausibly be 

regarded as a “reduction” of arithmetic to set theory. It is described in ch. 18 of (Boolos 

and Jeffrey, 1974). I am inclined to think that the existence of this association is the 
heart of the best case that can be made for logicism and that unless second-order logic has 

some claim to be regarded as logic, logicism must be considered to have failed totally. I 

see the reasons offered in this paper on behalf of this claim as part of a partial vindication 

of the logicist thesis. I don’t believe we yet have an assessment that is as just as it could 

be of the extent to which Frege, Dedekind, and Russell succeeded in showing logic to be 
the ground of mathematical truth. 

2(Quine, 1970); parenthetical page references to Quine are to this book. 

37



38 I, Studies on Set Theory and the Nature of Logic 

tification over attributes has relevant ontological advantages over quantifi- 

cation over sets. What I wish to dispute is his assertion that the use of 

predicate letters as quantifiable variables is to be deplored, even when the 

values of those variables are sets, on the ground that predicates are not 

names of their extensions. Quine writes, “Predicates have attributes as 

their ‘intensions’ or meanings (or would if there were attributes) and they 

have sets as their extensions; but they are names of neither. Variables eligi- 

ble for quantification therefore do not belong in predicate positions. They 

belong in name positions” (67). 
Let us grant that predicates are not names. Why must we then suppose, 

as the “therefore” in Quine’s sentence would indicate we must, that vari- 

ables eligible for quantification do not belong in predicate positions? Quine 

earlier (66-67) gives this argument: 

Consider first. some ordinary quantifications: “(Ar)(2 walks),” 
“(r)(x walks),” “(Ax)(x is prime).” The open sentence after the 
quantifier shows “2” in a position where a name could stand; 

a name of a walker, for instance, or of a prime number. The 

quantifications do not mean that names walk or are prime: what 

are said to walk or to be prime are things that could be named 

by names in those positions. To put the predicate letter “F" 

in a quantifier, then, is to treat predicate positions suddenly 

as name positions, and hence to treat predicates as names of 

entities of some sort. The quantifier “(AF)” or “(F)" saves not 

that some or all predicates are thus and so, but that seme or 

all entities of the sort named by predicates are thus and so. 

If Quine hac argued: 

Consider some extraordinary quantifications: “(4F)( Aristotle 
F),” “(F)(Aristotle F),” “(AF)(17F).” The open sentence af- 
ter the quantifier shows “F” in a position where a predicate 

could stand; a predicate with an extension in which Aristotle, 

for instance, or 17 might be. The quantifications do not mean 

that Aristotle or 17 are in predicates; what Aristotle or 17 are 

said to be in are things that could be had by predicates in those 
positions. To put the variable “x” in a quantifier, then, is to 
treat name positions suddenly as predicate positions, and hence 
to treat names as predicates with extensions of some sort. The 
quantifier “(4)” or “(x)” says not that some or all names are 
thus and so, but that some or all extensions of the sort had by 
names are thus and so,
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we should have wanted to say that the last two statements were false and 

did not follow from what preceded them. It seems to me that the same 

ought to be said about the argument Quine actually gives. 

To put “F” in a quantifier may be to treat “F” as having a range but it 

need not be to treat predicate positions as name positions nor to treat pred- 

icates as names of entities of any sort. Quine seems to suppose that because 

a variable of the more ordinary sort, an individual variable, always occurs 

in positions where a name but not a predicate could occur, the same must 

hold for every sort of variable. We may grant that the ordinary quantifica- 

tions mean what Quine says they mean. But we are not thereby committed 

to any paraphrase containing “name” (or any of its cognates) that purports 

to give the meaning of our extraordinary quantifications. Perhaps someone 

might suppose that variables must always name the objects in their range, 

albeit only “indefinitely” or “temporarily.” However, we have no reason 

not to think that there might be a sort of variable, a predicate variable, 

that ranges over the objects in its range (these will be extensions) but does 

not name them “indefinitely” or any other way; rather, predicate variables 

will have them “indefinitely,” as (constant) predicates have their extensions 

“definitely.” Such variables would not be names of any sort, not even “in- 

definite” ones, but would have a range containing those objects (extensions) 
which could be had by predicates in predicate positions. 

It may be that a suggestion is lurking that an adequate referential account 

of the truth conditions of sentences cannot be given unless it is supposed 

that all variables act. as names that (indefinitely) name the objects in their 
range. But this is not the case. Although variables must have a range 

containing suitable objects, it uecd not be that variables of every sort in- 

definitely name the objects in their ranges. “(3F)" does not have to be 
taken as saying that. some entities of the sort named by predicates are thus 

and so; it can be taken to say that sonie of the entities (extensions) had by 

predicates contain thus and such. So some variables eligible for quantifi- 

cation might well belong in predicate positions and not in name positions. 

And taking “Fx” to be true if and only if that which “x” names is in 

the extension of “F” in no way commits us to supposing that “F” names 

anything at all. 

In the same section of Philosophy of Logic Quine has some advice for 

the logician who wants to admit sets as values of quantifiable variables and 

also wants distinctive variables for sets. The logician should not, Quine 

says, write “Fx” and thereupon quantify on “F”, but should instead write 

“x € a” and then, if he wishes, quantify on “a”. The advantage of the new 

notation is thought to be its greater explicitness about the set-theoretic 

presuppositions of second-order logic. There is an important distinction 

between first- and second-order logic with regard to those presuppositions,
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which may be part of the reason Quine insists on regarding “F’ ", “@”, etc. 

in first-order formulas as schematic letters and not quantifiable variables. 

In order to give a theory of truth for a first-order language which is mate- 

rially adequate (in Tarski’s sense) and in which such laws of truth as “The 

existential quantification of a true sentence is true” can be proved, it is not 

necessary to assume that the predicates of the language have extensions, 

although it does appear to be necessary to make this assumption in order 

to give such a theory for a second-order language. 

There are reasons for not taking Quine’s advice, however. One is that 

the notation Quine recommends abandoning represents certain aspects of 

logical form in a most striking way? Another, and more important, reason 

is that the usual conventions about the use of special variables like “a” 

guarantee that rewriting second-order formulas in Quine’s way can result 

in the loss of validity or implication. For example, “AF Vz Fx” is valid, but 

“JaVex € o” is not; and “z = z” is implied by “VY(Yz — Yz)” but not 

by “Va(z € a > 2 €a).” 
Quine disparages second-order logic in two further ways: reading him, one 

gets the sense of a culpable involvement with Russell’s paradox and of a lack 

of forthrightness about its existential commitments. “This hypothesis itself 

viz., ‘(Sy)(x)(z € y = Fr)’ falls dangerously out of sight in the so-called 
higher-order predicate calculus. It becomes ‘(3G)(r)(Gr = Fr)’, and thus 

evidently follows from the genuinely logical triviality ‘(r)(Fxr = Fr)’ by 
an elementary logical inference. Set thcory’s staggering existential assump- 

tions are cunningly hidden now in the tacit. shift. from schematic predicate 

letter to quantifiable set. variable” (68). Quine, of course, does not assert 

that higher-order predicate calculi are inconsistent. But even if they are 

consistent,” the validity of “UNVar(Xir eo or € a)” which certainly locke 

contradictory, would at any rate seen to demonstrate that their existence 

assinptions must, be regarded ax “vast.” A problem now arises: although 

“AX ae Xx” and “AXVa Xz” are also valid, “AX ardy(XcAXyAr # y)” is 
uot valid; it would thus seem that, despite its affinities with set theory and 

its vast commitments, second-order logic is not committed to the existence 

of even a two-membered set. Both of these difficulties, it seems to me, can 
be resolved by examining the notion of validity in second-order logic. This 

3For instance, writing out the definition of the ancestral aR,b in this notation: 

VF(WalaRz — Fr) AVaVy(Fc AcRy > Fy) > Fb) 

shows it to be obtained from an ordinary first-order formula by prefixing a universal 
quantifier, and suggests an interesting question: Is there an existential quantification of 
a first-order formula that is a satisfactory definition of the ancestral? (The answer is no.) 

4Gentzen showed that the i i i problem of their consist: ad i 
solution. See (Gentzen, 1936). oney hed # Very cauy positive
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examination seems to show a certain surprising weakness in second-order 
logic. 

When is a sentence valid in second-order logic? When it is true under 
all its interpretations. When does it follow from others? When it is true 

under all its interpretations under which all the others are true. What, 
then, is an interpretation of a second-order sentence? If we are consid- 

ering “standard” second-order logic in which second-order quantifiers are 

regarded as ranging over all subsets of, or relations on, the range of the 
first-order quantifiers,> we may answer: exactly the same sort of thing an 

interpretation of a first-order sentence is, viz., an ordered pair of a non- 

empty set D and an assignment of a function to each nonlogical constant 

in the sentence. The domain of the function is the set of all n-tuples of 

members of D if the constant is of degree n, and the range is a subset of 

D if the constant is a function constant and a subset of {T, F} if it is a 
predicate constant. [Names (sentence letters) are function (predicate) con- 
stants of degree 0; functions from the set of all 0-tuples of members of D 
into an arbitrary set E are of course members of E.] We need not explicitly 

mention separate ranges for the second-order variables that may occur in 

the sentence. An existentially quantified sentence JaF(a) is then true un- 

der an interpretation J just in case F(@) is true under some interpretation 
J that differs from J (if at all) only in what it assigns to the constant 2, 

which is presumed not to occur in JaF (a) and presumed to be of the same 
logical type® as the variable a. The other clauses in the definition of truth 
in an interpretation are exactly as you would suppose them to be. Notice 

that in this account no mention is made of what sort (individual, scutential, 

function, or predicate) of variable a is; a may be any sort. of variable at all. 

Notice also that. if only individual variables are allowed, the account is just 

a paraphrase of oe standard definition of truth in an interpretation. The 

definition changes ueither the conditions under which a first-order sentence 
is true in an interpretation nor the account of what an interpretation is, 

but merely extends in the obvious way the account given in (say) Mates’s 

Elementary Logic’ or Jeffrey’s Formal Logic® to cover the new sorts of 

quantified sentences that arise in second-order logic. Quine has stressed 

the discontinuities between first- and second-order logic so emphatically 
and for so long that the obvious and striking continuities may be forgotten. 

In Mates’s book, for example, nineteen laws of validity are stated, of which 
all but one (the compactness theorem) hold for second-order logic. Thus 

5Only “standard” or “full” second-order logic is considered in this paper. 

®Two symbols are of the same logical type if they are of the same degree and are 

either both predicate symbols or both function symbols. 

7(Mates, 1972). 
8 (Jeffrey, 1981).
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there is a standard account of the concepts of validity and consequence for 

first-order sentences, and there is an obvious, straightforward, non-ad hoc 

way of extending that account to second-order sentences.® 

We can now see what is shown by the validity of 

AXVa(Xa 72 € 2). 

First of all, the sentence is valid: given any J, we can always find a suitable 

J in which “V2(Bx — 2 € x)” is true by assigning to “B” the set of all 
objects in the domain I that do not bear to themselves the relation that 

I assigns to “Ee”. Since the domain of J is a set, one of the axioms of set 

theory (an Aussonderungsaziom) guarantees that there will always be such 

a subset of the domain. But without a guarantee that there is a set of 

all sets, we cannot conclude from the validity of “AXV2(Xa2  -a € 2)” 
that there is a set of all non-self-membered sets. And we have guarantees 

galore that there is no set of all sets. We do, of course, land in trouble if 

we suppose that “x” ranges over all sets, that “X” ranges over all sets of 

objects over which “x” ranges, and that “e” has its usual meaning; for then 

“AXVa(X2 + 2 € x)” would be false. But that it would then be false 
does not show it to be invalid; for there is no interpretation whose domain 

contains all sets. 

Our difficulty is thus circumvented, but at some cost. We must insist 

that we mean what we say when we say that a second-order sentence is 

valid if true under all its interpretations, and that an interpretation is an 

ordered pair of a set and an assignment. of functions to constants, 

There is thus a limitation on the uses of second-order fogic to which First- 

order logic is not subject. Exaniples such as “UNVae( Nur ee or cry and 

“WWW Xa” both valid, secin to show that itis impenuissible to use the 
notation of second-order logie in the formutization of discourse about certain 

sorts of objects, such as sets or ordinals, in case there is no se¢ to whieh 

all the objects of that sort belong. This restriction does not apply, as it 
appears, to first-order logic: ZF (Zermelo~Fraenkel set theory) is couched 

in the notation of first-order logic, and the quantifiers in the sentences 
expressing the theorems of the theory are presumed to range over all sets, 
even though (if ZF is right) there is no set to which all sets belong. In 
the case of “AXVz Xx,” we cannot assume, for example, that the quantifier 

‘x” ranges over all ordinals, for then “IXVz2 Xx” would be true iff there 
were a set to which all ordinals belong, and there is no such set. Nor 
can we assume that it ranges over all the sets that there are, for it would 
then be true iff there were a set of all sets. Thus if we wish (as we do) 

In Part IV of (Quine, 1972), Quine extends the notion of validity to first-order 

sentences with identity and discusses higher-order logic at length, but does not describe 

the extensien of the notion of validity to second-order logic.



3. On Second-Order Logic 43 

to maintain that both sentences are true (because valid) and also wish to 

preserve the standard account of the conditions under which sentences are 

true, we cannot suppose that all sets belong to the range of “Wx” in either, 

or that all ordinals belong to the range of “Wz” in “AXVa2 Xx.” There is of 

course a step from supposing that the quantifier “Wr” in “AXVxr Xx” may 

not be assumed to range over all sets to supposing that all members of the 

range of first-order quantifiers in second-order sentences used to formalize a 

certain discourse must be contained in some one set (which depends upon 

the discourse), and there might be ways of not taking it. But all the 

difficulties do appear to have the same source, and seem to point to the 

impermissibility of second-order discourse about all sets, all ordinals, etc. 

(We have been assuming all along that ZF is correct and that sets are 

the only “set-like” objects there are, the only objects to which membership 

is borne. If, however as certain extensions of ZF assert, there are also 

certain classes, which are not sets, but which sets may be members of, 

then of course we are free to interpret “AX¥Vz Xz” as saying that there 

is a class to which all sets belong and thus to suppose that “Vz” ranges 

over all sets in “SXVz Xa.” But even if classes do exist, there is again 

a distinction between first- and second-order notation that is significantly 

like the distinction just described: we may use the former but not the latter 

to discuss all members of the counterdomain (the right field) of “€”. One 

of the lessons of Russell’s paradox is that if we read “Xz” as “(OBJECT) X 

bears f to (object) 2,” then the range of first-order quantifiers in second- 

but not first-order sentences may not contain all OBJECTS.) 

There is a similar, but less significant, restriction on the use of the no- 

tation of first-order logic. One who uses it to formalize some discourse is 

committed (in the absence of special aunouncements to the contrary) to 

the nonemptiness of the ontology of the discourse aud also to the presence 

in the ontology of references of any names that occur in the formalization. 

The use of names in formalization can be avoided, however as Quine has 

pointed out, and various formulations of first-order logic exist in which the 

empty domain is permitted. But there is a striking difference between the 

commitment to non-emptiness of an ontology and the commitment to set- 

hood: we believe that our own ontology is non-empty, but not that it forms 

a set! The contradictions appear, therefore, to teach us not that second- 

order logic may be inconsistent (as Quine perhaps intimates), but that it 

Seems impossible that any “universal characteristic” should be couched in 

the notation of second-order logic. 

What now of the existence assumptions of second- and higher-order logic, 

which Quine calls both “vast” and “staggering”? Set theory (ZF) certainly 

makes staggering existence claims, such as that there is an infinite cardinal 

number « that is the «th infinite cardinal number (and hence that there
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is a set with that many members). Quine maintains that higher-order 

logic involves “outright assumption of sets the way [set theory] does.” 10 Of 

course there are differences between set theory and higher-order logic: all 

set theories agree that there is a set containing at least two objects, but, 

as noted, “AXVariy(Xx A Xy Ax # y)” is not valid, for it is false in all 
one-membered interpretations. Let us try to see what the ways are in which 

second-order logic involves assuming the existence of sets. 

First of all, “im second-order logic one quantifies over sets.” There are 

certain (second-order) sentences of any given language that will be classified 
by second-order logic as logical truths (i.e, as valid), even though they 

assert, under any interpretation of the language whose domain forms a set, 

the existence of certain sorts of subsets of the domain. (The sort depends 
upon the interpretation.) “AX V2(X2 o 2 € 2)” and “AXV2(Xzto r= 

x)” are two examples. Thus, unless there exist sets of the right sorts, these 

sentences will be false under certain interpretations. 

Now one may be of the opinion that no sentence ought to be consid- 

ered as a truth of logic if, no matter how it is interpreted, it asserts that 

there are sets of certain sorts. Similarly, one might hold that the truth of 

“3fVa2 Rf(x)2” ought not to follow from that of “Vriy Ryx” (even if the 

axiom of choice is true), or one might think that it is not as a matter of 

logic that there is a set with certain closure properties if Smith is not an 

ancestor of Jones (i.e., not a parent, not a grandpareut, etc.). 

The view that logic in “topic-neutral” is often adduced in support of this 

opinion: the idea is that the special sciences, such as astronomy. field theory, 

or set theory, have their own special subject. matters, such as heavenly 

hodies, fields, or sets, but that. logie is not about. any sort of thing in 

particular, and, therefore, that it is no more im the province of logic to 

make assertions to the effect that sets of such-and-such sorte exist, tian to 

make claims abont the existence of various types of planets, ‘The sitbject 
matter of a particular science, what the science is about, is supposed. to 

be determined by the range of the quantifiers in statements that formulate 

the assertions of the science; logic, however, is not supposed to have any 

special subject matter: there is neither any sort of thing that may not be 

quantified over, nor any sort that must be quantified over. 

I know of no perfectly effective reply to this view. But, in the first place, 

one should perhaps be suspicious of the identification of subject matter 
and range. (Is elementary arithmetic really not about addition, but only 
about numbers?) And then it might be said that logic is not so “topic- 
neutral” as it is often made out to be: it can easily be said to be about 
the notions of negation, conjunction, identity, and the notions expressed 

10 (Quine, 1969), p. 258.
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by “all” and “some,” among others (even though these notions are almost 

never quantified over). In the second place, unlike planet or field, the 

notions of set, class, property, concept, and relation, etc. have often been 

considered to be distinctively logical notions, probably for some such very 

simple reason as that anything whatsoever may belong to a set, have a 

property, or bear a relation. That some set- or relation-existence assertions 

are counted as logical truths in second- or higher-order systems does not, 

it seems to me, suffice to disqualify them as systems of logic, as a system 

would be disqualified if it classified as a truth of logic the existence of a 

planet with at least two satellites. Part 3 of the Begriffsschrift, for example, 

where the definition of the ancestral was first given, is as much a part of a 

treatise on logic as are the first two parts; the first occurrence of a second- 

order quantifier in the Begriffsschrifé no more disqualifies it from that point 

on as a work on logic than does the earlier use of the identity sign or the 

negation sign. Poincaré’s wisecrack, “La logique n’est plus stérile. Elle 

engendre la contradiction,” was cruel, perhaps, but not unfair. And many 

of us first learned about the ancestral and other matters from a work not 

unreasonably entitled Mathematical Logic. 

Another way in which second- but not first-order logic involves existen- 

tial and other sorts of set-theoretic assumptions is this: via Gédelization 

and because of the completeness theorem, elementary arithmetic (“Z”) is a 
suitable background for the development of a significant theory of validity 

of first-order formulas. A notion of “validity,” coextensive with the usual 

oue (truth of the universal closure in all interpretations), can be defined in 

the language of Z via GGdelization, and the validity of each valid formula 

{and no others) can then be proved in the theory, as can many general 

laws of validity. Moreover, the invalidity of many invalid sentences cau also 

be demonstrated. In contrast, not only is there no hope of proving the 

validity of each valid second-order sentence in elementary arithmetic, the 

notion of second-order validity cannot even be defined in the language of 

second-order arithmetic. We can effectively associate with each first-order 

sentence a statement of arithmetic of a particularly simple form that is 

true if and only if the first-order sentence is valid, but no such association 

is even remotely possible for second-order sentences.'! Worse, for many 

highly problematical statements of set theory (such as the continuum hy- 

pothesis) there exist second-order sentences that are valid if and only if 

those statements are true. Thus the metatheory of second-order logic is 

hopelessly set-theoretic, and the notion of second-order validity possesses 

many if not all of the epistemic debilities of the notion of set-theoretic truth. 

11 There is a precise sense in which the set of valid second-order sentences is staggeringly 

undecidable: it is not definable in nth-order arithmetic, for any n. Its “Lo6wenheim 

number” is also staggeringly high.
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On the other hand, although it is not hard to have some sympathy for the 

view that no notion of validity should be so extravagantly distant from the 

notion of proof, we should not forget that validity of a first-order sentence 

is just truth in all its interpretations. (The equation of first-order validity 

with provability effected by the completeness theorem would be miraculous 

if it weren’t so familiar.) And, as we shall see below, there are notions of 

(first-order) logical theory which, unlike validity, can be adequately treated 

of only in a background theory that is stronger than elementary arithmetic. 

While comparing set theory and second-order logic, we ought to remark 

in passing that the definability in set theory of the notion of second-order 

validity at once guarantees both the nonexistence of a reduction of the 

notion of set-theoretical truth to that of second-order validity and the ex- 

istence of a reduction in the opposite direction: no effective—indeed no 

set-theoretically definable—function that assigns formulas of second-order 

logic to sentences of set theory assigns second-order logical truths to all 

and only the truths of set theory (otherwise set-theoretical truth would be 

set-theoretically definable). However, the function that assigns to each for- 
mula of second-order logic the sentence of set theory that asserts that the 

formula is a second-order logical truth reduces second-order validity to set- 

theoretical truth. Thus each of the notions in the series (first-order validity, 

first-order arithmetical truth, second-order arithmetical truth, second-order 

validity, set-theoretical truth) can always be reduced via effective functions 

to later ones but never to earlier ones; the uotions are thus in order of 

increasing strength of one certain sort. 

Quine writes (66) that “the logic capable of enconipassing [the reduction 

of mathematics to logic] was logie inclusive of set. theory,” IF second-order 

logic is “inclusive of set. theory,” it would seem to have to count as valid 

some nontrivial theorems of set theory, and if, among those counted as valid, 

there were sone to the effect, that certain kinds of seta existed, second- 
order logic might seem to involve excessive ontological commitments in yelb 

another way. And it may easily seem that second-order logic involves such 

commitments. For “AXVr-~Xz2” and “AXVy(Xy + y C x)” are both valid 

and might be thought to assert that the null and power sets exist, just as 

all set theories say. 

It seems, however that there is a serious difficulty in supposing that any 

second-order sentence asserts, for example, that there is a set with no mem- 

bers; it seems that no second-order sentence asserts the same thing as any 

theorem of set theory, and hence that not even the smallest fragment of set 

theory is, in this sense, included in second-order logic. 

Consider the question “What does ‘Vz z = 2’ assert?” One may answer, 

“Why, that everything is identical with itself.” But if one answers thus, one 

must realize that one’s answer has a determinate sense only if the reference
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(range) of “everything” is fixed. A more cautious answer might be “Why, 

that everything in the domain (whatever the domain may be) is identical 

with itself.” If the natural numbers are in question “Vriyy < x” is false; 

if the rationals, true. (It seems to me that the ordinary Peano—Russell 

notation is less than ideal in not representing in a sufficiently vivid way 

the partial dependence of truth-value upon domain. In some ways it would 

be nicer if each quantifier were required to wear a subscript that indicated 

its range. It seems that the design of standard notation is influenced by 

the archaic view that logic is about some one fixed domain of objects or 

individuals, and that a logical truth is a sentence that is true no matter 

what relations on the domain are assigned to the predicate letters in the 

sentence.) 
Thus the correct answer to the question, “What does ‘IXVzr-—X7z’ as- 

sert?” would seem to be something like “That depends upon what the 

domain is supposed to be (and also upon how that domain is ‘given’ or 

‘described’). But, whatever the domain may be, ‘4XV2—Xz’ will assert 

that there is a subset of the domain to which none of its members belong.” 

It should now appear that no valid second-order sentence can assert the 

Same thing as any theorem of set theory. For a second-order sentence, 

whether valid or not, asserts something only with respect to an interpreta- 

tion, whose domain may not be taken to contain all sets. But if the sentence 

were to assert what any particular set-theoretic statement asserts, its do- 

main, it would seem, would have to contain all sets. “IX Vx Xx” is valid, 

but does not assert that there is a universal set, which, if ZF is correct, 

is false; rather, it. asserts that there is a subset of the domain (whichever 
sect that may be) to which evervthing in the domain belongs. The quan- 

tifiers in the first-order sentences that express the assertions of ZF range 
ever objects that do not together constitute a set. We have argued that 

the ranges of the variables in second-order sentences must be sets. If so, it 

is hard to see how auy second-order sentence could express or assert what 

any theorem of ZF does, or that second-order logic counts as valid some 

significant theorems of set theory. 

There is a clear sense, however, in which second-order logic can at least be 

, said to be committed to the assertion that an empty set exists. For since the 

empty set is a subset of the domain of every interpretation whatsoever and 

is the only set to which no members of any domain belong, “AXVr—Xz” 

may be taken to assert the existence of the empty set independently of any 

interpretation, and second-order logic may thus be regarded as committed 

to its existence too. Moreover, higher- and higher-order logics will be com- 

mitted in the same way to more and more sets.!” In the case of second-order 

12] owe this point to Oswaldo Chateaubriand.
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logic, though, the commitment is exceedingly modest; the null set is the 

only set to whose existence second-order logic can be said to be committed. 

One sense, already noted, in which the use of second- but not first-order 

logic commits one to the existence of sets in this: If L, is the first-order frag- 

ment of an interpreted second-order language Lz whose domain D contains 

no sets, then there are many logical truths of LZ; that claim the existence 

of objects in D with certain properties, but there are none that claim the 

existence of subsets of D; however, among the logical truths of Lz there are 

many such: for each predicate of Le with one free individual variable, there 

is a logical truth of Ly that asserts the existence of a subset of D that is 

the extension of the predicate. 

We have already seen definitions of validity and consequence for second- 

order sentences which bring out the obvious continuity of second-~ with first- 

order logic: validity and consequences are, as always, truth in all appropri- 

ate interpretations; the definition of an interpretation remains unchanged, 

as does the account of the conditions under which a first-order sentence is 

true in an interpretation. The account needs only to be supplemented with 

new clauses for the new sorts of sentence that arise in second-order logic. 

The supplementation may be given in separate clauses for each new sort of 

quantifier, which will be perfectly analogous to those for individual quan- 

tifiers. It may also be given in a general account of the conditions under 

which a sentence beginning with a quantifier is true in an interpretation, 

which applies uniformly to all sorts of quantifiers, and of which the clauses 

for sentences beginning with individual quantifiers are special cases. The 
existence of such a definition provides a strong reason for reckoning, sceond- 

order logie as logic. We come now to a second virtue of second-order logic, 

the well-known superiority of its “expressive” capacity. 

If we conjoin the first two “Peano postulates,” replace constauts by vari- 

ables, and existentially close, we obtain 

3238 (Wz z # S(x) AVaVy(S(2) = S(y) — x = y)) 

a sentence true in just those interpretations whose domains are (Dedekind) 

infinite. If we do the same for the induction postulate, we obtain 

AzdSV2o(X2z AVa(Xx + XS(x)) + Va Xz) 

which is true in just those interpretations with countable domains. Thus the 

notions of infinity and countability can be characterized (or “expressed” ) by 

second-order sentences, though not by first-order sentences (as the compact- 

ness and Skolem—Léwenheim theorems show). Although first-order logic’s 

expressive capacity is occasionally quite surprising, there are many interest- 

ing notions such as well-ordering, progression, ancestral, and identity that
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cannot be characterized in first-order logic (first-order logic without “=” 

in the case of identity!), but that can be characterized in second-. And the 

second-order characterizations of notions like these offer a way of regarding 
as inconsistent certain apparently inconsistent (infinite) sets of statements, 

each of whose finite subsets is consistent—a way that is not available in 

(compact) first-order logic. Four examples of such sets are {“Smith is an 

ancestor of Jones,” “Smith is not a parent of Jones,” “Smith is not a grand- 

parent of Jones,” ...}, {“It is not the case that there are infinitely many 

stars,” “There are at least two stars,” “There are at least three stars,” ...}, 

{“R is a well-ordering,” “a, Rao,” “a2Ra,,” “a3Rag,” ...}, and of course, 

{“x isa natural number,” “z is not zero,” “x is not the successor of zero,” 
fe! 

Compare these four sets with {“Not: there are at least three stars,” 

“Not: there are no stars,” “Not: there is exactly one star,” “Not: there are 

exactly two stars” } and {“F is a linear ordering,” “agRa,,” “a,Rap,” “Not: 

aoa” }. There is a translation into the notation of first-order logic under 
which the latter two sets of statements are formally inconsistent. Moreover, 

the translation, together with an explanation of the conditions under which 

the translations are true in interpretations, provides an important part 

of the explanation of the inconsistency of the two sets. One would have 

hoped that the same sort of thing might be possible for the four former 

sets. It seems impossible, on reflection, that all the statements in any 

one of these four sets should be true; it also seems that the reasons for 

this impossibility would have to be of the same character as those which 

explain the inconsistency of the latter two sets, the kind of reason it has 

always been the business of logic to give. That the logic taught in standard 

courses: demonstrably cannot. represent the inconsistency of our four sets 
of sentences shows not that they are consistent after all, but that not all 

(logical) inconsisteneies are representable by means of that logic. One may 

suspect that the second-order account of these inconsistencies is not the 

“correct” account and that perhaps some sort of infinitary logic might more 

accurately reflect the logical form of the sentences in question; in any event, 

second-order logic does not muff these cases altogether. In addition, then, to 

there being a “straightforward” extension of the definitions of valid sentence 

and consequence of from first- to second-order logic, another reason for 

regarding second-order logic as logic is that there are notions of a palpably 

logical character (ancestral, identity), which can be defined in second-order 

logic (but not first-) and which figure critically in inferences whose validity 

second-order logic (but not first-) can represent. 

Let us turn now to the failure of the completeness theorem for second- 

13 (Tarski, 1960), p. 410.
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order logic, which can hardly be regarded as one of second-order logic’s 

happier features. The existence of a sound and complete axiomatic proof 

procedure and the effectiveness of the notion of proof guarantee that the 

set of valid sentences of first-order logic is effectively generable; Church’s 

theorem shows that it is not effectively decidable. There are decidable frag- 

ments of first-order logic, e.g., monadic logic with identity, but decidability 

vanishes if even a single two-place letter is allowed in quantified sentences. 

However, in a 1919 paper called “Untersuchungen iiber die Axiome des 

Klassenkalktils ...”!4 Skolem showed that the class of monadic second- 

order sentences, in which only individual and one-place predicate variables 

and constants may occur, is also decidable. 

Discussing the contrast between classical first-order quantification theory 

and an extension of it containing “branching” quantifiers, Quine writes, 

... there is reason, and better reason, to feel that our previ- 

ous conception of quantification ...is not capriciously narrow. 

On the contrary, it determines an integrated domain of logical 

theory with bold and significant boundaries, designate it as we 

may. One manifestation of these boundaries is the following. 
The logic of quantification in its unsupplemented form admits 

of complete proof procedures for validity (90). 

The extension is then noted not to admit of complete proof procedures. 

A remarkable concurrence of diverse definitions of logical truth 

... Suggested to us that the logic of quantification as classically 

bounded is a solid and significant unity, Our present reflections 
ov branching quantification further confirm: this impression. [t 

inat. the limits of the classical logic of quantification, then, that 1 
would continue to draw the line between logic and mathematics 

(91). 

Completeness cannot by itself be a sufficient reason for regarding the line 

between first- and second-order logic as the line between logic and mathe- 

matics. We have seen, first, that monadic logic differs from full first-order 

logic on the score of decidability, every bit as significant a property as com- 

pleteness; we have further seen that this difference persists into second-order 

logic; and we have discussed at length the fact that we can extend to second- 

order sentences the definition of truth in an interpretation without change 

in the notation of an interpretation. How, then, can the semi-effectiveness 

of the set of first-order logical truths be thought to provide much of a rea- 

son for distinguishing logic from mathematics? Why completeness rather 

\4Reprinted in (Skolem, 1970), pp. 67-101, and esp. pp. 93-101.
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than decidability or interpretation? Of course there is a big difference be- 

tween second- and first-order logic; there are many. There are also big 

differences among various fragments of first-order logic, between second- 

and third-order logic, and between second-order logic and set theory. 

Quine does not state that the completeness theorem by itself provides 

sufficient reason for drawing the line, however. Another reason, or more 

of the reason, is given by what he calls the “remarkable concurrence of 

diverse definitions of logical truth.” One of these diverse definitions is the 

usual one: a sentence (or “schema,” in Quine’s terminology) is a logical 

truth if it is satisfied by every model, i.e., if it is true under all its inter- 

pretations. The other is that a sentence of a reasonably rich language is a 

logical truth if truths alone come of it by substitution of (open) sentences 
for its simple component sentences. The languages in question are inter- 

preted languages (otherwise the notion of truth of a sentence of a language, 

used in the definition, would be incomprehensible), and their grammar has 

been “standardized,” i.e., put into the notation of the first-order predicate 

calculus, without function signs or identity. As usual, “reasonably rich” has 

to do with arithmetic. For Quine’s purposes, a language may be taken to 

be reasonably rich if its ontology contains all natural numbers (or an iso- 

morphic copy) and its ideology contains a one-place predicate letter true of 

the natural numbers (or their copies) and two three-place predicate letters 

representing the sum and product operations. 

By appealing to a generalization of Laowenheim’s theorem that is due to 

Hilbert and Bernays—any satisfiable schema is satisfied by a model whose 

domain is the set. of natural numbers and whose predicates are assigned re- 

lations on natural nuinbers fat can be defined in arithmetic--- Quine proves 
a result. he calls remarkable: a schema is provable (in some standard system) 

if and only if it is valid (true in all its interpretations), if and only if every 

substitution instance of it in any given reasonably rich object language is 

true. Dually, a schema is irrefutable if and only if it is satisfiable (true in 

at least one interpretation), if and only if some substitution instance of it 
in the object language is true. (The equivalence of validity and provability, 

and of satisfiability and irrefutability, is guaranteed by the completeness 

theorem.) 
For the purposes of this theorem, Quine cannot count the identity sign 

as a logical symbol: “Jzdyrz = y” is a schema and also a sentence whose 
only substitution instance is itself (if “=” counts as a logical symbol), which 

is true (since there exist at least two objects in the domain of the object 

language), but which is not a logical truth according to the usual definition, 

for it is false in all one-membered interpretations. 

A second minor point about the definition is that it just does not work
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if the object language is not reasonably rich.> But the language of arith- 

metic, interpreted in the usual way, is certainly reasonably rich, or becomes 

so when “--” and “.” are supplanted by three-place predicate letters. 

The theorem may be remarkable, but it is not, I think, remarkably re- 

markable. A distinction can be drawn between two kinds of completeness 

theorem that can be proved about systems of logic: between weak and 

strong completeness theorems. A weak completeness theorem shows that a 

sentence is provable whenever it is valid; a strong theorem, that a sentence 

is provable from a set of sentences whenever it is a logical consequence of 

the set. Most of the usual proofs of the weak completeness of systems of 

first-order logic can be expanded quite easily to proofs of the strong com- 

pleteness of those systems. The strong completeness of first-order logic can 

be expressed: a set of sentences is satisfiable if it lacks a refutation. (A 
refutation of a set of sentences is a proof of the negation of a conjunction 

of members of the set.) 

It seems to me that the concurrence of the two accounts of the concept of 

logical truth cannot be called remarkably remarkable if their extensions to 

the relation of logical consequence do not concur. If there is a reasonably 

rich language and a set of sentences in that language which is satisfiable 

according to the usual account but which cannot be turned into a set of 

truths by (simultaneous, uniform) substitution of open sentences of the 

language, then the interest of the alternative definition of logical truth 

is somewhat diminished, for it is a definition that cannot be extended to 

kindred logical relations in the correct. manner. And, as it happens, there is 

asatisfiable set. of sentences of a reasonably rich language with this property. 

Proof is given in the appendix. 

The compactness theorem might be thought to provide a way out of 

the difficulty, Since a set. is satistinble if and only if all ita finite subsets 

are satisfiable, we might propose to define satisfiabitity by saying that a 
set is satistiable just in case every conjunction of its members has a true 

substitution instance. So there turn out to be three accounts of satisfiability 

of sets of sentences, the account just mentioned, truth in some one model, 

and irrefutability. 

But this concurrence is not in the least remarkable. The strong complete- 

ness theorem is remarkable; and the L6wenheim—Hilbert-Bernays theorem 

is remarkable. The concurrence of the two definitions of validity of sin- 

gle sentences—truth in all interpretations and truth of all instances—is 

remarkable too, because both definitions have some antecedent plausibility 

as correct ezplications of a pre-theoretical notion of logical validity (“truth 

regardless of what the nonlogical words mean”). The definition of satisfia- 

15See (Hinman, Kim, and Stich, 1968).
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bility of a set as “truth of some instance of each conjunction of schemata 

in the set” has no such plausibility as an account of satisfiability. It even 

sounds wrong. 

One ought then to be wary of the claims that the concurrence of diverse 

definitions of logical truth is remarkable and that this concurrence suggests 

that classical quantificational logic is a “solid and significant unity.” One of 

the definitions is a definition of logical truth only in virtue of a remarkable 

theorem about first-order logic; another cannot be generalized properly. 

Does classical quantificational logic then fail to be a significant and solid 

unity? Certainly not. 

Appendix 

We consider two first-order languages (without “=”), L and M, whose pred- 

icate letters are F',Z,S,P,T, and G. The variables of both languages range 

over the natural numbers, and both specify that F is true of all natural 

numbers, that Z is true of zero alone, and that S, P, and T are predicate 

letters for successor, sum, and product, respectively. L specifies that G is 

true of all natural numbers. L is a reasonably rich language. Let A be 

the set of Gédel number of truths of L. A is not definable in L. Finally, M 

specifies that G is true of all and only the members of A. 

Let B be the set of truths of M. B is satisfiable. But B cannot be turned 

into a set. of truths of L by substitution of open sentences of L for the 

predicate letters F, Z,S,P,T, and G. For, if it could, A would be recursive 

in the extensions in L of the open sentences substituted for Z, S, and G, 

aud hence A would be definable in L; for the extensions would certainly be 

definabie in L, and definable in L is closed under recursive in, 

Let “29)" abbreviate “the extension in L of the open sentence substi- 

tuted For 3,” The reason that A would be recursive in £(Z), E(S), E(G) 
is that, for each natural number n, 329%) ...2p-12n(ZZo A Sxor1 A... A 

Stn-1£n) is in B; ifn € A, then Vr921...2n-12n(Zz0 A Sxpz, A... A 

Stn_12n — Gry) is in By and if n ¢ A, then Vro71...2p-12n(ZZ0 A 

Szror, A... A Sin-12n —> ~GZ,y) is in B. Then, to determine whether 

n € A, we may use “oracles” for &(Z) and E(S) to find an (n + 1)-tuple 
Qo, @1,--.,@n—1,@, Of natural numbers such that ao is in E(Z) and the n 

pairs a9, @1,..., a0d an—1,@, are in &(S), and then use an oracle for E(G) 

to determine whether a,, is in E(G). ay isin E(G) iffn € A. The procedure 

is recursive in E(Z), E(S), E(G). 
We have thus shown that B is a satisfiable set of sentences of the rea- 

sonably rich language ZL which cannot be turned into a set of truths by 

(simultaneous, uniform) substitution of open sentences of L for the predi- 
cate letters of £ which occur in the sentences in B.
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To Be is to Be a Value of a 
Variable (or to Be Some Values 
of Some Variables) 

Are quantification and cross-reference in English well represented by the 

devices of standard logic, i.e., variables z, y, z, ..., the quantifiers V and J, 

the usual propositional connectives, and the equals sign? It’s my impression 

that many philosophers and logicians think that-—on the whole-—they are. 

In fact, I suspect that the following view of the relation between logic and 

quantificational and referential features of natural language is fairly widely 

held: 

No one (the view begins) can think that. the propositional calculus con- 

taius all there is to logic. Because of the presence in natural language of 

quantificational words like “all” and “some” and words used extensively 

in cross-reference, like “it,” “that,” and “who,” there is avast variety of 

forts of inference whose validity cannot be adeqiately treated without. the 
introduction of variables and qmauuitifiers, or other devices to do the same 
work. Thus everyone will concede that the predicate calenlus is at least a 

part of logic. 

Indispensable to cross-reference, lacking distinctive content, and pervad- 

ing thought and discourse, identity is without question a logical concept. 

Adding it to the predicate calculus significantly increases the number and 

variety of inferences susceptible of adequate logical treatment. 

And now (the view continues), once identity is added to the predicate 

Reprinted with the kind permission of the editors from the The Journal of Philosophy 
81 (1984): 430-449. 

I am grateful to Richard Cartwright, Helen Cartwright, James Higginbotham, J udith 

Thomson, and the editors of the Journal of Philosophy for helpful comments, criticism, 
and discussion, Helen Cartwright’s valuable unpublished Ph.D. dissertation, “Classes, 
Quantities, and Non-singular Reference” deals at length with many of the issues with 
which the present paper is concerned. 
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calculus, there would not appear to be all that many valid inferences whose 

validity has to do with cross-reference, quantification, and generalization 

which cannot be treated in a satisfactory way by means of the resulting 

system. It may be granted that there are certain valid inferences, involving 

so-called “analytic” connections, which cannot be handled in the predicate 

calculus with identity. But the validity of these inferences has nothing to 

do with quantification in natural language, and it may thus be doubted 

whether a logic that does nothing to explain their validity is thereby defi- 

cient. 

In any event (the view concludes), the variety of inferences that cannot 
be dealt with by first-order logic (with identity) is by no means as great or 

as interesting as the variety that can be handled by the predicate calculus, 

even without identity, but not by the propositional calculus. 

It is the conclusion of this view that I want to take exception to. (At one 

time I thought the whole view was probably true.) It seems to me that we 

really do not know whether there is much or little in the province of logic 

that the first-order predicate calculus with identity cannot treat. In the 

first part of this paper I shall present and discuss some data which suggest. 

that there may be rather more than might be supposed, that there may be 

an interesting variety both of quantificational and referential constructions 

in natural language that cannot be represented in standard logical notation 

and of valid inferences for whose validity these constructions are responsible. 

Whether quantification and cross-reference in English are well represented 

by standard logic seems to me to be an open question, at present. 

Several kinds of constructions, sentences, and inferences that cannot be 

symbolized in first-order logic are known. Perhaps the best known of these 

invelve numerical quantifiers such as “more,” “most,” and “as many,” e.g., 

the inference 

Most democrats are left-of-center. 

Most democrats dislike Reagan. 

Therefore, some who are left-of-center dislike Reagan. 

Another is the construction “For every A there is a B,” which, although 

it might appear to be symbolizable in first-order notation, cannot be so 

represented, for it is synonymous with “There are at least as many Bs as 

As.”! The construction is not of recent date; it is exemplified in a couplet 

from 1583 by one T. Watson:? 

For every pleasure that in love is found, 

A thousand woes and more therein abound. 

1Cf. (Boolos, 1981a). 
2See the entry for “for” in the Oxford English Dictionary.
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Jaakko Hintikka has offered a number of examples of sentences that can- 

not, he claims, be represented in first-order logic.? One of these is: 

Some relative of each villager and some relative of each towns- 

man hate each other. 

There appears to be a consensus regarding this sentence, viz., that if it is 

O.K., then it can be symbolized in standard first-order logic as follows: 

VaVysziw(Va ATy — Rex AN Rwy A Hew \ Hwz Az 4 w) 

I find this sentence marginally acceptable at best and not acceptable if not 
symbolizable as above. 

Jon Barwise has offered “The richer the country, the more powerful is one 

of its officials” as another example of a sentence that cannot be symbolized 

in first-order logic. However, since the sentence seems to me, at any rate, 

to mean “Whenever z is a richer country than y, then z has (at least) one 
official who is more powerful than any official of y,” it also seems to me to 

have a first-order symbolization: 

VaVy([Cz A Cy A xRy] > SwlwOr AV2(zOy — wP2z))) 

Are there better examples? 

Perhaps the best-known example of a sentence whose quantificational 

structure cannot be captured by means of first-order logic is the Geach 

Kaplan sentence, cited by W. V. Quine in Methods of Logic® and The Roots 

of Reference®: 

(A) Some crities admire only one another. 

(A) is supposed to mean that there is a collection of crities, each of whose 

members admires no one not in the collection, and none of whose members 

admires himself. If the domain of discourse is taken to consist of the critics 

and Azy to mean “z admires y,” then (A) can be symbolized by means of 

the second-order sentence: 

(B) AX(Ar Xe AVaVy[X2 A Ary 2 fy A Xy)) 

And since (B) is not equivalent to any first-order sentence, (A) cannot be 

correctly symbolized in first-order logic. 

3(Hintikka, 1974). 
4(Barwise, 1979). 
5(Quine, 1982). 
6 (Quine, 1982), Pp. 293, where “people” is substituted for “critics” in the example.
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The proof, due to David Kaplan, that (B) has no first-order equivalent is 

simple and exhibits an important technique in showing nonfirstorderizabil- 

ity: Substitute the formula (x = OV z = y+1) for Azy in (B), and observe 
that the result: 

(C) AX (Ar Xx AVvevy Xe A(z =OVe=yt+1) ar FyAXy)) 

is a sentence that is true in all nonstandard models of arithmetic but false 

in the standard model.” 

I must confess to a certain ambivalence regarding the Geach—Kaplan sen- 

tence. Although it usually strikes me as a quite acceptable sentence of 

English, it doesn’t invariably do so. (The “only” seems to want to precede 

the “admires” but the intended meaning of the sentence forces it to stay 

put.) I find that if the predicates in the example are changed in what one 

might have supposed to be an inessential way matters are improved slightly: 

Some computers communicate only with one another. 

Some Bostonians speak only to one another. 

Some critics are admired only by one another. 

I don’t have any idea why replacing the transitive verb “admires” by a verb 

or verb phrase taking an accompanying prepositional phrase helps matters, 

but it does seen to me to do so. 

I turn now from this brief survey of known examples of sentences not rep- 

resentable in first-order logic to examination of some other nonfirstorderiz- 

able sentences. Like tlie Geach- Kaplan sentence but unlike the sentences 

involving “most,” these sentences look as if they “ought to be” synibolizable 

in first-order logic. They coutain plural forms such as “are” and “them,” 

and it is in large measure because they contain these forms that they canmot 

be represented in first-order logic. 

Consider the following sentence, which, however, contains no plurals and 

which can be symbolized in first-order logic: 

(D) There is a horse that is faster than Zev and also faster than the 

sire of any horse that is slower than it. 

TTosee that (C) is true in any nonstandard model, take as X the set of all nonstandard 
elements of the model. X is nonempty, does not contain 0, hence contains only successors, 

and contains the immediate predecessor of any of its members. To see that it is false in 

the standard model, suppose that there is some suitable set X of natural numbers. X 

must be nonempty: if its least member = is 0, let y = 0; otherwise x = y + 1 for some 

y. Since x is least, y is not in X, and “Xy” is false. The nonfirstorderizability of “For 

every A there is a B” can be established in a similar way: Select variables z and y not 

found in any presumed first-order equivalent, substitute [(1) < «+5 A —dy3-y = (1)] 
for A(1), substitute [(1) <2+5A ay3-y = (1)] for B(1), and existentially quantify the 
result with respect to z; the result would be true in all nonstandard models but false in 

the standard model.
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Quantifying over horses, and using 0, s, >, and < for “Zev,” “the sire of,” 

“is faster than,” and “is slower than,” respectively, we may symbolize (D) 

in first-order logic: 

(E) Aa(z > OAVyly <2 x > s(y))) 

Sentence (F), however, cannot be symbolized in first-order logic: 

(F) There are some horses that are faster than Zev and also faster than 

the sire of any horse that is slower than them. 

(F) differs from (D) only in that some occurrences in (D) of the words “is,” 
“a.” “horse,” and “it” have been replaced by occurrences of their plural 

forms “are,” “some,” “horses,” and “them.” The content of (F) is given 

slightly more explicitly in: 

(G) There are some horses that are all faster than Zev and also faster 
than the sire of any horse that is slower than all of them. 

I take it that (F) and its variant (G) Gan be paraphrased: there is a 
nonempty collection (class, totality) X of horses, such that all members 

of X are faster than Zev and such that, whenever any horse is slower tlian 

all members of X, then all members of X are faster than the sire of that 

horse.’ (F) and (G) can be symbolized by means of the second-order sen- 

teuce (domain and denotations as above): 

(H) AX(ar Xr AVe( Xe 5 re > 0) AVYyNe(Xe oy <r) = Vr( Xr 

r > s(y)))) 

(EY) is equivalent. to uo first-order sentence; for it is false in the standiurd 

model of aritlinetic (under the obvious reinterpretation) but true in any 

nonstandard model, since the set of nonstandard elements of the model 

will always be a suitable value for X. Thus (F) cannot be symbolized in 

first-order logic.® 
(F) is not an especially pretty sentence. It is hard to understand, awk- 

ward, and contrived. But ugly or not, it is a perfectly grammatical sentence 

of English, which has, as far as I can see, the meaning given above and no 

other. Moreover, such faults as it has appear to be fully shared by (D). 

8Zev won the Kentucky Derby in 1923. 
°CF. (Boolos, 1984c). In an important unpublished Manuscript entitled “Plural Quan- 

tification,” Lauri Carlson has given “If some numbers all are natural numbers, one of 
them is the smallest of them,” as an example of a sentence that cannot be symbolized 
in the first-order predicate calculus. I have heard it claimed that this is not a proper 
sentence of English. Perhaps it is not, but “If there are some numbers all of which are 
natural numbers, then there is one of them that is smaller than all the others,” surely 
is. I am grateful to Irene Heim for calling this reference to my attention.
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Another example, shorter and perhaps more intelligible: 

(I) There are some gunslingers each of whom has shot the right foot of 

at least one of the others. 

(I) may be rendered in second-order logic: 

(J) AX Ga Xz AVe[Xz > dy(Xy Ay #2 A Bay))}) 

(Here we quantify over gunslingers and use B for “has shot the right foot 

of.”) By substituting = y+ 1 for Bry, we may easily see that (J) is 
equivalent to no first-order sentence. (Alternatively, we may note that 

if we negate (J), substitute y < x for Bry, and make some elementary 

transformations, we obtain 

VX (Ag Xx Ja[Xa AVy(XyAy <2 y=2))) 

a formula that expresses the least-number principle, which is one version of 

the principle of mathematical induction.) 

When used as a demonstrative pronoun, “that” is marked for number, 

as singular, but when used as a relative pronoun, as in (F), it is unmarked 

for number, ie., can be used in either the singular or plural. “Who,” 

“whom,” and “whose,” however, are unmarked for number when used either 

as relative or as interrogative pronouns. “Which” is also unmarked for 

number as a relative pronoun, but “which ones,” when it can be used, 

is strongly preferred to “which” as an interrogative plural form; it may 

well be that interrogative “which,” like demonstrative “that,” is marked as 

singular. 

It is the plural forms in (F) and (D, as well as the unmarkedness of 
“that” and “whom,” that are responsible for the nonfirstorderizability of 

these sentences. And by taking a cue from the well-known second-order 

definitions of “x is a standard natural number” and “z is an ancestor of 

y,” we can use plurals to define these notions in English (in terms of “zero” 

and “successor of” and in terms of “parent of,” respectively): 

(K) If there are some numbers of which the successor of any one of them 

is also one, then if zero is one of them, z is one of them. 

(L) If there are some persons of whom each parent of any one of them is 

also one, then if each parent of y is one of them, z is one of them; 

and someone is a parent of y. 

There are some comments on (K) and (L) to be made: (a) “which” and 
“whom” are used in these sentences as we have noticed they can be used, 

in the plural. (b) Instead of saying “of which the successor of any one of



60 I. Studies on Set Theory and the Nature of Logic 

them is also one,” one could as well say “of which the successor of any one 

of them is also one of them”: at least one “them” is needed to cross-refer 

to the “witnessing” values of “which”: this “them” is sometimes called 

a resumptive pronoun, and appears to be needed to capture the force of 

Vy(Xy — Xs(y)), with its two occurrences of X. (c) Like (F) and (1), (K) 
and (L) cannot be given correct first-order symbolizations, and thus the 

following (valid) inference cannot be represented in first-order logic: 

If there are some persons of whom each parent of any one of 

them is also one, then if each parent of Yolanda is one of them, 

Xavier is one of them; and someone is a parent of Yolanda. 

Every parent of someone red is blue. 

Every parent of someone blue is red. 

Yolanda is blue. 

Therefore, Xavier is either red or blue. 

(To see that this is a valid inference, consider the persons who are either red 

or blue. By the second and third premisses, every parent of any one of these 

persons is also one of them; and since Yolanda is blue, each of her parents 

is red, hence red or blue, and hence one of these persons. Thus Xavier is 

also one of them and thus either red or blue.) (d) The “there are”s in the 
antecedents of course express universal quantification, as does the “there 

is” in “If there is a logician present, he should leave.” (e) Like (F), (IX) 
and (L) are somewhat. ungainly, in part. because of the resumptive “them” 

they contain, but principally because of the complexity of the thoughts 

they express. However, they seem to be perfectly acceptable vehicles for 

the expressions of those very thoughts. And although they are indeed 

contrived they have been contrived to take advantage of referential devices 

thal are available in Hnglish the fact that they are so hardly begins to bear 

on the question whether they are nmgrammatical, unintelligible, or in some 

other way unacceptable. 

The snggestion that it is the complexity of the thoughts expressed in (K) 

and (L) that is responsible for their ungainliness rather than the presence 

of any construction not properly a part of English draws support from the 
ease and naturalness with which “z is identical to y” may be defined in the 
same style: if there are some things of which z is one, then y is one of them 
too. (Or: it is not the case that there are some things of which z is one, 
but of which y is not one.) 

Another example, of a different sort, is: 

(M) Each of the numbers in the sequence 1, 2,4, 8,... is greater 
than the sum of all the numbers in the sequence that precedes it. 

(M) states something true, which, using a mixture of logical and arithmeti-
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cal notation, we can express as follows: 

(N) VaVy(PrAy=ZX{z:PzAxz>z}>2>y) 

In (N), Sis asign for a function from sets of objects in a domain to objects 

in that domain and attaches to a variable and a formula to form a term 

in which that variable is bound. Signs for such functions are simply not 

part of the primitive vocabulary of first-order logic, although on occasion 

mention of functions of this type can be paraphrased away (e.g. “the least 

of the numbers z such that ...Z ...”). No one function sign of the ordinary 

sort can do full justice to “the sum of the numbers z such that ...z ...,” 

as can be seen by considering: 

(O} Although every power of 2 is 1 greater than the sum of all the 

powers of 2 that are smaller than it, not every power of 3 is 1 

greater than the sum of all the powers of 3 that are smaller than it. 

We certainly cannot symbolize (O) as: 

VaVy(P2 Ay = f(z) 3 2 =yt+1) AWaVy(Qzr Ay = f(z) 

x=ytl) 

and were we to try to improve matters by changing the second occurrence 

of f to an occurrence of (say) g, we should fail to depict the recurrence 

of the semantic primitive “the sum of ...” in the second conjunct of (O). 

Nor could any ordinary function sign express the dependencies that. may 

obtain between predicates contained in “...2...” and those found in the 

surrounding context. 

A short. and sweet cxample of the same type is: 

No number is the sum of all numbers. 

The last example for the moment of a sentence whose meanings cannot all 

be captured in first-order logic is one that is again found in Quine’s Meth- 

ods of Logic—but not, this time, in the final part of the book, “Glimpses 

Beyond.” It is the sentence (P): 

(P) Some of Fiorecchio’s men entered the building unaccompanied by 

anyone else. 

On Quine’s analysis of this sentence, it can be represented as da(FxA Ez A 

Vy[Azy > Fy]), where Fz, Ea, and Axy mean “zx was one of Fiorecchio’s 

men,” “x entered the building,” and “x was accompanied by y.”!° Quine 

10(Quine, 1982), p. 197. Quine uses K, F', and H instead of F, E, and A, respectively.
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states that “x was unaccompanied by anyone else” clearly has the intended 

meaning “Anyone accompanying x was one of Fiorecchio’s men.” 

Quine’s is certainly one reading this sentence bears: there are some 

Fiorecchians each of whom entered the building unaccompanied by any- 

one who wasn’t a Fiorecchian. But since (P) appears, at times, to mean 

something like: 

There were some men, see. 

They were all Fiorecchio’s men. 

They entered the building. 

And they weren’t accompanied by anyone else. 

it can also be understood to mean: there are some Fiorecchians each of 

whom entered the building unaccompanied by anyone who wasn’t one of 

them. On this stronger reading, there is no asymmetry between the predi- 

cates “x was one of Fiorecchio’s men” and “zx entered the building,” “else” 

means “not one of them,” and the whole can be symbolized by: 

AX(ar Xz AV2(X2e > Fr) AVa(X2 — Ex) A 
VaVy(Xa A Ary > Xy)) 

whose nonfirstorderizability can be seen in the usual way, by substituting 

x > 0 for both Fx and Ez and z = y+ 1 for Azy. 

It is because of these examples that I think that the question whether 

the first-order predicate calculus with identity adequately represeuts quan- 

tification, generalization, and cross-reference in natural lauguage ought to 

be regarded as a question that hasu’t yet been settled, 

Changing the subject. somewhat, [now want to look ata munber of 

sentences whose most natund representations are given by second-order 

formulas, but second-order fortitlas that turn out to be equivalent to first- 
order formulas. 

The sentence: 

(Q) There are some monuments in Italy of which no one tourist has 

seen all. 

might appear to require a second-order formula for its correct symboliza- 

tion, e.g., 

(R) AX (Ge Xx AV2[X2 4 Ma] A-dy[Ty AV2(X2 A Syz))) 

Of course, (Q) can be paraphrased: 

(S) No tourist has seen all the monuments in Italy. 

and this can be symbolized in first-order logic as: 

(T) ar Mz A -3y(Ty AVz(Ma — Syz)|
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which is equivalent to (R).1! But just as —7p can sometimes be a better 

symbolization than p of “It’s not the case that John didn’t go,” e.g., if p were 

used to symbolize “John went,” so (R) captures more of the quantificational 

structure of (Q) than does the equivalent (T). (Q) might appear to say that 

there is a (nonempty) collection of monuments in Italy and no tourist has 

seen every member of this collection; (S) doesn’t begin to hint at collections 

of monuments. Nevertheless, (Q) and (S) say the same thing, if any two 
sentences do, and (R) and (T) are, predictably enough, equivalent. 

Another example of the same “collapsing” phenomenon: 

(U) Mozart composed a number of works, and every tolerable opera 

with an Italian libretto is one of them. 

has the second-order symbolization: 

(V) AX (dr Xz AVa(X2 + Maz) AVa(Tr - Xz)) 

But as (U) says what (W) says: 

(W) Mozart composed a number of works, and every tolerable opera 

with an Italian libretto is a work that Mozart composed. 

so (V) is equivalent to the first-order 

(X) Agr Max AV2(Tx > Mrz) 

The construction “Every ...is one of them” bears watching; suffice it for 

now to observe that it is a perfectly ordinary English phrase. 

Collapses cau also occur unexpectedly. (Through a publisher's error) the 

sentence: 

(Y) Some critics admire one another and no one else. 

meaning (approximately), “There is a collection of critics, each of whom 

admires all and only the other members of the collection,” and possessing 

the second-order symbolization: 

(Z) AX (Ardy[Xz a XyAxz #y] AV2[Xz — Vy(Azy o {XyAy # 2})]) 

was claimed in the first American printing of the third edition of Methods 
of Logic’? to be a sentence incapable of first-order representation. But 

although (Z) might appear to be susceptible to the same kind of treatment 

11] take it that since (S) implies that there are some monuments in Italy, but does not 
imply that there are tourists, the conjunct Jz Mz is indispensable. 

12 (Quine, 1972), pp. 238-239.
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given out above, it was in fact observed by Kaplan to be equivalent to the 

first-order formula: 

(a) A2(Sy Azy AVz[(z = 2 V Azz) — Vy(Azy @ {(z=yV Azy)A 

y # z}))) 

Consider now the sentence (b): 

(b) There are some sets that are such that no one of them is a 
member of itself and also such that every set that is not a 

member of itself is one of them. (Alternatively, There are some 

sets, no one of which is a member of itself, and of which every 

set that is not a member of itself is one.) 

By quantifying over sets and abbreviating “is a member of” by €, we may 

use a second-order formula to symbolize (b): 

() AX(Ar Xz AVz|Xz > 72 € a] AVz[-0 € x > Xz)) 

(c) is obviously equivalent to (d): 

(d) AXA€r Xr Avz[Xz - 72 € z]) 

Let us notice that (d) immediately implies Jr-z € xr. Conversely, if drar € 
x holds, then there is at least one set in the totality X of sets that are not 

members of themselves, and X witnesses the truth of (d). Thus (d) turns 
out to be equivalent to Sr—r € wr, the syimbolization of au obvious truth 

concerning sets. 
(The worry over Russell's paradox which the reader uny be experiencing 

at this point: may be dispelled by the observation that logiend equivalence 

is a model-theoretic notion, the “sets” just referred to omy be taken to be 

elements of the domain of an arbitrary model, and the “totalities,” subsets 

of the domain of the model.) 
In view of the near-vacuity of (b) and the fact that instances of the 

second-order comprehension schema 1XVz[Xx «+ A(x)}, including (e): 

(e:) AXV2[Xz 4 72 Ez] 

are logically valid under the standard semantics for second-order logic, the 

collapse of (d) is not at all surprising. The rendering (d) of (b) is consid- 
erably more faithful to the semantic structure of (b) than is Ja-a € 7, 
however, and (b) is more nearly synonymous with (d) than with Iz-2 € z. 

But can we use (c) or (d) to represent (b) at all? May we use second-order 
formulas like (c), (d), or (e) to make assertions about all sets? 

Let’s consider (e), which is slightly simpler than (c) or (d). (e) would 
appear to say that there is a totality or collection X containing all and
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only those sets x which are not members of themselves, Are we not here 

one the brink of a well-known abyss? Does not acceptance of the valid 

(e), understood as quantifying over all sets (with € taken to have its usual 

meaning), commit us to the existence of a set whose members are all and 

only those sets which are not members of themselves? 

There are a number of ways out of this difficulty. One way, which I no 

longer favor, is to regard it as illegitimate to use a second-order formula 

when the objects over which the individual variables in the formula range 

do not form a set (just as it is illegitimate to use a first-order formula when 

there are no objects over which they range). This stipulation keeps all 

instances of the comprehension principle as logical truths; it also enables 

one always to read the formula Xx as meaning that x is a member of the 

set X, 

The principal drawback of this way out is that there are certain assertions 

about sets that we wish to make, which certainly cannot be made by means 

of a first-order formula—perhaps to claim that there is a “totality” or “col- 

lection” containing all and only the sets that do not contain themselves is 

to attempt to make one of these assertions—but which, it appears, could 

be expressed by means of a second-order formula if only it were permissible 

so to express them. To declare it illegitimate to use second-order formulas 

in discourse about all sets deprives second-order logic of its utility in an 

area in which it might have been expected to be of considerable value. 

For example, the principle of set-theoretic induction and the separation 

(Aussonderung) principle virtually cry out for second-order formulation, as: 

(f) WX (ar Xa — dr[Xa AVy(y € « > 3Xy))) 

and 

(2) VXV2dyVe(2 € y & [2 € z A X2a}) 

respectively. It is, I think, clear that our decision to rest content with a 

set theory formulated in the first-order predicate calculus with identity, in 

which (f) and (g) are not even well-formed, must be regarded as a compro- 

mise, as falling short of saying all that we might hope to say. Whatever our 

reasons for adopting Zermelo—Fraenkel set theory in its usual formulation 

may be, we accept this theory because we accept a stronger theory consist- 

ing of a finite number of principles, among them some for whose complete 

expression second-order formulas are required.14 We ought to be able to 

formulate a theory that reflects our beliefs. 

13] took this view in Article 3 in this volume. 
14Cf, the remarks about “full expression” and “part of the content” of various notions 

in Article 1 above.
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We of course also wish to maintain such second-claims as are made by 

eg., AXVz[Xz 72 € a]; if we are to utilize second-order logic in dis- 
course about all sets, these comprehension principles must remain among 

the asserted statements. Nor do we want to take the second-order variables 

as ranging over some set-like objects, sometimes called “classes,” which 

have members, but are not themselves members of other sets, supposedly 

because they are “too big” to be sets. Set theory is supposed to be a theory 

about all set-like objects. 

How then can we legitimately claim that such (closed) formulas as IXVz 

[Xx «+ 72 € a], (f), and (g) express truths, without introducing classes 

(set-like non-sets) into set theory and without assuming that the individual 

variables do not in fact range over all the sets there really are? 

There is a simple answer. Abandon, if one ever had it, the idea that use 

of plural forms must always be understood to commit one to the existence 

of sets (or “classes,” “collections,” or “totalities”) of those things to which 

the corresponding singular forms apply. The idea is untenable in general 

in any event: There are some sets of which every set that is not a member 

of itself is one, but there is no set of which every set that is not a member 

of itself is a member, as the reader, understanding English and knowing 

some set theory, is doubtless prepared to agree. Then, using the plural 

forms that are available in one’s mother’s tongue, translate the formulas 

into that tongue and see that the resulting English (or whatever) seutences 

express true statements. The sentences that arise in this way will lack the 

trenchancy of memorable aphorisms, but they will be proper sentences of 

English which, with a modicum of difficulty, can be understood and seen 

to say something true, 

Applying this suggestion to: 

(bh) AX (he Xe AWe[ Xa > (ner Vv dylye A Ny Ag # a)f) 

which is equivalent to (f), we might obtain: 

(i) It is not the case that there are some sets each of which either 

contains itself or contains at least one of the others. 

From Aussonderung we might perhaps get: 

(j) It is not the case that there are some sets that are such that it 
is not the case that for any set z there is a set y such that for 

any set x, x is a member of y if and only if x is a member of z 

and also one of them. 

or, far more perspicuously, 

(k) -— there are some sets such that “VzdyVa[z € y + 

(z € z Az is one of them)|
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(k) is of course neither an English sentence nor a well-formed formula of 

any reputable formalism—for that matter neither is (j), which contains the 

(non-English) variables x, y, and z—but is readily understood by anyone 

who understands both English and the first-order language of set theory. 

It would be somewhat laborious to produce a fully Englished version of 

(g), but the labor involved would be mainly due to the sequence VziyVz of 

first-order quantifiers that (g) contains, (j) and (k) are actually not quite 

right; properly they have the meaning: 

(1) 7X (Ae Xe A WedyVel2 € yo (@& € zA X2))) 

whereas the full Aussonderung principle omits the nonemptiness condition 

oa Xx; to get the full content in English of Aussonderung, however, we need 

only conjoin “and there is a set with no members” to (j) and dyVze72 € y 

to (k). This observation calls to our attention two small matters connected 

with plurals which must be taken up sooner or later. 

Suppose that there is exactly one Cheerio in the bowl before me. Is it 

true to say that there are some Cheerios in the bowl? My view is no, not 

really, I guess not, but say what you like, it doesn’t matter very much. 

Throughout this paper I have made the customary logician’s assumption, 

which eliminates needless verbiage, that the use of plural forms does not 

commit one to the existence of two or more things of the kind in question. 

On the side of literalness, however, I have assumed that use of such 

phrases as “some gunslingers” in “There are some gunslingers each of whom 

has either shot his own right foot or shot the right foot of at least one of 

the others” does coimmit one to as one might say ~ a nonempty class of 

gunslingers, but uot to a class containing two or more of them. Thus I 

suppose the sentence to be true in case there is exactly one gunslinger, who 

has shot his own right foot, but to be false if there aren’t any gunslingers. 

It is this second assumption that is responsible for the ubiquitous 42 Xz in 

the formulas above. 

Translation will be difficult from any logical formalism into a language 

such as English, which lacks a large set of devices for expressing cross- 

reference. And since plural pronouns like “them,” although sometimes used 

as English analogues of second-order variables, much more frequently do 

the work of individual variables, translation from a second-order formalism 

containing infinitely many variables of both sorts into idiomatic, flowing, 

and easily understood English will be impossible nearly all of the time. My 

present point is that, in the cases of interest to us, the things we would like 

to say can be said, if not with Austinian or Austenian grace. 

It is, moreover, clear that if English were augmented with various sub- 

scripted pronouns, such as “itz,” “thatz,” “ity,” ..., “them,” “thatx,”
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“themy-,” ..., then any second-order formula!> whose individual variables 

are understood to range over all sets could be translated into the augmented 

language, as follows: Translate Vv as “it, is one of themy,” v € v’ as “ity 

is a member of it,,” v = v' as “ity is identical with it, ,” A as “and,” — as 

“not,” and, where F* is the translation of F, translate du F' as “there is a 

set that, is such that F*.” 

The clause for formulas 3V F is not quite so straightforward, because of 

the difficulty about nonemptiness mentioned above. It runs as follows: Let 

F* be the translation of F, and let F'** be the translation of the result of 

substituting an occurrence of sv = v for each occurrence of Vv in F. Then 

translate JV F as “either there are some sets thaty are such that F'*, or 
F**. 

For example, (Xz « 7 € x) comes out as “It, is one of them, iff it, is 

not a member of itself”; Vz(Xz «+ 7x € x) as “Every set is such that it is 

one of them, iff it is not a member of itself”; and IXVa(Xz + 72 € 2) as 
“Either there are some sets that are such that every set is one of them iff 

it is not a member of itself or every set is a member of itself.” (We have, 
of course, improved the translations as we went along.) 

I want to emphasize that the addition to English of operators “it(),” 

“that,),” “them,,” etc. or variables “x,” “X,” “y,” etc. is not couteniplated 

here. The “x” of “it,” is not a variable but an index, analogous to “latter” 

in “the latter,” or “seventeen” in “party of the seventeenth part”; “X” and 

“c” in “them,” and “it,” no more have ranges or domains than does “17” 

in “ay7.” We could just as well have translated the language of second- 

order set. theory iuto English augmented with pronouns such as “ity” 

“theiniazg,” ete. or an claboration of the “former” /“atter"™ usage. Note 

also that such augmentation will be needed for the translation into English 

of the language of first-order set theory as well, 

Charles Parsons has pointed out to me that although second-order exis- 

tential quantifiers can be rendered in the same manner we have described, it 

is curious that there appears to be no nonartificial way to translate second- 

order universal quantifiers, that the translation of VX must be given indi- 

rectly, via its equivalence with -1X-. Because our translation “manual” 

relies so heavily on the phrases “there is a {singular count noun] that is 
such that ...it...” and “there are some [plural count noun] that are such 
that ...they ...,” the logical grammar of the construction these phrases 

exemplify is worth looking at. 

Of course, in ordinary speech, the construction “that is/are such that 
..-it/they ...” is almost certain to be eliminable: the content of a sentence 

15We assume that no quantifier in any formula occurs vacuously or in the scope of 
another quantifier with the same variable; every formula is equivalent to some formula 
satisfying this condition.
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containing it can nearly always be conveyed in a much shorter sentence. 

But the difference between the two “that”s bears notice. The second one, 

following “such,” is a “that” like the one found in oblique contexts and may 

be—as Donald Davidson has suggested that the “that” of indirect discourse 

is—a kind of demonstrative, used on an occasion to point to a subsequent 

utterance of an (open) sentence; the first “that,” following the count noun 

and more frequently elided than the second, is no demonstrative, but a 

relative pronoun used to bind the “it” or “they” in the open sentence after 

“such that.” Thus the first but not the second “that” works rather like 

the variable immediately following an 3, binding occurrences of that same 

variable in a subsequent open formula. Whether the preceding count noun 

is singular or plural appears to make no difference to the quantificational 

role of the first “that”; as we have observed, “that” is not marked for 

number and can serve to bind either “it” or “they.” 

Whether any such second-order formula of the sort we have been con- 

sidering can be translated into intelligible unaugmented English is not an 

interesting question, and I shall leave it unanswered. Since English aug- 

mented in the manner J have described is intelligible to any native speaker 

who understands the term of art “party of the seventeenth part,” I shall 

assume that devices like “it,” and “themx” are available in the language 

we use, 

I take it, then, that there is a coherent and intelligible way of interpreting 

such second-order formulas as (e), (f), and (g) even when the first-order 
variables in these formulas are construed as ranging over all sets or set-like 

objects there are. The interpretation is given by translating them into the 

language we speak; the translations of (e), (f), and (g) are sentences we 
understand; and we can see that they express statements that we regard 

as truc: after all, we do think it false that there are some sets each of 

which either contains itself or contains one of the others, and, once we cut 

through the verbiage, we do find it trivial that there are some sets none of 

which is a member of itself and of which each set that is not a member of 

itself is one. It cannot seriously be maintained that we do not understand 

these statements (unless of course we really don’t understand them, as we 

wouldn’t if, e.g., we knew nothing at all about set theory) or that any 

lack of clarity that attaches to them has anything to do with the plural 

forms found in the sentences expressing them. The language in which we 

think and speak provides the constructions and turns of phrase by means 

of which the meanings of these formulas may be explained in a completely 

intelligible way. 

It may be suggested that sentences like (i) are intelligible, but only be- 
cause we antecedently understand statements about collections, totalities, 

or sets, and that these sentences are to be analyzed as claims about the
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existence of certain collections, etc. Thus “There are some gunslingers ...” 

is to be analyzed as the claim that there is a collection of gunslingers ... 1® 

The suggestion may arise from the thought that any precise and adequate 

semantics for natural language must be interpretable in set theory (with 

individuals). How else, one may wonder, is one to give an account of the 

semantics of plurals? 

One should not confuse the question whether certain sentences of our lan- 

guage containing plurals are intelligible with the question whether one can 

give a semantic theory for those sentences, In view of the work of Tarski, it 

should not automatically be expected that we can give an adequate seman- 

tics for English—whatever that might be—in English. Nothing whatever 

about the intelligibility of those sentences would follow from the fact that 

a systematic semantics for them cannot be given in set theory. After all, 

the semantics of the language of ZF itself cannot be given in ZF. 

In any event, as we have noticed, there are certain sentences that cannot 

be analyzed as expressing statements about collections in the manner sug- 

gested, e.g., “There are some sets that are self-identical, and every set that 

is not a member of itself is one of them.” That sentence says something 

trivially true; but the sentence “There is a collection of sets that are self- 

identical, and every set that is not a member of itself is a member of this 

collection,” which is supposed to make its meaning explicit, says something 

false. 

I want now to consider the claim that a sentence of English like “There 

are some sets of which every set: that is not a member of itself is one” is 

actually false, on the ground that this sentence dors entail the existence 

of an overly large set, one that contains all sets that are not members of 

thenselves. 

The claim that this sentence entails the existence of this large set strikes 
me as most implausible: there may be a set. containing all tracks, but that. 

there is certainly doesn’t seem to follow from the truth of “There are some 

trucks of which every truck is one.” Moreover, and more importantly, the 

claim conflicts with a strong intuition, which I for one am loath to abandon, 

about the meaning of English sentences of the form “There are some As of 

which every B is one,” viz. that any sentence of this form means the same 

thing as the corresponding sentence of the form “There are some As and 
every B is an A.” If so, the sentence of the previous paragraph is simply 

16In a similar vein, Lauri Carlson writes, “I take such observations as a sufficient 
motivation for construing all plural quantifier phrases as quantifiers over arbitrary sets 
[Italics Carlson’s] of those objects which form the range of the corresponding singular 
quantifier phrases.” (Carlson, 1982) is a recent interesting article in which this claim 
is made once again. He is by no means the sole linguist with this belief. Carlson does 
not face the question of what is to be done when the corresponding singular quantifier 
phrase is “some set.”
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synonymous with the trivial truth “There are some sets and every set that 

is not a member of itself is a set,” and therefore does not entail the existence 

of an overly large set. 

Two worries of a different kind are that the construction “there are some 

[plural count noun] that are such that ...they ...” is unintelligible if the 

individuals in question do not form a “surveyable” set and that our un- 

derstanding of this construction does not justify acceptance of full compre- 

hension. [ cannot deal with these worries here; I shall only remark that it 

seems likely that not much of ordinary, first-order, set theory would survive 

should either worry prove correct. 

We have now arrived at the following view: Second-order formulas in 

which the individual variables are taken as ranging over all sets can be in- 

telligibly interpreted by means of constructions available to us in a language 

we already understand; these constructions do not themselves need to be 

understood as quantifying over any sort of “big” objects which have mem- 

bers and which “would be” sets “but for” their size. There can thus be no 

objection on the score of unintelligibility or of the introduction of unwanted 

objects to our regarding ZF as more suitably formulated as a finitely ax- 

iomatized second-order theory than as an infinitely axiomatized first-order 

theory, whose axioms are the instances of a finite number of schemata, as 

is usual. (Of course, in the presence of the usual other first-order axioms of 

ZF, i.e., the axioms of extensionality, foundation, pairing, power set, union, 

infinity, and choice, only the one second-order axiom, Replacement: 

VX (VaVyV2[X (a, y) A X(z, 2) > y = 2]  Vudevyly € vo 

dr(z € uA X(z,y))]) 
woukl be needed.) The great virtue of such a second-order forinulation 

of ZF is that it would permit us to express as single sentences and take 
as axioms of the theory certain general principles that we actually believe. 

The underlying logic of such a formulation would be any standard axiomatic 

system of second-order logic, e.g., the system indicated, if not given with 

perfect precision, in Frege’s Begriffsschrift.1" The logic would deliver the 

comprehension principles AXVz[Xz «+ A(x)| (which are needed for the 

derivation of the infinitely many axioms of the first-order version of ZF from 

the finitely many second-order axioms) either through explicit postulation 

of the comprehension schema, as in Joel Robbin’s Mathematical Logic,'® or 

via a rule of substitution, like the rule given in Chapter 5 of Alonzo Church’s 

17 (Frege, 1879). 
18(Robbin, 1969). Sec. 56 of Robbin’s book contains a presentation of the version of 

set theory here advocated. It is noted there that this theory is “essentially the same 
as” Morse-Kelley set theory (MK), but the difficulties of interpretation faced either by 

MK or by a set theory in the ZF family for which the underlying logic is (axiomatic) 

second-order logic are not discussed.
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Introduction! or the one implicit in the Begriffsschrift. The interpretation 
of this version of ZF would be given in a manner similar to that in which 

the interpretation of the usual formulation of ZF is given, by translation 

into English in the manner previously described. 

Entities are not to be multiplied beyond necessity. One might doubt, for 

example, that there is such a thing as the set of Cheerios m the (other) 

bowl on the table. There are, of course, quite a lot of Cheerios in the bowl, 

well over two hundred of them. But is there, in addition to the Cheerios, 

also a set of them all? And what about the > 10© subsets of that set? 

(And don’t forget the sets of sets of Cheerios in the bowl.) It is haywire to 
think that when you have some Cheerios, you are eating a set—what you're 

doing is: eating THE CHEERIOS. Maybe there are some reasons for thinking 

there is such a set—there are, after all, > 10° ways to divide the Cheerios 

into two portions—but it doesn’t follow just from the fact that there are 

some Cheerios in the bow] that, as some who theorize about the semantics 

of plurals would have it, there is also a set of them all. 

The lesson to be drawn from the foregoing reflections on plurals and 

second-order logic is that neither the use of plurals nor the employment 

of second-order logic commits us to the existence of extra items beyond 

those to which we are already committed. We need not construe second- 

order quantifiers as ranging over anything other than the objects over which 

our first-order quantifiers range, and, in the absence of other reasous for 

thinking so, we need not think that there are collections of (say) Cheerios. 

in addition to the Cheerios. Ontological commitment is carried by our first 

order quantifiers; a second-order quantifier needn't be taken to be a kind of 

first-order quantifier in disguise, having items of a special kind, collections, 

in its range. Tt is not as though there were two sorta of things in thre 

world, indivistuals, and collections of them, which our first- and second- 

order variables, respectively, range over and which ouv singular aud plural 

forms, respectively, denote. There are, rather, two (at least) different ways 

of referring to the same things, among which there may well be many, many 

collections. 
Leibniz once said, “Whatever is, is one.” 

Russell replied, “And whatever are, are many.” 7° 

19(Church, 1956). 
20(Russell, 1982), p. 132.
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Nominalist Platonism 

Frege’s definition of “x is an ancestor of y” is: xz is in every class that con- 

tains y’s parents and also contains the parents of any member. A philoso- 

pher whom [ shall call N. once asked me, “Do you mean to say that because 

I believe that Napoleon was not one of my ancestors, I am committed to 

such philosophically dubious entities as classes?” Although it is certain that 

Frege’s definition, whose logical utility, fruitfulness, and interest have been 

established beyond doubt, cannot be dismissed for such an utterly crazy 

reason, it is not at all easy to see what a good answer to N.’s question 

might be. 

The germ of an answer may lie in the observation that there are sentences 

containing plural forms such as “are” and “them” whose logical forms look 

as though they ought to be representable in first-order logic, but which 

cannot. be so represented, because of the plural forms the sentences contain. 

An exanple is “There are some horses all of which are faster than Zev and 

all of which are faster than the sire of any horse that is slower than all of 
them.” | In contrast, the sentence “There is a horse that is faster than Zev 

Reprinted with the kind permission of the editors from The Philosophical Review 94 

(1985): 327-344. Copyright ©1985 Cornell University. 
I want to thank Martin Davis, Michael Dummett, Harold Hodes, David Lewis, John 

McDowell, Robert Stalnaker, Linda Wetzel, and the referee for helpful comments. This 

paper was written while I was on a Fellowship for Independent Study and Research from 

the National Endowment for the Humanities. 

1(Boolos, 1984c). To see that this sentence cannot be symbolized by a first-order for- 

mula, first substitute “number,” “greater,” “zero,” “successor,” and “slower” for “horse,” 

“faster,” “Zev,” “sire,” and “smaller,” obtaining “There are some numbers all of which 

are greater than zero and all of which are also greater than the successor of any number 

that is smaller than all of them,” and then notice that any correct symbolization of the 

latter sentence (using a constant O for “zero,” a function sign s for “successor,” and 

relation letters > and < for “greater than” and “less than”) is a sentence true in a model 

M of the set of all first-order truths of arithmetic if and only if M is non-standard, that 

is, not isomorphic to the standard model of arithmetic. Since non-standard models exist, 

and since (trivially) every first-order sentence has the same truth-value in any model of 

the set of all first-order truths of arithmetic as in any other, no such correct symbolization 

73
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and that is faster than the sire of any horse that is slower than it,” which 

differs from the other in containing singular forms in place of plural, can 

be symbolized in the notation of first order logic: 

da(az > OA Vy(y <2 x > sy)). 

If “some” is understood to mean “one or more” this sentence is stronger 

than the former: the horses of whose existence the former informs us are 

guaranteed to be faster than the sire of y only if y is slower than all of 

them; unlike the latter, it does not imply that there is any one horse z that 

is faster than the sire of y whenever y is slower than z. 

Geach and Kaplan gave an earlier example of a nonfirstorderizable sen- 

tence, that is, a sentence not expressible in first-order notation, containing 

no numerical or quasinumerical words like “more” or “most”: some critics 

admire only one another. This sentence is supposed to mean: there is a 

non-empty class of critics, each of whose members admires someone only 

if that person is someone else in the class. The meaning can also be put: 

there are some critics each of whom admires a person only if that person is 

one of them and none of whom admires himself. If we explain the meaning 

of the Geach-Kaplan sentence in this second way, we do not, it appears, 

quantify over classes of critics. We can also put the meaning: there are 

sone critics wlio are such that (a) each of them admires a person only if 

he is one of them and (b) none of them admires himsclf, 

Here then is an answer to N.'s question: in a similar vein, we thay sav 

that Napoleon is not an ancestor of N. because either vo one is a parent 

of N. or there are some people who are such that. (a) each of N's parents 
is one of them, (b) each parent. of any one of them is also one of them, 

and (¢) Napofeon is not one of them. The response that this definition 

comuiits one to such philosophically dubions entities as classes naw seems 

wholly out of place; classes aren’t mentioned anywhere in the paraphrase. 

By using plural forms in English quantifiers and employing the construction 

“one of them” we are able to define ancestor of in a way that preserves the 
essence of Frege’s idea and, at least at first blush, avoids commitment to 
such “philosophically dubious entities” as classes: x is an ancestor of y if 

and only if (I) someone is a parent of y and (II) it is not the case than there 
are some people who are such that (a) each parent of y is one of them, (b) 
each parent of any one of them is also one of them, and (c) z is not one 

of them.? This definition may be symbolized by means of a second-order 

can be a first-order sentence. For an account of non-standard models of arithmetic, see 
for example, (Boolos and Jeffrey, 1985), ch. 17. 

2Since (II) is true if (I) is false and y alone exists, (I) is indispensable to the definition.
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formula: 

dw wPy A aAX (dw Xw A Vu(wPy = Xw) AVwV2(wPz A Xz 
Xw)A7Xz), 

which is equivalent to the familiar: 

VX (Vw(wPy + Xw) AVwVz(wPz A Xz + Xw) > Xz) 

The first question I want to discuss is whether the use of expressions like 

“there are some people who are such that ... they ...” or monadic second- 

order quantifiers like “4X” does in fact commit one to classes, despite 

appearances. The Geach—Kaplan sentence suggests that we consider the 

following case. Suppose that I assert that there are some critics, none of 

whom admires himself, and each of whom admires someone only if that 

person is one of those critics. Suppose further that I write down, with 

assertive intent: 

5X (Ar Xx AVaVy(X2 Ax admires y > x # yA XY)). 

(The first-order variables are intended to range over all critics.) 

In doing either of these things have [ committed myself to the existence 

of a class, of critics, none of whom etc.? 

Let us deal first with the formula. On the usual treatment of second- 

order formulae, I would have committed myself to the existence of such a 

class. The formula is normally read and understood to mean, “There is a 

non-empty class X of critics each of whose members z admires a person y 

only if x is other than y and y in in the class X.” If that is what the formula 

mteans, then in writing it down with assertive intent, I would, I suppose, 

have committed myself to the existence of a class as thoroughly as I would 

have committed uryself had I simply said “There is a uon-crupty class X 

ete.” But suppose that the forniula isn’t to be understood as meaning 

“There is a non-empty class X etc.” Does my writing it down then commit 

me to the existence of a class? The answer, obviously, is that whether or not 

it does depends on what the formula is supposed to mean: if the formula 

Means something that does not commit one to classes, then it doesn’t; if 

something that does, then it does. 

Suppose now that it is said that the formula means: there are some critics, 

none of whom admires himself, and each of whom admires someone only if 

that person is one of those critics. On this understanding, interpretation, 

or reading of it, does the formula commit one to classes? 

Before attempting to answer this question, let us note that there is a 

systematic way to utilize plural forms to translate into English all formulae 

of second-order logic in which the second-order variables are monadic.* 

3In many of the most important applications of second-order logic, a pairing function
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Some features of this translation scheme are that it is an extension of the 

usual scheme for translating first-order formulae into English, and thus 

respects the propositional connectives, first-order quantifiers dz, and the 

equals-sign; that atomic formulae Xy are translated (more or less) as “it is 

one of them” and that second-order quantifiers 1X are translated (roughly) 

as “there are some objects that are such that ...” As in the translation of 

first-order formulae such as Jrdydz(xLyAyLzAzLz), some devices like “the 

former,” “the latter,” “party of the third part,” must be employed to do the 

cross-referencing done in a formal language by the identity and difference 

of variables; one convenient way to accomplish this is to introduce into 

English pronouns such as “itz,” “themy,” “that,” and “thatz,” to which 

variables of the formal language have been attached as subscripts. On 

this scheme, the translation of any instance of the comprehension principle 

of second-order logic is a truism. Thus the translation of the notorious 

AXVa(Xz © « is not a member of x), where the first-order variables are 

taken to range over absolutely all sets is “(If there is a set that is not a 

member of itself, then) there are some sets that are such that each set that 

is not a member of itself is one of them and each set that is one of them is 

not a member of itself,” as vacuous an assertion about sets as can be made, 

as desired. I have set out the details of the translation scheme elsewhere 

and will not repeat them here. On this scheme, “There are some critics, 

none of whom etc.” turns out to be an abbreviation of the translation of 

the formula: 4X (Sr Xa AVaVy(Xa Ar adinires y > 7 # yA Ny)). 

We are thus thrown back to answering the first question: does asserting 

“There are some critics, none of whom ete.” conmuit. one to the existence 

of a. non-empty class of crities? The difficulty with this question is that the 

ground cules for answering it appear to have been laid down, by Professor 
Quine. 

According to Quine, to determine whether or not. “There are some crities 

etc.” commits us to classes, we translate it into logical notation, and then 

see whether the variables contained in the translation must be supposed to 
range over classes, to have classes as their values. Now the Geach—Kaplan 
sentence “There are some critics etc.” can be translated into standard logi- 

cal notation, that is, the notation of first-order logic, only if one introduces 
special variables ranging over classes (or properties or other “dubious” en- 
tities). And then the sentence will be translated: 

da(a is aclass Adraz €aAVrVy(r € aAx admires y > 2 # YA 
y €a)). 

will be available and monadic variables can then be made to do the work of all second- 
order variables. 

4See Articles 4 and 10 in this volume.
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Since this sentence cannot be true unless there is a suitable class to assign 

as value to the variable a, it follows, according to Quine, that assertively 

uttering the Geach—Kaplan sentence commits one to the existence of classes. 

But this is a weird outcome; that was N.’s point. It shouldn’t turn out 

that !'m committed to classes if I state that there are some critics etc. 

What I ought to be committed to is some critics, but not to a class of 

critics. Furthermore, I would have thought, I ought not to be committed, 

on any reasonable sense of the word “committed,” to a class containing 

all infinite classes if I say, “There are some classes such that every infinite 

class is one of them,” which is, as I suppose, only an awkward way of saying 

“There are some classes and every infinite class is one of them” or “There 

are some classes and every infinite class is a class.”° 

Our problem arises from the thought that if we wish to assess the com- 

mitment of a theory, we must first put it into first-order notation as well 

as we can (sometimes this will not be possible) and then determine what 
the variables must be assumed to range over. There are two suggestions 

we should resist at this point: that if we are concerned with the ontolog- 

ical commitment of a theory couched in some natural language, we must 

first translate it into a first-order formalism and that we must suppose that 

second-order variables in a formula must range over, or have as values, 

classes of objects over which the first-order variables of that formula range, 

or have as values. 

With regard to the first suggestion, we want to ask: what does transla- 

tion into a first-order language have to do with “ontological commitment”? 

“There are some critics etc.” doesn't, it seems, commit us, in any ordinary 

sense of the word “commit,” to the existence of a class of critics; what it 

commits us to, one would have thought, is, as we have noted, some critics 

none of whom ete. We are forced by Quine’s criterion to say that it commits 

us to a class; but why, we should ask, should we accept the criterion? If it 

is answered: because it’s Quine’s phrase, and he is at liberty to define it as 

he pleases, then we should rejoin: if so, Quine is defining a relation which 

holds between us and certain objects (in this case, classes) whose existence 
the normal use of our words does not force us to admit, and hence a relation 

that ought not to be called “ontological commitment.” If it is said that by 

5]t is sometimes alleged that there are certain set-like objects, which have elements, 

but which are “too big” to be sets; the term “class” is used in set theory to apply to 

each such gigantic element-container, as well as to each set. A proper class is a class 
that is not a set. Every current theory admitting the existence of proper classes denies 

that there is a class that contains all infinite classes. If the existence of proper classes is 

denied, then “class” and “set” become coextensive, but every current set theory denies 

that there is a set containing all infinite sets. Of course, class theories typically imply 

the claim there there is a class containing all infinite sets. On the distinction between 

sets and classes, see (Parsons, 1983c).
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admitting that there are some critics etc. we are ipso facto committed to a 

class, we must ask how this is supposed to have been shown. 

We ought to recall that logicians have devoted attention to quantifiers 

other than the usual for all x and for some xz. Among these less familiar 

quantifiers, which cannot be defined by means of the apparatus of first-order 

logic, are for most x, for infinitely many xz, for uncountably many x, and 

for at least as many x as there are objects (in the domain). To claim that 
a statement to the effect that there are infinitely many objects of a certain 

kind, made with the aid of the quantifier for infinitely many x, implies 

the existence (on the customary acceptation of those words) of an (infinite) 
class solely on the ground that the only way to utilize more familiar logical 

vocabulary to eliminate the unfamiliar quantifier is to employ a quantifier 

ranging over classes is to invite the response: what makes first-order logic 

the touchstone by which the ontological or existential commitments of these 

statements are to be assessed? The statements do not appear to commit us 

to classes; why believe that it is their translation into the notation of first- 

order logic augmented with variables ranging over classes that determines 

what they are actually committed to? 

In the case of quantifiers like for infinitely many x or for most x, it 

is comparatively easy to hold one’s ground in maintaining that assertions 

involving them need not be taken as committing one to the existence of 

classes; the variable z is, after all, a first-order variable. To see that second- 

order quantifiers are analogous in this regard to the less familiar quantifiers 

containing first-order variables, we must rebut. the second suggestion met- 

tioned above, that. in any formula, the second-order variables have to be 

understood as ranging over (or having as values) classes of objects: over 
which its first-order variables range. 

This snggestion is less easily rebutted. The difficulty was well put inca 

recent, highly interesting article by Harold Hodes. Hodes writes, “Unless 

we posit such further entities [as Fregean coucepts}, second-order variables 
are without values, and quantificational expressions binding such varialles 

can’t be interpreted referentially.”® It will become clear that I disagree 

with this claim. We needn’t posit concepts, classes, Cantorian inconsistent 

totalities, etc. in order to interpret second-order quantification referentially. 

The heart of the matter is this: it is only with respect to a truth- 

“definition” of the standard sort, a Tarski-style truth-theory for a first- 

order language, that the notion value of a variable is defined. In the case of 

a second-order language, such as the second-order language of set theory, 

there are at least two different sorts of truth-theory that can be given: on 

one of these, it would be quite natural to define “value” so that the second- 

6 (Hodes, 1984), p. 130.
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order variables would turn out to have classes as values; on the other, it 

would not. Before we present the two theories, we need to review the usual 

truth-definition for the usual first-order language of set theory. (It is be- 

cause the difficulty of interpreting second-order quantification is most acute 

when the underlying language is the language of set theory that we examine 

truth-theories for set-theoretic languages.) 

A sequence is a function that assigns a set to each first-order variable 

of the language; we inductively define satisfaction of a formula F by a 

sequence s as follows: 

If F is u € v, then s satisfies F iff s(u) € s(v); 

if F is u=y, then s satisfies F iff s(u) = s(v); 

if F is 4G, then s satisfies F iff 7(s satisfies G); 

if F is (GAH), then s satisfies F iff (s satisfies GAs satisfies H); 

if F is duG, then s satisfies F iff Arit(t is a sequence A t(v) = 
x AVu(u is a variable A u # v — t(u) = s(u)) At satisfies G). 

Having given this definition, we may prove a lemma stating that if s and 

t are sequences that assign the same sets to the free variables of a formula 

F, then s satisfies F if and only if t satisfies F. Since a sentence contains 

no free variables, it follows from the lemma that if one sequence satisfies a 

sentence, all do. We may thus define truth as satisfaction by all, or by some, 

sequences. Finally we may demonstrate that the Tarski biconditionals are 
provable froin this definition, with the aid of a small amount of set theory. 

The truth-theory provides an obvious way to define the notion value of a 

variable. We may say, simply, that x is the value of the variable v relative 

to the sequence s if and only if s(v) = 1. Notice that we wish to give a 

relative definition, And we may say that 2 is a value of v if x is a value of 

v relative to some sequence. 

There is an obvious way to extend this development to the second-order 

case, The resulting theory is the first of the two theories mentioned earlier. 

We define a sequence to be a function from the set of first- and second- 

order variables whose value for each first-order variable v as argument is a 

set and whose value for each second-order variable V as argument is a class 

(the existence of suitable sequences will of course have to be guaranteed by 

principles not available to us in standard set theory). We then inductively 
define satisfaction of a formula F by a sequence s as follows: 

If F is u € v, then s satisfies F iff s(u) € s(v); 

if F is u = v, then s satisfies F iff s(u) = s(v); 

if F is Vv, then s satisfies F iff (s satisfies G A s satisfies H);
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if F is aG, then s satisfies F iff 4(s satisfies G); 

if F is (GA B), then s satisfies F iff (s satisfies G A s satisfies 

H); 
if F isdvG, then s satisfies F iff dz[x is a set Adt(t is a sequence 
At(v) = zAVu(u is a variable Au # v > t(u) = s(u))At satisfies 

G)I; 
if F is VG, then s satisfies F iff dz[z isa class A dt(t is a 
sequence At(V) = x AVu(u is a variable Au # V — t(u) = 
s(u)) At satisfies G)] 

As before we may define “x is the value of the (first- or second-) order 
variable v relative to the sequence s” as s(v) = x, and define “zx is a value 

of v” as z is the value of v relative to some sequence. Thus if we have this 

sort of truth-definition in mind, we may say, speaking informally, that in 

the second-order language of set theory, classes are values of second-order 

variables. 

But there is another sort of truth-theory that can be given for the second- 

order language of set theory in which no mention is made of sequences any of 

whose values are (proper) classes. Unlike the previous theories, this theory 

is formulated in a second-order language, the second-order language of set 

theory together with a new predicate containing two first-order variables 

“3s” and “F” and one second-order variable “R”: R and the sequence s 

satisfy the formula F. In this uew theory a sequence is what it was in the 

case of the first. theory, a function from the set. of first-order variables whose 

valnes are all sets. The key clauses of the (heory are: 

Tf Fin we oo, then @ and s satisfy FT sca) © s(e): 

if Fisa=v, then Hand s satisfy FB ift s(a) = s(0): 

if Fis Vu, then R and s satisfy £ itl R(V, 9(0)); 

if F is sG, then R and s satisfy F iff ~(R and s satisfy G); 

if F is (GAH), then R and s satisfy F iff (R and s satisfy GAR 
and s satisfy 4); 

if F is duG, then R and s satisfy F iff drdé(t is a sequence 

At(v) = x AVu(u is a first-order variable Au # v > t(u) = 
s(u)) A R and t satisfy G); 

if F isdVG, then Rand s satisfy F iff IXAT(Wa(Xaz + T(V,z))A 
VU(U is a second-order variable AU # V — V2(T(U,2) 
R(U,2z))) AT and s satisfy G). 

(“(_, )” is the ordered-pair function sign.)
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In this theory it is reasonable both to define “z is a value of the first- 

order variable v with respect to the sequence s” as s(v) = z and to say that 

sets are values of the first-order variables of the second-order language of 

set theory, since the sequences s mentioned in the new predicate “R and 

s satisfy F” are functions whose values are all sets. The present theory, 

however, makes no explicit mention of sequences whose values are (proper) 

classes. It does not proceed by introducing functions that assign to each 

second-order variable a unique class, possibly proper. Instead it employs a 

new predicate which, as one may say, is true or false relative to an assign- 

ment of a formula to the first-order variable F’, a sequence to the first-order 

variable s, and some (or perhaps no) ordered pairs of second-order vari- 

ables and sets to the second-order variable R. There is, however, no need 

to take the theory as assigning classes, or collections, of those sets, to the 

second-order variables. Of course one might attempt to argue for the claim 

that classes are values of the second-order variables of the original language, 

even according to the present truth-theory, by claiming that they are also 

values of the second-order variables of that theory. That claim, however, 

is also one that we needn’t suppose to be true; we needn't interpret either 

our original second-order language of set theory or the new truth theory for 

this language in this manner. Friends of classes will insist that our latest 

theory may be so reinterpreted and will (reasonably enough) claim that so 

reinterpreted it is different from the second theory only in an inessential 

way; but foes of (proper) classes—those who believe that enough is enough, 

already—will reject the second theory and accordingly resist the suggestion 

that the third theory may be reinterpreted in the way that the friends sug- 
gest. The point of our third truth-theory is to show that the foes of classes 

have a satisfactory way to define truth for the second-order language of set 

theory. 

A foe of classes may also utilize the third theory to define “sz is a value of 

the second-order variable V with respect to R” as: R{V,xz). If he does so, 
he may then say that sets are values of second-order variables as well as of 

first-. On this way of speaking, it will not in general be the case that if sets 

# and y are values of V with respect to R, then x = y. But, the foe will then 

emphasize, if one adopts this definition, to say that second-order variables 

have values is not at all the same thing as to say that their values are classes 

(or concepts, etc.) The foe will be at pains to reject the suggestion that 

in general there is any one object whose members are all and only the sets 

zx such that R(V,x). Alternatively, instead of defining “x is a value of V 
with respect to R” at all, he could say that second-order variables have no 

values, perhaps on the ground that the truth-theory makes no mention of 

functions that assign objects to second-order variables. 

The liar paradox prevents us from explicitly defining truth, or satisfac-
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tion, in either the first- or the second-order language itself. But in the first- 

order case we can expand the language by adding a single new primitive 

predicate for the notion of satisfaction and then axiomatically characterize 

satisfaction for the old language by adjoining to (a rather weak) set theory 

a finite number of axioms containing the new primitive. Truth of a sentence 

of the first-order language of set-theory may be defined in this theory, and 

important facts concerning satisfaction and truth can be deduced, includ- 

ing the Tarski biconditionals for satisfaction and truth and many “laws” of 

truth, for example, the statement that a conjunction is true if and only if 

both conjuncts are, etc. In setting up our third truth-theory we have pro- 

ceeded in like manner: we have expanded the language for which we wish to 

define truth by adjoining to it a single new predicate, and laid down axioms 

containing this predicate, but have otherwise exceeded the resources of the 

language in no way. In particular, we have made no additional ontological 

assumptions not made in the original theory. And with the aid of standard 

axiomatic second-order logic (e.g., the system of the Begriffsschrift) we can 
prove in the third theory the usual lemmas about free variables, make the 

usual definition of “true sentence,” and derive desired laws of truth. 

One technical point deserves mention: in the first-order case, we need 

a guarantee that VsVuVz(s is a sequence A v is a variable — Ji(t is a 

sequence A i(v) = x A Vu(uisa variable Au #4 0 —+ t(u) = s(w)))) in 
order to derive the consequences we desire from the axioms of the truth- 

theory, A small amount. of sect. theory provides us with this guarautee. We 

necd a like guarantee in the present. case; we need to be able to show that 

VIRVVVX[V is a second-order variable = 3T(WrL Xa ee TWoP )AVU[E isa 
second-order variable AU 4 Vi -+ WaT (Ur) oe RU). Phis time the 
requisite guarantee is fortheoming, again with the aid of a small amount of 

set theory, froma comprehension principle which will be a theoren: of any 

standard axionutic system for second-order logic: 

ATV2z(Tz + 3x3U(U is a second-order variable A z = (U,r)A 
(U=V — X2)A(U #V = Rz))| 

A somewhat disconcerting conclusion emerges: it is not in general possible 

to tell by inspection of its asserted formulae alone whether or not classes 

are to be counted among the values of the variables of a theory formalized 
in a second-order language of the usual sort, even in the most favored 

case, in which the asserted formulae of the theory include instances of the 

comprehension schema IX Vz(Xz «> A(x)). Since one can neither presume 
that the formula “Xz” must have the meaning “z is a member of the class 

X” or that the quantifier “2X” is to be read “there is a class x such that 
.-,” one is not entitled to “read off’ a commitment to classes from the 

asserted statements of such a theory. The reinterpretation of the quantifiers
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AX and atomic formulae Xz given by the third truth-theory alters neither 

the interpretation of the apparatus of first-order logic nor the truth-values 

to be assigned to sentences of the original language, if the friend of classes is 

right after all. It is therefore no mere matter of a formalism put to a deviant 

use that one cannot, for example, discern commitment to a universal class 

even when 1XVz Xz is one of the asserted statements of a theory. The 

possibility of so reinterpreting second-order notions shows that assessment 
of the ontological costs of a theory is rather less routine a matter than we 

may have supposed. 

Having dealt at length with the truth-conditions of sentences of the 

second-order language of set theory, we should wish to give an account 

of the validity-conditions of these sentences.” 
A sentence of the first-order predicate calculus is called (logically) valid, 

or a logical truth, if it is true in all models; a model M is an ordered pair of 

a non-empty set D and a function F from some set L of symbols to a set 

of relations and functions on D of appropriate degrees. D is the domain or 

universe of M, L is the language of M, and F assigns suitable denotations 

or references to the symbols of Z. The aspect of this familiar definition of 

validity that here concerns us is the set-theoretic definability of the notion 

of validity, a consequence of the stipulation that D and L, and therefore M@ 

as well, be sets. 

There is no universal set; there is no set of all pairs (x, y) such that z is 

in y, aud there is no model (D, F) in which D is the universal set and F is 
a function from {€} to the set of all such pairs. At any rate, there are no 

such items if Zermelo- Fraenkel set theory is correct. as we shall henceforth 

ANNTIINIE, 

From the nonexistence of such a model (D, F) there arises a certain dif 
ficulty: suppose that some sentence G of the language of set theory is 

logically valid, true in all models. What guarantee have we that G is true, 

that is, true when its variables are taken as ranging over all the sets there 

are and € as applying to (arbitrary) 2, y if and only if x is in y? If there 

were such a model (D, F), there would be no problem: G would then be 

true in (D, F) and therefore true period. It appears that in set theory at 

least, the truth of a statement does not immediately follow from its validity. 

Set theory itself provides a way out of the difficulty. In fact, it provides 

two. The first is via the reflection principle: it is a theorem (-schema) of 

set theory that for each sentence G of the language of set theory there is a 

model M, indeed one of the form 

(Va, {(€, {(z,y) 2, y€ Va Ax € y})}) 

7 The classical discussion of validity and second-order logic is (Kreisel, 1967). (Shapiro, 
1984) discusses some of the issues raised in Kreisel’s paper.
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such that the sentence is true in M if and only if it is true. Thus if G' is 

false, +G is true, hence =G is true in some model, and therefore G is not 

valid. Thus it cannot happen that a sentence of the language of set theory 

be valid and yet false. 

The second way out is via the completeness theorem, according to which 

G has a proof in any standard axiomatic system of first-order logic if it is 

valid. Since (the universal closure of) any axiom of logic is true and the 

rules of inference preserve truth, any valid sentence of the language of set 

theory is true, since (the universal closure of) any sentence occurring in a 

proof js true. 
But it is rather strange that appeal must apparently be made to one or 

another non-trivial result in order to establish what ought to be obvious: 

viz., that a sentence is true if it is valid. 

I want to point out that in addition to the usual notion of validity, there 

is another notion of validity stronger than the usual one, susceptible, like 

the notions of truth and satisfaction, only of schematic definition. and on 

which it is obvious, as is fitting, that a valid sentence is true. Moreover, on 

this notion, the fact that whatever is valid is true is not much more than an 

effect of the rules of inference UI (universal instantiation) and substitution, 
as is also appropriate. 

I shall call the notion to be defined supervalidity. (I do think that it ought 

to be called validity and the usual notion ouglit to be called subvalidity. 

But never mind.) 
The idea of supervalidity can be informally explained as follows: a sen- 

tence of the language of set theory is supervalid if it is true. no matter what 
sets its variables range over (as long as there is at least one set over: which 

they range) and no matter what pairs of seta € is taken to Apply to. 
To stipect that it is the inistaking of validity for supervalidity and the 

tathentatical interest, of validity, together with certain doubts about. the 

intelligibility of supervalidity, that are responsible for the prominence of 

the notion of validity in logical theory. 

Before defining supervalidity, I would like to mention a further odd feature 

of the concept of validity, or logical truth, viz. that a true sentence to the 

effect that another sentence is valid is not itself valid, but rather a true 
statement of set theory. Of course, in view of the celebrated “limitative” 

theorems of logic, the thought that we should want true assertions of validity 
to be valid may strike one as greedy, but one really should not lose the sense 

that it is somewhat peculiar that if G is a logical truth, then the statement 
that G is a logical truth does not count as a logical truth, but only as a 
set-theoretical truth. 
The formal definition of supervalidity is this: let G be a sentence of the 

language of set theory. Select two monadic second-order variables X, Y-
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Replace all formulas u € v in G by formulas Y (u,v). Relativize all quan- 

tifiers Vu and dz in the result to the formula Xv; that is, replace contexts 

Vo(...) by Vo( Xv — ...) and contexts Ju(...) by du(XuA...). Quantify 
universally with respect to Y. Take the result as the consequent of a condi- 

tional with antecedent Az Xz. Finally, quantify this conditional universally 

with respect to X. The result is the formalization of the assertion that G 

is supervalid. 

Thus we do not define “is supervalid” by constructing a formula with 

one free variable that applies to the (Gédel numbers of) supervalid sen- 

tences and only to these. It is instead defined schematically, by associating 

with each sentence G of the first-order language of set theory, another sen- 

tence, of the second-order language, that expresses the assertion that G is 

supervalid, as informally explained above. In a similar way, “is true” is 

schematically defined by associating with each sentence G of the language 

the sentence G itself, and not by constructing a single formula satisfied by 

the (Gédel numbers of) true sentences and nothing else. 

We have defined supervalidity only for sentences of the first-order lan- 

guage {€} of set theory, but it is clear how it may be done for any formula 
of any first- or second-order language at all. We shall confine attention to 

sentences in which the only non-logical constant is € We shall also suppose 

that the only non-individual variables found in second-order formulae are 

monadic. 

It is apparent that for any sentence G, the sentence expressing the truth 

of G, that is, G itself, can be derived in axiomatic second-order logic from 

the sentenec G’ asserting the supervatidity of G, together with a suitable 

axiom governing the ordered pair operation 1, y{z, y). (Mention of an 

ordered pair axiom could have been omitted had we replaced € with a dyadic 

variable ¥°.) One need only instantiate VX with the abstract {x : 2 = zr} 
in G", resolve the abstracts, discharge the antecedent Iza = z via logic, 

instantiate VY with {z : drdy((z,y) = z Az © y)} and use the ordered 
pair axiom to resolve the abstracts; the result is trivially equivalent to 

G. Instantiation with abstracts is legitimated in second-order logic by the 

comprehension schema. 
It is also apparent that the result of restricting all of the quantifiers of 

any supervalid sentence to some one formula (possibly containing one or 

more parameters, for example, a parameter for a model) satisfied (with 

respect to any assignment of objects to those parameters) by at least one 

object (=set) is true (with respect to that assignment). Consequently, any 
supervalid sentence is valid. 

Finally, it should be apparent that the axioms of axiomatic second-order 

logic, including the instances of the comprehension schema IXV2[Xz + A], 

X not free in A, are all supervalid and that the rules of inference of second-
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order logic, including the rule of substitution (of formulas for free variables), 

preserve supervalidity. Substitution is a rule of inference that was used by 

Frege, in the Begriffsschrift; the deductive equivalence of the comprehension 

schema and the rule of substitution is well known? I have of course been 

assuming the intelligibility and legitimacy of second-order quantification 

over all sets or over objects of unbounded set-theoretic rank. 

Any provable first-order formula is supervalid; any supervalid first-order 

formula is valid; and, by the completeness theorem, any valid first-order 

formula is provable. Thus validity, supervalidity, and provability coincide 

for first-order formulae. In the absence of a completeness theorem for (real, 

full, standard) second-order logic, we cannot make the analogous claim for 

second-order formulae. We know how to produce counter-examples to the 

claim that any given (recursively enumerable) axiom system yields as the- 

orems all valid sentences of second-order logic. Since the counterexamples 

turn out to be not only valid but supervalid, the only question about inclu- 

sion among the three notions that remains is whether all valid sentences are 

supervalid. Otherwise put, is every (second-order) sentence of the language 

of set theory that is true in all models true? 

Many set theorists find it probable or plausible that the answer is yes. 

They speculate that “there is no property of the universe of sets that is not 

reflected by some type V,.” Thus if they are right, there could be no second- 

order sentence that is false but nevertheless true in all models, or even true 

in all models of the form (Vi, {(€.{(z.y) : rey € Va Ar € y})}). Any 
such sentence would show, in technical parlance, that On is I1/-describable 

for some 7; and this has seemed extremely unlikely to most. set. theorists 
who have written on axioms of infinity and the structure of the set-theoretic 

universe. (‘The claim, however, would appear to be insaseeptibte of anything 
like proof from currently aceepted axioms.) ‘Thus the uotion of vatidity 

has, after all, greater interest, than the foregoing, belittling, line of thonght 

night have inclined one to suppose it has: it is plausible and a reasonable 

“working hypothesis” that validity coincides with supervalidity, and hence 

that supervalidity can be defined by means of a single formula, and indeed 
by a formula of the first-order language of set theory. 

In conclusion, let us mention an apparent defect of the account of super- 

validity we have given: it would seem that there is no natural or obvious 
way to generalize the notion of supervalidity to a notion of “superconse- 
quence or supersatisfiability.” What we want is some way to explain what 
it is for some sentences (in the first instance, of the language of set theory) 
to be true under some one interpretation, that is, for there to be some sets 

and some pairs (to assign to €) under which all of those sentences are true, 

§Cf. Article 10 in this volume.
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without introducing classes, infinitely long sentences, or an unanalyzed no- 

tion of truth or satisfaction. We have shown above how this may be done for 

any given sentence. There seems no satisfactory way to do it for an infinite 

set of sentences, however. And although the sense of loss may be mitigated 

by the knowledge that many important theories such as Peano Arithmetic 

and Zermelo—Fraenkel Set Theory, which are not finitely axiomatizable, are 

axiomatizable by a finite number of schemata and have a natural second- 

order extension that is a finite extension of axiomatic second-order logic, 

there is no denying that there is a loss.



6 

  

Iteration Again 

According to the iterative, or cumulative, conception of set, sets are formed 

at stages; indeed, every set is formed at some stage of the following “pro- 

cess”: at stage 0 all possible collections of individuals are formed. Individ- 

uals are objects that are not sets; for the usual sorts of reasons, we shall 

assume that there are no individuals. Thus at stage 0 only the null set is 

formed. The sets formed at stage 1 are all possible collections of sets formed 

at stage 0, i.e., the null set and the set whose sole member is the null set. 

The sets formed at stage 2 are all possible collections of sets formed at 

stages 0 and 1. There are 4 (= 2?) of these. The sets formed at stage 3 
are all possible collections of sets formed at stages 0,1, and 2. There are 16 

(=2") of these. The sets formed at stage 4... In general, for any natural 

number n, the sets formed at stage 7 are all possible collections of sets 

formed at. stages carlicr than 7, ie., stages O 1.0... - 1. 

Tnmediately after all stages 0, 1.2,..., there is a stage, stage aw. The sets 

formed at stage w are, similarly, all possible collections of collections af sets 

formed at. stages cartier than w, ie., stages 0.1, 2... After stayse wa comes 

stage wot dsat which... In general, for each a, the seta formed at stage 

are all possible collections of sets formed at stages earlier than cv. 

There is no last stage: each stage is immediately followed by another. 
Thus there are stages w + 2,w+3,... Immediately after all of these, there 

is a stage w + w, alias w- 2. Then w-2+1,w-2+ 2, etc. Immediately after 

all of w, w-2,w+3,... comes ww, alias w?, Then w?+1,... And so it goes. 

Notice that on this account of the iterative conception, no set is formed 

at exactly one stage: each set is also formed at all stages that are later than 

any one at which the set is formed. We do not assume that each set is first 

Reprinted with the kind permission of the editor from Philosophical Topics 42 (1989): 
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formed at some unique stage, however, and hence do not assume that the 

stages are well-ordered. 

Set theory, i.e., Zermelo—Fraenkel set theory (ZF) together with the ax- 
iom of choice, is sometimes said to “express,” “embody,” or “articulate” 

the iterative conception. My aim here is to clarify some of the relations 

between set theory, the iterative conception, another conception of set the- 

ory (“limitation of size”) due to Russell and von Neumann, and a repair 

to the system of Frege’s Grundgeseize der Arithmetik that embodies that 

other conception. Towards the end of the paper I try to cast some doubt 

on the idea that there is any single conception that “underlies” the whole 

of set. theory. 

We shall begin with the methodological question: what sort of justifica- 

tion for set theory does the iterative conception provide? 

Let us call the theory whose axioms are all of the axioms of Zermelo set 

theory, with the exception of the axioms of extensionality and choice, Z~. 

(Z is Zermelo set theory, one of whose axioms is the axiom of extensionality; 

the axiom of choice is not a full-fledged axiom of either Z or ZF, which is 

obtained by adding the axioms of replacement to Z.) We shall soon see 

that Z” can be derived from a (remarkably weak-looking) formalization of 
the iterative conception. It does not follow that the iterative conception 

shows that the theorems of the subtheory Z” of ZF are true, for there is 

no reason to think that stages (whatever they might be) and sets are as the 

conception maintains, i.e., that the conception is correct about sets and 

stages. Certainly, if matters are as the conception has them, then Z” is 

true, for, unexceptionably, it. can be deduced from the iterative conception. 

However, no independent reason has been given to believe that sets and 

stages are as they are according to the iterative conception. 
(It is an interesting question why we are inclined to reject the skeptical 

hypothesis that, in the absence of some formal defect in set theory such as 

simple or w-inconsistency, the iterative conception of set might be wrong, 

at least in its broad outlines.) 
The iterative conception has been called “natural.” “Natural” here is not 

a term of aesthetic appraisal (possibly linked to the Panglossian view that 

amore “natural” or “simpler” theory may have a greater chance of being 

true) but simply means that, without prior knowledge or experience of sets, 

we can or do readily acquire the conception, easily understand it when it 

is explained to us, and find it plausible or at least conceivably true. For a 

view to be natural in this sense, it cannot be too much at odds with our 

preconceptions, like the (crazy) view obtained from the iterative conception 

by interchanging “earlier” and “later.” 

Another conception of set that is natural in this sense is the naive con- 

ception, which can be formulated in two ways, as the thought that any
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predicate has a set as its extension, and as the thought that any zero or 

more things are the members of some one set.? The trouble with the naive 

conception is that Russell’s paradox shows it to be inconsistent: the predi- 

cate “is a set that is not a member of itself” is a predicate with no set as 

its extension, and the sets that are not members of themselves are not the 

members of any set. 

A different conception of set, to be examined below, is the doctrine of 

“limitation of size.”? The doctrine comes in at least two versions: On a 

stronger version of limitation of size, objects form a set if and only if they 

are not in one-one correspondence with all the objects there are. On a 

weaker, there is no set whose members are in one-one correspondence with 

all objects, but objects do form a set if they are in one-one correspondence 

with the members of a given set. (Under certain natural conditions, this 
last hypothesis can be weakened to: if there are no more of them than 

there are members of a given set.) The difference between the two versions 
is that the weaker does not guarantee that objects will always form a set if 

they are not in one-one correspondence with all objects. 

Unlike the naive and the iterative conceptions, limitation of size (in either 

version) is not a natural view, for one would come to entertain it only 

after one’s preconceptions had been sophisticated by knowledge of the set- 

theoretic antinomies, including not just Russell's paradox, but those of 

Cantor and Burali-Forti as well. 

The iterative conception is the only natural and (apparently) consistent 

conception of set we have, and it implies Z7; that is the justification (if that 

is the right word) it provides for Z~. 

Dan Leary once made the observation that the metaphor of formation 
of sets at stages may arise froma certain narradioe convention or principle 

of good exposition: in general and eeteris pardnes, vw deseription of objects 

that are arranged in some salient: manner should mention those objeets tn 

an order corresponding to the arrangement. Conformably, when deseribing 

the structure of the set-theoretic universe, one would first mention the null 

set, then the set containing just the null set, then the sets of all those, then 

the sets of all those, and so on. One might say: there is the null set, there 

is its unit set, then there are the two other sets containing only those, then 
there are the twelve “new” (i.e., not yet mentioned) sets containing only 
those, ... The fact that it takes time to give such a sketch, and that certain 
sets will be mentioned before others, might easily enough be (mis-)taken 
for a quasi-temporal feature of sets themselves, and one might be tempted 
to say that sets coming earlier in the description actually come earlier, that 

2Cf. (Mates, 1981), p. 43 
3C£. (Hallett, 1984), esp. cha. 4 and 8 fora thorough discussion of the different versions 

of limitation of size.
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sets cannot exist untél their members do, that they come into being only 
after their members do, and that they are formed after all their members 

are. 
In any case, for the purpose of explaining the conception, the metaphor 

is thoroughly unnecessary, for we can say instead: there are the null set 

and the set containing just the null set, sets of all those, sets of all those, 

sets of all Those, ... There are also sets of all THOSE. Let us now refer to 

these sets as “those.” Then there are sets of those, sets of those, ... Notice 

that the dots “...” of ellipsis, like “etc.,” are a demonstrative; both mean: 

and so forth, i.e., in this manner forth. 

But I am not now concerned to eliminate the metaphor, which in any 

event could be accomplished in short order by taking the terms “stage,” 

“is formed at,” and “is earlier than” as primitive,* or by replacing them 

with “ordinal,” “has rank,” and “is less than,” taken as primitive. I want 

tather to show how little of the iterative conception is actually required for 

the derivation of Z~, i.e., to show how very simple a theory of stages there 

is from which the axioms of Z” follow (and how needlessly complex the 
axiomatization found in “The Iterative Conception of Set” is). 

Let us then consider a two-sorted first-order language C, with variables 

Zz, Y, 2,... for sets, and variables r, s,t,... for stages. There are three two- 

place predicates in £, a stage-stage predicate <, read “is earlier than,” a 

set-stage predicate F, read “is formed at,” and a set-set predicate €, read 

as usual. 

Let us abbreviate “Ji(t < s A yFt)” as: yBs, which may be read “y is 

formed before s.” 

Then the following sentences are the axioms of our theory S. Axioms 

concerning “earlier than”: 

Tra VitsWr(t<sAs<rat<r) 
Net Vitsar(t<rAs<r) 
Inf ArGti<rAvi(t <r — As(t < sA8s<r)) 

Axioms concerning sets and stages: 

All VardsxFs 

When VaVs(rFs - Vy(y € x > yBs)) 

The specification axioms, one for each formula A(y) of £ (not containing 

the variable x free): 

Spec AsVy(A(y) — yBs) + Arvy(y € x + A(y)). 

4Ag is done in Article 1 of this volume.
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Some comments on these axioms: Tra, of course, says that earlier-than 

is transitive. One of the consequences of Net is: Vsirs <r, i.e., every 
stage is earlier than some stage. Net follows from Vsidrs <r, Tra, and 

the sentence Con of £ expressing the connectedness of earlier-than, viz., 

VsVi(s <<tVs=tVt<_s); Con, however, is not one of the axioms of S. 
Inf states that there is a “limit” stage, a stage later than some stage 

but not immediately later than any stage earlier than it: the existence 

of stage w and hence of such a stage as Inf claims to exist is a notable 

feature of the conception we have described. Inf is too weak to capture 

the full strength of the claims about the existence of infinite stages made 

in the rough description; a further axiom would be needed to guarantee 

the existence of a stage w+ w, for example. It suffices, however, for the 

derivation of the sentence of set theory customarily called “the axiom of 

infinity.” Inf, it should be noted, is used only in the derivation of the axiom 

of infinity. 

All states what is perhaps the most distinctive feature of the iterative 

conception, viz., that every set is formed at some stage of the iterative 

process described above. When amplifies All, by telling us that a set is 

formed at a stage if and only if all its members are formed at earlier stages. 

(Thus sets are, as we have noted, continually reformed.) 

Because C is a first-order language, Spec(ification) is an axiom-schema 

and not an axiom. It attenipts to capture the thought that the sets formed 

at any stage are “all possible collections” of sets formed at stages earlier 

than that one. It is not entirely clear what the force of the phrase “possible 

collection” is supposed to be. What. is the modal term “possible” doing, 

and in any case how does a collection differ from a set? (When tells us 

that. a set is formed ata stage iff all its members are formed at earlier 

stages. OF course if a set. is formed at astage, it is formed at that stage. 

What then does Spee add by saying that the sets formed at each stage are 

all pessible cellectiens of sets formed at earlier stages?) The thought can 

be put better if we say: for any stage s and any sets (notice the plural) 

that have all been formed before s, there is a set to which exactly those sets 

belong. This thought can be perfectly expressed in a second-order language: 

VX[SsVy(Xy > yBs) > ArVy(y € x + Xy)|. Elsewhere® I have argued 
that, happily, such formulations need not be regarded as quantifying over 

any proper classes or other set-like objects that are not actually sets. To 

the extent that it is not vague what the iterative conception is (i.e., not 

vague how far out the stages go), the full force of the conception can be 

expressed in a second-order language extending £, but not in the first-order 

language £ itself. 

5Cf. Articles 4 and 5 in this volume.
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A useful reformulation of Spec is: VsiaVy(y € x + (A(y)AyBs)). To see 

that the old version implies the new, let A’(y) — A(y) A yBs, and apply 
the old version to A’(y); the new version immediately implies the old. 

It would have been cheating to take the axiom of extensionality as an 

axiom of S. Jt may be “analytic” or “analytic-whatever-it-may-mean-to- 

say-so” that different sets have different members, but that they do is not 

actually guaranteed by the iterative conception, properly so-called. Of 

course it would be possible to derive the axiom of extensionality by sneaking 

in an “” after “Az” in Spec; our aim, however, is to analyze the conception 

we have, and not to formulate some imperfectly motivated conception that 

manages to imply the axioms. 

Jt may seem, however, that something other than that it is quasi-analytic 

or whatever can be said about extensionality. The thought might occur to 

one that a set is really nothing other than its members. That is, it is them, 

is identical with them. (This idea is doubtless responsible for the perplexity 

that sometimes strikes beginners when they are told that an individual and 

its unit set are to be distinguished.) If so, then extensionality follows from 
the transitivity of identity: for if every member of x is a member of y and 
vice versa, then the members of x are the members of y; therefore 2, i.e., the 

members of z, is identical with y, i.e., the members of y, and extensionality 

holds. 

Now, there is certainly something fishy in the suggestion that a set is 

identical with its members—how could it be them if they are more than 

two?— but it may well seem that there is also something non-fishy too. 

Are not John, Paul, George, and Ringo a group, Dolly, Stiva, Tanya, and 

Grisha a» family, and were not Bird, McHale, Parish, Ainge, and Johnson 

a starting five? Russell once wrote, “Iu the present chapter we shall be 

concerned with the in the plural: the inhabitants of London, the sons of 

rich men, and so on. In other words, we shall be concerned with classes.”® 

It is hard to see how he could suppose that when we are concerned with the 

inhabitants of London, we are concerned with the class of those inhabitants 

unless he supposes that the inhabitants of London are, are identical with, 
are the same thing as, that class. It would be thoroughly unreasonable 

to suppose that in this passage Russell actually thought that the class is 

distinct from its members but constituted by them, and that whenever we 
referred to the members, we also referred to something different, the class. 

However, one who advocates that the Beatles are, strictly speaking, iden- 

tical with some one thing, a group, and the Oblonskys with a family will 

have some hard questions to answer, e.g., how many are that group and 
that family, two or eight? how can the group be in its own unit set without 

§ (Russell, 1919), p. 181.
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the four Beatles being in that unit set? Best, perhaps, not to expect this 

account of extensionality to succeed. 

The following argument might be thought to show that extensionality is 

evident on the iterative conception, and that it would therefore have been 

fair to take VrVy(Vz(z € 2 z € y) — x = y) as one of the axioms of S: 
Observe the uniqueness claims implicit in the use, in the first paragraph, 

of such phrases as “the null set” and “the unit set of the null set,” and 

the other claims made there concerning the number of sets formed at early 

stages, e.g., that at stage 0 only the null set is formed, and that at stage 

3, 16 sets are formed. These claims presuppose the truth of extensionality, 

which ought therefore to have been an axiom of S. 

In reply it can be said: Notice that extensionality was immediately ap- 

plied to calculate the number of sets formed even at stage 0, before all 

but a small part of the conception was given. That sets are identical if 

their members are the same would therefore seem to be a principle for 

whose evidence the iterative conception is not responsible, but rather one 

whose truth is perfectly obvious (for whatever reason) to us in advance of 
our forming the iterative conception. However, say if you wish that it is 

part of the iterative conception precisely because of its obviousness, but 

notice then how “detachable” it is from the rest of the conception: were 

Vavy(Wz(z € 2 + z € y) —- x = y) to be taken as a further axiom. it 
would not be used in the derivation of any of the other axioms of Z7 , nor, 

unlike the axiom of infinity, would any other axiom of Z~ be needed in its 

derivation. 
The axioms of S having been set out and discussed, the time has come 

to derive Zerinelo set. theory minus exteusionality and choice from these 

axioms (for most of the details, see the appendix). Remarkably, all the 

axioms of Z can be derived from S$, even if these are taken to inehide the 
axioms of regularity or foundation, ie., the formulae dr A(.r) — dr(A(z) A 
Vy(y € z — -A(y))) of the language of set theory. Among these axioms 
is the formula that is sometimes called the axiom of regularity: 3rz € 
z—+dx(xezAvylye rye z)). The remarkable fact that these are 
derivable in S even in the absence from the axioms of S of an atiom schema 
expressing an induction principle for stages was first observed by Dana 
Scott.” Indeed, all formulas 3s P(s) + Js(P(s) A vt(t < s —+ ~P(t))—call 
the schema with these formulas as instances “induction for stages” —can be 
proved in S, and the axioms of regularity derived from these. 

Notice that the axioms of S, even taken together, do not have the “look” 
of an induction principle. The derivability in S of induction for stages 
and the axiom-schema of regularity is therefore most surprising in view of 

7(Scott, 1974).
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general logical experience, which tends to confirm the view that one cannot 

infer a principle of induction without assuming a principle of induction 

explicitly or implicitly. For example, if one tries to show that the (true) 
natural numbers satisfy mathematical induction, one typically EITHER 

defines them as objects satisfying some sort of inductive condition—as in 

Frege and Russell’s work, where they are characterized as the members of 
all classes containing zero and closed under successor—in which case one 

needs to use induction (outside the theory) to show that the true natural 

numbers have all the interesting properties enjoyed by the objects defined 

to satisfy the condition, OR one postulates an induction principle in the 

theory in which one is attempting to demonstrate that the numbers satisfy 

induction, as when one assumes the axiom of regularity in set theory, defines 

the ordinals as transitive sets whose members are all transitive, defines the 

natural numbers as zero or successor ordinals whose members are all zero 

or successor ordinals, and then uses regularity to infer the well-foundedness 

of the ordinals, and hence that of the natural numbers, so defined. The idea 

that induction is always needed to derive induction may also be fostered by 

an acquaintance with Hume’s reflections on the justification of “empirical” 

induction (and other skeptical philosophical writings whose tendency is that 

no important philosophical principle, e.g., the existence of material objects, 

can be proved from assumptions that appear to be weaker), perhaps also 

by Lewis Carroll’s “Achilles and the Tortoise” or the writings of Poincaré, 

Quine and Wittgenstein, and certainly by the common knowledge that 

formal systems of arithmetic lacking induction are impossibly weak. Despite 

all this common knowledge and good sense, there is, as we are about to see, 

a derivation of an induction principle from principles that simply cannot 

themselves be characterized as induction principles. (Philosophers are to 

be predicted to claim that Spec is “really” a disguised induction principle.) 

Moral: sometimes you can get induction out without first putting it in? 

Here is the way the derivation proceeds; we follow Shoenfield’s Handbook 

article:® 

Definition y is a minimal member of x if y € x and Vz7(z Er Az Ey). 

Definition y is grounded if every set containing y has a minimal member. 

If every member of y is grounded, then y itself is grounded. (Logic: 

Suppose y € x. If for some z, z € x and z € y, then z is grounded, and 

x has a minimal member. Otherwise, Vz(z € x A z € y); but then y is a 
minimal member of 2.) 

5Cf. Article 24 in this volume. 
9(Shoenfield, 1978), esp. p. 327.
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Definition aFs iff Vy(y € a y is grounded A yBs). 

Miscellaneous facts: 

1. By Spec, for every s, there is an a such that aRs. 

2. If aRs, then since all members of a are grounded. a is grounded. 

3. By When, if aRs, then aFs. 

4 . Thus ift < s, aRs, and bRt, then b is grounded by 2, bF t by 3, bBs, 

and béa. 

Induction for stages: Js P(s) —+ ds(P(s) A Vi(t < s — —P(é))). 

Proof. Suppose P(r). If for all uw such that u < r. ~P(u), then done. 
So suppose u < rand P(u). By Spec, for some x. Va(e € zr +> As(s < 
rAaRsA P(s)AaBr)). By 3 and the definition of “B,” Va(a € r > As(s < 
rAaRs A P(s))). Since u < r and P(u). z is nonempty by 1. By 2, all 
members of z are grounded. Thus x has a minimal member a. and for some 

8,5 <7, aRs, and P(s). Now suppose t < s. By 1, for some b, bRt. By 4. 
b€ a. By Tra,t <r. If P(t), then 6 € x, a contradiction as a and x are 

disjoint; thus —P(t). ™ 

Regularity, Jr A(v) — Sr(A(r) AVy(y € x — -A(y))). follows directly 
from induction for stages: Suppose A(z). By Ad. for some 4. rF's. Thus 

A9dr(A(r) Ar F's). By induction for stages, with P(s)  Ur(A(7) Ark s). 

Os(4r(ACr) AarFs) AVHE os = Sr ACr) AFA). Pick sueh s and os. 

Then A¢r}) and rf’ s. Now suppose year. By When, y Bt. ie. for some é 

Je sand ye. Thos Ay). 

The derivations of the other axietws of 2, pairing, union, power, the 

Aussonderungsschena, aud infinity, are routine and relegated ta the ap- 

pendix, ‘Phe remaining axioms of set theory are the axioms of choice and 

the axioms of replacement; we briefly discuss these. 

The following argument might be thought to show that. the axiom of 

choice follows from the iterative conception: Suppose that rx is a set of 

disjoint non-empty sets. We want to show that there is a set y having 

exactly one member in common with each of the members of x. Let s be 

a stage at which z is formed. Then the members of x are formed before 

s and by transitivity their members are also formed before s. Now, it is 

apparent that 

(*) there are some sets such that each of them is a member of a 
member of x, no two of them are members of the sarne member 

of r, and among those sets there is at least one member of each 

member of zr.
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Since those sets are all members of members of zx, they are all formed before 

s, and thus there is a set y that contains them and no others. 

The difficulty in supposing that this argument shows choice to follow is 

that its acceptability depends crucially upon that of (*). Apparent though 

(*) may be, a sceptic about choice would immediately be skeptical about the 

truth of (*); one inclined to think that there need not be a set having exactly 
one member in common with each member of 2 would hardly suppose that 

there need be any such sets as are claimed to exist in (*). (*) may be 
perfectly obvious, but it is not the iterative conception that shows (*), or 

choice, to hold. With or without the iterative conception, (*) would still be 
apparent. And without (*), all that the argument shows is that any choice 

set y for x that there might be will be formed no later than z itself, not 

that there is any such choice set. I conclude that the iterative conception 

provides no sort of justification at all for the axiom of choice. 

In “The Iterative Conception of Set” I claimed that not even the existence 

of a stage corresponding to the first non-recursive ordinal is guaranteed by 

a formalization of the iterative conception and therefore that replacement 

does not follow from the iterative conception. (It is certainly not implied by 

5, but S formalizes only a part of the content of the conception.) The argu- 

ments found in the literature to the effect that replacement can be derived 

from the iterative conception without the aid of some further principle still 

strike me as unsatisfactory, but I shall not review them here. 

One way to extend S so as to yield replacement is to exploit the idea, 

fainiliar from category theory, that being included in is a species of be- 

ing injectible into. Thus suppose that, working in a secoud-order version 

of S, we change the antecedent of Spec from Vy(Xy 3 yBs), which ex- 

presses that the sets AX” are iueluded in those formed before stage s, to 
a formula expressing, that the sets X are injectible into those so formed: 

ARW yy Vv2'(Ryz A Ry!  (y = y! © 2 = 2/)) A Vy(az Ryz 3 Xy)A 
Vz(Sy Ryz — 2Bs)). Call the resulting theory St. Then Spec is imme- 

diately recoverable: instantiate R with the identity relation on X. In a 

first-order version of $+, the existential quantifier JR is dropped and R 

becomes a schematic letter. The set-theoretic schema of “one-one replace- 

ment,” in which the hypothesis of replacement that the relevant formula 

defines a function on sets is strengthened to the hypothesis that it de- 

fines a one-one function then immediately follows in St. Since (ordinary) 
replacement follows from one-one replacement, Aussonderung, power and 

extensionality, replacement is obtainable in St plus extensionality. 

Whether some such strengthening of Spec can be plausibly thought not 

to involve a new principle that is not really part of the iterative conception 

seems most doubtful. In any event, we turn now to a completely different 

conception of set, from which replacement immediately follows.
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The conception is Frege’s, modified to avoid the antinomies. 

According to Frege, with every concept F' there is associated a certain ob- 

ject ‘F, the extension of F. Furthermore, according to rule (V) of Frege’s 

Basic Laws of Arithmetic, concepts are coextensive if and only if their ex- 

tensions are identical: ‘F ='G + Va(Fz - Ga). Russell showed rule (V) 
inconsistent. (Frege’s proof: Let F’ be [x : 3G(a = ‘GA -7Gz)|. Then if 
aF'F,VG(F = 'G — G'F), whence F‘F; but then for some G, ‘F = ‘G 
and ~G'F’. By the left-right direction of (V), Vz( Fx < Gz), and therefore 
G'F, contradiction.) We can conveniently simulate the Fregean framework 

of objects, concepts and extensions in second-order logic (as we have al- 

ready begun to do). We shall suppose that *, like ’, is an operation-sign 

which when attached to a concept (second-order) variable yields a term of 

the type of an object (first-order) variable, and lay down a suitable mod- 

ification of rule (V) governing *. The modification we give incorporates 

the idea of limitation of size, due to Cantor, Russell, von Neumann, and 

Bernays that objects with too many members may behave in deviant ways, 

perhaps by belonging to nothing, perhaps by not existing. According to 

our modified version of rule (V), all such overpopulated objects will turn 

out to be identical. 

Let F and G be concepts. We shall say that F' goes into G if the objects 

falling under F' are in one-one correspondence with some or all of those 

falling under G: ie., if IRR: F 7,1 G.° 
Let. V be the concept [x : r = x], under which all objects fall. Every 

concept goes into V. We shall say that a concept F is small if V does not 

go into PL OF course V is not small. IF Fis small and Vir(Gir 3 Fr), then 
G is sinall. Though we shall not. make use of the fact, it can be proved (via 
a version of ove proof of the Schrader Bernstein theorem) that if 1 goes 
into #, then the objects falling under & are in one-one correspondence with 

all objects. 

Call concepts F and G coextensive if the same objects fall under then: 

Va(Fa: ++ Gx). Say that F is similar to G, in symbols: F ~ G, iff et 
ther both F and G are not small or F and G are coextensive; ie. iff 
(F is small VG is small — V2(Fx + Gz)). Similarity is obviously sym- 
metric and reflexive. It is also transitive: Suppose F ~ G and G ~ H. 
Then if F is small, then Va(Fx + Gz), G is small, Va(Gr ~ Ha), and 
therefore Va(F'x «+ Ha); if H is small, then likewise Vz(F 2 «+ Hx). Thus 
similarity is an equivalence relation that respects smallness. 
We now associate with any concept F an object *F, which we shall 

call the subtension of F. We suppose that subtensions obey the following 

106R : F -+4_, G” abbreviates: VyVy'VzW2! (Ryz A Ry'2! + (y= yl oe 2 = 2/)) A 
Vy(Fy © 32(Gz A Ryz)).
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modification (new V) of Frege’s rule (V): 

VEVG(CF = *G iff F ~ G). 

We call the second-order theory that results when (new V) is adjoined to 

standard axiomatic second-order logic, FN (for Frege-von Neumann). 

Let us quickly remove any doubts there might be about the consistency of 

FN by showing it to have a model M. The domain of M is the set of natural 

numbers, and * is interpreted thus: if finitely many objects fall under F’, let 

*F be n+ 1, where n is the number in whose binary representation there 

is a 1 at the 2*s place iff & falls under F; but if infinitely many objects fall 

under F’, let *F be zero. Then (new V) holds in M; moreover, F satisfies 

“is small” in M iff finitely many objects fall under F-. 

Let 9 be the concept [z : ¢ # x], and let 0 = *@. Since there is at least 
one object (e.g. *V or *@), @ is small, @ ~ V, and 0 # *V. Thus there 
are at least two objects. For any object y, exactly one object falls under 

le : 2 = yj; thus [x : ¢ = y] is small. Let sy = *{7 : ¢ = y]. Then 
for any y, 0 # sy, since [z : ¢ # 2] is small but -Vr(r # to xe = y); 
and if sy = sz, then y = z, since [x : = y] is small, and therefore 

Va(x = yo ¢ =z). Arithmetic can therefore be carried out in FN, e.g., 
as in Dedekind’s Was sind und was sollen die Zahlen? Following Frege- 

Russell, let N be [x : VF((FO AVy(Fy — Fsy)) > Fx). 
We now want to develop a certain amount of set theory in FN. First 

define: y € x iff AF(c# = *F A Fy). Then *V € *V. y © x may be read as 
usual (“y is a member of x,” “x contains y,” etc.). 

Suppose that F is small. Then if y € *F, for some G, *F = *G and Gy; 

but then F ~ G, Vy(Fy o Gy) and Fy. Conversely, if Fy, then certainly 

we *#F, Thus if F is small, then y € *F iff Fy. 
If £ is not small, then since F and V are both not small, F ~ V, and 

*F = *V; and then since *V € *V, *V € *F, *F € *V, and *F € *F. 

Thus if F is [x : ¢ # *V], then -F*V. But since V goes into F' (map V* 
to 0, each x such that Nz to sz, and any other object to itself), F’ is not 

small, and *V € *F. In general, if F is not small and not coextensive with 

V, then -V2(Fx Va), but Ve(r € *F Go x € FV). 
Define: x is a set iff IF(F is small Ax = *F); sets are thus subtensions 

of small concepts. 0 is a set, but *V is not. If *F is a set, then for some 

small G, *F = *G, and F is small; thus z € *F iff Fz. 

If x is aset, say z = *F', F' small, then F and [z : z € *F] are coextensive 

and small, and thus z = *F = *[z: z € *F] = *[z: z € 2]. Therefore if 
x and y are sets with the same members, then [z : z € 2] and [z: z € y] 
are coextensive and small, x = *[z: z ¢€ 2] = *[z: z€ y] = y, and 
extensionality holds. 

So does Aussonderung: Let z be a set, say z = *F. Let G = [y:
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y € zAXyl. Then Vy(Gy — Fy) and G is small. Let x = *G. Thus 

Vy(yeroye zAXy). 

And so does the statement that for any object w and any set z, there 

is a set x + w whose members are just w and the members of x, which 

is sometimes called the axiom of adjunction: Suppose that V goes into 

ly: FyVy = vw), ie., for some R, R: V 1-1 [y: FyVy = wu]. Then V 
also goes into F’. For after interchanging no more than two values of R, we 

may assume that R(0) = w, and then we readily sec that [y : y # 0| goes 
into F. But since [zy : y = sz]: V 1-1 [y: y #0]. V goes into F. Thus 
if 2 = *F and F is small, [y: FyV y = w] is also small, whence adjunction. 

It follows from adjunction that for any set x, there is a set (the von 

Neumann successor of x) whose members are just z and the members of 

az. The axiom of pairing, which states that for any objects uw and 2, there 

is a set {w,z} whose members are just w and z, is also an immediate 
consequence of adjunction: {w, z} = (0+ w) +. 

Notice that although *V is not a set, s*V is. Thus some non-empty 

sets do not contain any sets at all. It follows that the axiom of unions. 

which states that for any set z there is a set whose members are just the 

members of the members of z, fails: s*V is a counterexample. It is a 

surprising result, due to Lévy,"! that a suitably modified version of unions 
is actually a consequence of FN. To arrive at this modification. and to 

derive a satisfactory theory of sets within FN, we need the notion of a pure 

object. 

Abbreviate: SFr = *F bv: Sv Cr is a subtension). Thus if Sa. or isa 
set ifr 2 *V. 

Say that Fis closed if VyG5y AVe(2 0 y+ Ba) + Fy). 

Say that ris pared VEC is closed + Fr), 

Theorem 1 Suppose that Sv and Vy(y e+ yas pure). Then a is pure, 

Proof. Let F be closed. Show Fr. All y € 2 are pure; tims for all y € 2, 

Fy. Since Sa and F is closed, Fr. ™ 

Theorem 2 Suppose that x is pure. Then x is a set (and hence not = *V) 

and all members of x are pure. 

Proof. Let G be |x : x is a set AVz(z € x — z is a set Az is pure)|. Show 
G closed. Suppose Sy and Wz(z € y — Gz). Show Gy. Suppose is not 4 
set; then, since Sy, y = *V, y € y, Gy and y isa set. So y isa set. Suppose 
z€y. Then Gz, so z is a set. Show z pure. Let F be closed. Show Fz. 
Since Gz, Va(a € z > ais pure). Since z isa set, Sz. By Theorem 1, z is 

11 (Lévy, 1968), pp. 762 763.
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pure. Thus Gy and G is closed. Since z is pure, Gz, and therefore z is a 

set and all members of z are pure. Hl 

Tt follows from Theorems 1 and 2 that z is pure iff x is a set and all 

members of z are pure. *V is not pure; neither are s*V, ss*V, etc. 

If z and y are pure and for all pure sets z, z € z iff z € y, then for all z, 

z€ x iff z € y, and by extensionality, z = y. That is, extensionality holds 

when relativized to the pure sets, as do Aussonderung and adjunction. 

Since all members of pure sets are pure, an induction principle for pure 

sets can now be seen to hold: 

dz(Pure z A Gx) — da(Pure t A Gz AVy(y € t — 7Gy)). 

Proof. If Va(Vy(y € z — Fy) — Fa), then F is certainly closed and so 
Vz(Pure zs — Fx). Thus if for some z, Pure x and Gz, then for some zx, 

Pure x and (Pure x and Gx), whence by substituting: ~(Pure z A Gz) for: 
Fx, we have that for some z, Pure z and Gz and Vy(y € « — 7(Pure yA 
Gy)). Since all members of z are pure, Vy(y € « — ~Gy). @ 

Regularity (even as a schema) thus holds when relativized to the pure 

sets. s*V is a counterexample to unrelativized regularity, which states that 

any nonempty set x contains a member with no member in common with 

x. 

It follows from relativized regularity that no pure set is a member of 

itself; otherwise some pure set is a member of itself, but no inember of it is 

a member of itself. 

Now say that sr is transitive if all members of members of « are members 

of ww: VeVy(s € y © rs €.r). And say that s is an ordinal if ris pure, r 

is transitive, and all members of x are transitive. 

Theorem 3 Suppose x is an ordinal and y € x. Then y is an ordinal. 

Proof. Since x is pure, y is pure. Since all members of x are transitive, y is 

transitive. If z € y, then by the transitivity of x, z € 2, and z is transitive. 

Thus all members of y are transitive. Hl 

Since ordinals contain only ordinals, induction for pure sets yields an 

induction principle for ordinals: 

daz(z is an ordinal A Gr) > Az(z is an ordinal A Gr 

AVy(y € z > ~Gy)). 

The usual double induction can now be used to show that € is connected 

on the ordinals; since ordinals are transitive, € is transitive on the ordinals 

as well. Since € is also irreflexive on the ordinals, the ordinals are strongly 

well-ordered by € .
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We now make use of the argumentation leading to the Burali—Forti para- 

dox. 

Let On be [y : y is an ordinal]. 

Theorem 4 On is not small. 

Proof. Suppose the contrary. Let x = *On. Then z is a set, and therefore 

for all y, y € x iff y is an ordinal. All members of x are pure and Sz; by 

theorem 1, x is pure. If z € y € a, then y is an ordinal, z is an ordinal, 

and z € 2; thus z is transitive. And if y € 2, then y is an ordinal, and y is 

transitive; therefore all members of x are transitive. It follows that z is an 

ordinal, and therefore that z € x, which is impossible, as x is pure. @ 

Since On is not small, for some R, R : V —,.., On. And since the ordinals 

are well-ordered by €, the axiom of global choice follows immediately (von 
Neumann). Various versions of the usual axiom of choice (“local choice”) 
follow from global choice and Aussonderung, as do their relativizations to 

pure sets. 

Replacement, as well as its relativization, is immediate too. Let w be a set 

and F a functional relation. Suppose R: V —-~, [z : Sy(y € wAFyz)}. By 
(local) choice, for some S, S$: V —4_, ly: y € w], which is impossible, as w 

is aset. Thus [z : Jy(y € wAFyz)] is small. Let r = *[z : Sy(y € wAFy2)).- 
Then Vz(z € x + Jy(y € w A Fyz)). 

Lévy’s startling proof that the axiom of unions is redundant in von Neu- 

mann’s system of sect theory can readily be adapted to show that the rela- 

tivization of that axiom to the pure sets isa theorem of FN, Thus according 

to FN, for any pure set. 2 there is a pure set whose members are just those 

of the members of 2. (By theorem 2, all members of a pure set are pire.) 
For the proof, reeall that) FN proves: the existence of fhe van Neri 

successor, the rest of the proof is as in Lévy's article, cited above. 
To snm up, let us compare the iterative conception and FN with respect 

to each of the axioms and axiom-schemata of set theory. 

Extensionality: Evident, but, arguably, not evident on the iterative con- 

ception. An immediate consequence of FN. 

Null set: Evident on the iterative conception. An immediate consequence 

of FN. 

Pairing: Evident on the iterative conception. An immediate consequence 

of FN. 

Regularity: Evident on the iterative conception. (What is not evident is 
that regularity is derivable from the weak-looking axiomatization S of the 
iterative conception that we gave.) Unrelativized regularity is refutable
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in FN (s*V); it is the inductive character of the relativizing predicate “is 

pure” that is responsible for the derivability in FN of relativized regularity. 

Choice: Evident, but not evident on the iterative conception. The deriv- 

ability of global choice in FN is not surprising in view of one of the leading 

ideas behind FN, that there is only one “size” things can be and stil] not 

form a set, and the well-known facts that the ordinals are well-ordered and 

do not form a set. 

Replacement: Not evident on the iterative conception. Easily derivable 

from choice in FN. 

Aussonderung: Evident on the iterative conception. An easy logical conse- 

quence of replacement. 

Union: Evident on the iterative conception. Unrelativized union is refuta- 

ble in FN (s*V); it is a deep and surprising result that relativized union is 

provable in FN. 

Infinity: Evident on the iterative conception. Not even a theorem of 

FN-+power (power is true but infinity false in the model M given above). 

To obtain infinity, one may supplement FN ad hoc with the smallness prin- 

ciple: N is small. 

Power: Evident on the iterative conception. Not even a theorem of FN + 

infinity (as can be shown by tinkering with the set of hereditarily countable 

sets). To obtain power, one may similarly add to FN a principle about 

smallness: F is small — [*G :V2(Ga — Fx) is small. 

FN thus erbodies a view of sets altogether different from the iterative 

conception. Each view accounts for a large part of set theory but also omits 

much of importance, One moral to be drawn is that it is a mistake to think 

that set theory, i.c., ZF with choice, on the whole follows from the iterative 

conception. The axioms that do not follow are crucial to any reasonable 

development of set theory (without choice the theory of cardinality is frag- 

mentary), and there is an alternative theory of which those axioms are 

consequences (but from which two important axioms of ZF do not follow). 

Perhaps one may conclude that there are at least two thoughts “behind” 

set theory. 

Appendix 

Pairing: VNwirvy(y € to (y= zVy =w)). By All, for some s and t, 

zF's and wFt. By Net, for some r,s <r andt <r. Thus z8r and wBr. 

But by Spec, JeVy(y € co ((y=zVy=w) AyBr)). 
Union: Vzizvy(y € zo Jw(y € wAw € 2)). By All, for some r, zFr. If 
w € z, then by When, for some s,s <randwFs. If y € w, then by When
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again, for some t, t < s and yFt, and by Tra, t < r, whence yBr. But by 

Spec, JaVy(y € 2 (dw(y € wAw Ee z)AyBr)). 

Power: VzizVy(y € 2 4 Vw(w € y — w € z)). By All, for some 5, zFs. 
By When, Vz(Vu(w € y — w € z) — yFs). By Net, for some r, s < r. 
Thus if Vw(w € y > w € z), yBr. But by Spec, arVy(y € co (Vu(w € 

y—we z)AyBr)). 

Aussonderung: VziaVy(y € «  (y € zAA(y))). By All, for some s, 
2Fs. By When, if y € z, then yBs. But by Spec, drVy(y € ro ((y € 

zA A(y)) AyBs)). 

Null set, IaVy-y € 2, follows from Aussonderung by taking A(y) = 7y = y- 

(We take dea = 2, and dss = s as well, to hold by logic.) 

yis null if Vzn2z € y. 

zis a successor of y if Vw(w ez (we yVw=y)). 

Infinity: tx(Sy(y € x Ay is null ) AVy(y € x > dz(z € Az is a successor 
of y))). By Null set, a null set exists. By Pairing and Union, every set has 

a successor. By When, every null set is formed at every stage. By When 

and Tra, if yFt, t < s, z is a successor of y, then zfs. [Suppose yFt and 

t<s. By When, if uw € y, then forsome vw, uv <tandwFu. By Tra u< s. 

And if w = y, then t < 8s and wFt. By When, zFs.] By Inf. for some r. 
dtt < rand Vt(t < r > ds(t << 4A8 <1r)). By Spec. drVu(y € 2 yBr). 
Done.
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Introductory Note to Kurt 

Godel’s “Some Basic Theorems 

on the Foundations of 

Mathematics and their 

Implications” 

Historical information and overview 

On 26 December 1951, at a meeting of the American Mathematical Society 

at Brown University, Godel delivered the twenty-fifth Josiah Willard Gibbs 

Lecture, “Some basic theorems on the foundations of mathematics and their 

implications.” It is not kuown when he received the invitation to give this 

lecture. It is probable, as Wang suggests ou pp. 117 118 of (Wang, 1987), 

that the lecture was the main project Godel worked on in the fall of 1951. 

In letters to Rita Dickstein (21 March 1953) and Yehoshua Bar-Hillel (7 

January 1954), preserved in Gédel’s Nachlass, he expressed his intention to 

publish the lecture in the Bulletin of the American Mathematical Society. 

These letters lend some support to the conjecture that he continued to work 

on the text after 1951. The lecture was included on a list Gddel made up 

bearing the title “Was ich publizieren kénnte” (“What I could publish” ) 
and also preserved in the Nachlass. No correspondence with the editors of 

the Bulletin is known, however, and the only text we have is handwritten 

From Kurt Gédel, Collected Works, Volume III, Unpublished Essays and Lecturcs, 

Solomon Feferman et al., eds., Oxford: Oxford University Press, 1995, pp. 290-304, 

where this essay introduced the first publication of Gédel’s Gibbs Lecture. Copyright © 

1995 Oxford University Press, Inc. Used by permission of Oxford University Press, Inc. 

All unspecified page references are to the page numbers in Gédel’s manuscript. 

I am grateful to Cheryl Dawson, John Dawson, Solomon Feferman, Warren Goldfarb, 

and Charles Parsons for much editorial and philosophical advice. 
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(and of a rather intricate structure; see the Textual Notes in (Feferman 
et al., 1995)). Since other papers of Gédel survive in typescripts—in the 

cases of (Gédel, 1995d) and (Gédel, 1995a) in several versions—it may also 
be conjectured that he did not come close to sending it off for publication. 

Gédel’s lecture may be divided into two parts, the first of which is an ex- 

position of certain logical results and of philosophical views that he regards 

as direct consequences of those results. In this part of the lecture Gédel 

tries to establish that the results show mathematics to be “incompletable” 
or “inexhaustible,” and that one of them demonstrates that “either ... the 

human mind (even within the realm of pure mathematics) infinitely surpasses 

the powers of any finite machine, or else there exist absolutely unsolvable 

diophantine problems” (13). (It will be explained below what Gédel un- 
derstands by a “diophantine problem.”) By an “absolutely undecidable” 

problem, Godel means one that is undecidable, “not just within some par- 

ticular axiomatic system, but by any mathematical proof the human mind 

can conceive” (13). 
In the second, more avowedly philosophical, part of the lecture, Gédel’s 

main concern is to adduce a number of considerations favoring the stand- 

point called realism or Platonism, which can be defined. in Gédel’s own 

words, as the view that mathematical objects and “concepts form an ob- 

jective reality of their own, which we cannot create or change, but only 

perceive and describe” (30). 

Set theory and the incompletability of mathematics 

The attempt to axiomatize set theory is the first of two iustrations Godel 

provides of what he means by the inexhaustibility of mathematics. Gédel 
claims that in order te avoid the paradoxes “without bringing in something 

eutirely extraneous! to actin mathemation! procedure, the concept of set 

inust. be axiomatized in a stepwise manner” (3). He then proceeds to lay 
ont the “iterative” or “cumulative” hierarchy of sets: we begin with the 

integers and iterate the power-set operation through the finite ordinals. 

This iteration is an instance of a general procedure for obtaining sets from 

aset A and well-ordering R: starting with A, iterate the power-set operation 

through all ordinals less than the order-type of R (taking unions at limit 

ordinals). Specializing R to a well-ordering of A (perhaps one whose ordinal 
is the cardinality of A) yields a new operation whose value at any set A is 
the set of all sets obtained from A at some stage of this procedure, a set 

far larger than the power-set of A. We can require that this new operation, 

and indeed any set-theoretic operation, can be so iterated, and that there 

1It is conceivable that he may have had in mind Quine’s set theories NF and ML, in 
which whether a formula counts as an axiom depends on whether it satisfies a somewhat 
artificial syntactical restriction.
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should also always exist a set closed under our iterative procedure when 

applied to any such operation. 

Axioms can be formulated to describe the sets formed at various stages of 

this process. But as there is no end to the sequence of operations to which 

this iterative procedure can be applied, there is none to the formation of 

axioms. “...nor can there ever be an end to this procedure of forming the 

axioms, because the very formulation of the axioms up to a certain stage 

gives rise to the next axiom” (5). 
The elaboration of Gédel’s views on the iterative concept of set found 

in (Wang, 1974) makes it clear that the axioms we thus formulate will 
imply all those of ZF, including the axioms of replacement. An interesting 

conclusion is immediate: on Gédel’s view, the iterative concept of set is 

only partially embodied in the theory ZF. 

Gédel seems never to have wavered from the view that ZF only partially 

characterizes the concept of set. In (Gédel, 1995b) he speaks of “ ...an 

infinity of systems, and whichever system you choose out of this infinity, 

there is one more comprehensive, i.e., one whose axioms are stronger” (10). 

And as late as (Gédel, 1964), footnote 20, he states that Mahlo’s axioms, 

which assert the existence of Mahlo cardinals but which cannot be proved 

in ZF, are “implied by the general concept of set.” 

Godel observes that higher-level set-theoretic axioms will entail the so- 

lution of certain Diophantine problems of level 0 left undecided by the 

preceding axioms; the problems, moreover, take a particularly simple forin, 

viz., to determine the truth or falsity of sentences Vxty P(x,y) = 0, where 

x and y are sequences of integer variables and P(x,y) is a polynomial 

with integer coefficients. Let us call this class of sentences “class A.” (For 
Gaddel’s proof that widecidable sentences can be takeu to be in class A, see 

(Gédel, 1995e)). 

The incompleteness theorems and incompletability 

Not surprisingly, Godel’s own incompleteness theorems provide his second 

illustration of the incompletability of mathematics. Invoking the notion of 

a Turing machine, he states that the first theorem “is equivalent to the the 

fact that there exists no finite procedure for the systematic decision of all 
Diophantine problems of the type specified” (9); little further mention is 

then made of the first theorem, since it is the second theorem (10) that he 

thinks makes the incompletability of mathematics particularly evident. 

For any well-defined system of axioms and rules ... the pro- 

position stating their consistency (or rather the equivalent num- 

ber-theoretical proposition) is undemonstrable from these axioms 

and rules, provided these azioms and rules are consistent and
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suffice to derive a certain portion of the finitistic arithmetic of 

integers. 

Gédel’s argument that his second theorem shows the incompletability 

of mathematics runs as follows: No one can set up a formal system and 

consistently state about it that he perceives (with mathematical certitude) 

that its axioms and rules are correct and that he believes that they contain 

all of mathematics, for anyone who claims to perceive the correctness of the 

axioms and rules must also claim to perceive their consistency: but since 

the consistency of the axioms is not provable in the system, the person 

is claiming to perceive the truth of something that cannot be proved in 

the system, and is therefore obliged to abandon the claim that the system 

contains all of mathematics. 

Gédel moves immediately to prevent a possible misunderstanding. He 

distinguishes the system of all true mathematical propositions from that of 

all demonstrable mathematical propositions, calling these mathematics in 

the objective and subjective senses, respectively, and claims that it is only 

objective mathematics that no axiom system can fully comprise. He adds 

that we could not, however, know of any finite rule that might happen to 

produce all of subjective mathematics that it is correct. The ground for 

both claims is the indemonstrability of the assertion of consistency. To be 

sure, we could successively come to recognize, of cach proposition produced 

by subjective mathematics, that that. proposition is correct; but we could 

not know the general proposition that thev are ail correct. 
Were there to be stich a rule, Gadel says, the mind would he “eqttiva- 

lent to a finite machine that, however, is mtble to aderstand completely 

its own funetioning” (12), again on the ground that the insight that the 

brain produces only “correet (or only consistent) results would surpass the 

powers of human reason” (footnote 1-1). Godel supposes that if a (consis- 

tent) inachine “completely understands” its own functioning, then it can 

recognize its own consistency. 

Gédel also holds that if the human mind is “equivalent to a finite ma- 

chine” (12), then there is a finite rule producing all the evident axioms 
of demonstrable mathematics. Since the assertion of consistency can be 

recast as a sentence in class A, he takes it that it follows that either the 

human mind surpasses the powers of a finite machine or there exist simple 

problems about the natural numbers not decidable by any proof the human 

mind can conceive. He calls his conclusion a “mathematically established 

fact” (13) that seems to him of great philosophical interest. 

There is a gap between the proposition that no finite machine meeting cer- 

tain weak conditions can print a certain formal sentence (which will depend 

on the machine) and the statement that if the human mind is a finite ma-
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chine, there exist. truths that cannot be established by any proof the human 

mind can conceive. It is not that no proposition about the “human mind” 

or human beings or brains can ever be validly inferred from a mathematical 

proposition. (On the contrary: since 91 is composite, no human being will 

ever come to know that 91 is prime.) What may be found problematic in 

Gédel’s judgment that. his conclusion is of philosophical interest is that it is 

certainly not obvious what it means to say that the human mind, or even 

the mind of some one human being, is a finite machine, e.g., a Turing ma- 

chine. And to say that the mind (at least in its theorem-proving aspect), or 

a mind, may be represented by a Turing machine is to leave entirely open 

just how it is so represented. Nevertheless, the following statement about 

minds, replete with vagueness though it may be, would indeed seem to be 

a consequence of the second theorem: If there is a Turing machine whose 

output is the set of sentences that express just those propositions that can 

be proved by a mind that can understand all propositions expressed by a 

sentence in class A, then there is a true proposition expressed by a sentence 

in class A that cannot be proved by that mind. 

Apart from the difficulties involved in deriving from the second incom- 

pleteness theorem the disjunctive claim that either the mind is not a finite 

machine or there exist absolutely undecidable mathematical propositions, 

a further problem for Gédel’s view is that the supposition that the second 

alternative holds does not seem particularly surprising or remarkable at 

present. (Of course, it may well be that the existence of propositions whose 

truth we could never recognize is unremarkable precisely because we have 

come to understand the incompleteness theorems so well.) Why, we may 

wonder, should there not be mathematical truths that cannot be given any 

proof that human minds can comprehend? It may be noted that there 

are many persons who, influenced by the picture of the mind as a Turing 

machine, find the falsity of the first and the truth of the second alternative 

a pair of propositions they are quite willing to maintain. Others, while 

reserving judgment on the question whether (the mathematical abilities of) 

a mind can be (represented by) a Turing machine, simply find it extremely 

plausible that there are mathematical truths unprovable by any humanly 

comprehensible proof.” 

According to Wang (Wang, 1974), pages 324-326, Gédel believed that 

Hilbert was right to reject the second alternative. Otherwise, by asking 

unanswerable questions while asserting that only reason can answer them, 

reason would be irrational. (‘This view may derive from Kant’s opinion that 

“there are sciences the very nature of which requires that every question 

arising within their domain should be completely answerable in terms of 

2In their introductory note to Remark 2 of (Gédel, 1990), Feferman and Solovay 
suggest one possible example. Cf. (Feferman et al., 1990), p. 292.
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what is known, inasmuch as the answer must issue from the same sources 

from which the question proceeds” [A 476/B 504, translation from (Kant, 

1933)|. Kant cites pure mathematics as one such science [A480/B508].°) 
Not only did Gédel reject the second alternative, he appears to have thought 

(at least late in his life) that there were independent reasons for accepting 

the first as well: Remark 3 of (Gédel, 1990) is an argument against Turing’s 

view that “mental procedures cannot go beyond mechanical procedures” 

(306).* 
Gédel’s disjunctive conclusion concerning the significance of his incom- 

pleteness theorems stands in contrast with the conclusion drawn by writers 

such as Ernest Nagel and James R. Newman,® J. R. Lucas,® and Roger 

Penrose’ to the effect that the theorems show outright that the mind is not 
a Turing machine, since, as they suppose, the mind can see with mathemat- 

ical certainty that any Turing machine that it might be alleged to be (or be 

represented by) is actually consistent, and can therefore prove a proposition 

not provable by that machine. The classic reply to these views was given 

by (Putnam, 1960): merely to find from a given machine AJ, a statement 

S for which it can be proved that M, if consistent, cannot prove S is not 

to prove S—even if M is consistent. It is fair to say that the arguments of 

these writers have as yet obtained little credence. 

Before we turn to the more philosophical part of Gédel’s lecture, let. us 

mention some questions that his discussion suggests. Do the impossibility 

of axiomatizing the concept of set and that of axiomatizing the whole of 

mathematics bear any interesting relation to each other? Indecd. is there 

a significant. general phenomenon of inexhaustibility or incompleteness of 

whick they are both examples (and if so, what is it)? Is there even a third 
instance of the incompletability or inexhaustibility of mathematies to be 

cited? 

Realism, or Platonism 

Gédel remarks that if either the mind is not a finite machine or there exist 
absolutely undecidable propositions, then the philosophical conclusions to 
be drawn are “very decidedly opposed to materialistic philosophy” (15). If 
the first alternative holds and the mind’s operations cannot be reduced to 
those of the brain, which is made out of a finite number of neurons and 

*I am grateful to Carl Posy and Sally Sedgwick for calling these passages in the 
Critique of Pure Reason to my attention. 

4A critical assessment of Gidel’s argumentation is given in unpublished work of Wa!- 
ren Goldfarb. 

5(Nagel and Newman, 1958). 
®(Lucas, 1961). 
7(Penrose, 1989).
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their connections, then vitalism, he states, would seem to be inescapable. 

Gédel claims that this alternative is not known to be false and that some of 

the “leading men in brain and nerve physiology” (17) deny the possibility 

of a purely mechanistic explanation of mental processes. 

The second alternative, which, he says, “seems to disprove the view that 

mathematics is only our own creation” (15), appears to imply some version 

of realism or Platonism about the objects of mathematics and gives Gédel 

considerably more to say. 

A creator, he says, “necessarily knows all properties of his creatures, 

because they can’t have any others except those he has given to them” 

(16). Gddel considers poor the objection that the constructor need not 

know every property of what he constructs, that, e.g., we cannot predict the 

complete behavior of machines we make (or, one might now add, of software 

we write). His reply to this objection is to argue that if it were correct, it 

would provide further support for Platonism in mathematics, because we 

build machines “...out of some given material. If the situation were similar 

in mathematics, then this material or basis for our constructions ... would 

force some realistic viewpoint upon us even if certain other ingredients of 

mathematics were our own creation” (18). 
Gédel’s claim that a creator must know all properties of the things he 

creates, since they can have no others except those the creator gives them, 

may strike the reader as a far-fetched defense of the quite plausible claim 

that mathematics cannot be only (i.e., entirely) our own creation, at least 

not if our capacity for proving facts about the natural numbers can be ad- 

equately represented by a Turing machine. For how, one might wonder, 

could it have been we who brought about the truth of any true proposition 

in the absence of a proof of that proposition that we could produce? It 

might be said that the truth of the proposition is a consequence of stipula- 

tions we have made concerning the natural numbers. For this reply to be 

explanatory, however, “consequence” must mean “deductive consequence” 

and not (say) “higher-order semantic consequence”; but that is precisely 

what is not the case with regard to an undecidable proposition. In any case, 

the incompleteness theorems suggest that it is doubtful that the view that 

mathematics is entirely our own creation can be successfully elaborated. 

(Gédel does not discuss the objection to the other half of his claim, that 

objects might in fact acquire properties not bestowed upon them by their 

creator, for example, as a result of being perceived by others.) 

To the objection that the meaning of a proposition about all integers can 

consist only in the existence of a proof of it, and therefore that neither an 

undecidable proposition nor its negation is true, Godel makes a particularly 

interesting response. He suggests that the abhorrence mathematicians dis- 

play towards inductive methods in mathematics may be “due to the very
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prejudice that mathematical objects somehow have no real existence. If 

mathematics describes an objective world ...there is no reason why induc- 

tive methods should not be applied in mathematics” (20). Thus his second 

alternative, that there exist absolutely undecidable propositions, favors the 

standpoint of empiricism in one respect. 

As to what such empirical methods might look like, Gédel offers no con- 

crete suggestion; but, in a footnote, he gives an example of a proposition 

where probabilities, he says, can be estimated even now: The probability 

that for each n there is at least one digit 4 0 between the nth and the 

n?-th digits of the decimal expansion of 7 converges toward 1 as one goes 

on verifying it for greater and greater n. One may. however, be uncertain 

whether it makes sense to ask what the probability is of that general state- 

ment, given that it has not been falsified below n = 1.000.000. or to ask 

for which n the probability would exceed .999. 

Gédel then gives three arguments supporting the view he calls conceptual 

realism (or Platonism) and directed against the view that mathematics is 

our own creation. 

According to the first of these, the attainment of great clarity in the foun- 
dations of mathematics has helped us little in the solution of mathematical 

problems; but this, says Godel, would be impossible were mathematics our 

“free creation,” for then mathematical ignorance could be due only to fail- 

ure to understand what we have created (or to computational coniplexity), 

and would have to disappear once we attained “perfect clearness.” 

But, it might be replied, there is no reason to suppose that perfect clarity 

about one of our creations should yield perfect knowledge of if. What 

is it about creation that gitarantees that once we know exactly whit a 

creation of ours is, we nist know everything about it? Gadel seems fo 

identify progress in inderstanding Che foundations of mathemation with the 

attainment of ever greater clarity about mathomaties; but, one might think, 

mathematics might be our own creation aud we might have attained perfect 

clarity about the fundamental properties of what we have created, but 

nevertheless be rather ignorant about non-fundamental properties. There 

is no reason to suppose that even perfect clarity with respect to all the 

fundamental properties of our creations must yield complete knowledge of 

those creations. 

Gédel’s second argument against the view that mathematics is our own 

creation is that mathematicians cannot create the validity of theorems at 

will. “If anything like creation exists at all in mathematics, then what any 
theorem does is exactly to restrict the freedom of creation” (22). This con- 
sideration is often thought to be a powerful argument on behalf of a realist 

view of mathematics of the type Gédel wishes to espouse. It is perhaps 

presented most forcefully as a claim to the effect that the contrary position
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is confused or incredible: that once it has been made clear exactly which 

objects (including operations, properties and relations) are in question, i.e., 

being talked about, which, all may concede, may well be a matter for choice 

or decision, the suggestion that there is still room for a decision whether 

or not those objects have those properties, stand in those relations, etc. 

cannot be believed to be true. (One might think: Once it is certain that it 

is 9, 4, 36, multiplication, and equality that are under consideration, how 

could it possibly be up to us whether or not the product of 9 and 4 is 367) 

If the creation could not have turned out otherwise, Gédel is arguing, in 

what sense is there creation at all? 

Gédel’s third argument is that in order to demonstrate certain proposi- 

tions about the integers, we must employ the concept of a set of integers; 

but the creation of integers does not “necessitate” that of sets of integers. 

Thus we appear to be in the “very strange situation indeed” (23) of having 

to make a further creation in order to determine what properties we have 

given to the integers, which were supposed to be our creation. 

This consideration may perhaps best be taken as a “plausibility” argu- 

ment: Confronted with these facts about integers, sets of integers and our 

knowledge of the properties of integers, how can we find even slightly plau- 

sible the suggestion that mathematics is our own creation? 

Whether or not it follows from the view that mathematics is not our own 

creation that the objects of mathematics have an objective existence that 

is independent of us will of course depend on how the concepts “objective 

existence” and “independence” arc to be understood: it may be argued 

that we lack an interpretation of the key terns in this putative consequence 

under whieh it is true but not trivially true. 

Against conventionalism 

Conceding that “free creation” is a vague term, Gédel then undertakes to 

give a more specific refutation of what he takes to be the most precise 

articulation of that suggestion, the view usually called mathematical con- 

ventionalism (though Gédel often refers to it as nominalism), according to 
which mathematical propositions express only certain aspects of linguis- 

tic conventions, “that is, they simply repeat parts of these conventions” 

(23). His discussion is intricate and, in view of the six drafts he made of a 

projected paper on the philosophy of Rudolf Carnap (at one time the pre- 

eminent advocate of conventionalism in mathematics), it is highly probable 

that GGdel was never able to formulate his objections to Carnap’s view 

to his own complete satisfaction. Annotations to the manuscript strongly 

suggest that he did not intend to read this section of the lecture to his 

audience in Providence. 

He begins by quickly disposing of what he takes to be the simplest form



114 I. Studies on Set Theory and the Nature of Logic 

of conventionalism: the view that the truth of mathematical propositions is 

due solely to the definitions of the terms they contain. Gédel understands 
this to mean that there is a mechanical method for converting any math- 

ematical truth (and no mathematical falsehood) to an explicit tautology 
of the form a = a by systematically replacing terms by their definitions. 

Since any such conversion method would yield a decision procedure for 

arithmetical truth, this simplest version of conventionalism fails: there is 

no such decision procedure. 

Refined versions, he claims, fare no better. He then attempts to refute the 

claim that “every demonstrable? mathematical proposition can be deduced 
from the rules about the truth and falsehood of sentences alone (that is, 

without using or knowing anything else except these rules)” (25). 
Gédel’s argument is that in order to derive the truth of the axioms of 

mathematics from rules about the truth and falsity of sentences (as, for 

example, the truth of p V —p is derivable from the usual rules for truth 

and falsity of disjunctions and negations), one must apply mathematical 

and logical concepts and axioms to symbols, sets of symbols, sets of sets 

of symbols, etc. Thus, one who wants to explain mathematical truth as a 

species of tautology will find that the explanation cannot proceed without 

the aid of the axioms of mathematics themselves. Mathematical induc- 
tion provides the central illustration of Gédel's point: any proof that all 

instances of mathematical induction are true will appeal. in some way Or 

other, to a form of the principle of mathematical induction itself, or to 

even stronger set-theoretical principles that cannot plausibly be regarded 

as rules about. the truth and falsity of sentences. 
He writes, “while the original idea of this viewpoint was to make the 

truth of the matheratical axiones understandable by showing that they 
are tautologies, it ends up with just the opposite, Le. the truth of the 
axioms must first be assumed and then it can be shown that, in a suitably 

chosen language, they are tautolegies” (26-27). 
By “tautology,” it should be noted, Gédel does not mean “truth-func- 

tionally valid sentence,” but rather something like “sentence whose truth 

can be deduced from rules stipulating the conditions under which sentences 
are true and false.” Gédel’s point is thus that the conventionalists’ claim 

that the truth of true mathematical statements can be deduced from such 

rules is of no interest. if true, since strong mathematical axioms, which can 

in no way be regarded as “syntactical,” will have to be assumed in any valid 

deduction that shows those statements true. 

Although “demonstrable” here might be thought to be a slip for “true,” “dem.” 
has been inserted and “true” crossed out at this point in the manuscript. (However, 
subsequent occurrences are not similarly changed, and the view under attack concerns 

mathematica] truth.)
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Gédel argues that any attempt to prove the tautological character of the 

axioms of mathematics would be a proof of their consistency, which, by his 

second theorem, cannot be achieved with means weaker than the axioms 

themselves. It may well be, he notes, that not all of the axioms are needed 

for the proof of consistency, but it is, he claims, a “practical certainty” that 

to prove consistency some “abstract concepts,” such as “set” or “function 

of integers,” together with the axioms governing these notions, will have to 

be employed in the proof. Since these notions cannot be considered to be 

syntactical, it follows, he claims, that syntax cannot rationally warrant our 

“precritical” beliefs concerning the consistency of classical mathematics. 

Although some portions of the theory of abstract concepts can be nom- 

inalistically based, and fragments of arithmetic, concerning, e.g., numbers 

less than 1000, reduced to truth-functionally valid statements, a syntacti- 

cal justification of mathematical induction is unavailable, “since this axiom 

itself has to be used in the syntactical considerations” (27). Thus the well- 
known reducibility of arithmetical identities like “5 + 7 = 12” to explicit 

tautologies is misleading, Gédel says, not only because this statement is con- 

tained in a tiny fragment of mathematics whose reducibility to tautology 

tells us nothing about the rest of mathematics—which includes statements 

that can be established only with the aid of induction—but also because 

either “+” is defined so as to refer only to numbers in some finite domain 

(in which case it does not refer to ordinary addition), or the concept of set, 

along with axioms about sets, will have to be used in the definitions and 

proofs. 

Gédel then sums up the previous discussion: the essence of the no- 

minalist -conventionalist view is that propositions which we believe express 

mathenuitical facts do not do so, and are true simply because of “an idle 

running of language,” i.e., because the rules which determine when propo- 

sitions are true er false determine that these propositions are true “no 

matter what the facts are” (29). To this view Gédel raises two objections, 
of which the first summarizes the main point of the foregoing discussion: in 

any putative proof that mathematics is tautologous or true solely by virtue 

of some such rules, one would have to use mathematics that is at least as 

complicated as that being asserted to be tautologous or thus true. 

The second objection is that no justification can be given for regarding 

certain mathematical statements, such as complete induction, as “void of 

content,” for one can easily construct systems in which certain empirical 

statements are taken as axioms. (For the notion of “content” which Gédel 

has in mind, see (Carnap, 1937), pages 42 and 120.) As it would clearly be 
unjustifiable to classify those empirical statements as therefore lacking in 

content, so, Gédel claims, it would be no more justifiable to regard those 

mathematical statements as actually void of content. Thus, according to
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Gédel, no ground has been given for thinking that there are no such things 

as mathematical facts, a claim Gédel calls “the essence of this view” (29). 

Realism and analyticity 

Gédel is prepared to acknowledge a grain of truth in the nominalist position. 

“A mathematical proposition says nothing about the physical or psychical 

reality existing in space and time, because it is true already owing to the 

meaning of the terms occurring in it, irrespectively of the world of real 

things” (30). It is an error to think that the meanings of the terms are 
man-made or that they consist in semantical conventions. Meanings are 

concepts, which “form an objective reality of their own, which we cannot 

create or change, but only perceive and describe” (30).° 

Philosophers of mathematics and other metaphysicians dispute whether 

the supposition that mathematical objects or concepts “form an objective 

reality of their own” is surrogate theology (if not outright craziness), is 

trivially correct, or is in profound need of philosophical clarification. The 

matter will not be resolved here. Gédel elaborates, “ ...a mathematical 

proposition, although it does not say anything about space-time reality, 

still may have a very sound objective content, insofar as it says something 

abont relations of concepts” (30-31). But the elaboration helps not at all 
to settle the dispute. To complicate matters further, it should be noted 

that the term “world,” as in the phrase “world of real things,” belongs to 

the same family as “reality” and “objective.” and thus the assertion that 
inathenatical truths say something “about the world” would seem to enjoy 

the sane status (insane, trivial, or unclear) as the claim that they deseribe 

an “objective reality.” 
Gédel’s realism takes a strong form: relations between the concepts are 

not “tantological,” because among the axioms that govern the concepts 

entering into those relations, some umst be assumed which are not, faute- 

logical, but which “follow from the meaning of the primitive terms under 

consideration” (31). Gédel’s thought is that statements, such as instances 

of the comprehension schema in analysis (second-order arithmetic), even 
those containing quantifiers ranging over all sets of integers, are valid “ow- 

ing to the meaning of the term ‘set’—one might even say they express the 

very meaning of the term ‘set’ ” (32). Gddel distinguishes between truths 

he calls “analytic” (those true in virtue of the meanings of the terms ex- 

pressing them or “owing to the nature of the concepts occurring therein” ) 

and “tautological” truths (those “devoid of content” or “true owing to our 

definitions”). It may be emphasized that Gédel does not restrict the term 
“analytic” to statements of the “oculists are eye-doctors” or “actresses are 

°CFf. (Gadel, 1944) and Parsons’ introductory note thereto in (Feferman et al., 1990).
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female” variety. The analytic truths about sets, Gddel states, cannot be 

proved without appeal to the concept of set itself; and some analytic propo- 

sitions might well be undecidable, since “our knowledge of the world of 

concepts may be as limited and incomplete as that of the world of things” 

(34). Gédel also discusses the notion of analyticity near the end of (Gédel, 

1944). 

Quine’s influential attack (Quine, 1951) on the concept of analyticity 

appeared three months before Gédel delivered his lecture. Gddel’s claim 

that the axioms of set theory are analytic—“true owing to the meanings of 

the terms they contain or the nature of the concepts those terms express” — 

is troubling for at least three sorts of reasons that do not entirely depend 

on Quine’s claim that the phrase “true by virtue of meanings” has not been 

shown to isolate a significant class of truths. 

In the first place, there is a difficulty about the truth of the axioms: a 

number of thoughtful writers believe that the axioms of set theory do not 

describe anything real, despite Gédel’s later assertion (Gédel, 1964), page 

271, that they force themselves upon us as being true. It is certainly a 

sensible view to hold both that Cantor’s theory of transfinite numbers is a 

fantasy and that the standard theorems of elementary number theory and 

analysis are unquestionably true. In any case, the axioms of set theory lack 

the kind of obviousness one would have expected axioms characterized as 

“analytic” to enjoy. 

Secondly, the axion: of extensionality would seem to be the only axiom of 

ZF that can be properly said to be truce in virtue of the meaning of the word 

“set”; indeed, the axiom is often justified on the ground that the criterion 

of identity of sets it gives, viz., having the sanie members, is just part of 

whit. is meant by “set” (as opposed, say, to “property”) and it is the only 

one that can be thus defended by an appeal to what “set” means. But since 

Gédel understands “true in virtue of meanings” as so much wider than “true 

owing to definitions” that it encompasses all axioms of set theory, Quine’s 

questions re-arise: How is the notion of meaning that Gédel is using to be 

understood? When the axioms of set theory are said to be true in virtue 

of the meanings of their constituent terms, what more is said beyond that 

they are true? What is it for them to be true in virtue of the meanings of 

the terms they contain? A possible rejoinder to the effect that it is not the 

meaning of “set” but the nature of the concept of set that is of primary 

importance for Gédel is open to the reply that the last two questions remain 

unanswered under the replacement of “meanings of terms” by “natures of 

concepts.” 

Gédel’s view raises worrisome questions of a third sort, suggested in part 

by later writing (Gédel, 1964) of his own: Could not the axioms of set 

theory be true, not in virtue of the concept of set or the meaning of “set,”
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but simply because sets just happen to be as the axioms have it? Why, 

one might ask, must our knowledge of sets be mediated solely through 

our understanding of the concept of set; could we not know how matters 

stand with sets by “something like a perception” of them—to quote from 

the supplement to (Gédel, 1964)—that is as direct as our perception of the 

concept of set? Even lacking such a perception, might we not acquire quasi- 

empirical evidence, of a sort that Gddel himself has acknowledged may 

exist, that certain set-theoretic matters happen to stand one way rather 

than another? One wonders why a conceptual realism should be found any 
more plausible than an “objectual” realism.!° 

Since “our knowledge of the world of concepts may be as limited and 

incomplete as that of [the] world of things,” Godel holds that the paradoxes 
of set theory pose no more threat to his Platonism than the illusion of 

the stick in water poses to the view that there is an “outer world.” The 

interesting implied suggestion is that we are taken in by something like 

an optical illusion when we accept the principles that lead to set-theoretic 

contradiction; perhaps we ought to wonder what we might learn about our 

mental faculties from a study of these principles. 

Conclusion 

Gédel concludes by claiming that although he has disproved the nominalist 

standpoint and adduced strong arguments against the more gencral view 

that, mathematics is our own creation, he could not. claim to have proved 

the realist. viewpoint he favors, for to do so would require a survey of the 

alternatives, a proof that the survey was exhaustive, and a refutation of all 
the alternatives except realisin, Among the alternatives to be refuted are 
Aristotelian realisin, whieh he characterizes as the view that coueepts are 
aspects or parts of things, and psychologinia, whieh holds that mathenut- 

ies is nothing but the psychological laws by which thoughts, presimably 

concerning calculation, etc., occur in us. About Aristotelian realism, Gédel 

says only that he does not think it tenable. His principal charge against 

psychologism, reminiscent of Frege’s objections, is briefly given: if psychol- 

ogism were correct, there would be no mathematical knowledge, but only 

knowledge that our mind is so constituted as to consider certain statements 

of mathematics true. His discussion is admittedly cursory, however, and 

G6del gives psychologism, whatever its merits, much less attention than 

nominalism. 

The suggestion with which he closes the lecture may seem utterly strange: 

that after sufficient clarification of the concepts in question, it will be pos- 

sible to conduct the discussion of these matters “with mathematical rigor,” 

10(Parsons, 1995) contains further discussion of Gédel’s use of the notion of analyticity.
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at which time the result will be that the Platonistic view is the only one 

tenable. (Here he characterizes the position somewhat differently, as “the 

view that mathematics describes a non-sensual reality, which exists inde- 

pendently both of the acts and the dispositions of the human mind and is 

only perceived, and probably perceived very incompletely, by the human 

mind” (38).) What is surprising here is not the commitment to Platonism, 
but the suggestion, which recalls Leibniz’s project for a universal charac- 

teristic,’ that there could be a mathematically rigorous discussion of these 

matters, of which the correctness of any such view could be a “result.” 

Gédel calls Platonism rather unpopular among mathematicians; it is prob- 

ably rather more popular among them now, forty years after he gave his 

lecture, in some measure because of his advocacy of it, but perhaps more 

importantly because every other leading view seems to suffer from serious 

mathematical or philosophical defects. Gddel’s idea that we shall one day 

achieve sufficient clarity about the concepts involved in philosophical discus- 

sion of mathematics to be able to prove, mathematically, the truth of some 

position in the philosophy of mathematics, however, appears significantly 

less credible at present than his Platonism. 

11%n his introductory note to (Gédel, 1944) in (Feferman et al., 1990), Parsons calls 
Gédel’s view, given in the last paragraph of (Gédel, 1944), that Leibniz did not regard the 

Characteristica universalis as a utopian project “one of his most striking and enigmatic 

utterances.”
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Must We Believe in Set 

Theory? 

According to set theory, by which I mean, as usual, Zermelo-Fraeukel set 

theory with the axioms of choice and foundation (ZFC), there is a cardinal 

A that is equal to X,. Call the least such cardinal x. * is the limit o 

{Ro, No Neg s+}, that is, the least ordinal greater than all f (i), where. 

f(0) = No and f(4 +1) = Nec for all natural numbers 7. 
Is there such a cardinal? I assume that cardinals are ordinals and ordinals 

are von Neumann ordinals. Thus if « exists, there are at least as many a8 

® sets. Are there so many sets? 
Much very important and interesting work in set theory these days 18 

Concerned with cardinals far, far greater than «, cardinals whose existence 

cannot. he proved in set theory, and with the consequences of assuniug 

that such large cardinals do exist, particularly those concerning, objects ul 

comparatively low levels of the set-theoretic universe. Since a ix the limit 

ofan w-sequence of cardinals smaller (han nit isnot (even) an jnaccessible 

cardinal, the smallest. common sort of cardinal whose existence cannot he 

Proved in set theory, let alone measurable, huge, ineffable, or supercompact. 

No, « is quite small, indeed teensy, by the standards of those who study 

large cardinals. 

But it’s a pretty big number, by the lights of those with no previous 

©xposure to set theory, so big, it seems to me, that it calls into question 
the truth of any theory one of whose assertions is the claim that there are 
at least « objects. 

I Zermelo-Fraenkel set theory is an interpreted first-order formal theory. 
Its language has one non-logical constant, the two-place predicate letter €, 
Its variables range over all the (Pure) sets there are, and a formula x € Y 

This article was ori ginally written for Gi, Sher and Rich Between : : an ard Tieszen, eds., Betw' 
rene and Intuition: Essays in Honor of (artes Persona forthcoming from Cambridge 

niversity Press. , 
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is true when sets a, 6 are assigned to the variables z, y if and only if a is 

a member of 6. The logic of the theory is classical first-order predicate 

logic with identity, and the notion of a theorem of the theory is perfectly 

standard. Thus one of the theorems of ZFC is the formal sentence o of 

the language of ZFC expressing the existence of k; o is understood to 

express the existence of « because the language of ZFC is understood to 

be interpreted in the manner just described. o is a consequence of ZFC; o 

asserts that « exists. If there are not as many as & objects in existence, « 

does not exist, o is false, and set theory is not true. 

Of course « might exist and set theory be false for some other reason. 

But « seems sufficiently large that the claim that it exists might plausibly 

be regarded as dubious. « is no gnat; it’s a lot to swallow. 

Let me try to be as accurate, explicit, and forthright about my beliefs 

about the existence of « as I can: It is not the case that I believe that 

« exists and it is not the case that I firmly believe that « does not exist. 

Without very many or very good reasons, and without strong views on the 

matter, I tend somewhat to think it probably doesn’t exist, but I am really 

quite uncertain. I am also doubtful that anything could be provided that 

should be called a reason and that would settle the question. 

I don’t, I say, have what I regard as very good reasons for failing to assent. 

to the existence of x. But I guess I really don’t believe in it, and so of course 

I think you shouldn’t either. Imagine being confronted by a precocious 

trusting child T. who tells you that three days ago Teacher taught the class 

about infinity, dav before yesterday tauglit the class that there were not 

only infinitely many things, numbers and so on, but also infinitely many 

infinite numbets, and so super-infinitely many things, yesterday taught the 

class that there were not. only super-infinitely many things, but also super- 

infinitely inany infinite wmimbers, and heuce super-super infinitely many 

things, and today tanght the class that you could iterate “super-” as many 

tines as you like, and then asks, “Is it really true what Teacher said? Are 

there really infinitely and super-infinitely and super-super-infinitely and so 

on many things ...?” What would you say to T.? Not, I hope, “Certainly, 

of course there are, Teacher was absolutely right.” 

But I hope you would also say, “Teacher was completely right,” on being 

told that Teacher had told the class that if n > 2, then z” + y” 4 2” 

(x, y, z,n positive integers), or on being told that Teacher had said that set. 

theory says that there are as many things as that. 

I said that my own reasons for thinking that « doesn’t exist weren’t very 
good ones. Perhaps they amount only to the sense that there couldn’t be 
that many things, that « is, by ordinary lights, a (literally) unbelievably big 

number, and that any story according to which there are so many things 

around ought to be received rather skeptically.
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Russell once quipped that there are fewer things in heaven and earth than 

are dreamt of in our philosophy. Dreams are rarely accurate. Why suppose 

this one correct? 

Furthermore, to the best of my knowledge nothing in the rest of mathe- 

matics or science requires the existence of such high orders of infinity. The 

burden of proof should be, I think, on one who would adopt a theory so 

removed from experience and the requirements of the rest of science (in- 

cluding the rest of mathematics) as to claim that there are «x objects. « 

is such an exorbitantly big number (by ordinary standards) that we would 

seem to need more reason than we now have to think a theory true that 

tells us that there are « things in existence. And the apparent absence of 

reasons to believe in « itself here seems like some sort of reason for believing 

in its non-existence. 

But perhaps company can make up for the absence of reasons. So let me 

ask you what you think. Do you really think that there are as many sets 

as that? Really? 
I am, of course, quite well aware that certain annoying questions can be 

put to one who is skeptical about the existence of «. It is a theorem of ZFC 
that « exists, and not a theorem that it is particularly hard to prove either. 

The proof of any theorem of ZFC appeals to only finitely many axioms of 

ZFC; and one who would question a theorem must be dubious about the 

conjunction of the axioms from which it logically follows. But perhaps it is 

not much more uncomfortable to refuse to accept the conjunction of those 

axioms of set theory (among them infinity, power set. union, and certain 

instances of replacement) needed to prove the existence of « than to refrase 
to accept the existence of x. 

But what about cardinals less than a? As it happens, | miyself believe ii 

the existence of Xo, just as it is not the case that E believe in the existence 
of «. Well then, one might ask me, what about 8? What about to? What 
about ¥.,? Is there an i such that you believe in the existence of (i), 
defined above, but fail to believe in the existence of f(i +1)? Or do you 
believe in the existence of all of them, but just not in «? Or do you believe 
that there is a set of all the f(i), but that that set has no union? 
Weall knew, however, that this sort of trouble could always be made. Like 

almost every other non-mathematical notion, acceptance or belief is vague 
and therefore the usual sorts of difficulties connected with the application 
of vague predicates to indiscriminable objects can be expected to confront 
one who maintains that we should not (or not yet) accept the existence 

of some large infinite cardinal but that belief in Ny is warranted. I chose 
K only because it is easy to define but sufficiently large for there to be a 
ok, doubt about its existence even for one who believes in the existence
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Along with the more familiar transfinite cardinals X,, the cardinals 2, are 

defined in set theory. Let us recall their definition: Jy = No, Io41 = 27°, 

(i.e. the cardinality of the set of all subsets of any set whose cardinality is 

de) and 2, = lim{I, : 6 < A}, ie., the least cardinal > all Og, 8 < A. 
Thus 3, is the cardinal number of the continuum, and X. < J, for all 

a. (So the continuum hypothesis states that 8, = 2, and the generalized 
continuum hypothesis that Na = J. for all a.) As with the Ns, there is, 
similarly, a cardinal A equal to 3). Let us call the least one p. (Since 

43, < p<, <5), 3, =N,.) I want a number that is problematically big 
even for one who believes in the existence of the set of real numbers. But 

since it is consistent that the set of reals has cardinality X(,+1), ie., the 

next cardinal after «, « ought really to be redefined as p. But let us stick 

with «. 

How then should we respond to T. when he asks whether to believe 

Teacher? There is an obvious response to T.’s question “are there really so 

many things as that?” which seems to me to be strong evidence that we 

fail to believe that there are « objects. 

We say, “Well, according to set theory, there are.” 

It is a theorem of set theory that there are cardinals « = X,.. According 

to set theory, there is such a cardinal as x. Set theory proves, tells us, has 

it that there are such cardinals. 

Are there dragons? 

Legend has it that there are. 
Legend usually has it wrong, but legend does have it that there are drag- 

ons. According to legend, there are dragons. Legend tells us that there are. 

If it. could prove things, legend would prove that there are dragons. 
But when we say that set theory proves that there is a least cardinal « 

such that a= 8, we mean more than just that a certain proposition is 

entailed by the axioms or is part of the content or meaning of those axioms: 

we mean that there is a proof from the axioms of set theory of a certain 

sentence expressing the existence of «, a finite sequence of formulas, the 

last of which expresses the existence of «, and each of which is either an 

axiom or follows from earlier formulas by one of the standard logical rules 

of inference. 
And whether or not # exists, it is literally true that there is such a finite 

sequence of formulas. 

Later on I shall have something to say about the response, “It is not lit- 

erally true that there is such a finite sequence of formulas because formulas 

are sets or other abstract objects and abstract objects do not exist.” Now, 

though, I want to compare the different responses to the questions “Does 

« exist?” and “Does set theory prove that « exists?” 

It’s fairly widely believed that one ought not to lie, one ought not to say 

what one believes to be false. (I take it that one lies who unwittingly speaks
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the truth if he asserts something contrary to what he believes; if not, sub- 

stitute “knows” for “believes.” Now it is a somewhat nice question what 

it means to say that one ought not to lie, or that lying is impermissible, 

unacceptable, out (for of course there are circumstances in which it is oblig- 

atory and praiseworthy to lie), but I don’t want to enter into a discussion 

of the meaning of “ought” or “impermissible.” 

I merely want to suggest that in whatever sense lying is out, so is saying 

what one does not know to be true. If one merely believes a thing, p, but 

does not know it, then one ought not to say p, it’s out, not permissible, to 

do so. If you don’t know the way to Waltham, then you may not answer 

“yes” to the question “Is this the way to Waltham?” any more than to the 

question whether you know the way there. If you only think that this is 

the way to Waltham, you may of course say, “I think this is the way” or 

“I believe so”; but of course then you are saying something that you know 

to be true, namely that you think, believe that this is the way. That you 

believe that it is is indeed something you know. 

Thus there seems to me to be—I don’t know that I’m right about this, 

but I think Iam (but I know that I think so and that it does seem right to 

me)--some kind of ban, and roughly the same kind of ban as there is on 

lying, on saying what one does not know to be the case. You may not do 

it, it’s out, impermissible, wrong. 

Perhaps the ban is not quite as strong as that on lying, but a speaker 

who violates it may justifiably be accused of irresponsibility even if what 

he says turns out to be true. 

So I take it that when responsible speakers like ourselves say that set 

theory proves that # exists, we take ourselves to know that set theory 

proves that it does. [also take it that when we refrain from saying that 9 

exists, we are simply observing the ban on saying what we don't know to 

be the case. A point follows which ought to be stated plainly: there are 

theorems of mathematics to the effect that certain statements are theorems 

of set theory that are far more certain than those very theorems. 
There is a response to the question whether « exists that one may expect 

to hear nowadays. It is that one who asks the question does not realize 

that he is asking an “external” question, where only an “internal” question 
is appropriate, or is trying to adopt an “external” standpoint from which 

to assess his own (or perhaps our) conceptual scheme, or is afflicted with 

“metaphysical realism.” The thought is that since set: theory implies that « 
exists, to ask whether « does exist is to attempt to call into question from 
some external vantage point the one and only theory we have that treats 

of such matters; to do so is fall into the metaphysical error of thinking 
i might somehow acquire information concerning the way sets are that is 
nmediated by any theory at all and then use this information to assess our
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own current theory of sets. Perhaps, the suggestion continues, we think we 

have some sort of direct insight into the nature of sets, possibly analogous 

to perception of physical objects, with the deliverances of which we can see 

our own best theory of sets to be at variance. 
Rubbish, for a number of reasons. 

Whatever their strength or source may be, the plausibility considerations 

about how many things there are that conflict with various theorems of ZFC 

have as much right to be considered a part of “our conceptual scheme” as 

does ZFC. ZFC conflicts with certain intuitions about cardinality that we 

happen to have; those intuitions form part of a fragmentary, inchoate, rival 

theory. If we think that there may well be fewer things in existence than 

ZFC tells us there are, we are no more assessing ZFC from some external 

point of view than we are assessing our intuitions about cardinality from 

some external vantage point when we say they are contradicted by ZFC. 

Furthermore, whose theory is ZFC anyway? The difficulty we are con- 

fronted with is that ZFC makes a claim we find implausible. To say we 

can’t criticize ZFC since ZFC is our theory of sets is obviously to beg the 

question whether we ought to adopt it despite claims about cardinality that 

we might regard as exorbitant. 

Finally, just exactly what is the matter with saying ZFC isn’t correct 

because it tells us that there are & objects and there aren’t that many 

objects? (As I remarked above, this is not my view; I am agnostic on the 

question whethcr « exists.) To be sure, one who says this nay be asked 

how he knows there aren't. But the reply, “Gct serious. Of course there 

aren't that many things in existence. I can't prove that there aren't, of 

course, any more than I can prove that there aren't any spirits shvly but 

eagerly waiting to make themselves apparent when the Zeitgeist is finally 

ready to acknowledge the possibility of their existence. But there aren’t any 

such spirits and there aren’t as many things around as x. You know that 

perfectly well, and you also know that any theory that tells you otherwise 

is at best goofball.”—that reply, although it does not offer reasons for 

thinking that there are fewer than « objects in existence, would not seem 

to manifest any illusions that could be called metaphysical realist. 

The question, in short, seems like a perfectly reasonable one to ask. The 

difficulty it presents is that it seems that there is very little to be said 

on either side of the matter, except that standard set theory says that 

the answer is yes, while common sense or whatever might be inclined to 

disagree. It is a frequent enough strategy in philosophy to try to dismiss 

or belittle a philosophical question which cannot be answered as indicating 

some philosophical confusion, but that there is any confusion at all in asking 

whether set theory is correct in asserting that « exists seems to me just not 

to have been made out.
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Part of the problem, of course, is that in the present case, we are con- 

sidering whether to reject a part of a framework. Abandonment of the 

whole of set theory is not. under consideration. It is not to be expected that 

philosophical theories about the nonsensicality of asking external questions 

where only internal ones are appropriate will help us in such a situation. 

It may be of use here to examine a story often told in connection with 

set theory and commonly called the iterative conception of set theory. 

According to the iterative conception,! every set is formed at some stage. 

There is a relation among stages, earlier than, which is transitive. For any 

two stages, there is stage later than both. There is a stage that is later 

than some stage, but not immediately later than any stage. A set is formed 

at a stage if and only if its members are all formed before that stage, 1.€., 

formed at a stage earlier than that one. (Thus, on the present version of 

the iterative conception, each set is formed at every stage later than any 

one at which it is ever formed.) Any sets all of which are formed before 

some one stage are the members of some set. 

It is a surprising discovery of Dana Scott that the principles about sets, 

stages, formation, membership, and earlier than just stated, are sufficient to 

imply (in second-order logic) all the axioms of set theory given by Zermelo, 

as well as the axiom of foundation.” (It is most surprising that they imply 
that earlier than is well-founded.) At least one further principle beyond 

those just recounted is needed to yield the axioms of replacement. 

The iterative conception of set is sometimes supposed to “justify” Zormelo 

set theory (or, with the aid of additional principles about. sets and stages, 

to justify ZFC). It is important. to see exactly what sort of justification it 
does provide. 

A less condensed version of the iterative conception will tell of a. first 
stage at which the null set. is formed, a second stage at which the niall set. is 

(re-)formed and the unit set of the null set is formed, a third stage, at which 

four sets, two of them new, are formed, ...an omegath stage, at which, for 

any sets all of which are formed at finite stages, a set is formed whose mem- 
bers are just those sets, an omegaplusoneth stage, ...an omegaplusomegath 

stage, an omegatimestwoth stage, ..., an omegasquaredth stage, etc. 

The account, when presented in full, is a picturesque account of the uni- 

verse of sets. It has another literary virtue. There is a salient partial 
ordering of sets, having lower rank than. The account respects a natural 
narrative convention (“neatness”) by mentioning things that come earlier 
in some salient order earlier than those that come later in that order. But 
notice (a point made to me by Dan Leary) that the talk of stages and 

This versi t ; : : . . “ys « . to me aici coeertion i given in detain my “eration agin, 
A proof is given in Article 6 in this volume.
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formation is the most easily dispensable of tropes. One could present the 

iterative conception just as well by saying, “First there is the null set, then 

there is the unit set of the null set, then come two more sets, ..., then there 

are twelve more, which are the ones not already mentioned whose members 

.... Then after all those there are all the sets whose members are the ones 

just indicated but not mentioned, etc.” 

Now: as I remarked earlier, the axioms of replacement, which are needed 

to guarantee the existence of «, cannot be derived just from the principles 

about sets and membership naturally inferable from the story just given, nor 

from the principles about sets, stages, membership, formation and earlier 

than inferable from certain common versions of the iterative conception. 

And (the far more important point): Even if the iterative conception is 

supplemented so that replacement follows, what reason have we to think 

that any such story is correct? Certainly, if the story from which those 

principles about sets and stages can be read off is true, then set theory is 

true, but why should we believe that the story is in fact true? Perhaps 

after a while, the story turns false and there aren’t those sets. 

The interest of the iterative conception is that it shows that the axioms 

of Zermelo(—Fraenkel) set theory are not just a collection of principles cho- 

sen for their apparent consistency and ability to deliver desired theorems 

concerning arithmetic, analysis, and Cantorian transfinite numbers, but 

not otherwise distinguished from other equally powerful consistent theo- 

ries. The conception is natural in the simple sense that people can and do 

easily understand, and readily regard as at least. plausible, the view of sets 

it embodies. The naive conception (any zero or more things whatsoever 

form asset) is also natural iu this serise, but it is of course inconsistent: the 

things that do not belong to thenwselves are some things that do not form 

asset. So the iterative conception is the only view of sets we have that is 

natural and, apparently, consistent. 

In “The iterative conception of set,”? I expressed the view that neither 

the axiom schema of replacement nor even the existence of a stage indexed 

by the first non-recursive ordinal seemed to me to be implied by the version 

of the iterative conception described there. Nor would the existence of « 

be evident on that account of the conception. But I incline—for whatever 

accident of psychology—to find principles of set theory acceptable if they 

can be “read off” that presentation. Perhaps there are other theorems that 

seem evident that cannot be so read off. But I do not regard it as evident 

that there must be a stage corresponding to every ordinal that is the order- 

type of some well-ordering formed at some stage. My credulity has limits. 

Russell’s quip was that there are fewer things in heaven and earth that 

3 Article 1 in this volume.
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are dreamt of in our philosophy. But might it be that there are fewer things 

period than are dreamt of in our philosophy? To vary the allusion, if we 
are sailors rebuilding our ship plank by plank on the open sea, then I know 

of some cargo we might want to jettison. 

I emphasized earlier that I believed in the existence of proofs, e.g.. of 

the sentence stating the existence of « from the axioms of ZFC, and of 

No. It will therefore come as no surprise that I am rather a fan of abstract 

objects, and confident of their existence. It behooves me, I think, to say 

why smaller numbers, sets, and functions don’t offend my sense of reality 

the way « does, 
Five pages into the first of the Dialogues between Hylas and Philonous, 

Berkeley has Hylas reply to Philonous that we do not immediately perceive 

by sight any thing beside light and colors, and figures. Of course Hylas 
is wrong: we immediately perceive by sight some things other than light, 

colors, and figures, for example, sticks and stones, and baseballs. But we 

immediately perceive other things too, for example letters and parts of 

the sky, as Philonous correctly asserts for once. And still other sorts of 

things too, such as The Globe (a Boston newspaper, whose slogan used to 

be “Have you seen The Globe today?”). It would be a rather demented 

philosopher who would think, “Strictly speaking, you can’t see The Globe. 

You can’t even see an issue of The Globe. All you can really see, really 

iminediately perceive, is a copy of some issue of some morning’s Globe.” 

To say this, however, reflects a misunderstanding of our word “sec”: more 

than a misunderstanding, really, it’s a kind of lunacy to think that sound 

scientific philosophy demands that we think that we see ink-tracks but not 
words, i.e. word-types. 

An observation duc to Helen Cartwright is helpful here. Ho should be 

called the Helen Cartwright Theorem ‘Theorem. As Richard Cartwright 
tells the story, he once said that propositions can’t be written down, “[s]he 
correctly replied that she tid seen Gédel’s Theorem, for instance, written 
on the board. I replied that to write Gédel’s Theorem on the board is just 

to write on the board a sentence that formulates the theorem. It took me 

an inordinately long time to see that if it really takes no more than that, 

then the theorem is easily enough written down.” 
And for that matter, you can write a number, and not just a numeral on 

the blackboard. Please consider your view about the meaning of the word 
“on” before jumping to the conclusion that you can’t write a number of 
the board. 

Numbers do not twinkle. We do not engage in physical interactions with 
them, in which energy is transmitted, or whatever. But we twentieth- 

‘tn the introduction to his (Cartwright, 1987), p. x.
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century city dwellers deal with abstract objects all the time. We note 

with horror our bank balances. We listen to radio programs: All Things 

Considered is an abstract object. We read or write reviews of books and are 

depressed by newspaper articles. Some of us write pieces of software. Some 

of us compose poems or palindromes. We correct mistakes. And we draw 

triangles in the sand or on the board. Moreover bank balances, reviews, 

palindromes, and triangles are “given” to us “in experience,” whatever it 

may mean to say that. To put the matter somewhat more carefully, no 

sense of “sensible” or “experience” has been shown to exist under which it 

is not correct to say that we can have sensible experience of such objects, 

such things as the zither melody in Tales from the Vienna Woods, the front 

page of the sports section of this morning’s Globe, a broad grin, or a proof 

in set theory of the existence of x. 

It is thus no surprise that we should be able to reason mathematically 

about many of the things we experience, for they are already “abstract.” 

It is very much a philosopher’s view that the only objects there are are 

physical or material objects, or regions of space-time, or whatever it is 

that philosophers tell us the latest version of physical theory proclaims to 

be the ultimate constituents of matter. To maintain that there aren’t any 

numbers at all because numbers are abstract and not physical objects seems 

like a demented way to show respect for physics, which everyone of course 

adinires. But it is nuts to think Wiles could have spared himself all those 

years of toil if only he had realized that since there are no numbers at all, 

there are no natural numbers x, y, 22 > 2... 

The existence of infinitely many natural numbers seems to me no more 

troubling than that of infinitely many computer programs or the existence 

of iifinitely muuiy sentences of English. Of course there is no longest (Basic) 

program: any prograin is shorter than ¢he one that results whien a suitable 

sentence of the form: {n] PRINT “Hello, world” is subjoined after its last 
line. Nor is there a longest sentence; any number of “very”s can be inserted 

into “This is tiresome.” as nearly every speaker of English knows. 

Irrealism about numbers seems no more tenable than irrealism about 

programs or sentences. It is an odd view, to say the least, that there are 

infinitely many programs but no, or only finitely many, natural numbers. 

What the most effective rebuttal to the view might be could well depend 

on how the position was articulated. At any rate, I find the existence of 

natural numbers as unproblematic as that of physical theories or of irrealist 

tracts in the philosophy of science. (When may we expect Computer Science 

Without Programs to appear?) 

In one of the funniest passages in all of contemporary philosophy, David 

Lewis asks us to imagine what the reaction would be if we were to walk into 

a mathematician’s office and announce that philosophy has discovered that
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classes do not exist.> Lewis concludes—he readily acknowledges that he 

has not provided an argument—that we have to believe in the existence of 

singletons, mysterious though he takes them to be, for the theory of classes 

pervades all of modern mathematics and we certainly don’t wish to reject 

that. 

Science-worship again. Can we not raise doubts about higher transfinite 

cardinals? Cannot a philosopher ask a set theorist whether in fact there 

really is such a cardinal as « without seeming to be a crank? It does in fact 

take a small amount of nerve to ask a practicing set theorist whether there 

really is such a number as x. I know it from having done so. The response 

I got from J., as I shail refer to him, was “I have no problem with that, 

George,” even when I asked him what he would say to a child like T. 1 did 

have the impression that J. was perhaps not entirely speaking in propria 

persona, but rather was making an announcement, as from the standpoint 

of a set-theorist. I also had the sense that nothing I could think of to say 

could dislodge J. from that standpoint. (But maybe J. really does believe 

that there are « and many many more sets in existence.) 

What we are contemplating here, however, is nothing so radical as the 

rejection of singletons, but only the claim to be a body of knowledge on 

the part of a portion of set theory that treats of objects far removed from 

ordinary experience, the rest of physical science, the rest of mathematics, 

and the rest of a certain more “concrete” part of set theory. 

In the supplement to the second version of his article “What is Cantor's 

Continuum Probleni?,” Godel stated, famously, that. “ ... despite their re- 

moteness from sense experience, we do have something like a perception 

of the objects of set theory, as is seen from the fact that the axioms foree 

themselves upon us as being truc.” 

Tdo not believe that all of the axioms of set theory forre themselves npon 
us as being true, and, as far as I can tell, Gédel does not argue for this 
remarkable claim. The axiom of extensionality may do so: if it is false, there 

would have to be two sets with the same members, and that, we think, just 
could not be, not two sets with the same members. Perhaps also the pair 
set axiom forces itself upon us as being true: how could there not always 
be a set {x,y} for any objects x,y? But I am by no means convinced that 
any of the axioms of infinity, union, or power so force themselves upon US 
or that all the axioms of replacement that we can comprehend do. 

; A pattern of argument in set theory, by which the existence of large sets 
is often proved, is to define a mapping of the members of w (customarily 

proved by appeal to the axiom of infinity) onto certain objects, which then, 
by an axiom of replacement, form a set, and then to appeal to the axiom of 

5In his (Lewis, 1991), p. 59.
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union to infer the existence of a certain other set. It is in this manner that 

« can be proved to exist. Even apart from worries about large sets, it seems 

to me that the axioms utilized in this sort of argument are significantly less 

evidently true than are extensionality and pair set. 

That there are doubts about the power set axiom is of course well known. 

These doubts have to do not so much with the truth of the axiom but with 

the clarity or intelligibility of the notion “all subsets of.” The diagno- 

sis “unclear” or “unintelligible” has to be the wrong one, however. (It is 

to be noted that those who hold this view are likely to maintain the ex- 

tremely suspicious view that “SyVr(a € y — Vu(w € rz — w € 2z))” is, 
but “dyVa(z © y — Vw(w € x > w € 2z))” is not, clear, on the ground 
that in the latter but not the former the quantifier “Vz” is unbounded. 

(“SyV2 € yw € ow € 2” vs. “SyVa(Vw €xw € z+ wesz).”)) No, there 
is nothing unclear about the power set axiom: not every epistemologi- 

cal drawback is a case of unclarity. There is, to be sure, a lot that we 

do not know about the set of all subsets of w, and a lot that we know 

we cannot, in our present state of knowledge and understanding, find out 

about it. “Clear,” as a number of philosophers have remarked, is an over- 

worked word. What could possibly be unclear in, or unintelligible about, 

VzdyVa(a € yo Vw(w € zw € 2))”? 
But it does not seem to me unreasonable to think that perhaps it is not 

the case that for every set, there is a set of all its subsets. The axiom 

doesn’t. I believe, force itself upon us as true, as extensionality and pair sect 

do, and as, say, 0 # sn, m 4 n — sm # sn, and perhaps also inathematical 

induction do. 

In his 1951 address to the American Mathematical Society (known as the 

“Gibbs lecture”),® Gadel describes beth a process of arriving at axioms for 

set theory and a picture of the set theoretic universe. (It is of course a 

version of the iterative conception.) Let me quote a bit of it. 

..-evidently this procedure can be iterated beyond w, in fact 

up to any transfinite ordinal. So it may be required as the next 

axiom that the iteration is possible for any ordinal, that is, for 

any order type belonging to some well-ordered set. But are we 

at an end now? By no means. For we have now a new operation 

of forming sets, namely forming a set out of some initial set A 

and some well-ordered set B by applying the operation “set of” 

to A as many times as the well-ordered set B indicates. And, 

setting B equal to some well-ordering of A, now we can iterate 

this new operation, and again iterate it into the transfinite. This 

will give rise to a new operation again, which we can treat in 

6 (Gédel, 1995c), See also Article 7 in this volume.
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the same way, and so on. So the next step will be to require 

that any operation producing sets out of sets can be iterated 

up to any ordinal number (that is, order type of a well-ordered 

set). But are we at an end now? No, ... 

Does this view of how matters are with regard to sets really force itself 

upon us as true? Do we find that, on reflection, we are unable to deny in 

our heart of hearts that matters must be as Gédel has described them? Or 

do we suspect that, however it may have been at the beginning of the story, 

by the time we have come thus far the wheels are spinning and we are no 

longer listening to a description of anything that is the case?” 

7 tae 
not e addition to Charles Parsons, two authors whose writings I particularly regret at navi g riscussed in this paper, despite their evident pertinence to its topic and my ration for them, are Penelope Maddy and Solomon Feferman
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Introduction 

Frege’s Failure and Success 

Frege published three books on logic: the Begriffsschrift or Ideography 

(1879), the Grundlagen der Arithmetik or Foundations of Arithmetic (1884), 
and the Grundgesetze der Arithmetikor Basic Laws of Arithmetic (two vols., 

1893 and 1903). The first introduces a system of symbolic logic. The sec- 

ond, after a critical survey of earlier views on natural number, presents 

what is claimed to be a derivation of arithmetic or the theory of the nat- 

ural numbers from pure logic. The third transcribes the arguments of the 

second into symbolism, to show that there are no gaps in the logic, and 

extends the whole project from the natural to the real numbers. 

Unfortunately, an assumption used by Frege in deriving arithmetic from 

logic in effect amounts to the assumption of the inconsistent naive con- 

ception of set, as mentioned in the Introduction to Part I. The fact that 

his system thus collapses into inconsistency has long led philosophers to 

regard Frege’s lifework as a brilliant failure. More recently, however, schol- 

ars have come to recognize that there is a substantial mathematical result 

salvageable from the collapse of Frege’s system. 

Article 9 provides a non-technical overview of recent Frege studies that 

can supplemcut the foregoig remarks. The remaining articles treat of 

several themes related to Frege (with some articles sounding more than 

one thenie): the source of the inconsistency in his system, the statement 

and proof of the theorem salvageable from the collapse of his system, the 

relationship of his work to that of his contemporaries, and the philosophical 

status of the premiss of his theorem. 

The Inconsistency in Frege’s System 

Article 10 explains that the system in Frege’s Begriffsschrift is, despite 

differences in notation, essentially just second-order logic, and so it is con- 

sistent, unlike the system of the Frege’s Basic Laws of Arithmetic. The 

article also explains that the Begriffsschrift contains substantial mathe- 

matical results on the theory of relations (for instance, the transitivity of 

the ancestral, in the jargon of the Introduction to Part I) which must be 
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considered significant contributions to the abstract or generalizing tendency 

in mathematics that began in the late nineteenth century. 

A word needs to be said about differences in intended interpretation of 

second-order logic. What are the first-order entities, over which the first- 

order variables range; and what are the second-order entities. over which the 

second-order variables range? On Frege’s reading, the first-order variables 

range over absolutely all “objects,” while the second-order variables range 

over absolutely all “concepts,” somewhat mysterious entities-t hat-are-not- 

objects. 3U and Us are read “there is a concept U~ and “the object r falls 

under the concept U.” This contrasts both with what is the conventional 

reading today, and with the author’s alternative reading im terms of plural 

quantification, as discussed in the Introduction to Part I The article argues 

that this last reading avoids some objections to which others are open. 

Two later articles consider the question of the source of the inconsistency 

in the system of the Basic Laws of Arithmetic. The short answer is that the 

Basic Laws of Arithmetic added to the Begriffsschrift a principle amounting 
to the assumption of the existence of sets, naively conceived. and that the 

system succumbed to the paradoxes the naive conception of sets involves. A 

fuller answer will have to say something more about the Fregean principle 

on the one hand, and about the set-theoretic paradoxes on the other hand. 

Starting with the set-theoretic paradoxes, Russell's is always the first one 

mentioned, even though it was not the first one discovered. because it is 

the only one whose statement presupposes no knowledge of any non-trivial 

theorems of set theory, But there are several others. and one of then 

Cantor's paradox, presupposes knowledge of ouly one non-trivial theorem, 

Cantor's theorem. 

Cantor’s theorem briefly stated says that if J is any set and [is its power 

“ BU), the ‘et of all subsets of 7, the set of all sets whose elements arc 

more fully ‘od > en is more Clements than 2, Cantor's theorent 

ie one-to-one The, t - ' tere cannot be a function a) from 27 to / that 

would be a function f from I ‘ i suc g becanse (i) if there were there 
any such f. As to (i), give i, that is onto, and (ii) there cannot be 

For any element c¢ of i let i(c) be he. a define such an J as eet 

9(C) is c, if there is any a ie) . the aN element C of H such that 

As to (it), if f is any function fre nT ee ee a there is no ee such that f(d) cannot be ion rom J to H, then there is a subset D of! 

is the set of all elements of A hth soment dof I. As to what D bs, 

why f(d) cannot b ¢ suc’ that ¢ is not an element of f(c). As to 
owe el e D for any element d of I, if we assume f(d) is D for 
: element d of I, a contradiction results when we ask whether d is an 

element of D. The answer or seems to be that it is if if it isn’ his contradiction completes the proof s if and only if it isn’t. T
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Cantor’s paradox results if we assume, with the naive conception of set, 

that in addition to the set of all things that are not self-identical, the set of 

which nothing is an element, or null set, there is also a set of all things that 

are self-identical, the set of which everything is an element, or universal 

set J. The set H of all subsets of J is then just the set of all sets. Since 

everything is an element of J, every element of H is an element of J, and 

so H cannot have more elements than J, contrary to the brief statement 

of Cantor’s theorem. And by letting g(C’) be C itself for any element C 

of H, we get a function g from H to J that is one-to-one, contrary to 

the fuller statement of Cantor’s theorem. If we go back and analyze the 

proof of Cantor’s theorem as it applies to this case, we find that the set D 

it asks us to consider is Russell’s set of all sets C’ such that C is not an 

element of itself, and the contradiction that completes the proof is Russell’s 

contradiction. Historically, Russell arrived at his paradox by analyzing the 

application of Cantor’s theorem to the universal set in just this way. 

Turning to the principles of Frege’s system, let there be given an equiv- 

alence relation ~ on second-order entities, a relation that. is reflexive and 

symmetric and transitive. A contextual definition is a principle positing 

that to each second-order entity U there can be assigned an entity {U, to 

be called the equivalence type of U, in such a way that U and V will have 

the same equivalence type if and only if they are equivalent. A Fregean con- 

textual definition is a one in which the equivalence types are assumed to 

be first-order entities. The general form of a Fregean contextual definition 

for equivalence types {U for an equivalence relation ~ is as follows: 

WW ({U =tV OU &V) 

The specific form of the Fregean contextual definition for equivalence types 

fU for the equivaleuce relation = of coextensiveness is as follows: 

VUWV(tU =1V 4+U=V) 

Since = is being called coextensiveness, it is natural to call {U the extension 

of U, and to call the foregoing principle the extensions principle EP. It is 

in fact a principle assumed by Frege, the most important special case of 

the Aziom (V) of his Basic Laws of Arithmetic. 
The trouble is, briefly put, that Frege’s “extensions of concepts” ainount 

to sets, naively conceived; or more fully put, that Frege’s EP amounts 

to the assumption that there is a one-to-one function { from the second- 

order entities to the first-order entities, contrary to Cantor’s theorem. It 

needs only to be verified that the argumentation of the paradoxes can be 

transcribed into Frege’s symbolism, in order to establish that his system 

collapses into inconsistency. Thus it is the addition of assumption EP to
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the system of the Begriffsschrift that is responsible for the collapse. Or at 

least, such is the diagnosis endorsed by a majority of commentators. 

Article 11 endorses this majority diagnosis. But the article points out that 

Frege made very few uses, and even fewer essential uses, of the inconsistent 

extensions principle EP in deriving arithmetic. And the article suggests 

a consistent weakened extensions principle EP~ that he could have used 

instead. (This is the principle already mentioned in Part I in connection 

with Article 6, under the label “small extensions principle;” in the article 

under discussion it is called the “subtensions principle.” ) 

Article 14 answers a challenge to the majority diagnosis from the doyen 

of modern Frege studies, Michael Dummett. Dummett suggests that it is 

the introduction of second-order quantification that is responsible for the 

inconsistency (and seems to express some degree of sympathy with the view 

discussed in connection with Article 2 of Part I, according to which quan- 

tification only makes sense if the things over which one is quantifying form 

a set). And indeed Terence Parsons has shown that EP is consistent if the 

axiom of comprehension of second-order logic is assumed only for condi- 

tions involving no second-order variables (and his proof is outlined in the 
article}. Actually, the author raised the question whether something more 

isn’t true, namely that EP is consistent when assumed for conditions in- 

volving no bound second-order variables, the “simple predicative fragment,” 

and beyond that the “ramified predicative fragment” whose exact defini- 

tion need not detain us here. An extension of Parsons’ proof does establish 

consistency here, and Richard G. Heck, Jr., has recently proved that. n sig- 

nificant fragment of arithmetic can be developed in the resilting system. 

But the article nonetheless restates the case for the majority diagnosis in 

opposition to Dummett, while emphasizing that. this local dissent from oue 

of Dummett’s suggestions does not. diminish the author's global admirtion 

of Dummett’s contributions. 
Article 21 is a brief note on an aspect of the proof of Cantor's theorem. 

Frege is not mentioned by name, but it is hoped that the connection with 

Frege will be clear from the above discussion of Cantor’s paradox and its 

fatal bearing on Frege’s system. 

Frege’s Theorem 

But enough of the weaknesses in Frege’s thought, which have long been 
known. It is time to consider the strengths that have only comparatively 
recently become apparent. Despite the existence of some precursors whose 
significance was only recognized in retrospect, the new direction in Frege 
studies may be said to have been launched in 1983 by Crispin Wright with 
his book Frege’s Conception of Numbers as Objects (Wright, 1983). (Men- tion also should be made of the technical appendix thereto, co-authored
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with Neil Tennant.) The book drew attention to the Fregean contextual 

definition for equivalence types #U for the equivalence relation = of equinu- 

merosity: 

VUWV (#U = #V 6 UV) 

Since & is being called equinumerosity, it is natural to call #U the number 

of U. Because Frege in enunciating the foregoing contextual definition cites 

Hume, it has come to be called Hume’s principle or HP. Second-order logic 

together with HP has come to be called Frege arithmetic or FA?. With 

regard to FA?, the book makes two main contributions. 

First, it shows that attempts to derive the usual contradictions of naive 

set theory within FA? break down, and conjectures that FA? is consistent. 

Second, it relates FA? to the single most. intensively investigated system of 

formal arithmetic in the literature, second-order Peano arithmetic or PA?, 

which consists of second-order logic together with the Peano ariom or PA. 

(The weaker system first-order Peano arithmetic or PA! has also been much 

studied.) PA asserts that there are some things we may call “natural num- 

bers,” a distinguished element among them we may call “zero,” and a way 

in which they may be related which we may call “immediate succession,” 

for which a certain list of a half-dozen or so postulates hold. The half-dozen 

or so postulates are stated in Articles 17 and 18, and it will not be needful 

to restate them here. Intensive investigation by mathematical logicians has 

shown that PA? is adequate to develop the classical theory of natural and 

rea] numbers, and probably adequate for most of mainstream mathematics 

(though certainly not for higher set theory). What the book indicates is 

that PA? can be derived from FA?, or in other words, that within pure 

second-order logic, PA can be derived from HP. 

This is the “substantial mathematical result salvageable from the collapse 

of Frege’s system” alluded to earlier. It has come to be called Frege’s theo- 

vem or FT. All the articles in this part are concerned directly or indirectly 

with it. The leading idea for getting the whole infinite sequence of natural 

numbers from HP is easy enough to indicate in gross outline: First we get 

zero as the number of things that are non-self-identical, then we get one 

as the number of things that are identical to zero, then we get two as the 

number of things that are identical either to zero or to one, and so on. The 

subtlety lies in how to say all this rigorously—-especially the “and so on.” 

Article 12 aims to press the argument of Wright’s book further, and this 

in two directions. The first aim of the article is to prove the conjecture 

that HP is consistent. (Actually, this in itself is quite easily done, and the 

article quotes a direct one-line proof. So the aim of the article needs to 

be stated in more precise terms, which requires the technical notion, to be 

explained in the Introduction to Part III, of relative consistency. Precisely
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and technically stated, the first aim of the article is to prove the consis- 

tency of FA? relative to PA?.) The second aim of the article is to indicate 
a streamlined derivation of PA from HP, of PA? from FA?, and more sig- 

nificantly, to indicate that such a derivation was essentially given already 

by Frege himself. Frege’s only essential use of the inconsistent EP was to 

derive the consistent HP, whereafter he essentially derives everything from 

HP alone. A concise derivation in symbolic form is given in an appendix to 

Article 13. The attribution to Frege is in a sense qualified in Article 20. 

Articles 17 and 18 both provide detailed analysis of Frege’s theorem FT. 

They contain proofs to show various premisses imply various conclusions 

and models to show various other premisses do not imply various other 

conclusions. Very roughly what the detailed analysis establishes is that HP 

is needed only to get a certain intermediate principle that in turn is needed 

to get PA, where neither the implication from HP to the intermediate nor 

the implication from the intermediate to PA can be reversed. Ultimately, 

the motivation for such detailed studies must be supplied by the earlier 

articles that make the case for the importance of FT. But one result of 

the detailed examination may be mentioned here by way of motivation, the 

emergence from the examination of a previously unrecognized redundancy 

or dependency among the various clauses of PA. PA has been so intensively 

investigated by so many mathematical logicians for so many vears that it 

is surprising that there is something new to be said about it. 
Article 20, co-authored with Heck, deals with the derivation of PA from 

HP as it appears in the Fregean text. Transcription into ideography was 

supposed to catch any gaps in the purely logical structure of a derivation. 

What this article argues is that there is indeed such a gap in the proof of 

Frege’s theorem in the Foundations of Arithmetic, which ix filled in by the 

Basic Laws of Arithmetic. Mong the way it is noted that it had apparently 
occurred to Frege that there might be true hypotheses expressible in the 

notation of his systein but not provable from his axioms. 

Frege and His Contemporaries 

Only after Frege’s true achievement, the proof of Frege’s theorem, is appre 
ciated can Frege’s contributions be meaningfully compared with the those of 
his near-contemporaries, Richard Dedekind and Bertrand Russell. Article 
13 is partly and Article 15 is largely devoted to carrying out the comparison 
with Dedekind, while Article 16 concerns Russell. 

Article 13 notes, as to Dedekind, that the formulation of PA is really due 
to him, the name “Peano postulate” having been bestowed by readers who 
overlooked Peano’s citation of Dedekind. Also due more to Dedekind than 
any other single contributor is the derivation of the basic laws of natural 
and ultimately of real numbers from PA?, What was missing, however,
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in Dedekind’s work, was any rigorous or even plausible derivation of PA. 

This Frege’s theorem arguably supplies. Article 15 adds that some of the 

substantial mathematical results on the theory of relations found in the 

Begriffsschrift were arrived at independently by Dedekind. 

Article 16 contrasts Frege’s proof, assuming HP, of the existence of an 

infinity of objects, with Russell’s assumption that there are infinitely many 

objects at the bottom of his hierarchy (as described in the Introduction to 

Part I). The need for this assumption makes it difficult to accept the claim 
that Russell achieved a reduction of mathematics to pure logic, though 

indeed the need for the assumption HP may make it difficult to accept 

the claim that Frege did so either. In the case of Frege, one can say his 

work contains a substantial mathematical result, even if the result did not 

amount to a reduction of mathematics to logic. Can one say the same for 

Russell? The article argues that one can. 
Here is the result. A set x is strongly finite if for some natural number n 

there is a function from the set of natural numbers less than n to x that is 

onto, and strongly infinite if there is a function from the set of all natural 

numbers to x that is one-to-one. Without the choice axiom it cannot be 

proved that if x is not strongly finite, then it is strongly infinite. It cannot 

even be proved that if x is not strongly finite, then the power set P(x) 

of z is strongly infinite. Russell’s theorem, which invites comparison with 

Frege’s theorem, is that if x is not strongly finite, then at least the power 

set P(P(z)) of the power set P(x) of x is strongly infinite. 

The Philosophical Status of Hume’s Principle 

Article 11 raises the question of what, philosophically speaking, follows 

from Frege’s mathematical results? One may distinguish three theses: 

1. Not all substantial mathematical results depend on spatiotemporal 

intuition. 

2. Not all substantial mathematical results depend on something more 

than pure logic. 

3. No substantial mathematical results depend on anything more than 

pure logic. 

The first thesis of anti-Kantianism seems to be established by any signifi- 

cant contribution to the abstract or generalizing tendency in mathematics 

that began in the late nineteenth century, including Frege’s contribution 

in the Begriffsschrift. Even the second thesis of super-anti-Kantianism or 

sub-logicism seems to be established if it is accepted that second-order logic 

is indeed logic, a claim argued in several papers in Part I The third the- 

sis of logicism is what Frege himself had hoped to establish (at least for
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mathematics minus geometry). But despite his proof of FT. he cannot be 

held to have established it unless his premiss HP can be considered in some 

sense a tautologous or analytic or conceptual truth. 

Wright in his book argued that it should be so considered. His position 

was supported by his colleague Bob Hale, and opposed by Field. who as a 

nominalist rejects numbers and sets alike. All this led to a long-running 

exchange of views whose details need not concern us here. Article 19 is 

wholly, and Article 13 partly, devoted to the issue, as are incidental passages 

in other articles. Wright’s position is criticized, but the criticism is from 

a non-nominalistic standpoint, and turns on features of HP more specific 

than that it involves “ontological commitment to abstract entities.” 

A concession may perhaps be made to Wright, to the effect that the ques- 

tion whether HP is a conceptual truth may be partly terminological. There 

may perhaps be principles so central to a concept that anyone who rejects 

them and nonetheless uses the usual name for the concept may be said to 

be using not the usual concept but another one of the same name. Such 

principles may perhaps be called “conceptual.” and by those who accept 

them as truths, “conceptual truths.” We may perhaps be hypothetically 

obliged to accept them as true if we accept the concept. But we are not 

categorically obliged to accept them as true, since we are not. obliged to 

accept the concept. We may even on the contrary be obliged to reject the 

concept——and are obliged to reject it if its principles lead to inconsistencies. 

What is special about a Fregean contextual definition is that. it postu- 

lates that the equivalence types corresponding to an equivalence relation on 
seconc-order entities are first-order entities. Tt is this feature that creates 
the danger of inconsistency. We have at present. no deep understanding 

of why some Fregean contextual detinitions like EP lead to incousisten- 

cies while others like HP do not, and one night be tempted to argue on 

that ground alone that we cannot be obliged to accept. any particular such 

definition. , 

Rather than a deep understanding, we have at present a collection of 
examples and results. One result comes from Heck, and is reported in 

Al 18.1 sa ht fr ay forming threo Pron context 
‘ollnne 2 ms od cation 0 EP, that is consistent if and only if y is. It 

there can be no “mechani ns mathematical logic, Church’s theorem, that 

given Fregean context wld fn for determining whether or not 4 

the author and : efi ition is consistent. One example comes from 
, and is reported in Article 13. It cites two Fregean contextual 

definitions, one of them being HP, that are each separately consistent, but 
whose conjunction is inconsistent. 

i This Ii i i the 
complexity of the issue. like nothing else illustrates
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Gottlob Frege and the 

Foundations of Arithmetic 

The German philosopher and mathematician Gottlob Frege (1848-1925) is 

widely regarded as one of the two greatest logicians since Aristotle. (The 

other is Kurt Gddel.) Frege is now credited with the creation of modern 

logic: among other accomplishments, he was the first person to investigate 

the logical foundations of mathematics and the first to construct a formal 

deductive system of logic. 

Frege was also the logician in whose system of logic Bertrand Russell dis- 

covered the contradiction now called Russell’s paradox. I shall discuss the 

paradox—-it’s the one about the set containing those sets that do not con- 

tain themselves--in some detail later on. The present story is a bittersweet 

one, When Frege came to appreciate the full force of Russell’s paradox, he 

regarded it as utterly destructive of his entire logical work. But within the 

last. five years or so, it las become clear that Frege grievously undervalued 

his actual achievement. Here I shall describe the main aims of the work 

of this great philosopher and explain a profound discovery of his, which 

philosophical scholarship has only recently brought to light, and of which 

he himself, sadly, was unaware. 

Frege was not a philosopher with a broad range of interests. Unlike 

Plato, Aristotle, Hume, and Kant, he wrote nothing on ethics or social 

philosophy. But an interest in “value theory” is not required for greatness 

in a philosopher. Descartes also wrote nothing in this area, and Leibniz 

and Wittgenstein, an insignificant amount. Although Frege’s output was 

somewhat small (three books and fewer than thirty articles) and the range 
of his concerns quite narrow, and in spite of the tragic end of his intellectual 

career, the profundity, inventiveness and rigor of Frege’s work put him in 

the philosophical pantheon beside Descartes, Leibniz, and Kant. 

The only branch of philosophy that interested Frege was logic, including 

formal logic and the philosophies of mathematics and language. His works 

143
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in the philosophy of language are currently the subject of intense and fruit- 

ful scrutiny by numerous philosophers and linguists. but they were to a 

certain extent spin-offs from the main body of his work. which concerned 

itself with the relation between logic and mathematics. 

Frege’s first work was a monograph, published in 1879 and only 88 pages 

long. It was entitled Begriffsschrift, translatable as “Conceptual Notation 

or “Concept-Script.” Nothing like it had been seen before. and the mono- 

graph was completely unappreciated when it was published. for reasons 

that are obvious as soon as one looks at a typical page. The odds that 

Frege’s work was the production of a genius rather than a crackpot may 

have seemed long indeed to his colleagues and contemporaries. 

However, Begriffsschrift contains the first rigorous svstem of formal logi- 

cal notation ever devised, and his notation is not all that hard to get used 

to. Unlike later formal languages, Frege’s was a two-dimensional, treelike 

system of notation. (The now standard linear symbolism of logic, with 

its symbols, — (not), > (if ...then ...), and Vz (for all x), derives from 
notations invented by Russell and Giuseppe Peano.) Instead of writing: 
A — B, Frege symbolizes (if A then B): 

~ tL 5 A 
(Perhaps Frege chose this synbolization to suggest: A is the hypothesis on 

which B rests.) Not-A is written: 
—C A 

and For all -;: 

nae 

Thus no As are Bs (for alla, fr is an A, then wr is not af) would be 

written: 

—e “To B 

A 

Unlike standard notation, Frege’s two-dimensional symbolism depicts the 
logical structure of statements visually and vividly. “The convenience of 
the typesetter is certainly not the summum bonum,” he wrote. 

But although the pages of his book look like nothing so much as wallpa- 
per, his principal objective in Begriffsschrift was distinctly philosophical. 

The main philosophical question that concerned Frege was the justifi- 
cation of mathematics. The issue can be understood with the aid of an 
example. Suppose we call 2’s father, z’s father’s father, 2's father’s fa- 
thers father, etc. x’s forefathers. (Assume that a person has at most one 
ather.) Now suppose that y and z are two different forefathers of x. Then,
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as a moment’s thought will make clear, either z is one of y’s forefathers or 

y is one of z’s forefathers: 

x -— 2's father — z’s father’s father — ...— 

one of y,z—...— the other of y, z 

[z — 2’s father — z's father’s father — ... — | 
one of y,z—>...— the other of y,z 

one of y,z —...—> the other of y, z 

Above is a picture, from which it is apparent that if y and z are forefa- 

thers of x, then one of them is a forefather of the other. Are pictures like 

this one necessary for mathematics? Do we have to have seen one, either 

on the blackboard, on the page, or in the mind’s eye, in order to be enti- 

tled to believe that of any two forefathers of z, one is a forefather of the 

other? (By the way, this statement, even though it mentions the highly 

non-mathematical! notion of fatherhood, is every bit as much a mathemat- 

ical statement as the assertion that if y and z are two distinct positive 

integers, then either y is less than z or z is less than y.) 

The philosopher Immanuel Kant held that such mental “intuitions” are 

necessary, if we are to be justified in believing any but the simplest truths of 

mathematics, ones like “12=12.” Kant’s view was that it was such mental 

“seeings” that justify us in believing in, and make us believe, the truth of 

any statements that are not mere identities. Kant’s opinion as to the neces- 

sity of certain psychological processes for the justification of mathematics 

deeply influeuced the views of such twentieth-century mathematicians as 

David Hilbert, L. FE. J. Brouwer, and Kurt Gédel. 

Frege’s aim iu the Begriffsschrift was to show that logic could do the work 
of Kantian intuitions in cases like that of the statement about forefathers. 

Frege claimed that one could define “forefather” from “father” in purely 

logical terms in such a way that one could prove by logic alone, and without 

the aid of any intuitive pictures, that of any two forefathers of some one 

person, one is a forefather of the other. In order to show this, he had to show 

that the statement could be proved without the aid of any assumptions 

whose truth could not be shown by logic alone or could be guaranteed 

only by means of pictures. It was to insure that all assumptions of his 

demonstrations were evidently logical assumptions that Frege devised his 

formal language. Since, as Frege showed, such mathematical statements 

could be rigorously proved in the system of the Begriffsschrift, Kant’s view 

of mathematics could be seen to be seriously deficient: intuition was not 

needed in many interesting cases where Kant and others would have thought 

it indispensable. 

It was either during the writing of the Begriffsschrift or shortly after- 

wards that Frege became convinced that the whole of mathematics could
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be similarly reduced to logic. That is to say, the concepts of mathematics 

such as the integers, addition, multiplication, the real numbers, the notions 

of the calculus, etc. could all be defined in purely logical terms and the 

propositions of mathematics proved from these definitions by logical means 

alone. This view is called “logicism.” Believing that the rigorous devel- 

opment of the calculus that had been carried out by Cauchy, Weierstra8, 

and others sufficed to reduce the rest of mathematics to arithmetic, Frege 

concentrated his efforts on showing that the arithmetic of the natural num- 

bers (the non-negative integers 0,1,2,...) could be derived from logic and 
to that end published a second short (120 pp.) book. 

The Foundations of Arithmetic appeared in 1884. The first half of the 

book was devoted to a caustic review of writings by various philosophers and 

mathematicians on the concept of number. Frege was not a kindly critic. 

Although a few of his predecessors (Leibniz, Hume) escaped unscathed, 

most of his contemporaries were savaged. Fate would have worse in store 

for Frege. In the second half of the book, Frege set forth his own “logicist” 

view of mathematics. 

The fact that the Foundations is more or less devoid of mathematical 

symbols should not mislead one into thinking it is not at least in large 

part a mathematical work. Certainly it is a philosophical work, but. as 

Frege’s work has made plain, there is no precise demarcation to be made 
between mathematics and philosophy. Frege was concerned to make it 

plausible that the propositions of arithmetic, once translated into logical 
terms, could be derived from logical axioms by logical means alone. This 

is a mathematical task, and Frege had now to give rigorous proofs of the 

claims whose demonstration he had ouly outlined in The Houndations of 

Arithmetic. Doing this would require developing a significant portion of 
mathematics in a formal system like that of Beyriffxschrift. 

After completing the Foundations Frege sct to work, In 1803, the first 

volume of his Basic Laws of Arithmetic was published; the second appeared 

in 1903. 
In mid-June of 1902 Frege was completing the second volume of Basic 

Lows when a letter arrived in the mail. It was from a then unknown English 
logician named Bertrand Russell. In a page or two, Russell pointed out to 

Frege that one of his Basic Laws, number (V), led to an inconsistency, 4 
statement of the form p-and-not-p. 

In logic inconsistency is deadly. Not only is no statement of the form 
p-and-not-p ever true, any statement q whatsoever—e.g., “The moon is 
made of green cheese” —follows from p-and-not-p. For if p-and-not-p, then 
P, whence p-or-q; and if p-and-not-p, then also not-p. But from not-p and 
p-or-q, q follows.
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p-and-not-p 

mo 
| men 

p-or-g 
oy 

If snow is white and snow is not white, the moon is made of green cheese. 

Thus if an inconsistency can be derived from an axiom, so can any state- 

ment whatsoever. And that is what Russell’s letter proved: that from 

Frege’s basic laws, it was possible to derive in short order all propositions 

of mathematics, the false along with the true, and not merely those truths 

over whose derivations Frege had labored for more than fifteen years. 

The effect of the letter on Frege was devastating. “Hardly anything more 

unwelcome can befall a scientific writer,” he later wrote, “than for one of 

the foundations of his edifice to be rocked after the work is finished.” He 
replied quickly to Russell (the dates of their letters differ by only six days), 

acknowledging that a defect had been discovered that would be fatal if not 

eradicated. After working on the problem, Frege wrote an appendix to the 

second voliune of Basic Laws, in which Russell’s discovery was discussed at 

length and the ontline of a repair suggested. For a time Russell too thought 

that the coutradiction had been resolved. “As it seems very likely that 

this is the true solution, the reader is strongly recommended to examine 

Krege's argument. on the point,” he wrote in his book The Principles of 
Mathematics. 

They were wroug. The substitute axiom Frege proposed didn’t do the 

work it had to do. It was logically consistent, but inconsistent with the 

trivially true claim that there are at least two different numbers, a statement 

not to be refuted by Frege’s new “axiom.” Soon after their books appeared, 

Frege and Russell came to realize that the new axiom didn’t work. 

A major virtue of Frege’s philosophical work was its precision and clarity, 

which had made it vulnerable to an objection of the sort that Russel! had 

discovered. Its discovery was more or less the end for Frege. He published 

a few more articles, but no more work in furtherance of his life’s project, 

that of showing arithmetic reducible to logic. Late in life Frege speculated 

that perhaps arithmetic could be grounded in geometry; this later line of 

thought he never developed with any thoroughness. 

We may explain the contradiction that Russell discovered by means of
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an example: Along with many, many others, one of the books listed in 

the catalogue of books called Books in Print is Books in Print itself. On 

the other hand, the catalogue of the MIT Press, a publication of the MIT 

Press, doesn’t list itself, as it happens. So some catalogues do. and some 

catalogues do not, list themselves. 

But no catalogue lists all and only those catalogues that don’t list them- 

selves: if catalogue C lists all catalogues that don’t list themselves. then C 

lists itself (because if C doesn’t list itself, then since C lists all that don’t 

list themselves, C’ lists C); but then since C lists itself. it doesn’t list only 

catalogues that don’t list themselves. If it lists all non-self-listers. it doesn't 

list only non-self-listers. No catalogue lists all and only the non-self-listing 

catalogues. 

No barber shaves all and only those barbers that don’t shave themselves. 

If Figaro shaves all who don’t shave themselves, then Figaro shaves himself 

(if he doesn’t, he does), and then Figaro doesn’t shave only those who don’t 

shave themselves. 

The problem that Russell discovered in Frege’s Basic Laws is that via the 

right definitions, one could prove that (p) some set contains all and only 

those sets that don’t contain themselves. But by logic alone, we can prove. 
and it could certainly be proved in Frege’s Basic Laws, that (not-p) no set 

contains all and only those sets that don’t contain themselves, just as no 

barber shaves all and only those barbers that don't shave themselves. Thus 

the inconsistency p-and-not-p could be proved in Frege's system. 

It should be noted that, although logic forces us to believe that there isn’t 

any such set, it’s highly paradoxical that there isn't. For there eortainly 

are many sets that don’t contain themselves. The set of even nitbers in 

one example. Since the set of even numbers ix not an even number, it 

docsn’t contain itself. ‘The set of human beings is another, for that set & 
not a human being. Now, let me invite you to fix your attention on fhe sets 

that don’t contain themselves, the set of evens, the set of human beings, etc. 

Doesn’t there HAVE to be such a thing as the collection or totality of things 

you are thinking about, the sets that don’t contain themselves? And isn’t 4 

collection or totality just the same thing as a set? How COULD there NOT 

be a set containing all and only the sets that don’t contain themselves? 

Maybe you want to say there’s no set containing just the sets that don’t 

contain themselves, but there is a collection containing just those sets. But 
then isn“t there a collection containing all and only the collections that 
don t contain themselves? You can’t get out of this paradox merely by 

substituting one word for another. (The German mathematician Ernst 
Zermelo also discovered this same contradiction, by the way, and wrote 
letter te David Hilbert about it. Don’t think we’d be living in a fool’s 
paradise were it not for Russell.)
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This version of Russell’s paradox is quite well known. The version of the 

paradox that Frege actually treated in the appendix to his Basic Laws is 

rather more interesting, because it throws light on the discovery of Frege’s 

I mentioned before. 

What Frege discovered was that arithmetic can be derived from one single 

axiom that looks almost as trivial as anything in logic. Moreover, that 

axiom can be demonstrated to be consistent. (Or more cautiously, if it ever 

were found to be inconsistent, that would probably be the most surprising 

discovery ever made in mathematics.) Frege’s discovery was obscured from 

us and from him by Russell’s paradox, which had been thought to have 

invalidated the whole of Frege’s formal work. 

To explain Frege’s discovery, must describe some of the leading ideas of 

the system of Frege’s Foundations of Arithmetic, the second, prose, book. 

In the Foundations there are three basic notions: object, concept, and 

extension. Little explanation of what an object is can be given beyond 

saying that an object is a thing, but not necessarily a physical or material 

thing. Numbers and sets, as well as stones, electrons, cabbages and kings, 

are all objects. Objects, one may say, are things that can be mentioned on 

either side of an “identity” like 2+2=4 or Adam = the father of Cain. 

Frege held that in addition to objects, there are entities called concepts, 

itenis very much like what the logicians of the middle ages would have called 

“aniversals” or Plato would have referred to as “forms,” things that all ob- 

jects of a certain kind “have in comnion.” (Some other near-synonynis are: 

property, quality, characteristic, attribute.) Whenever there is a “count 

noun,” possibly modified, like “stone,” “prime number,” “root of r—5 = 0” 

or “US. Senator,” there is a corresponding concept, being a stone. being a 

prime number, ete. Ti Frege's terminology, objects are said to “fall ander” 
concepts: thus Kennedy, Dole, and the ninety-cight other senators fall un- 

der the concept being a U.S. Senator, the number 5 is the sole object that 
falls under the coucept being a root of 2 — 5 = 0, and 2,3,5. and infinitely 

many other numbers fall under the concept being a prime number. There 

are some concepts under which no objects fall being both a dog and « cat, 
being identical with nothing at all, being a unicorn, etc. 

Objects and concepts are completely different sorts of entity. The final 

part of Frege’s doctrine that is of interest to us concerns his claim that for 

every concept, there is a certain object called the extension of the concept. 

It will do no harm to think of the extension of a concept as the set of 

things that fall under the concept; the difference between sets and Frege’s 

extensions is insignificant here. Every extension, to repeat, is an object, 

but of course the converse doesn’t hold: not every object is an extension. 

Frege’s fatal axiom in the Basic Laws, “the set principle,” was just the 

statement that the extension of the concept F is identical with the extension



150 
II. Frege Studies 

of the concept G if and only if every object falling under F falls under G 

and conversely, every object: falling under G falls under F. More briefly: 

the set of F's is the same as the set of Gs if and only if the F's are the same 

as the Gs. It sounds utterly obvious, doesn’t it? 

But it is not consistent, and the proof Russell discovered that the set 

principle leads to a contradiction may be found in Box 1: 

Box 1 

  

We first define “Russellian.” We say that an object sr is 

Russellian if there is at least one concept F such that (a) r = 

the extension of F and (b) z does not fall under F. 

For example, if z is the extension of the concept being a 

gorilla, then z is Russellian, for since the extension x is not a 

gorilla (a set is not a gorilla), x does not fall under the concept 
being a gorilla. 

Let y = the extension of the concept being Russellian. Then 

is y Russellian or not? We shall show that from either answer, 

the opposite answer follows: 

First, suppose that y is Russellian. Then there is at least 

one concept F such that y = the extension of F and y does uot 

fall under F. But by the definition of y, it is also true that y = 

the extension of the concept being Russellian. So the extension 

of the concept F = y = the extension of the concept bemy 

Russellian. By Frege's axiom, every object that falls under F 

is Russellian and every object that is Russellian falls under F. 

Since y docs not fall under F, it follows that y is not Russellian. 
To stn up: ify is Russellian, y is not Rusxellian. 

Suppose, however, that y is not Russetlian. ‘Then there is not 

even one concept F such that y = the extension of F and y does 
not fall under F. But y = the extension of the concept being 
Russellian. Thus y must fall under the concept being Russellian. 

(For otherwise, if y does not fall under this concept, there is at 

least one concept F, namely being Russellian, such that y = the 
extension of F’ and y does not fall under F.) Since y falls under 
the concept being Russellian, y is Russellian. To sum up again: 
if y is not Russellian, y is Russellian. 

Thus y is Russellian if and only if it is not, a contradiction. 

  
  

_ But although Frege’s principle about sets, the set of Fs = the set of Gs 
if and only if the F's are the Gs, is inconsistent, a related principle about 
numbers, “the number principle,” turns out to be consistent. The number
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principle runs: The number of F's = the number of Gs if and only ifthe F's 

and the Gs are in one-one correspondence. 

The notion of one-one correspondence is familiar: The place settings 

at a typical dinner party are in one-one correspondence with the persons 

present. Since there are nine major planets and nine positions on a (Na- 

tional League) baseball team, the planets are in one-one correspondence 

with those positions: under the natural correspondence, Mercury corre- 

sponds to pitcher, ..., Saturn to short stop, ..., and Pluto to right fielder. 

The even integers are in one-one correspondence with the odd integers, etc., 
etc. 

Now if one reads The Foundations of Arithmetic carefully, one sees that 

Frege uses the set: principle only to derive the number principle, “the num- 

ber of F's = the number of Gs if and only if the F's and the Gs are in 

one-one correspondence.” After deriving the good number principle from 

the bad set principle, Frege has nothing more to do with sets. Once he has 

obtained the number principle, he proceeds to show how to derive arith- 

metic from it with the aid of nothing other than the system of logic he 

had set out in the Begriffsschrift. Moreover, the sketch of the derivation of 

arithmetic from the number principle that Frege gives in the Foundations 

can easily be elaborated into a completely formal derivation in the style of 

the Begriffsschrift or the Basic Laws. The job would be analogous to the 

modern-day task of translating an extremely explicit outline of a program 

into actual programming code. 

How may we see that the nuniber principle is consistent? It may seem 

obvious enough -- the nuinber of F's equals the number of Gs if and only if 

the Fs and Gs are in one-one correspondence—-but the number principle 

looks far too much like the set priuciple for us to take its consistency on 

faith. How do we know that some Super-Russell of the 22nd Century won’t 
tind sonie ingenious derivation of a contradiction from the number principle, 

the way our Russell derived a contradiction from the set principle? 

In fact, on second glance the number principle may not seem altogether 

obvious: the even natural numbers (0, 2,4,...) can be put in one-one cor- 

respondence with the odd natural numbers (1,3,5,...): 0 ++ 1, 2 + 3, 

4<+5,...,2n ++ 2n +1... But if the number principle is true, then the 

number of even natural numbers ought to be the same as that of odd natu- 

ral numbers. What is this number? Certainly not one of 0,1,2,...? There 

are far too many even numbers for their number to be, say, 4,369,527, or 

any other natural number (=non-negative whole number). 

None of 0,1,2,... is the number of even numbers there are. Thus the 

number principle cannot be thought to be true if the only objects we are 

talking about are the natural numbers themselves, for the number of even 

numbers is an infinite number, and not a natural number. (Natural numbers
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are finite numbers.) 
In order to circumvent the difficulty presented by the even numbers, we 

shall define a new notion, the number by F's: The number by F's = 0 if 

the number of F's is infinite, and the number by F's = n+1 if the number 

of Fs is the non-negative integer n. Thus the number by senators is 101, 

the number by unicorns is 1, the number by roots of z — 5 = 0 is 2, and 

the number by even numbers is 0. Notice that if we suppose that the only 

objects are the natural numbers 0,1,2,..., then for every concept there is a 

natural number that is the number by that concept. (It is not true that for 

every concept there is a natural number that is the number of that concept: 

remember the evens.) 

concepts under concepts under concepts under ae concepts under 

which no which one which two which infinitely 

object falis object falls objects fall many objects fall 

{} {0},{1},{2},... {0,1},...,.{19,28},... {0,1.2}.... {primes}. {evens}. {0.1,2....}.... 

| \ | \ / 7 8 
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{primes}, {evens}, (01,2... 4b {OR UPI2R.. (OUR aR p. | EOP 

muniber of = ———» number hy ----- a 

We now observe that under the assumption that the only objects are the 
natural numbers, the number by F's, a notion that is detined for add choices 

of F, is the same as the number by Gs if and only if the F's and the Gs are 

in one-one correspondence, To see why this is so, consult Box 2. 

Box 2 

    

Here's how to see the truth of the statement that the number 
by F's = the number by Gs if and only if the Fs and Gs are 
In one-one correspondence. (We assume that the only objects 
under consideration are the natural numbers, so that the F's 
are some (possibly all) of the natural numbers and the Gs some 
other natural numbers.) 

Suppose first that the F's and Gs are in one-one correspon- 
dence. Either there are only finitely many F's or there are in-
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finitely many F's. If there are only finitely many F's, n say, then 

there are also n Gs and the number by F's = the number by Gs 

=n+1. But if there are infinitely many F's, then there are also 

infinitely many Gs and the number by F's = the number by Gs 

= 0. In either case, then, the number by F's = the number by 

Gs. Thus if the F's and Gs are in one-one correspondence, then 

the number by F's = the number by Gs. 

Conversely, suppose that the number by F's = the number 

by Gs. Either that number is positive or that number is 0. If it 

is positive, n+1, say, then there are n F's and n Gs and the F's 

and Gs are in one-one correspondence. But if the number is 0, 

then there are infinitely many F's and infinitely many Gs. But 

in this case too, the F's and Gs are in one-one correspondence: 

the least F corresponds to the least G, the second least F' to 

the second least G, the third least, etc. So in either case, the 

Fs and Gs are in one-one correspondence. Thus if the number 

by F's = the number by Gs, then the F's and Gs are in one-one 

correspondence. 

  

Thus, although the number principle is not universally true, i.e., not true 

for all choices of F and G, if we take our objects to be the natural num- 

bers and “the number of” to have its ordinary meaning, it is universally 

true when we reinterpret “number of” as “number by.” Since the number 

principle is true of the natural numbers when thus reinterpreted, it is logi- 

cally consistent; it cannot be shown false by logic. (For specialists: we have 

just. shown how to interpret in analysis the resnit of adjoining the number 
principle to the system of Begriffsschrift.) 

The proof we have just given of the consistency of the number principle 

is the same sort of proof that was first used in the nineteenth century 

to demonstrate that certain non-euclidean geometries are consistent. To 

prove these geometries consistent, we pick a domain of objects (points, 

great circles on a sphere, etc.), reinterpret the terms “point,” “line,” etc. 
by “point on a sphere,” “great circle,” etc. and show that the axioms of the 

non-~euclidean geometry turn out true under this reinterpretation. Logicians 

refer to this sort of procedure as “defining a model” in Euclidean geometry 

for a non-euclidean geometry and it shows that if Euclidean geometry is 

consistent, so is the non-Euclidean geometry for which the model has been 

defined. The objects of our model are just the natural numbers; we have 

reinterpreted “number of” by “number by.” 

Thus the number principle, similar though it may look to the inconsistent 

set principle, is consistent: logic cannot show it false, for we have defined
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a model for it. Frege’s startling discovery, of which he may or may not 

have been fully aware and which has been lost to view since the discovery 

of Russell’s paradox, was that arithmetic can be derived in a purely logical 

system like that of his Begriffsschrift from this consistent principle and from 

it alone. 

Limitations of space prevent me from explaining why this is so in full 

detail, but much of the flavor of Frege’s derivation can be given by seeing 

how he proves the simple statement that the numbers 0 and 1 are not 

identical. Frege defines 0 as the number of the concept: being non-self- 

identical. Since everything is self-identical, no object at all falls under this 

concept. Frege defines 1 as the number of the concept being identical with 

the number 0. 0 and 0 alone falls under this latter concept. Since there is 

exactly one object falling under the latter concept and none falling under 
the former, the objects falling under these two concepts are NOT in one-one 

correspondence. Therefore by the number principle, their numbers, which 

are 0 and 1, are not identical. 

Now that we have established that 0 # 1, we can define 2 as the number 

of the concept being identical with 0 or 1. We can also define addition in 

the following way: if no object falls under both of the concepts F and G, 

m is the number of F's and n the number of Gs, then m+n is the number 

of (F-or-G)s. The fundamental facts about addition can be proved on the 

basis of this definition; multiplication can then be defined, etc., the natural 

nunibers characterized and the rest of arithmetic carried out, all on tlic 

basis of just one simple, consistent, and trivial-looking axiom, the number 
principle. 

What is sad is not so much that Frege's system turned out to be valner- 
able to Russell’s paradox as that both he and we failed to realize how valu 

able his actual accomplishment was, Frege proved the first, grent theorem 
of logic: arithmetic can be derived from the number prineiple. He might 
have written a book not all that different from the actual Foundations of 
Arithmetic, perhaps with the title The Logical Analysis of Arithmetic, in 
which it was shown how arithmetic can be derived by logic alone from that 
one axiom. Had he done so, he would have been acknowledged in his own 
time as having shed brilliant light on the science of arithmetic.
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Reading the Begriffsschrift 

The aim of the third part of the Begriffsschrift, Frege tells us, is: 

to give a general idea of the way in which our ideography is 

handled ... Through the present example, moreover, wesee how 

pure thought, irrespective of any content given by the senses or 

even by an intuition a priori, can, solely from the content that 

results from its own constitution, bring forth judgments that at 

first sight appear to be possible only on the basis of some in- 

tuition ... The propositions about sequences developed in what 

follows far surpass in generality all those that can be derived 

from any intuition of sequences. If, therefore, one were to con- 

sider it more appropriate to use an intuitive idea of sequence as a 

basis, he should not forget that the propositions thus obtained, 

which might perhaps have the same wording as those given here, 

would still state far less than these, since they would hold only 

in the domain of precisely that intuition upon which they were 

based.! 

He then proceeds to give a definition, Proposition 69, on which he com- 

ments, “Hence this proposition is not a judgment, and consequently not a 

synthetic judgment either, to use the Kantian expression. I point this out 

because Kant considers all judgments of mathematics to be synthetic.” ? 

Reprinted by kind permission of Oxford University Press from Mind 94 (1985): 331-344. 

I am grateful to Michael Dummett, Robin Gandy, Daniel Isaacson, David Lewis, 

and Simon Blackburn for helpful comments. This paper was written while [I was on a 
Fellowship for Independent Study and Research from the National Endowment for the 

Humanities. 

1Gottlob Frege, Begriffsschrift, a formula language, modeled upon that of arithmetic, 
for pure thought, §23. All references are to the Bauer—-Mengelberg translation, found in 
(van Heijenoort, 1967). 

2 Begriffsschrift, prop. 69. The remark that Kant considers all judgments of mathe- 

matics to be synthetic seems somewhat intemperate: Kant might of course agree that 

69 is no judgment, hence no synthetic judgment. 

155
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In the preface to the Begriffsschrift he states, “To prevent anything intu- 

itive [Anschauliches| from penetrating here unnoticed, I had to bend every 

effort to keep the chain of inferences free of gaps.”* It is evident from the 

anti-Kantian tone of these remarks that Frege regards himself as showing 
the inadequacy of a certain (unspecified) Kantian view of mathematics by 

supplying examples of judgments that he thinks “at first sight appear to 

be possible only on the basis of some intuition,” but which pure thought, 

“solely from the content that results from its own constitution,” can bring 

forth. However an exact statement of the Kantian position under attack 

might run, the view is one according to which no non-trivial matheniatical 

judgment is “possible” without “a priori intuition.” 

My principal aim in this paper is to examine Frege’s procedure in the third 

part of the Begriffsschrift in order to see how, and how well, a Kantian 

view of Frege’s examples might be defended and to determine to what 

extent Frege could claim to have shown the truth of a view that may be 

called sublogicism: the claim that there are (many) interesting examples 

of mathematical truths that can be reduced (in the appropriate sense) to 

logic, Inevitably, the uncertainties and obscurities attaching to the notions 

of intuition and logic will leave these matters somewhat unresolved. I will 

however argue that a compelling case for Frege’s view can be made agaiust 

a certain sort of defense of Kant. 
The issue between Frege and Kant is joined over a certain technical point 

that arises in connection with the marginal annotations of the derivations of 

Part 3. If we wish to understand the issue, we cannot. avoid examining the 

wallpaper. There is a further reason for looking at. the formalism of Part 

3: at least one little-known but major master-stroke is hidden there, and 
oue of the subsidiary aims of this paper is to call attention to it, repellent 

though the notation in which it is cloaked may be. Another aim of the 

paper is simply to render Part 3 more accessible, 
Before we examine Frege’s achievement we must review the special nota- 

tional devices which Frege introduces in Part 3. Fortunately, there are only 
four of them. 

The first of these 

6 F(a) 

a f(6,a) 

is defined in Proposition 69 to mean somethin 
VdVa(FdAdfa — Fa). (I have written 
Since the relation f 

g that we might notate: 
i “dfa” in place of Frege’s “f(d,a).”) 

—Frege calls it a procedure—is fixed throughout Part 

* Begriffsschrift, Preface, p. 5.
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3, I shall use the abbreviation “Her(F),” suppressing “f,” for this notion 

instead. (“Her” is for “hereditary.” ) 
The second, 

gt (ty Ya); 

is Frege’s abbreviation for the strong ancestral of f, whose celebrated def- 

inition is presented in Proposition 76. Abbreviating “Va(afa — Fa)” as 

“In(z, F)” (again suppressing mention of the fixed f), we may give the 

definition as: VF(Her(F) A In(z, F) — Fy). We shall use: xf*y for this 
notion. 

The third, 

af (er 2g); 

is the abbreviation for the weak ancestral, defined in Proposition 99 as 

af*zV z= 2. We write this: +f*z. 

Finally, Frege defines 

6 

If(6,e) 
€ 

in Proposition 115 to mean: VdVeVa(dfe A dfa — a = e). We write this: 

FN (for “f is a function”). 
We can now say what the judgments are which Frege thinks can be 

brought. forth by pure thought solely from the content that results from 

its own constitution or, as we may say, can be proved by purely logical 
means but which, he thinks, appear at first sight to be possible only on 

the basis of some intuition. We can then take up the question whether the 

means usec to prove them are in fact “purely logical.” 

If we look at the table with which the Begriffsschrift ends and which 

indicates which propositions are immediately involved in the derivations 

of which others, we find that there are only two propositions in the third 

part not used in the derivation of any others: number 98 and the last one, 

number 133. Since these propositions are not used to prove any others, 

I do not find it too far-fetched to suppose that Frege thought of these as 

illustrating the falsity of the Kantian view with which he is concerued. 

The translation into our notation of 98 is: af*y Ayf*z > xf*z. That 

of 133 iss FNAxf*mAxfty > yf*mV mfty.4 These state that the 
(strong) ancestral is transitive and that if the underlying relation f is a 

function, then the ancestral connects any two elements m and y to which 

4T do not know why Frege chose to use the variable “m” here instead of (say) “w”.



158 II. Frege Studies 

some one element x bears the ancestral. The analogy with the transitivity 

and connectedness of the less-than relation on the natural numbers, which 

is the ancestral of the relation immediately precedes. will not have escaped 

the reader’s notice, and I dare say it did not escape Frege’s. 

Although Frege does not explicitly single out 98 and 133 as noteworthy 

in any way, it is quite reasonable to suppose that he regarded both of them 

as the sort of proposition that would justify the anti-Kantian viewpoint 

sketched above. For not only are these two the only propositions in Part 

3 not used in the demonstration of others, their content can be seen as a 

generalization of that of familiar and fundamental mathematical principles, 

for the grasp of whose truth some sort of “intuition” was often supposed 

in Frege’s time to be required. Moreover, one who attenipts to convince 

himself of the truth of, for example 98, might well hit upon an argument 

that would seem to make appeal to the sort of intuition which Frege was 

concerned to show unnecessary. Suppose that y follows z in the f-sequence 

and z follows y. Then if one starts at x and proceeds along the f-sequence, 
one can eventually reach y. Ditto for y and z. Thus, by starting at x and 
proceeding along the f-sequence, one can eventually reach z, first by going 
to y, and thence to z. Thus z follows x in the f-sequence. Intuition, it 
might be suggested, discloses to us that any two paths from zr to y and y 

to z can be combined into one single path from ¢ to z: intuit them both 

and then attach in thought the beginning of the second to the end of the 

first. Or some such thing. 

The procedure Frege employs in the derivation of 98 is of considerable 

interest, and we shall look at its final steps. Haviug arrived at 

(84) Her(P)A FrArf*y > Fy 

and 

(96) af*yAyfz — af*z, 

Frege generalizes upon z and y in 96 to obtain Wd Va(zf*d Adfa > xf *a). 
He then substitutes {a : xf*a} for F (as we might put it) in the definition 
of Her(F’) to obtain 97, which we can write: Her({a : 2f*a}). He then 
reletters x and y as y and z in 84, substitutes {a : xf*a} for F in 84, and 
discharges Her({a : x f*a}) to obtain the desired 98. 

Frege appears to regard the substitution of a formula for a relation letter 
in an already demonstrated formula as on a par with substitution of @ 
formula for a propositional variable or relettering of a variable. Of course, 

in standard first-order logic, substitution of formulae for relation letters 
gives rise to no special worries: any formula demonstrable with the help 
of substitution is demonstrable without it. (Frege performs several such 
substitutions in Part 2, which contains none but first-order notions.) But
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this is emphatically not the case as regards Part 3 of the Begriffsschrift. 

The capacity to substitute formulae for relation letters gives the whole of 

Frege’s system, which is not a system of first-order logic, significantly more 

power than it would otherwise have. 

Although a Kantian opponent could well make an objection at this point 

to Frege’s use of substitution, there is a more pertinent objection to be 

made: no one can sensibly think that every mathematical judgment must be 

based on some intuition. For certainly there are some trivial mathematical 

judgments which need not be so based, among them analytic judgments 

concerned with mathematical matters and others of a trivial logical nature, 

such as “5+7 =5+7” or “if5+7 = 12, then5+7 = 12.” Moreover, among 

such judgments are those that follow from definitions with only a small 

amount of elementary logical manipulation. And one of these is Frege’s 

98. For, let us face it, Frege’s proof of 98 is unnecessarily non-elementary. 

One needs no rule of substitution at all to prove that if sf*y and yf*z, 

then 2f*z. For suppose af*y and yf*z. We want to show z/f*z, ie. 

VF (Her(F) AIn(a, F) — Fz). So suppose Her(F) and In(z, F). We want 
to show Fz. Since yf*z, we need only show In(y, F), ie. Va(yfa — Fa). 
So suppose yfa. Since «f*y, Her(F') and In(a, F), Fy. And since Her(F) 
and yfa, Fa, QED. The trouble with 98, our Kantian might complain, is 

that although the above proof of 98 is certainly a proof by logical means 

alone, 98 does not look at first sight as if it must be based on an intuition. 

Frege has not yet laid a glove on the Kantian. 98 is a weak example. 
Of course Frege’s rendering of 98, “If y follows x in the f-sequence and z 

follows y in the f-sequence, then z follows x in the f-sequence,” might have 

been a better choice, but the Kautian might then have been in a position 

to raise questions about the grounds for reading “xf*y” as “y follows z in 

the f-sequence,” plausibly arguing that this reading is itself justified only 

on an intuition. 

No such objection can be raised against 133, FNAz f*yAzf*m — yf*mv 

mf*y, of which an “intuitive” proof might go as follows. Suppose FN, 

zf*y, and zf*m. Since xf*y and zf*m, there is an f-sequence leading 

from x to y and an f-sequence leading from x to m. And since FN, each 

thing bears f to at most one thing; thus at no point along the way can 

either of these paths diverge from the other. Thus the paths coincide up 

to the point at which the shorter one gives out. Since x f*m and zf*y, we 

eventually reach both m and y, when we have done so, we will evidently 

have reached y before m, reached m before y, or reached m and y at the 

same time. In the first case, we can get from y to m along the path obtained 

by removing the path from z to y from the path from z to m; in the second 

case we can similarly get from m to y, and in the third case, m = y. Thus 

yf*mV mfty. We are about to turn to Frege’s derivation of 133; before
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we do so, the reader might like to try his hand at giving a proper proof of 

133, in the style of the proof of 98 given two paragraphs above. (One such 

proof is given in the appendix.) 

One significant landmark in Frege’s derivation of 133 is Proposition 110: 

Va(yfa— afta) Ayf*m — xf*m. 110 is itself got from 108: zfZyAyfu — 
zf2v, which has a straightforward proof.® 108 is fairly obvious; 110 is not 

at all obvious. (We cannot get yfm from yf*m.) How does Frege get 110 
from 108? 

First of all, he reletters the variables in 108, replacing, z, y, and v by z, 

(German) d, and (German) a, and then universally quantifies upon a and 

d to get: VdVa(rfid A dfa — xf*a). He then takes 75: VdVa(Fd A dfa — 
Fa) — Her(F), which is one-half of the definition of Her(F), substitutes 
{a:xfta} for F (as we would put it), and uses 108 to cut the antecedent 
of the result, thereby getting 109: Her({a : xf*a}). Next he takes 78: 
Her(F)AVa(zfa —- Fa) Axf*ty — Fy, which is a trivial consequence of the 
definition of the ancestral, respectively replaces z and y by y and m, again 

substitutes {a : cf*a} for F, and drops Her({a: zf*a}) from the result by 
109, to get Va(yfa — afta) Ayf*m — afm, as desired. 
The complexity of the definition of the substituend {a : x f* a} is notewor- 

thy. “zf*a” abbreviates a disjunction one of whose disjuncts is a second- 

order universal quautification of a first-order formula. Were Frege merely 

substituting {a : Ga} (G a one-place relation letter) for F, ic. relettering 
F as G, we should have no qualms about his procedure. But the substitu- 

tion of so complicated a formula as rf%a for a relation letter is a matter 

considerably more problematical. 
Having obtained 110. Frege straightforwardly gets 120: FN A (yf? ar V 

mfty) Agfa — (aftr vinftr)® Ut FN A Her(fa : afte Vaaf? ep) 
follows, again by a substitution, this time of {as afta Vi arf? a} for fin 
the quasi-definitional 75. 

Froge then performs the saine substitution to conclude the derivation. 

From 131, he uses propositional logic to infer 132: {Her({a : af*m V 

mfza}) Aaf*mAzfty > (yf*mv mfty)| = [FNAcf*macfty > 
(yf*m V mfZy)|. To get 133, the consequent of 132, he must obtain 
the antecedent. This is how he does it. He has earlier established 81: 
Fr A Her(F) Azf*ty + Fy (an easy consequence of the definition of the 

ancestral). By propositional logic there follows 82: (p — Fx) A Her(F) A 
pArf*y > Fy. (Frege uses “a” instead of “p.”) He then substitutes hx for 
pand {a : hav ga} for F in 82 (“h” and “g” are one-place relation letters, 
like “F”) and drops a tautologous conjunct of the antecedent to obtain 83: 
Her({a : haV ga}) Ah Axf*ty 3 hy V gy. The final logical move of the 

5A proof is given in the appendix. 

*A proof is given in the appendix.
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Begriffsschrift is the substitution in 83 of {a : af*m} and {a: mfza} for h 
and g, which yields the antecedent of 132. 

Of course, Frege could have condensed these two substitutions for F into 

one, by substituting {a : af*m V mfa} for F in 81 and using proposi- 

tional logic to obtain the antecedent of 132. But to prove 133, Frege has 

had to make two essential uses of substitution, the first being the earlier 

substitution of {a : xf*a} for F, the second, that of {a : af*m V mfia}. 

It is noteworthy that the—or at any rate, one—obvious attempt to prove 

133 will require the same two substitutions, in the order in which they are 

found in Frege’s derivation. 

The fact that the Begriffsschrift contains a subtle and ingenious double 

induction—for that is what Frege’s pair of substitutions amounts to—used 

to prove a significant result in the general theory of relations is not, I 

think, well-known, and the distinctively mathematical talent he displayed in 

discovering and proving the result is certainly not adequately appreciated. 

Frege’s accomplishment may be likened to a feat the Wright brothers did 

not perform: inventing the airplane and ending its first flight with one 

loop-the-loop inside another. 

Our Kantian has patiently had his hand up during this discussion of 

Frege’s method in Part 3, and it is time to give him his say. 

The Kantian: “I could not agree with you more about the excellences of 

Proposition 133 and Frege’s proof of it, but it is not a counterexample to 

any thesis that I hold or that a reasonable Kantian ought to hold. Indeed, 

if anything, it is confirming evidence for my view. I agree that 133 is 

precisely the sort. of proposition that is possible only on the basis of an 

intuition. But T disagree that Frege has been able to prove it without the 

aid of any intuition at all. In fact, the feature of Frege’s method that you 

have been at pains to emphasize, the substitution of formulae for relation 

letters, is precisely the point at which, I wish to claim, Frege appeals to 

intuition. I’d be prepared to concede, for the sake of avoiding an argument, 

that nowhere in the rest of the Begriffsschrift is an appeal to intuition made. 

But I do wish to claim that his use of the rule of substitution does involve 

him in just such an appeal. 

“The difficulty that the rule of substitution presents can best be seen 

if we consider the axiom schema of comprehension: 4XVr(Xaz + A(z)). 
It is well known that in the presence of the other standard rules of logic, 

the substitution rule and the comprehension schema are deductively equiv- 

alent; given either, one can derive the other. In outline, the proof of this 

equivalence runs as follows. From the provable Vz(Fx @ Fx), we obtain 

AXVa2(Xx «+ Fx) by second-order existential generalization, whence by the 

substitution of {a : A(a)} for F, we have IXV2(Xz < A(z)). Conversely, 
we observe that for any formulae P[F'] and A(z), we can prove Va(Fxr
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A(z)) — (P[F] + P[{a : A(a)}]); the demonstration of this is an induction 
on subformulae of the formula P|F]. Now suppose that P[F] is provable. 
Then so is Vz(Fx «+ A(z)) > Pl{a : A(a)}]; and since the consequent 
P{{a : A(a)}] does not contain F, AXVz(Xa  A(a)) > Pl{a : A(a)}] 
is also provable. Thus if we have as an axiom JXV2z(Xz «+ A(z)), as is 
guaranteed by comprehension, P[{a : A(a)}] is provable too, QED. Thus 
we cannot admit substitution as a logical rule unless we are prepared to 

admit that all instances of the comprehension schema IXVa2(Xz  A(s)) 

are logical truths, and that is precisely what I wish to deny. 

“For what does AXVa(Xa + A(zx)) say? If we look at the Begriffsschrift, 

we find that when Frege wishes to decipher his relation letters and second- 

order quantifiers, he uses the terms ‘property’, ‘procedure’, ‘sequence’; he 

uses the terms ‘result of an application of a procedure’ and ‘object’ to tell 

us what sorts of things free variables like ‘x’ and ‘y’ denote. My point 
can be put as follows. Suppose that A(z) is the formula: mf*z. Then 
Frege would read the corresponding instance of the comprehension schema 

as ‘There is a property whose instances are exactly the objects that follow 
m in the f-sequence’. This comprehension axiom is demonstrable in the 

Begriffsschrift. My question is: why should we believe that there is any such 

property? Now, I don’t want to deny that there is such a property. I might 

well want to say that it’s obvious or evident that there is one. And I would 

want to say to anyone who professed uncertainty concerning the existence 

of the property, ‘But don’t you see that there has to be one? In short, it 

is an intuition of precisely the kind Frege thinks he has shown iinecessacy 

that licenses the rule of substitution. Thus Frege has not dispensed with 
intuition; he is up to his ears in it, (PD may add that the inference from 
Va( Fa er Fer) to SXVe(Xur eo Er) also strikes me as problematical, but 

as it is legitimated by (the second-order annlogue of) the standard logical 

rule of existential generalization, I have agreed not to object. to it.) 

“Moreover there is au important difficulty connected with the interpre- 

tation of the Begriffsschrift.’ Frege does not discuss the question whether 

properties are objects, as one might put it. It is uncertain whether Frege 

thinks there can, for example, be sequences of properties, whether zf¥ 

might hold when 2 and y are themselves properties. One would have 8uP- 
posed so; but then, of course, taking ‘f’ to mean ‘Is a property that is an in- 

stance of the property’ produces a Russellian problem: IX Va(X2 0 —2f x) 
is derivable in the Begriffsschrift, but would be read by Frege ‘There is 4 

property whose instances are all and only those properties that are not in- 

stances of themselves’, which is false, of course. Thus the system, although 

perhaps formally consistent, cannot be interpreted as Frege interprets it 

7For an illuminating discussion of this difficulty, see (Russinoff, 1983).
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in the absence of some—I think the right word is ‘metaphysical’—doctrine 

of properties, which Frege does not supply. And what, pray, is the source 

of any such doctrine to be—pure logic? How then are we to interpret. the 

Begriffsschrift so that. its theorems all turn out to be truths that it does 

not require the aid of intuition to accept? 

“Tm almost finished. Matters are no better and probably worse if Frege 

reads a second-order quantifier JF as ‘There is aset F ...’ For sets clearly 

are ‘objects’; thus the difficulty presented by Russell’s paradox immediately 

arises if we take the range of ‘F” to be all sets. The only escape that 

I can see for Frege is for him to stipulate that the Begriffsschrift is to 

be employed in formalizing a certain theory only if the theory does not 

speak about all objects. The rule of substitution would then be licensed 

by the Aussonderungsschema of set theory. But besides noting that this 

way out appears to be strongly at odds with his intentions in setting forth 

the Begriffsschrift, we may well wonder what justifies this appeal to the 

Aussonderungsschema if not intuition of some sort, for example the picture 

of the set-theoretic universe that yields the so-called ‘iterative conception 

of set’. And now, I am finished.” 

In reply: Russell’s paradox does indeed show the difficulty of taking the 

second-order quantifiers of the Begriffsschrift as ranging over all sets or all 

properties and reading atomic formulae like Xa as meaning “z is a member 

(or instance) of X.” We must find another way to interpret the formalism 

of the Begriffsschrift, on which we are not committed to the existence of 

such entities as sets or properties, and on which the comprehension schema 

AXVa(X:r «+ A(z)) can plausibly be claimed to be a logical law. 

futerpretation of a logical formalism standardly consists in a description 

of the abjects over which the variables of the formalism are supposed to 

range and a specification that states to which of those objects the various 

relation letters of the formalism apply. Since Frege nowhere specifies what 

his relation letters “f”, “F”, etc. apply to, it is clear, I think, that he had 

no one “intended” interpretation of the Begriffsschrift in mind: “f”, for 

example, will have to be interpreted on each particular occasion by men- 

tioning the pairs of objects that it is then intended to apply to. But it 

appears that Frege did intend the first-order variables of the Begriffsschrift 

to range over absolutely all of the “objects,” or things, that there are. In 

any event even if Frege did envisage applications in which the first-order 

variables were to range over some but not all objects, it seems perfectly 

clear that he did allow for some applications in which they do range over 

absolutely all objects. And because a use of the Begriffsschrift in which 

the variables do not range over all objects that there are can, by intro- 

ducing new relation letters to relativize quantifiers, be treated as one in 

which they do range over all objects, we shall henceforth assume that the
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Begriffsschrift’s first-order variables do range over all objects, whatever an 

object might happen to be. 

But what do the second-order variables range over, if not all sets or 

all properties? I think that a quite satisfactory response to this question 

is to reject it, to say that no separate specification of items over which 

the second-order variables range is needed once it has been specified what 

the first-order variables range over.’ Instead we must show how to give 

an intelligible interpretation of all the formulae of the Begriffsschrift that 

does not mention special items over which the second-order variables are 

supposed to range and on which Frege’s rule of substitution appears as a 

rule of logic and the comprehension axioms appear as logical truths. 

The key to such an interpretation can be found in the behavior of the 

logical particle “the.” 

If the rocks rained down, then there are some things that rained down; if 

each of them [pointing] is a K and each K is one of them, then there are some 

things such that each of them is a K and each K is one of them; if Stiva, 

Dolly, Grisha, and Tanya are unhappy with one another, then there are 

some people who are unhappy with one another. Existential generalization 

cau take place on plural pronouns and definite descriptions as well as on 

singular, and existential generalization on plural definite descriptions is the 

analogue in natural language of Frege’s rule of substitution. This tvpe of 

inference is not adequately represented by the apparatus of standard first- 

order logic. However, a formalism like that of the Begriffsschrift can be 

used to schematize plural existential generalization, and our understanding 
of the plural forms involved in this type of inference can be appealed to 

in support of the claim that Frege's rule is properly regarded as a cule of 

logic. 
By a “definite plural deseription” L mean either the plural form of a 

definite singular description, for example “the present kings of France,” 
“the golden mountains,” or a conjunction of two or more proper nalnes, 
definite singular descriptions, and (shorter) definite plural descriptions, for 
example “Russell and Whitehead,” “Russell and Whitehead and the present 
kings of France.” 

Like the familiar condition: IrVy(Ky « y = x) which must be satisfied 
by a definite singular description “The K” for its use to be legitimate, 
there is an analogous condition that must be satisfied by definite plural 
descriptions. In the simplest case, in which a definite plural description 
such as “the present kings of France” is the plural form of a definite singular 
description, the condition amounts only to there being one object or more 
to which the corresponding count noun in the singular description applies. 

®For more on this topic, see Article 5 in this volume.
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(Two or more, technically, if Moore and the Eleatic Stranger were right.) 

Thus like the definite singular description “The K’,” which has a legitimate 

use iff the K exists, ie. iff there is such a thing as the K, “The Ks” has 

a legitimate use iff the Ks exist, i.e. iff there are such things as the Ks, iff 

there is at least one K. 

The obvious conjecture—I do not know whether or not it is correct—is 

that the general condition for the legitimate use of a conjunction of proper 

names, definite singular descriptions, and (shorter) definite plural descrip- 

tions is simply the conjunction of the conditions for the conjoined names 

and descriptions. We need not worry here whether the conjecture is true; 

for our purposes it will suffice to consider only definite plural descriptions 

of the simplest sort, plural forms of definite singular descriptions. 

The connection between definite plural descriptions and the comprehen- 

sion principle is that the condition under which the use of “The Ks” is 

legitimate, viz. that there are some such things as the Ks, can also be ex- 

pressed: there are some things such that each K is one of them and each 

one of them is a K. Thus “if there is at least one K, then there are some 

things such that each K is one of them and each of them is a K” expresses 

a logical truth. Moreover, it is a logical truth that it is quite natural to 
symbolize as 

de Kar 3 AX (Ar Xz AVae(Xx @ Kz)), 

which is equivalent to the instance IXVar(Xr o Kr) of the comprehension 

scheme. Thus the idea suggests itself of using the construction “there are 

some things such that... them..." to translate the second-order existential 

quantifier IY so that comprehension axioms turn ont to have readings of 

the form “if there is something ..., then there are some things such that 

each ... thing is one of them and eacli of them is something ...” Let us see 

how this may be done. 

We begin by supposing English to be augmented by the addition of 

pronouns “it,,” “ity,” “itz,” ...; “thats,” “that,,” “that,,” ...; “they, 

/ themy,” “they, / themy,” “theyz / themz,” ...; “thaty,” “thaty,” 
“thatz,” ...(For each first-order variable v of the formalism, we introduce 

ied “it” ~, and “that” ~,; and for each second-order variable V, “they” “y, 

which is sometimes written “them” ~y, and “that” ~y.) The purpose of 
the subscripts is simply to disambiguate cross-reference and has nothing to 

do with the distinction between first- and second-order formulae or between 

singular and plural number. A similar augmentation would be required for 

translation into English of first-order formulae of the language of set theory 

containing multiple nested alternating quantifiers, for example formulae of 

the form VwizrVydz R(w, x, y,z). The extension of English we are contem- 

plating is a conceptually minor one rather like lawyerese (“the former,”
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“the latter,” “the party of the seventeenth part”); our subscripts are taken 

for convenience to be the variables of the Begriffsschrift (instead of, say, 

numerals), but they no more range over any items than does “seventeen” 

in “the party of the seventeenth part.” 

We now set out a scheme of translation from the language of the Begriff- 

sschrift into English augmented with these subscripted pronouns.? Thus 

we specify the conditions under which sentences of the Begri ffsschrift are 

true by showing how to translate them into a language we understand. 

The translation of the atomic formula Xz is "it, is one of them, '. (The 

corner-quotes are Quinean quasi-quotes. ) 

The translation of the atomic formula x = y is “it, is identical with ity’ 
The translation of any other atomic formula, for example Fx or xfy, is 

determined in an analogous fashion by the intended reading of the predicate 

letter it contains. 

Let F, and G, be the translations of F and G. Then the translation of 

aF is "Not: F,7 and that of (F AG) is "Both F, and G,'. Similarly for 
the other connectives of the propositional calculus. 

The translation of dr F is "There is an object that, is such that F,'. 

To obtain the translation of 2X F: Let H be the result of substituting 

an occurrence of =z = x for each occurrence of Xz in F and let H, be the 

translation of H. (H has the same number of quantifiers as F.) Then the 
translation of 3X F is "Either H, or there are some objects that are such 

that Fy 7. 
(Since "There are some objects thatx are such that F,7 properly trans- 

lates not JX F, but 3X(ax Xz A F), we need to disjoin a translation of 
H, which is equivalent. to 3X (7d Xan AF), with "There are some objects 

that, are such that Fy” to obtain a translation of IN.) 

When we apply this translation scheme to the notorious JN lreo( Nur e 

az fx), with the predicate letter f given the reading: “is a member of,” we 
obtain a long sentence that simplifies to “if some object is not a member of 
itself, then there are some objects (that are) such that each object is one 
of them iff it is not a member of itself,” a trivial truth. 

More generally, the translation of 3X Vx(Xz ++ A(x)) will, as desired, be 
a sentence that can be simplified to one that is of the form: either there is no 
object such that ...it ...or there are some objects such that an arbitrary 
object is one of them iff ...it ... And of course, our translation scheme 
respects the other rules of logic in the sense that if H follows from F and 

G by one of these rules, and the translations F, and G, of (the universal 
closures of) F and G are true, then the translation H, of (the universal 
closure of) H is also true. Our scheme, therefore, respects Frege’s rule of 

®This scheme was given in Article 4 in this volume.
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substitution of formulae for relation letters as well. 

Thus there is a way of interpreting the formulae of the Begriffsschrift 

that is faithful to the usual meanings of the logical operators and on which 

each comprehension axiom turns out to say something that can also be 

expressed by a sentence of the form “if there is something ..., then there 

are some things such that anything ...is one of them and any one of them 

is something ...” Each sentence of this form, it seems fair to say, expresses 

a logical truth if any sentence of English does. It would, of course, be folly 

to offer a definition of logical truth—as Jerry Fodor once said, failing to 

take his own advice, “Never give necessary and sufficient conditions for 

anything’ —but I think one would be hard pressed to differentiate “if there 

is a rock, then there are some things such that any rock is one of them and 

any one of them is a rock” from “if there is a rock, then there is something 

such that if it is not a rock, then it is a rock” on the ground that the 

former but not the latter expresses a logical truth or on the ground that an 

intuition is required to see the truth of the former but not the latter. 

Three final remarks about definite plural descriptions: 

Valid inferences using the construction “there are some things such that 

...they ...” that cannot be represented in first-order logic are not hard 

to come by. The interplay between this construction and definite plural 

descriptions is well illustrated by the inference 

Every parent of someone blue is red. 

Every parent of someone red is blue. 

Yolanda is red. 

Xavier is not red. 
It is net the case that there are some persons such that 

Yolanda is one of them, 

Xavier is not one of them, and 

every parent of any one of them is also one of them. 

Therefore, Xavier is a parent of someone red. 

To see that this is valid, note that it follows from the premisses and denial 
of the conclusion that Yolanda is either red or a parent of someone red, that 

Xavier is not, and that every parent of anyone who is red or a parent of 
someone red is also red or a parent of someone red. Thus there are some 

people, viz. the persons who are either red or a parent of someone red, such 

that Yolanda is one of them, Xavier is not one of them, and every parent 

of any one of them is also one of them, which contradicts the last premiss.
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This inference may be represented in second-order logic: 

VwV2(Bz AwPz — Rw) 
VwW2(Rz AwPz — Bw) 

Ry 
aRz 
7X (dz Xz AXy A 7X2 AVwW2(X2z AwPz > Xw)) 
Therefore, 4z(zPz A Rz). 

In deducing the conclusion from the premisses in the Begriffsschrift, one 

would, of course, substitute {a : Ra V 4z(aPz A Rz)} for the second-order 
variable X, thus making a move similar to those we have seen Frege make. 

It appears that not much in general can be said about “atomic” sentences 

that contain definite plural descriptions but do not express statements of 

identity. “The rocks rained down,” for example, does not: mean “Each of the 

rocks rained down.” However, if the rocks rained down and the rocks under 

discussion are the items in pile z, then the items in pile z certainly rained 

down. If we have learned anything at all in philosophy, it is that it is almost 

certainly a waste of time to seek an analysis of “The rocks rained down” 

that reduces it to a first-order quantification over the rocks in question. 

It is highly probable that an adequate semantics for sentences like “They 

rained down” or “the sets possessing a rank exhaust the universe” would 

have to take as primitive a new sort of predication in which, for example 

“rained down” would be predicated not of particular objects such as this 

rock or that one, but rather of these rocks or those. Thus it’ would appear 

hopeless to try to say anything more about the meaning, of a sentence of 

the form “The Avs AJ” other than that it means that there arc some things 

that are such that they are the As and they AZ. Phe predication “they AL” 

is probably completely intractable, 
About statements of identity, thongh, something useful if somewhat ob- 

vious can be said: “The Ks are the Zs” is true if and only if there is at 
least one K, there is at least one L, and every K is an L and vice versa: 
da Kx A dx La AWx(Kx + La), “They are the Ks” can also be naturally 
rendered with the aid of a free second-order variable X: dx Xa AW2(X2 
Ka). And of course if some things are the Ks and are also the Ls, then 
the K's are the Ls. Frege was not far wrong when he laid down Basic Law 
V. Of course, from time to time, there will be no set of (all) the Ks, as 
the sad history of Basic Law V makes plain. We cannot always pass from 

a predicate to an extension of the predicate, a set of things satisfying the 
predicate. We can, however, always pass to the things satisfying the predi- 
cate (if there is at least one), and therefore we cannot always pass from the 
things to a set of them.
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Appendix: proofs of 108, 129, and 133 

Definitions: 

Her(F) VWdVa(FdAdfa— Fa) (69 in Begriffsschrift) 
In(z, F) Va(zfa— Fa) 
afty  WF(Her(F)AIn(z,F)—> Fy) (76) 
af=y xftyVa=y 
FN VdVeVa(dfeAdfa>a=e) (115) 

108 zfzyAyfu — zfiv. 

Proof. Assume zf*y, yfv, Her(F) and In(z,F). If zf*y, then Fy, and 
by yfv and Her(F), Fv; but if y = z then In(y, F) and again Fv, as yfv. 
Thus zf*v, whence zf*v. Hl 

129 FNA(yf*mV mfty) Ayfz— (af*mV mfZz). 

Proof. Assume FN, (yf*mVmfzy), and yfz. We must show zf*mVmfzz. 

Suppose yf*m. By 110 we need only show Va(yfa — zf2a), for then xf*m, 

whence x f*m or m = az, and then zf*mV mfiz. So suppose yfa. Since 

yfaz and FN, z = a, whence zf*a. Now suppose mfty. We show mf*z, 
whence mf*z. Assume Her(F’) and In(m, F’). We are to show Fz. If mf*y, 
then since Her(F’) and In(m, F), Fy, and then, since yfx and Her(F), Fx. 
But if y = ™, then from yfr, mfx, whence again Fz, since In(m, F). # 

The second main theorem of the Begriffsschrift is: 

133 FNAsftmArfty > [yf'mVy = mV mfryl. 

Proof after four lemmas. 

Lemma 1 bfa— bf*a. (91) 

Proof. Suppose bfa. Assume Her(F), In(b, F); show Fa. Since bfa and 
In(b, F), Fa. @ 

Lemma 2 cf*dAdf*a— cf*a. (98) 

Proof. Suppose cf*d and df*a. Assume Her(F) and In(c, F); show Fa. 

Since cf*d, Her(F'), and In(c, F), Fd. If dfb, then since Her(F), Fb; thus 

In(d, F), Since Her(F') and df*a, Fa. 

Lemma 3 [c=dV cf*d] Adfa — [ce =aV cf*a]. (108)



170 II. Frege Studies 

Proof. Suppose [c = dV cf*d] and dfa. If c = d, then cfa, whence cf*a 

by Lemma 1; if cf*d, then since dfa, df*a by Lemma 1, and by Lemma 2, 

cf*a again. In any event, c=aVcf*a. E 

Lemma 4 FNAcfbAcf*m — [b=mv bf*m]. (124) 

Proof. Suppose FN and cfb. Let F = {z :b = zV bf*z}. Suppose 
[b = dV bf*d] and dfa. By Lemma 3, [b = a V bf*a]. Thus Her(F). If cfa, 
then by FN, b = a, whence b = a V bf*a; thus In(c, F). Therefore if cf*m, 

Fm,i.e. b= mv bf*m. © 

Proof of the Theorem. Suppose FN. Let F = {z: zf*mV z= mv mf*z}. 

Suppose [df*m V d = mV mf*d| and dfa. If df*m, then by Lemma 4, 
[a= mV af*m], whence [af*m V a = mV mf*a]; and if d = mV mf*d, 
then m = dV mf*d, and by Lemma 3, m = a V mf*a, whence again 

[af*mVa=mV mf*al. Thus Her(F’). Now suppose zf*m. Assume z fa. 

By Lemma 4, [a = mV af*m], whence [af*m Va = mV mf*a]. Thus 
In(z, F). At last, suppose zf*y. Then Fy, ie. yf*mVy=mVmf*y. &
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Saving Frege from 

Contradiction 

In §68 of Die Grundlagen der Arithmetik Frege defines the number that 

belongs to the concept F' as the extension of the concept “equinumerous 

(gleichzahlig) with the concept F.” In sections that follow he gives the 

needed definition of equinumerosity in terms of one-one correspondence, 

and in §73 attempts to demonstrate that the number belonging to F is 

identical with that belonging to G if and only if F is equinumerous with 

G. In view of Hume’s well-known “standard by which we can judge of the 

equality and proportion of numbers,”! we may call the statement that the 

numbers belonging to F and G are equal if and only if F is equinumerous 

with G (or the formalization of this statement) Hume’s principle. As we 
shall see, Frege’s attempt to demonstrate Hume’s principle, which is vital 

to the development. of arithmetic sketched in the next ten sections of the 

Grundlagen, cannot. be considered successful. We begin with a look at 

Frege's attempted proof before turning to our main concern, which is with 

two ways of repairing the damage to his work caused by the discovery of 

Russell’s paradox. 

Frege writes, 

On our definition, what has to be shown is that the extension 

of the concept “equinumerous with the concept F” is the same 

as the extension of the concept “equinumerous with the concept 

G,” if the concept F' is equinumerous with the concept G. In 

other words: it is to be proved that, for F equinumerous with 

From Proceedings of the Aristotelian Society, 87 (1986/87): 137-151. Reprinted by 
courtesy of the Editor of the Aristotelian Society: ©1986/87. 

Research for this paper was carried out under a grant from the National Science 

Foundation. 
“When two numbers are so combin’d, as that the one has always an unite answering 

to every unite of the other, we pronounce them equal,” Treatise, I, III, I. 

171



172 If. Frege Studies 

G, the following two propositions hold good universally: if the 

concept H is equinumerous with the concept F', then it is also 

equal to the concept G; and ... [conversely] .... 

The sophisticated definition of numbers as extensions of certain concepts 

of concepts and extensive use of binary relations found in the Grundlagen 

are evidence that Frege was there committed to the existence of objects of 

all finite types: “objects,” the items of the lowest type 0, and, for any types 

t1,..-,tn, relations of type (t1,...,¢,) among items of types t1,...,¢n. An 

item of type (t), for some type t, is called a concept. Concepts of type (0) 

are called “first level concepts”; those of type ((0)), “second level concepts.” 
The relation borne by an object x to a concept F when zx falls under F 

is of type (0, (0)); the relation 7 defined below is of type ((0),0). It seems 
clear that Frege accepted a comprehension principle governing the existence 

of relations, according to which for any sequence of variables 71,.-.;2n 

of types f),...,¢, and any predicate A(z),...,22) (possibly containing 
parameters) there is a relation of type (t1,..-,tn) holding among those 

items of types t),...,¢, satisfying the predicate, and only those. This 

principle can be proved from the rule of substitution Frege used in the 

Begriffsschrift. Thus, in view of the predicate “F is equinumerous with 

G (F a first level concept parameter, G a first level concept variable), 

Frege concludes that there is a second level concept under which fall all 

and only those first level concepts that are equinumerous with (the vate 

of the paramcter) F. 
It also scoms clear that at the time he wrote the Grundlagen. Frege held 

that. for each concept. C of whatever type, there isa special object C, the 

extension of C. Thus extensions are objects; and the mumber belonging 
to the first level concept PF’ is defined hy Frege to be the extension of a 
certain second level concept, the one under which fall all and only those 
first level concepts equinumerous with F. We shall often abbreviate “(is) 
equinumerous with”: eq. 

The announced task of §73 is to show that the number belonging to the 
concept F, NF for short, = NG if F eq G. Since Frege has defined NF 
as ‘eq F, what must be shown is that eq F = ‘eq G under the assumption 
that F eq G. But almost all of §73 is devoted to showing that if H eq F, 
then H eq G and observing that a similar proof shows that if H eq G, then 
H eq F. Frege takes it that showing these two propositions is sufficient; he 
writes “in other words.” In a footnote he adds that a similar proof can be 
given of the converse, that F eq G if NF = NG. And of course we know 
exactly how the proof would go: “On our definition what must be shown 
is that if ‘eq F = ‘eq G, in other words, if the following two propositions 
hold good universally: if H eq F then H 5 a eq G and if H eq G then H eq F,



11. Saving Frege from Contradiction 173 

then F eq G. But since F' eq F, by the first of these alone, F' eq G.” 

Why did Frege suppose that one could pass so freely between “'eq F = 

eq G” and “for all H, H eq F iff H eq G’? It seems most implausible that 

any answer could be correct other than: because he thought it evident that 

for any concepts C' and D of the same type (t), ‘C = ‘D if and only if for 

all items X of type 4, CX iff DX. 

Notoriously, this assumption generates Russell’s paradox (in the presence 

of the comprehension principle, whose validity I assume). It is noteworthy 

that the proof Frege gave of the inconsistency of the system of his Grundge- 

setze der Arithmetik resembles Cantor’s proof that there is no one-one map- 

ping of the power set of a set into that set rather than the version of the 

paradox that Russell had originally communicated to him. Of course in his 

second letter to Frege, well before Frege came to write the appendix to the 

Grundgesetze , where Frege’s proof appears, Russell had explained to him 

the origins of the paradox in Cantor’s work. 

In the present notation, Frege’s version of Russell’s paradox runs: By 

comprehension, let R be the first level concept [z : dF (x = 'F A-=Fx)]. 
Consider the object ‘R, which is the extension of R. If =R ‘R, then since for 

al F, ‘R= ‘'F > F’R, R'R. So R'R. But then for some F, ‘R= 'F and 
AF 'R. Thus by the principle about extensions mentioned two paragraphs 

back, Va(Rz — Fx). Thus —R ’R, contradiction. 
Since Frege defines numbers as the extensions of second level concepts, it 

might be hoped that the Russell paradox does not threaten Frege’s deriva- 

tion of arithmetic in the Grundlagen, for to prove the main proposition of 

§73, ‘[H : H eq F] = "[H : H eq G] iff F eq G, he needs only the principle: 
for any second level concepts C, D, ‘C = ‘D iff for all first level H, CH 

i DE. Notice the difference between this principle -- call it (VI)-—and the 

instance of (V) in which ¢ = 0 that leads to Russell’s paradox: for any first 

level concepts F, G, 'F = G iff for all objects x, Fx iff Gx. Part of the 

cause of the Russell paradox is that certain extensions are in the range of 

the quantified variable on the right side of (V). Since this is not the case 
with (VI), might (VI) then be consistent? 

No. Define 4 by: Fx iff for some second level concept D, x = 'D and 

DF. By comprehension one level up, let C = [F : dx(-F nx A Fx)}. By 

comprehension at the lowest level, let X = [x : 2 = C]. Suppose XqC. 

By the definition of 7, for some D, ‘C = 'D and DX, whence by (VI) 

CX. By the definition of C’, for some xz, ~Xyz and Xx. By the definition 

of X, x = C, and therefore ~X7'C. Thus ~X7’‘C, whence for every D, 
if C = 'D then ~DX. Therefore -CX. But by the definition of C, for 

every x such that Xz, Xnx, and since X C, Xn‘C, contradiction. As with 

the Russell paradox, it is the assumption that ’ is one-one that causes the 

trouble.
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Thus not only is (V) in full generality inconsistent, so is the apparently 

weaker (VI). But Frege does not need the full strength of (VI) to prove that 
NF = NG iff F eq G. On the basis of the following proposition: 

(Numbers) VFilzVH(Hyz «> H eq F)) 

he can define N F as the unique object x such that for all concepts H, Hx 

iff H eq F and then easily prove from this definition that NF = NG iff 

FeqG. 

Numbers expresses a proposition to whose truth Frege was committed. 

It is a proposition about concepts and objects couched in the language of 

second-order logic to which one new relation, 7, has been added. (“eq” is 

of course definable in second-order logic in the standard way.) Thus it is 

involved with higher-order notions or with notions not expressible in the 

language of Frege’s Begriffsschrift if at all, only in that 7 is a relation of 

concepts to objects. Notice that for any concept F the x (unique, according 

to Numbers) such that for all concepts H, Hyx iff H eq F will be an 

extension, for since F eq F, Far, and thus for some C, z = ‘C (and CF). 
The chief virtue of Numbers, though, is that it is formally consistent (as 

John Burgess,? Harold Hodes,? and the author‘ have noted). 
We may see this as follows. Let the object variables in Numbers range 

over all natural numbers, the concept variables range over all sets of natural 

numbers and for all n, the n-ary relation variables range over all n-ary 

relations of natural numbers. (We are thus defining a “standard” model 

for Numbers.) Let 7 be true of a set S of natural numbers and a natural 
nuinber 7 if and only if either for some natural number mm, S has 77 members 

and n = tr +1 or S is infinite and n = 0, So interpreted, Numbers is true. 

For let S be an arbitrary set of natural numbers, Let ns mt 1 if o 

is finite and has m members; let n = 0 otherwise. Then for any set. U of 

natural numbers, U7)n holds iff either for some 22, U has mm members aud 

n=m-+1 or U is infinite and n = 0, if and only if U and S have the 
same number of members, if and only if U eq S holds. The uniqueness of 
n follows from the definition of 7 and the fact that S eq S holds. 

Much of the interest of the proof just given lies in the fact that it can 
be formalized in second-order arithmetic. Let Eq(H, F) be the standard 

formula of second-order logic defining the relation “there is a one-one cor- 

respondence between U and S.” The relation “S is infinite and n = 0 or 

for some m, S has m members and n = m+ 1” can be defined by a formula 

Eta(F,2) of second-order arithmetic in such a way that the sentence 

VFalzVH(Eta(H, 2) + Eq(H, F)) 
?(Burgess, 1984). 
3(Hodes, 1984), p. 138. 
4In Article 12 below.
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is provable in second-order arithmetic. Thus we have a relative consistency 

proof: a proof of a contradiction in the result of adjoining the formalization 

VFAlaVA (Anz o Eq(H, F)) 

of Numbers (with Hnx now taken as an atomic formula) to any standard 
axiomatic system of second-order logic could immediately (“primitive re- 

cursively” ) be transformed into a proof of a contradiction in second-order 
formal arithmetic. It is pointless to try to describe how unexpected the 

discovery of a contradiction in second-order arithmetic would be. Since 

Hume’s principle is a theorem of a definitional extension of the second- 

order theory whose sole axiom is Numbers, it too is consistent (relative to 

the consistency of second-order arithmetic). 

The distance between Numbers and Hume’s principle is certainly not all 

that great: Numbers provides the justification for the introduction of the 

functor N, “the number belonging to”; Numbers also follows from Hume’s 

principle when F'nz is defined as x = NF. One of Numbers’s minor virtues 

is that it encapsulates the only assumption concerning the existence of 

extensions that Frege actually needs. For once Frege has Hume’s principle 

in hand, he needs nothing else. 

In §§74-83 of the Grundlagen, Frege outlines the proofs of a number of 

propositions concerning (what we now call) the natural numbers, including 

the difficult theorem that every finite number has a successor. (Formaliza- 

tions of) all of these can be proved in axiomatic second-order logic from 

Hume’s principle in more or less the manner outlined in these ten sec- 

tious of the Grundlagen. I am uncertain whether Frege was aware that 

Hume's principle was all he needed; his puzzling remark at the end of the 

Grundlagen about attaching no decisive importance to the introduction of 

extensions of concepts may be taken as some evidence that he knew this. 

It’s a pity that Russell’s paradox has obscured Frege’s accomplishment in 

the Grundlagen. It’s utterly remarkable that the whole of arithmetic can be 

deduced in second-order logic from this one simple principle, which might 

appear to be nothing more than a definition. Of course, Hume’s principle 

isn’t a definition, since “NF” and “NG” are intended to denote objects in 

the range of the first-order variables. (Cf. Wright’s book Frege’s Conception 

of Numbers as Objects.) And as Frege’s work shows, Hume’s principle is 

much more powerful than we might have supposed it to be, implying, with 

the aid of second-order logic, the whole of second-order arithmetic (while 
failing to imply L). 

In fact, that Hume’s principle is consistent can easily come to seem like a 

matter of purest luck. Suppose we do for isomorphism of (binary) relations 

5 (Wright, 1983).
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what we have just done for the notion of equinumerosity of concepts: adjoin 

to second-order logic an axiom 

(OrdType) ~R= “SR iso S, 

with ~ a function sign that takes a binary relation variable and makes a 

term of the type of object variables, and R iso S some formula expressing 

the order-isomorphism of the relations that are values of the variables RB 

and S. In other words, suppose we introduce in the obvious way what 

Cantor called “order types” and Russell “relation numbers.” It would, I 

imagine, be the obvious guess that if Hume’s principle is consistent, then 

so is OrdType, which states that the order types of two relations are the 

same iff the relations are order-isomorphic. 

In §§85 and 86 of the Grundlagen Frege takes Cantor to task for having 

appealed to “inner intuition” instead of providing definitions of Number 

and following in a series. Frege adds that he thinks he can imagine how 

these two concepts could be made precise. One would have liked to see 

Frege’s account of Cantor’s notions; one cannot but suspect that in order 

to reproduce Cantor’s theory of ordinal numbers, Frege would have derived 

OrdType from a (possibly tacit) appeal to (V). 
Doing so would have landed him in trouble deeper than any he was in 

in the Grundlagen, however, and not just because of the appeal to (V). 

For the guess that OrdType is consistent if Hine’s principle is consistent 

is wrong. As Hodes has also observed, OrdType leads to a contradiction 

via the reasoning of the Burali Forti paradox. Thus although Numbers is 

consistent, a principle no less definitional in appearance and rather similar 

in content turns out to be inconsistent. tn view of the inconsistency of (V1) 

and OrdType, the consistency of Htine’s principle is sheer liek. 

To show that arithmetic follows from Hume's principle, or its near relation 
Numbers, is to give a profound analysis of arithmetic, but it is not to base 

arithmetic on a principle strikingly like Frege’s Rule (V). We know from 

Russell’s and Cantor’s paradoxes that there can be no function from (first 

level) concepts to objects that assigns different objects to concepts under 

which different objects fall. Identifying concepts under which the same 
objects fall, we may say that there is no one-one function from concepts 
into objects. But the function denoted by N is a particularly non-one-one 
function. With the exception of [x : x # 2], every concept shares its number 

with infinitely many other concepts. One might wonder whether one could 
base arithmetic on a function assigning objects to concepts which, though 
necessarily not one-one, fails to be one-one at only one of its values. We'll 
see how to do this below. 

In the appendix to the second volume of his Grundgesetze, Frege asks: 

Is it always permissible to speak of the extension of a concept,
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of a class? And if not, how do we recognize the exceptional 

cases? Can we always infer from the extension of one concept’s 

coinciding with that of a second that every object which falls 

under the first concept also falls under the second? These are 

the questions raised by Mr. Russell’s communication. 

Before showing how Russell’s paradox could be deduced in the system of 

the Grundgesetze, he declares: 

Thus there is no alternative but to recognize the extensions of 

concepts, or classes, as objects in the full and proper sense of 

the word, while conceding that our interpretation hitherto of 

the words “extension of a concept” is in need of correction. 

After showing that his rule (Vb) leads to Russell’s paradox, Frege proves 

that every function from concepts to objects assigns the same value to some 

pair of concepts under which different objects fall. He observes that the 

proof is “carried out without the use of propositions or notations whose 

justification is in any way doubtful” and adds that 

this simply does away with extensions in the generally received 

sense of the term. We may not say that in general the expression 

“the extension of one concept coincides with that of another” 

ieans the same as the expression “every object falling under 

the first also falls under the second and conversely.” 

Frege then proposes a repair. In place of the defective rule (V), assume 

(V‘), which we may put: the extensions of F and G are identical iff the 

same objects other than those extensions fall under F and G. He remarks 

that “Obviously this cannot be taken as defining the extension of a concept 

but merely as stating the distinctive property of this second level function.” 

It is well known that Frege’s proposed repair fails. A particularly useful 

discussion of the failure is found in Resnik’s book Frege and the Philosophy 

of Mathematics .® I want to consider an alternative repair to the Grundge- 

setze suggested by the second question asked in its appendix: How do we 

recognize the exceptional cases? 

Frege does not in fact offer an answer to his question. Although he 

does discuss certain exceptional cases in the appendix, they are not the 

ones referred to in his question, which are, presumably, the concepts that 

lack an extension in the customary sense of the term. The exceptions 

Frege discusses are not concepts but certain objects, namely, extensions of 
concepts. 

§(Resnik, 1980).
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But there is a simple answer that Frege might have given, one that uses 

only such notions as were available in 1908. Identification of the exceptional 

concepts will suggest a replacement for rule (V) which Frege might well have 

found perfectly acceptable, and which seems no more ad hoc than Frege’s 

own rule (V’). The defect Russell revealed could have been repaired rather 
early, and by a patch that is really quite simple and closely related to ideas 

found in Cantor’s work, some of which, at least, was familiar to Frege. 

T shall not discuss the question whether the repair vindicates logicism. I 

doubt that anything can do that. I merely wish to claim that the repair 

I shall give should have been no less acceptable to Frege than the one he 

actually offered. 

We'll begin the description of the repair with a bit of stipulation. Let’s 

detach the existence of extensions from the term “coextensive” and say that 

a concept F is coeztensive with a concept G if and only if all objects that 

fall under F' fall under G and vice versa. Five more definitions follow, of 

“subconcept,” “goes into,” “V,” “small” and “similar.” 

Let us call a concept F' a subconcept of a concept G if every object that 

falls under F falls under G. Let us say that a concept F' goes into G if F 

is equinumerous with a subconcept of G. If F is a subconcept of G, then F 

goes into G; if F goes into G and G goes into H, then F goes into H. It can 

be shown that if F and G go into each other, then they are equinumerous. 

Let V be the concept, [xz : 2 = 2], identical with itself. And let us say 
that a concept F' is small if V does not go into F. V is not small. If F 

goes into G and G is small, then F is small, thus any subconcept. of a small 

concept is small and any concept equinumerous or coextensive with a small 

concept is sinall, Let us say that F is similar to G iff (F is sinall VG is 

small — F is coextensive with G). 
We want now to sce that is similar to is an cquivalonce relation. Re- 

flexivity and syrnmetry are obvious. As for transitivity, suppose that F is 

similar to G and G to H. If F is small, then F is coextensive with G (for 
F is similar to G), thus G is small, and then G is coextensive with H; thus 

F is coextensive with H. And in like manner, but going the other way, if 
H is small, F is coextensive with H. Thus F is similar to H. 

We now suppose that associated with each concept F’, there is an ob- 

ject *F', which I will call the subtension of F, and that as extensions were 

supposed to be in one-one correspondence with equivalence classes of the 
equivalence relation coextensive with, so subtensions are in one-one corre- 
spondence with equivalence classes of the equivalence relation similar to; 
thus the principle (New V) holds: *F = *G iff F is similar to G. 

Tn view of the “Julius Caesar problem” it may be uncertain whether (New 
V) can be taken as defining subtensions, but like (V) and unlike (V’) it does 
not merely state the distinctive property of a certain second level function.
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(V) and our replacement (New V) explain in a non-circular way, as (V’) did 
not, when objects given as extensions or subtensions of concepts are iden- 

tical; the statements of the identity conditions do not contain expressions 

explicitly referring to those very extensions or subtensions. 

Moreover, (New V) enables us to define the “exceptional” concepts quite 

easily, as those that are not small. For it follows from (New V) that for 
every concept F, if F is small, then for every concept G, +F = +G iff F is 

coextensive with G. Furthermore if F' is not small then there is a concept 

G not coextensive with F but such that *«F = *G; of course any such G 
will itself fail to be small. (Since F is not small, F is equinumerous with V; 

but as we shall see, V is equinumerous with V —0 (defined below). Thus F 

is equinumerous with one of its proper subconcepts G; since G is not small, 

*F = *G.) 
We must now make it plausible that arithmetic can be developed in 

second-order logic from (New V) alone. There are many ways to do this; 

perhaps the easiest is to develop “finite set theory” from (New V) taking 

the development of arithmetic from finite set theory for granted. 

Following Frege, let us say that x € (is a member of) y, if for some F, 

y = «F and Fr. And let us call an object y a set if y= *G for some small 

concept G. Thus if y is a set and for some concept H, y = +H, then x € y 

iff Hx, 

Again, é la Frege, let 0 = +(x: 2 4 2]. Since 0 is an object, [x : x # 2] 
is small and 0 is therefore a set. For all z, not: 2 € 0. *V, however, is not 

asct. Therefore there are at ast two objects. Thus for any object y, the 

concept [s.r = y] is small; let {y} = *[2: a = y]. For any object y, {y} is 
a set. (So {#V} is a sct even though *V is not.) 

For any concept. Ff and any object y, let F+y be the concept [x : FrVzr = 

y| and £ — y the concept [x : Fr Ax 4 y]. We now want to see that if F is 

small, so is F + y, for any object y. 

We first observe since 0 # {z}, V goes into V—0 via the map which sends 

each object x into {x}. Suppose that F'+ y is not small. Then V goes into 

F+~y via the map ¢ which, switching one or two values of 9 if necessary, 

we may assume sends 0 to y. Then V — 0 goes into F via (a restriction of) 

y. Since V goes into V — 0, V goes into F and F is not small. It follows 

that if F is small, so is F'+ y. 

For any objects z, w, let z+w=+*[e:2€2zV2=w]. Then if z is a set, 
soisz+wjyrEz+wiffeezVre=w. 

As in Grundlagen §83, we may define HF = [x : VF(FOAV2Vw(F2 A 

Fw — Fz+w) — Fx)j. An induction principle for HF follows directly: 
to show that all HF objects fall under a certain concept F, it suffices to 

show that 0 does, and that z+ w does whenever z and w do. Thus all HF 

objects together with all of their members are HF sets.
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The axioms of (second-order) General Set Theory are: 

Extensionality. VzVy(Vz(z€2ez€y)>2=Y), 

Adjunction: VuvziyVa(zg €CEyourezVz2=w), and 

Separation: VFVzayVa(2 Ey 2 €2zAF2). 

These axioms all hold when relativized to HF. For extensionality, note 

that two HF sets coincide if the same HF sets belong to both; separation 

is easily proved by induction on z. Second-order arithmetic can now be 

deduced in the usual way from General Set Theory. It is of some interest to 

note that the relativizations of the remaining axioms of Zermelo-Fraenkel 

set theory plus Choice minus Infinity can also be deduced from (New V). 

Note also that the derivation of General Set Theory from (New V) is quite 

elementary, not much more difficult than it would have been from (V). We 

have had to check that certain subtensions were sets, but these checks were 

easily made. And although equinumerosity figures in the definition of the 

key notion of smallness, the Schréder—Bernstein theorem, or the technique 

of its proof, is nowhere used. 

The hereditarily finite sets are the members of the smallest. set A contain- 

ing all finite subsets of A. Of course the null set 9 is hereditarily finite, as 
are {0}, {{0}}, {0, {0}}, etc. An alternative characterization of the heredi- 

tarily finite sets is that they are the members of the smallest set containing 

@ and containing z U {w} whenever it contains z and w. Our construction 
shows that the hereditarily finite sets can be seen as “constructed fron” 

the relation is similar to as the finite cardinals arise froin the relation 45 

equinumerous with, and as extensions were supposed to arise from 4% €0- 
extensive with. Truth-values arise in a similar manner from as materially 

equivalent ta, via the axiom: Vp = Vg e (pes q). 
When the natural numbers or the hereditarily finite sets are thus “con- 

structed” from equinumerosity or similarity, other objects are constructed 

too. We have already met the non-set «V. On the construction of the 

Grundlagen, along with the usual natural numbers some funny numbers 
arise, among them the number N’V of things there are, the number N[z : 
AF x = NF] of numbers there are, and the number of finite numbers there 
are. Frege acknowledged the last of these, dubbing it 001, but he must 
admit all of them if he wants to define 0 as the number belonging to the 

concept not identical with itself. (It is consistent with Numbers that all 
three are distinct; it is also consistent that they are all identical.) 

It is often said that Zermelo—Fraenkel set theory is motivated by a doc- 
trine of “limitation of size”: a collection is a set if it is “small” or “not too 
big,” a collection being “too big” if it is equinumerous with the collection of 
all sets. The notion of smallness is sometimes taken to motivate the axioms 

of set theory: it is thought that if certain sets are small, then certain other



11. Saving Frege from Contradiction 181 

sets formed from them by various operations will also be small. (Michael 

Hallett has effectively criticized the thought that the power set operation 

produces small sets from small sets.?) In most treatments of set theory, 

the idea of smallness is left at the motivational level. Our construction 

explicitly incorporates it into our axiom (New V) governing subtensions. 

Another respect in which our construction differs from that of ZF or its 

class-theoretic relatives is the combination of a “universal” object with the 

absence of a complement operation: for every z, x € *V; but if for every 

z£#0,2€y, then 0€ y also. 

It follows from (New V) that if F is small, then «F = *G if and only if 
F and G are coextensive; if neither F nor G is small, then «F = *G (for 
F and G then satisfy the definition of “similar”). Our construction, as we 
have noted, concentrates the non-one-oneness of the function * in a single 

value, the object *V. A theorem of set theory throws some light on the 

question how non-one-one any function like * from concepts to objects must 
be. It follows from the Zermelo—KGnig inequality (which can be proved in 

ZF plus the axiom of choice) that for any infinite set + and function f from 

the power set of x into x, there is a member a of x such that there are 

at least as many subsets y of x such that fy = a as there are subsets of 

zx altogether. Thus (higher-order set theory implies that) any attempt to 

assign concepts (classes) to objects must assign to some one object as many 

concepts as there are concepts altogether. There is then a clear sense in 

which the failure of * to be a one-one function is no worse than necessary and 

the replacement of extensions 'F by subtensions *F is a minimal departure 

from the project of the Grundgesetze.. The theorem also shows that project 

uot. to have beeu a near miss, 

Although I have given an informa sketch of the derivation of General Set 

Theory from (New V), it is to be emphasized that this derivation can be 

carried out formally in axiomatic second-order logic in which the sole axiom 

(other than the standard axioms of second-order logic) is (New V). (Of 

course the rules of formation will guarantee that for each concept variable 

F, *F is a term of the type of object variables.) 

There remains a matter not yet attended to: the consistency of (New V). 

It should now be no surprise that (New V) is consistent (if second-order 
arithmetic is). Indeed, it is quite simple to provide a standard second-order 

model for (New V). 
As in the proof of the consistency of Numbers, let the object variables 

range over all natural numbers. Since the model is standard and its domain 

is countably infinite, a subset X of the domain satisfies “is small” if and 

only if X is finite. We must now supply a suitable function 7 from sets of 

7 (Hallett, 1984).
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natural numbers to natural numbers with which to interpret *. 

Let D be some one-one map of all finite sets of natural numbers into 

the natural numbers. (The best known such D is given by: D(X) = the 
number whose binary numeral, for every number z, contains a 1 at the 

2*’s place iff s © X.) Then if X and Y are finite sets of natural numbers, 
14+ D(X) =14 D(Y) iff X =Y. 

For any set X of natural numbers, let 7(X) = 0 if X is infinite and 
=1+ D(X) if X is finite. Then r(X) = 7(Y) iff either X and Y are both 
infinite or X = Y, iff (X or Y is finite + X = Y). Thus (New V) does 
indeed have a standard model: it is true over the natural numbers when + 

is interpreted by 7. Utilizing the particular function D defined above, we 

can convert the foregoing argument into a proof of the consistency of (New 

V) (relative to that of second-order arithmetic) in the usual way. 
How then does (New V) prevent Russell’s paradox? Let’s try to re- 

derive it: By comprehension, let R be the first level concept {x : IF (zr = 
+F A-Fz)|. If oR * R, then since for all F, +R = *F + F * R, R* R. So 
R* R. So for some F, *R = *F and ~F' * R. But we cannot show that 

Var( Ra ++ Fx) unless we can show that F or F is small, and this there is 

no way of doing if second-order arithmetic is consistent. The unsurprising 

conclusion is that # is not small. It is more interesting to note that since 

every number fails to fall under at least one concept of which it is the 

number, the Russellian number N[x : 3F(2 = NF A -F2)| is (provably) 
identical with Nix: 3F x = NF, the number of numbers. 

A piece of mathematics carried out in an inconsistent. theory need not be 

vitiated by the inconsistency of the theory: it, may be possible to develop the 
mathematics in a suitable proper subtheory. The development. of arithmetic 

outlined in the Grundlagen can be carried out in the consistent. theory 
obtained by adding Numbers to the system of Begriffsschrift. ws well as in 

the inconsistent system of the Grundgesetze. Consistent systems similar to, 

but stronger than, (New V) plus second-order logic can readily be given, 
e.g., by replacing “small” by “countable.” It would be of some interest to 

find out how much of the mathematics done in the Grundgesetze can be 

reproduced in such systems.



12 

  

The Consistency of Frege’s 

Foundations of Arithmetic 

Is Frege’s Foundations of Arithmetic inconsistent? The question may seem 

to be badly posed. The Foundations, which appeared in 1884, contains no 

formal system like those found in Frege’s Begriffsschrift (1879) and Basic 

Laws of Arithmetic (Vol 1, 1893, Vol. 2, 1903). As is well known, Rus- 
sell showed the inconsistency of the system of the Basic Laws by deriving 

therein what we now call Russell’s paradox. The system of the Begriffss- 

chrift, on the other hand, can plausibly be reconstructed as an axiomatic 

presentation of second-order logic, which is therefore happily subject to the 

usual cousistency proof, consisting in the observation that the universal 

closures of the axioms and anything derivable from them by the rules of in- 

ference are true in any one-element: model.! Since the Foundations contains 

no formal system at all, our question may be thought to need rewording 
before an answer to it can be given. 

Qne might nevertheless think that, however reworded and badly posed 

or not, it niust be answered yes. The Basic Laws, that is, the system 

thereof, is inconsistent and is widely held to be a formal elaboration of the 

mathematical program outlined in the earlier Foundations, which contains 

a more thorough development of its program than one is accustomed to 

find in programmatic works, Thus the inconsistency which Russell found 

From On Being and Saying: Essays in Honor of Richard Cartwright, Judith Jarvis 
Thomson, ed., Cambridge: The MIT Press, 1987, pp. 3-28. Reprinted by kind permission 

of The MIT Press. Copyright ©1987 Massachusetts Institute of Technology. 

The papers by Paul Benacerraf, Harold Hodes, and Charles Parsons cited below have 

been major influences on this one. I would like to thank Paul Benacerraf, Sylvain 

Bromberger, John Burgess, W. D. Hart, James Higginbotham, Harold Hodes, Paul Hor- 

wich, Hilary Putnam, Elisha Sacks, Thomas Scanlon, and Judith Jarvis Thomson for 

helpful comments. Research for this paper was carried out under grant SES-8607415 

from the National Science Foundation. 

1(Russinoff, 1983). 
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in the later book must have been latent in the earlier one. 
Moreover, the characteristic signs of inconsistency can be found in the 

use Frege makes in the Foundations of the central notions of “object,” “con- 

cept,” and “extension.” Objects fall under concepts, but some extensions— 

numbers, in particular and crucially—contain concepts, and these exten- 

sions themselves are objects, according to Frege. Thus, although a division 

into two types of entity, concepts and objects, can be found in the Foun- 

dations, it is plain that Frege uses not one but two instantiation relations, 

“falling under” (relating some objects to some concepts) and “being in” (re- 
lating some concepts to some objects), and that both relations sometimes 

obtain reciprocally: The number 1 is an object that falls under “identical 
with 1,” a concept that is in the number 1. Even more ominously (because 

of the single negation sign), the number 2 does not fall under “identical 
with 0 or 1,” which is in 2. Thus the division of the Foundations’s enti- 

ties into two types would appear to offer little protection against Russell’s 

paradox, 

It is not only Russell’s paradox that threatens. Recall that Frege defines 

0 as the number belonging to the concept “not identical with itself.”? If 

there is such a number, would there not also have to be a number belonging 

to the concept “identical with itself,” a greatest number? Cantor's paradox 

also threatens. 

It is therefore quite plausible to suppose that it is merely through its 

lack of forinality that the Foundations escapes outright inconsistency and 

that, when suitably formalized, the principles emploved by Frege in the 
Foundations must. be inconsistent. 

This plausible and, | suspect, quite common stpposition is thistaken, 84 
we shall see. Although Frege freely assumes the existence of needed cone 

cepts at, every turn, he by no means avails himself of extensions with equal 

frecdom. With one or two insignificant but possibly revealing exceptions, 
which I discuss later, the only extensions whose existence Frege claims in 

the central sections of the Foundations are the extensions of higher level 

concepts of the form “equinumerous with concept F.” (I use the term 
“equinumerous” as the translation of Frege’s gleichzahlig.) It turns out 
that the claim that such extensions exist can be consistently integrated 

with existence claims for a wide variety of first level concepts in a way 

that makes possible the execution of the mathematical program described 

in Sections 68-83 of the Foundations. Indeed I shall now present a formal 

theory, FA (“Frege Arithmetic”), that captures the whole content of these 

2Plurals find happy employment here, as elsewhere in the discussion of concepts: er 

example, instead of “the number belonging to the concept ‘horse’,” one can say “tne 
number of horses.” 0 is thus defined by Frege to be the number of things that are not 

self-identical. And Frege was right!
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central sections and for which a simple consistency proof can be given, one 

that shows why FA is consistent. 

FA is a theory whose underlying logic is standard axiomatic second-order 

logic written in the usual Peano—Russell logical notation. FA could have 

been presented as an extension of the system of Frege’s Begriffsschrift. 

Indeed, there is some evidence that Frege thought of himself as translating 

Begriffsschrift notation into the vernacular when writing the Foundations. 

Not only does the later work abound with allusions and references to the 

earlier, along with repetitions of claims and arguments for its significance, 

when Frege defines the ancestral in Section 79, he uses the variables 2, y, 

d, and F in exactly the same logical roles they had played in the Begriffs- 

schrift. 

FA is a system with three sorts of variable: first-order (or object) variables 

a, b, c, d, m, n, 2, Y, 2% .-.} unary second-order (or concept) variables F, 

G, H, ...; and binary second-order (or relation) variables y, #,... The sole 

nonlogical symbol of the language of FA is 7, a two-place predicate letter 

attaching to a concept variable and an object variable. (7 is intended to be 

reminiscent of € and may be read “is in the extension.” Frege’s doctrine 

that extensions are objects receives expression in the fact that the second 

argument place of 77 is to be filled by an object variable.) Thus the atomic 

formulas of FA are of the forms Fx (F a concept variable), xpy, and Fr. 

Formulas of FA are constructed from the atomic formulas by means of 

propositional connectives and quantifiers in the usual manner. 

Identity can be taken to have its standard second-order definition: «= y 

if and only ifVF( Pr Oo Fy). Frege endorses Leibniz’s definition (“... potest 
substitu... salna veritate”) in Section 65 of the Foundations but does not 

actindly do what he might casily have done, viz. state that Leibniz’s def- 

inition of the identity of x2 and y can be put: y falls under every concept 

under which w: falls (and vice versa). 
The logical axioms and rules of FA are the usual ones for such a second- 

order system. Among the axioms we may specially mention (i) the universal 
closures of all formulas of the form 

dFVa(Fr 3 A(x)), 

where A(z) is a formula of the language of FA not containing F free; and 

(ii) the universal closures of all formulas of the form 

ApVaVy(xzyy > B(z,y)), 

where B(x, y) is a formula of the language not containing y free. Through- 

out Sections 68-83 of the Foundations Frege assumes, and needs to assume, 

the existence of various particular concepts and relations. The axioms (i)
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and (ii) are called comprehension axioms; these will do the work in FA of 
Frege’s concept and relation existence assumptions. 

The sole (nonlogical) axiom of the system FA is the single sentence 

Numbers: VFilzVG(Gnr o F eq G), 

where F eq G is the obvious formula of the language of FA expressing the 

equinumerosity of the values of F and G, viz. 

dy vy(Fy — Alz(ygz A Gz)) AV2(Gz — Aly(ypz A Fy))}. 

Here the sign 7 is used for the relation that holds between a concept G 

and the extension of a (higher level) concept under which G falls; before we 

used the term “is in” for this relation and “contains” for its converse. In 

Section 68 Frege first asserts that F is equinumerous with G if and only if 

the extension of “equinumerous with F” is the same as that of “equinumer- 

ous with G” and then defines the number belonging to the concept F as the 

extension of the concept “equinumerous with the concept F.” Since Frege, 

like Russell, holds that existence and uniqueness are implicit in the use of 

the definite article, he supposes that for any concept F, there is a unique ex- 

tension of the concept “equinumerous with F.” Thus the sentence Numbers 

expresses this supposition in the language of FA; it is the sole nonlogical 

assumption? utilized by Frege in the course of the mathematical work done 

in Sections 68 83. 
How confident may we be that FA is consistent? Recent observations by 

Harold Hodes and John Burgess bear directly on this question. To explain 

them, it will be helpful to consider a certain formal sentence, which we shall 

call Hume’s principle: 

VEVG(NFE = NG eo F oq G). 

Hume’s principle is so called because it can be thought of as explicating 

a remark that Hume makes in the Treatise (I, IU, I, par. 5), which Frege 

quotes in the Foundations: 

We are possest of a precise standard by which we can judge of 

the equality and proportion of numbers ...When two numbers 

are so combin’d, as that the one has always an unite answering 

to every unite of the other, we pronounce them equal ... 

The symbol N in Hume’s principle is a function sign which when attached 

to a concept variable makes a term of the same type as object variables; thus 
NF = NG and z = NF are well-formed. Taking N ... as abbreviating “the 

number of ...s,” we may read Hume’s principle: The number of F's is the 

31t is nonlogical by my lights, though not, of course, by Frege’s.
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number of G's if and only if the F's can be put into one-one correspondence 

with the G's. (As Hume said, more or less). 
In his article “Logicism and the Ontological Commitments of Arith- 

metic,”* Hodes observes that a certain formula, which he calls “(D)” is 

satisfiable. He writes: 

VX sx 

(D) (r=y++ X eq Y) 
VYay 

is satisfiable. In fact if we accept standard set theory, it’s true. 

(I have replaced Hodes’s “(Qez)(Xz,Yz)” by “X eq Y.” The label “(D)” 
is missing from the text of his article.) Branching quantifiers, which are 

notoriously hard to interpret, may always be eliminated in favor of or- 

dinary function quantifiers. Eliminating them from (D) yields the for- 

mula JNAMVXVY(NX = MY «+ XeqY). Now (D) is satisfiable if 
and only if Hume’s principle is satisfiable. For if (the function quanti- 

fier equivalent of) (D) holds in a domain U, then for some functions N, 
M, VXVY(NX = MY «+ X eq Y) holds in U; since VY(Y eq Y) holds 
in U, so does VY(NY = MY), and therefore so does Hume’s principle 

VXVY(NX = NY + X eq Y). Conversely, Hume’s principle implies (D). 

Thus a bit of deciphering enables us to see that Hodes’s claim is tantamount 

to the assertion that Hume’s principle is satisfiable. 

Hodes gives no proof that (D), or Hume’s principle, is satisfiable. But 

Birgess, in a review of Crispin Wright's book Frege’s Conception of Num- 

bers as Objects.® shows that it is. He writes: 

Wright shows why the derivation of Russell's paradox cannot 

be carried out in N= [Wright’s system, obtained by adjoining 

a version of Hume’s principle to second-order logic], and ought 

to have pointed out that the system is pro[vlably consistent. 
(It has a model whose domain of objects consists of just the 

cardinals zero, one, two, ... and aleph-zero.)§ 

It will not be amiss to elaborate this remark. To produce a model M for 

Hume’s principle that also verifies all principles of axiomatic second-order 

logic, take the domain U of M to be the set {0,1,2,...,No}. To ensure 

that M is a model of axiomatic second-order logic, take the domain of the 

concept variables to be the set of all subsets of U, and similarly take the 

domain of the binary (or, more generally, n-ary) relation variables to be the 

4(Hodes, 1984), p. 138. 
(Wright, 1983). 
6 (Burgess, 1984). The text of the review has “probably consistent,” which is an 

obvious misprint.
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set of all binary (or n-ary) relations of U, that is, the set of sets of ordered 

pairs (or n-tuples) of members of U. 

To complete the definition of M, we must define the function f by which 

the function sign N is to be interpreted in M. The cardinality of a set is the 

number of members it contains. U has the following important property: 

The cardinality of every subset of U is a member of U. (Notice that the 

set of natural numbers lacks this property.) Thus we may define f as the 

function whose value for every subset V of U is the cardinality of V. We 

must now see that Hume’s principle is true in M. 

Observe that an assignment s of appropriate items to variables satisfies 

NF = NG in M ifand only if the cardinality of s(F') equals the cardinality 

of s(G) and satisfies F eq G in M if any only if s(F) can be put into one- 

one correspondence with s(G). Since the cardinality of s(F') is the same 
as that of s(G@) if and only if s(F) can be put into one-one correspondence 

with s(G), every assignment satisfies (VF = NG ++ F eq G) in M, and 
M is a model for Hume’s principle. 

A similar argument shows the satisfiability of Numbers: Let the domain 

of M again be U, and let M specify that 7 is to apply to a subset V of 

U and a member u of U if and only if the cardinality of V is u Then 

Numbers is true in M. (On receiving the letter from Russell, Frege should 

have immediately checked into Hilbert’s Hotel.) 
(It may be of interest to recall the usual proof that the comprehension 

axioms (i) are true in standard models (like M) for second-order logic: Let 

A(x) be a formula not coutaining free F, and let. s be an assignment. Let C 

be the set of objects of which A(z) is true, and lets! be just like s except. that 
s'(F) = C. Since A(x) does not contain free Fy 3’ satistios V.r(Fer «> ACr)) 
and s satisfies JFVa( Fir e+ A(r)). Similarly for the comprehension axioms 

(ii).) 
There is a cluster of worries or objectious that might be thonght to arise 

at this point: Does not the appeal to the natural numbers in the consis- 

tency proof vitiate Frege’s program? How can one invoke the existence of 

the numbers in order to justify FA? There is a quick answer to this objec- 

tion: You mean we shouldn’t give a consistency proof? More fully: We are 

simply trying to use what we know in order to allay ail suspicion that a 

contradiction is formally derivable in FA, about whose consistency anyone 

knowing the history of logic might well be quite uncertain. We are not 

attempting to show that FA is true. 

But there is perhaps a more serious worry. At a crucial step of the 

proof of the consistency (with second-order logic) of the formal sentence 

called Hume’s principle, we made an appeal to an informal principle con- 

necting cardinality and one-one correspondence which can be symbolized 

as~-Hume’s principle. (We made this appeal when we said that the cardi-
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nality of s(F) is the same as that of s(G) if and only if s(F') can be put 
into one-one correspondence with s(G).) Should this argument then count 
as a proof of the consistency of Hume’s principle? What assurance can 

any argument give us that a certain sentence is consistent, if the argument 

appeals to a principle one of whose formalizations is the very sentence we 

are trying to prove consistent? 

The worry is by no means idle. We have attempted to prove the consis- 

tency of Hume’s principle by arguing that a certain structure M is a model 

for Hume’s principle; in proving that M is a model for Hume’s principle 

we have appealed to an informal version of Hume’s principle. A similar 

service, however, can be performed for the notoriously inconsistent naive 

comprehension principle 4yVx(x € y @ ...2...) of set theory: By infor- 

mally invoking the naive comprehension principle, we can argue that all of 

its instances are true under the interpretation J under which the variables 

range over all sets that there are and € applies to a, b if and only if 5 is 

a set and a is a member of 6. Let ...2... be an arbitrary formula not 

containing free y. (By the naive comprehension principle) let b be the set 

of just those sets satisfying ...2... under J. Then for every a, a and 6 

satisfy x € y under J if and only if a satisfies ...1... under J. Therefore 

b satisfies Vr(2 € y ++ ...”...) under J, and AyVa(x € y + ...2...) is 

true under J. Thus J is a model of all instances of the naive comprehension 

principle. (Doubtless Frege convinced himself of the truth of the fatal Rule 

(V) of Basic Laws by running through sone such argument.) Of course 

we can now see that, pace the principle, there is not always a set of just 

those sets satisfying ...<r... But how certain can we be that the proof of 

the consistency of Hume's principle and FA does net contain some situilar 
gross (or subtle) mistake, as does the “proof” just given of the consistency 

of the naive comprehension principle? 

Let us first notice that the argument can be taken to show not merely 

that FA is cousistent, but that it is provable in standard set theory that FA 

is consistent. (Standard set theory is of course ZF, Zermelo—Fraenkel set 

theory.) The argument can be “carried out” or “replicated” in ZF. Thus, 

if FA is inconsistent, ZF is in error. (Presumably the word “provably” in 

Burgess’s observation refers to an informal, model-theoretic proof, which 

could be formalized in ZF, or to a formal ZF proof.) Thus anyone who is 

convinced that nothing false is provable in ZF must regard this argument 

as a proof that FA is consistent. Moreover, if ZF makes a false claim to 

the effect that FA, or any other formal theory, is consistent, then ZF is 

not merely in error but is itself inconsistent, for ZF will then certainly also 

make the correct claim that there exists a derivation of L in FA. (Indeed 

systems much weaker than ZF, for example, Robinson’s arithmetic Q, will 

then make that correct claim.)
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Something even stronger may be said. We shall show that any derivation 

of an inconsistency in FA can immediately be turned into a derivation of 

an inconsistency in a well-known theory called “second-order arithmetic” 

or “analysis,” about whose consistency there has never been the slightest 

doubt. In the language of analysis there are two sorts of variables, one sort 

ranging over (natural) numbers, the other over sets of and relations on num- 

bers. The axioms of analysis are the usual axioms of arithmetic, a sentence 

expressing the principle of mathematical induction (“Every set containing 

0 and the successor of every number contains every natural number”), and, 

for each formula of the language, a comprehension axiom expressing the ex- 

istence of the set or relation defined by the formula.’ If ZF is consistent, so 

is analysis; but ZF is stronger than analysis, and the consistency of analysis 

can be proved in ZF. It is (barely) conceivable that ZF is inconsistent; but 
unlike ZF, analysis did not arise as a direct response to the set-theoretic 

antinomies, and the discovery of the inconsistency of analysis would be the 

most surprising mathematical result ever obtained, precipitating a crisis 

in the foundations of mathematics compared with which previous “crises” 

would seem utterly insignificant. 

Let us sketch the construction by which proofs of 1 in FA can be turned 

into proofs of 1 in analysis, The trick is to “code” No by 0 and each natural 

number z by z+1 so that the argument given may be replicated in analysis. 

It is easy to construct a formula A(z, F’) of the language of analysis that 
expresses the relation “exactly z natural numbers belong to the set F ms 

Simply write down the obvious symbolization of “there exists a one-one 

correspondence between the natural munbers less than z and the members 

of F.” Let Eta(F, ar) be the formula 

[732 A(z, F) Ax =O} V [ar(A(s, FP) Age st Dh 

Then, since Ila Eta(F, 2) and 

[Aa(Eta(F, x) A Eta(G,2)) o F eq G] 

are theorems of analysis, so is the result 

VFalzVG(Eta(G, x) 4 F eq G) 

of substituting Eta(G, x) for Gnx in Numbers, as the following argument, 
which can be formalized in analysis, shows: Let F be any set of numbers. 

Let x be such that Eta(F,x) holds. Let G be any set. Then Eta(G, 2) holds 
if and only if F' eq G does. And since F eq F holds, z is unique. Of course 
each of the comprehension axioms of FA is provable in analysis under these 
substitutions, since they turn into comprehension axioms of analysis. Thus 
@ proof of | in FA immediately yields a proof of 1 in analysis. 

7A standard reference concerning analysis is sec. 8.5 of (Shoenfield, 1967).
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It is therefore as certain as anything in mathematics that, if analysis 

is consistent, so is FA. Later we shall see that the converse holds. (A 

sketch of a major part of the proof of the converse was given by Frege, in 

the Foundations. Of course.) The connection between FA and Russell’s 

paradox is discussed later. Since the possibility that analysis might be 

inconsistent at present strikes us as utterly inconceivable, we may relax in 

the certainty that neither Russell’s nor any other contradiction is derivable 

in FA. 

We now want to show that the definitions and theorems of Sections 68-83 

of the Foundations can be stated and proved in FA, in the manner indicated 

by Frege. I am not sure that it is possible to appreciate the magnitude 

and character of Frege’s accomplishment without going through at least 

some of the hard details of the derivation of arithmetic from Numbers, in 

particular those of the proof that every natural number has a successor, 

but readers who wish take it on faith that the derivation can be carried out 

in FA along a path very close to Frege’s may skim over some of the next 

seventeen paragraphs. Do not forget that it is Frege himself who has made 

formalization of his work routine. 

In the course of replicating in FA Frege’s treatment of arithmetic, we 

shall of course make definitional extensions of FA. For example, as Frege 

defined the number belonging to the concept F as the extension of the 

concept “equinumerous to F,,” so we introduce a function symbol N, taking 

a concept variable and making a term of the type of object variables, and 

then define NF = x to mean VG(Gyar o F eg G); the introduction of the 

symbol N together with this definition is of course licensed by Numbers. 

It will also prove convenient to introduce terms (x : A(z)] for concepts: 

[er : A(n)|t is to mean A(t); F = [x : A(x)] is to mean Vr(Fx — A(zx)); 
[x : A(.r)}ny is to mean 3F(F = [x : A(x)] A Fay); [2 : A(z)] = [x : B(z)] is 
to ean V:r(A(z) + B(x)), etc. The introduction of such terms is of course 
licensed by the comprehension axioms (i). 

Sections 70-73 provide the familiar definition of equinumerosity. In 73, 
Frege proves Hume’s principle. Note that the comprehension axioms (ii) 

provide the facts concerning equinumerosity needed for this theorem to be 

provable. Once Hume’s principle is proved, Frege makes no further use of 

eztensions,.®-9 

8See sec. VI of (Parsons, 1983a). 
°Tn his estimable Frege’s Conception of Numbers as Objects, Wright sketches a deriva- 

tion of the Peano axioms in a system of higher-order logic to which a version of Hume’s 

principle is adjoined as an axiom. Wright discusses the question of whether such a sys- 

ter would be consistent, attempts to reproduce various well-known paradoxes in such 

a system, is unsuccessful, and concludes on page 156 that “there are grounds, if not for 
optimism, at least for a cautious confidence that a system of the requisite sort is capable 

of consistent formulation.” Wright’s instincts are correct, as Hodes and Burgess have
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In 72 Frege defines “number”: “n is a number” is to mean “there exists 

a concept such that n is the number which belongs to it.” In parallel, we 

make the definition in FA: Zz + IF(NF = 12). In 74 Frege defines 0 as 
the number belonging to the concept “not identical with itself”; we define 

in FA: 0 = N(x: 2 #2]. The content of 75 is given in the easy theorem of 
FA: 

VEVG(VWanF2 > ((Wa7Gz o F eq G) ANF =0)| 
A[NF =0 - Va-Fz)). 

In 76 Frege defines “the relation in which every two adjacent members of 

the series of natural numbers stand to each other.”!° Correspondingly, we 

define nSm (read “n succeeds m”): 

dF azIG(Fz ANF =nAvy(Gy o FyAy #2) ANG=m). 

-0Sa immediately follows in FA from this definition: Zero succeeds nothing. 

In 77 Frege defines the number 1. We make the corresponding definition: 

1 = N[z: 2 =O]. 150 is easily derived in FA. 
The theorems corresponding to those of 78 are proved without difficulty: 

(1) eS0-—-a=1, 

(2) NF =1—-42 Fs, 

(3) NF =1-(FrAFyor=y), 

(4) Sr Far AVaVy( Fr AFy > r= y) > NF = 1, 

(5) VavbVeVd(aSe A bSd ~+ (a = bes ¢ = d)), 

(6) Va(Zn An £0 > Fn(Zin AnSm)). 

Although Frege and we have now defined “number,” defined 0 and 1, proved 
that they are different numbers, proved that “succeeds” is one-one, and 
proved that every non-zero number is a successor, “finite number,” that is, 
“natural number,” has not yet been defined; nor has it been shown that 
every natural number has a successor. 

seen. It may be of interest to note that FA supplies the answer to a question raised by 
Wright on page 156 of his book. It is a theorem of FA that the number of numbers that 
fall under none of the concepts of which they are the numbers is one. (Zero is the only 
such number.) 

10 Note that, although Frege here introduces the expression 
Zahlenreihe unmittelbar auf” 
only at the end of Section 83. 

“folgt in der natiirlichen 
for the succeeds relation, he will define “finite” number
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In 79 Frege defines the ancestral of y, “y follows x in the y-series,” as in 

the Begriffsschrift. Thus in FA we define rp*y: 

VF (Va(rzya — Fa) AVdVa(Fd A dya — Fa) > Fy). 

80 is a commentary on 79. At the beginning of 81 Frege introduces the 

terminology “y is a member of the y-series beginning with x2” and “z is a 

member of the yseries ending with y” to mean: either y follows x in the 

y-series or y is identical with z. Frege uses the phrase “in the series of 

natural numbers” instead of “in the y-series” when vy is the converse of the 

succeeds relation. In FA we define mPn to mean nSm, m < n to mean 

mP*n, and m <n to meanm<nVm=n. Frege defines “n is a finite 

number” only at the end of Section 83. In FA we define Fin n to mean 

O<n. 

In 82 and 83 Frege outlines a proof that every finite number has a suc- 

cessor. He adds that, in proving that a successor of n always exists (if n is 

finite), it will have been proved that “there is no last member of this series.” 

(He obviously means the sequence of finite numbers.) This will certainly 

have been shown if it is also shown that no finite number follows itself in 

the series of natural numbers; in 83 Frege indicates that this proposition is 

necessary and how to prove it. 

Frege’s ingenious idea is that we can prove that every finite number 

has a successor by proving that if n is finite, the number of numbers 

less than or equal to n—in Frege’s terminology “the number which be- 

longs to the concept ‘member of the series of natural numbers ending with 

uw’ ” succeeds n. Frege’s outline can be expanded into a proof in FA of: 

Fin n > Nir: a2 < njSn. Since ZN[x : x < nj is provable in FA, so is 

(Fin n — dn( Za A.2Sn)). 

In 82 Frege claims that certain propositions are provable; the translations 

of these into FA areaSdA N[z: a < d|Sd — N[x: x <a]Saand N[x: 2 < 
0]S0. Frege adds that the statement that for finite n the number of numbers 

less than or equal to n succeeds n then follows from these by applying the 

definition of “follows in the series of natural numbers.” 

Nix : x < 0]SO is easily derived in FA: xP*y — 3aaPy follows from 
the definition of the ancestral; consider [z : JaaPz]. Since ~0Sa and 1S0 
are theorems, so are ~aP0, -aP*0, x <0 r= 0, and N[r: z < 0] = 
N{z : x = 0], from which, together with the definition of 1, N[x: 2 < 0]50 
follows. 

But the derivation of aSd A N[x : x < dj[Sd + N(x: a < a]Sa is not 
so easy. Frege says that, to prove it, we must prove that a = N[x: 2 < 

aAx # a); for which we must prove that s < aAz # a if and only if x < d, 

for which in turn we need Fin a — ~a <a. This last proposition is again 

to be proved, says Frege, by appeal to the definition of the ancestral; it is
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the fact that we need the statement that no finite number follows itself, he 

writes, that obliges us to attach to N[z: 2 <n|Sn the antecedent Fin n. 
An interpretive difficulty now arises: It is uncertain whether or not Frege 

is assuming the finiteness of a and d in Section 82. Although he does not 
say so, it would appear that he must be assuming that d, at least, is finite, 

for he wants to show (aSdA N|z : x < d|Sd > N|x:2 < a|Sa) by showing 
aSd — (x <aAzrHZ~aexz <d). Without assuming the finiteness of a and 

d, he can certainly show aSd —> Vr(% <a «x < d). However, >a < a, or 

something like it, is needed to pass from x < a to (x < aAx # a), and Frege 

would therefore appear to need Fin a. But since Fin 0 is trivially provable 

and VdVe(dPa A Fin d > Fin a) easily follows from Propositions 91 and 
98, (cPy — 2P*y) and (xP*y AyP*z — xP*z), of the Begriffsschrift, 

Frege’s argument can be made to work in FA, provided that we take him 

as assuming that d (and therefore a) is finite. Let us see how. 
From Propositions 91 and 98, dPa > (zP*dVx =d — xP*a) easily 

follows. We also want to prove 

(+) dPa— (xP*a > zP*dV x = d), 

for which it suffices to take F = [z : dddPzAVd(dPz — xP*dVz = d)), and 
show (2P*a — Fa) by showing, as usual, (xPb — Fb) and (Fa AaPb + 
Fb). 

(cPb + Fb): Suppose zPb. Then the first half of Fb is trivial; and 
if dPb, then by 78(5) of the Foundations, x = d, whence rP*d Vr = d. 

As for (Fa AaPb — Fb), suppose Pa and aPb. The first half of fb is 

again trivial; now suppose dPb. By 78(5), d = a. Sinee Fu, for some ¢ 

cePa, and then 2P*c Vr = ce. Since ePa and d= a, ed. But then by 
91 and 98, rP*d, whence ef Ptd Vos od. This (e1% a+ Ea), whence 

dPa — (2P*a > #P*d Vix = d) and dPa 3 (rl*a eo re Phd = d) 
follow. 

We must now prove 

(#*) Fin a — 7aP*a, 

Since =0P*0, it suffices to show OP*a —+ aP*a. We readily prove (OPb > 
~bP*b) and (—aP*aAaPb — -bP*b): If OPb and bP*b, then by (+), bP*OV 
b = 0, whence by 91 and 98, OP*0, impossible; if ~aP*a, aPb, and bP*b, 
then by (+), bP*a V b = a, whence by 91 and 98, aP*a, contradiction. 
Combining (*) and («) yields 

dPad Fina > ((@P*aVa2=a)Anf#av2P*dV a =d). 

Abbreviating, we have 

dPaAFina— (x <arzr¥#aexr<d)
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and then by Hume’s principle 

dPaNFina— N[z:2<aAz4al=Nlz:2< dj. 

Thus, if Find, N[z : « < dj]Sd, and dPa, then Fin a and aSd; since 
a<a, 

Niz:z<alSN[z:2<anz#al=Ni[z:2< dj; 

since aSd, by 78(5), N[x: x < d] =a, and therefore N[x : x < a]Sa. Since 
Fin 0 and N[x : z < 0]S0, we conclude 

Fin n > (Fin nA Niz: a2 <njSn), 

whence Fin n > Nix: 2 <njSn. 
O.K., stop skimming now. One noteworthy aspect of Frege’s derivation 

of what are in effect the Peano postulates is that so much can be derived 

from what appears to be so little. Whether or not Numbers is a purely 

logical principle is a question that we shall consider at length in what fol- 

lows. I now want to consider the status of the other principles employed 

by Frege, which, having argued the matter elsewhere, I shall assume are 

Properly regarded as logical. Frege shows these principles capable of yield- 

ing conditionals whose antecedent is the apparently trivial and in any event 

trivially consistent Numbers and whose consequents are propositions like 

Vm(Fin m —+ dn(Zn AnSm)). The consequents would “not in any wise 
appear to have been thought in” Numbers; thus these conditionals at least 

look synthetic, and Frege himself would appear to have shown the principles 

and rules of logic that generate such weighty conditionals to be synthetic. 

But. if the principles of Frege’s logic count as synthetic, then a reduction of 

arithmetic to logic gives us no reason to think arithmetic analytic. There 

is a criticism of Kant to which Frege is nevertheless entitled: Kant had no 

conception of this sort of analysis and no idea that content could be thus 

created by deduction. 

The hard deductions found in the Begriffsschrift and the Foundations 

would make evident, if it were not already so, the utter vagueness of the 

notions of containment and of analyticity. Even though containment ap- 

Pears to be closed under obvious consequence, it is certainly not closed 

under consequence; there is often no saying just when conclusions stop 

being contained in their premisses. 

In particular, the argument Frege uses to prove the existence of succes- 

sors—show by induction on finite numbers n that the number belonging to 

the concept |[z : z < n] succeeds n—is a fine example of the way in which 

content is created. “Through the present example” wrote Frege in Section 

23 of the Begriffsschrift
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we see how pure thought ...can, solely from the content that 

results from its own constitution, bring forth judgments that at 

first sight appear to be possible only on the basis of some intu- 

ition. This can be compared with condensation, through which 

it is possible to transform the air that to a child’s consciousness 

appears as nothing into a visible fluid that forms drops. 

That successors appear to have been condensed by Frege out of less than 

thin air may well have heightened some of its readers’ suspicions that the 

principles employed in the Foundations are inconsistent. 

On the other hand, Frege’s construction of the natural numbers fore- 

shadows von Neumann’s well-known construction of them, the consistency 

of which was never in doubt. Frege defines 0 as the number of things that 

are non-self-identical; von Neumann defines 0 as the set of things that are 

non-self-identical. Frege shows that n is succeeded by the number of num- 

bers less than or equal to n; von Neumann defines the successor of n as the 

set of numbers less than or equal to mn. Peano arithmetic based on the von 

Neumann definition of the natural numbers can be carried out (interpreted) 
in asurprisingly weak theory of sets sometimes called General Set. Theory, 

the axioms of which are: 

Extensionality: Vrvy(W2(z2eroezey)-r=y), 
Adjunction: Vuv2dyVa(2 EC yore zVr=w), 

Separation axioms: VWzdyVir(a € y or € 2 A A(r)). 

There is a familiar model for general set theory in the natural numbers: 

2 € y if and only if starting at zero and counting from right to left, one 
finds a 1 atthe ath place of the binary uumeral for y. 1 is obvious that. 

extensionality, adjunction, and separation hold in this model. ‘Thus it has 

beeu clear all along that something rather like what Frege was doing in the 

Foundations could consistently be done. 

The results of the Foundations that the series of finite numbers has no 

last member and that the “less than” relation on the finite numbers is 

irreflexive complement those of the Begriffsschrift, whose main theorems, 

when applied to the finite numbers, are that “less than” is transitive (98) 

and connected (133). Much more of mathematics can be developed in FA 
than Frege carried out in his three logic books. (It would be interesting to 

know how much of the Basic Laws can be salvaged in FA.) Since addition 
and multiplication can be defined in any of several familiar ways and their 

basic properties proved from the definitions, the whole of analysis can be 

proved (more precisely, interpreted) in FA. (The equiconsistency of analysis 

and FA can be proved in Primitive Recursive Arithmetic.) Thus it is a vast 

amount of mathematics that can be carried out in FA.
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Instead of discussing this rather familiar material, I want instead to take 

a look at certain strange features of FA, one of which was alluded to ear- 

lier. Frege defined 0 as the number belonging to the concept “not identical 

with itself.” What is the number belonging to the concept “identical with 

itself”? What is the number belonging to the concept “finite number”? 

Frege introduces the symbol co; to denote the latter number, shows that 

00, succeeds itself, and concludes that it is not finite. But, although Frege 

does not consider the former number and hence does not deal with the 

question of whether the two are identical, it is clear that he must admit the 

existence of such a number. The statement that there is a number that is 

the number of all the things there are (among them itself) is antithetical to 

Zermelo—Fraenkelian doctrine, but as a view of infinity it is not altogether 

uncommonsensical. The thought that there is only one infinite number, in- 

finity, which is the number of all the things there are (and at the same time 

the number of ali the finite numbers), is not much more unreasonable than 
the view that there is no such thing as infinity or infinite numbers. In any 

event the view is certainly easier to believe than the claim that there are 

so many infinite numbers that there is no set or number, finite or infinite, 

of them all. 

But can we decide the question of whether these numbers are the same? 

Not in FA. N[z : c = 2] = Nx: Fin ] is true in some models of FA, for 
example, the one given, and false in others, as we can readily see. Let U’ 

be the set of all ordinals < Xj, and let 4 be true of V, u (V C U',u € U’) if 

and only if the (finite or infinite) cardinality of V is u. Numbers is then true 

in this structure, Fins is satisfied by the natural numbers, N{r : Fin 2] 

denotes Xo, but Nie sar = a] denotes Xy. Niaz: = 2] = Nir: Fin a] is 
thus an undecidable sentence of FA. Of course, so is Sa-Zx, but N[a: 2 = 

a] = Nr: Fin a] is au wndecidable sentence about numbers. From Frege’s 
somewhat sketchy remarks on Cantor, one can conjecture that Frege would 

lave probably regarded N[z : 2 = x] = N{[x : Fin 2] as false. 
I now turn to the way Russell’s paradox bears on the philosophical aims 

of the Foundations. My view is a more or less common one: As a result 

of the discovery of Russell’s paradox our idea of logical truth has changed 

drastically, and we now see arithmetic’s commitment to the existence of 

infinitely many objects as a greater difficulty for logicism than Russell’s 

paradox itself. 

But is not Frege committed to views that generate Russell's paradox? 

Does he not suppose that every predicate determines a concept and every 

concept has a unique extension? In Section 83 he says: 

And for this, again, it is necessary to prove that this concept 

has an extension identical with that of the concept “member of
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the series of natural numbers ending with d.” 

In Section 68 he mentions the extension of the concept “line parallel to line 

a.” And the number belonging to the concept F is defined as the extension 

of the concept “equinumerous with the concept F.” How, in view of his 

avowed opinions on the existence of extensions, can he be thought to escape 

Russell’s paradox? 

The first quotation can be dealt, with quickly, as a turn of phrase. Had 

Frege written “ ...to prove that an object falls under this concept if and 

only if it is a member of the series of ...,” it would have made no differ- 

ence to the argument. The extension of the concept “line parallel to the 

line a” is used merely to enable the reader to understand the point of the 

definition of number. (These are the insignificant but possibly revealing 

exceptions mentioned to the claim that the only extensions to whose exis- 

tence Frege explicitly commits himself in 68-83 are those of concepts of the 

form “equinumerous to the concept F.”) Thus, if there is a serious objec- 

tion to Frege’s introduction of extensions of concepts, it must concern the 
definition of numbers as extensions of concepts of the form “equinumerous 

with the concept F.” 

And of course there is one. According to Frege, for every concept F 

there is a unique object x, an “extension,” such that for every concept G, 
G bears a certain relation, “being in,” designated by 7, to z if and only 
if the objects that fall under F are correlated one-one with those that fall 

under G; that is, Numbers holds. And although the language of FA, in 
which Numbers is expressed, is not one in which the most familiar version 
of Russell’s contradiction 3aVy(ynz + —y7y) is a well-formed sentence, it 

is not true that Frege is now safe from all versions of Russell’s paradox. 

For consider Rule (V) of Frege’s Basic Laws: 

VFAalrVG(Gna  Vy(Fy o Gy)), 

which yields an inconsistency in the familiar way. 
Suppose Rule (V) true. By comprehension, let F = [y : 3G(Gny A7Gy)). 

Then for some z, 

(t) VG(Gnz - Vy(Fy @ Gy)). 

Since Vy(Fy + Fy), by (t) Fnz. If +Fzx, then VG(Gyx > Gx), whence 
Fr; but if Fx, then for some G, Gnr and -Gz, whence by (t), 7F2, 
contradiction. 

Or consider the simpler 

SuperRussell: SrVG(Gnzr + 3y(Gy A AGny)). 

Suppose SuperRussell true. Let z be such that for every G, Gyr if and
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only if Sy(Gy A ~Gny). By comprehension, let F = [y: y =z]. Then, Fnx 
iff dy(Fy A —F ny), iff dy(y = 2 AF ny), iff —F nx, contradiction. 
SuperRussell and Rule (V) are sentences of the language of FA about the 

existence of extensions every bit as much as Numbers is. Just as Numbers 

asserts the existence (and uniqueness) of an extension containing just those 

concepts that are equinumerous with any given concept, so SuperRussell 

asserts the existence of an extension containing just those concepts that fail 

to be in some object falling under them and Rule (V) asserts the existence 

(and uniqueness) of an extension containing just those concepts under which 

fall the same objects as fall under any given concept. Frege must deny that 

SuperRussell and Rule (V) are principles of logic—if he maintains that the 

comprehension axioms are principles of logic. Principles of logic cannot 

imply falsity. But then Frege cannot maintain both that every predicate 

of concepts determines a higher level concept and that every higher level 

concept determines an extension and would thus appear to be deprived of 

any way at all to distinguish Numbers from SuperRussell and Rule (V) as 
a principle of logic. 

Too bad. The principles Frege employs in the Foundations are consistent. 

Arithmetic can be developed on their basis in the elegant manner sketched 

there, And although Frege couldn’t and we can’t supply a reason for re- 

garding Numbers (but nothing bad) as a logical truth, Frege was better off 

than he has been thought to be. After all, the major part of what he was 

trying to do—-develop arithmetic on the basis of consistent, fundamental, 

and simple principles concerning objects, concepts, and extensions—-can be 

done, in the way he indicated. The threat to the Foundations posed by 

Russell's paradox is to the philosophical significance of the mathematics 

thereiu and not at all to the mathematics itself, 
It is unsurprising that we cannot regard Nuinbers as a purely logical 

principle, Consistent though it is, FA implies the existence of infinitely 
many objects, in a strong sense: Not only does FA imply Ardy(z # y), 
Ardyaz(cg # yAr # zAy # 2), etc., it implies JF(DedInfF), where 
DedInfF js a formula expressing that F is Dedekind infinite, for example, 

AraG(AGz A Vy(Fy o Gy Vy = 2) A F eq G). In logic we ban the empty 

domain as a concession to technical convenience but draw the line there: 

We firmly believe that the existence of even two objects, let alone infinitely 

many, cannot be guaranteed by logic alone. After all, logical truth is just 
truth no matter what things we may be talking about and no matter what 
our (nontlogical) words mean. Since there might be fewer than two items 

that we happen to be talking about, we cannot take even drijy(z # y) to 

be valid, 

How then, we might now think, could logicism ever have been thought 

to be a mildly plausible philosophy of mathematics? Is it not obviously
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demonstrably inadequate? How, for example, could the theorem 

Va(-2 < 2) AWaVyV2(" < yAy < 2742 < 2) AVrdy(a < y), 

of (one standard formulation of) arithmetic, a statement that holds in no 
finite domain but which expresses a basic fact about the standard ordering 

of the natural numbers, be even a “disguised” truth of logic?!4 The axiom 

of infinity was soon enough recognized by Russell as both indispensable to 

his program and as damaging to the claims that could be made on behalf of 

the program; and it is hard to imagine anyone now taking up even a small 

cudgel for IzIy(x ¥ y). 

I have been arguing for these claims: (1) Numbers is no logical truth; 

and therefore (2) Frege did not demonstrate the truth of logicism in the 

Foundations of Arithmetic. (3) Logic is synthetic if mathematics is, because 

(4) there are many interesting, logically true conditionals with antecedent 

Numbers whose mathematical content is not appreciably less than that of 

their consequents. To these I want to add: (5) Since we have no understand- 
ing of the role of logic or mathematics in cognition, the failure of logicism 

is at present quite without significance for our understanding of mentality. 

Had Frege succeeded in eliminating the nonlogical residue from his Foun- 

dations, the question would remain what the information that arithmetic 

is logic tells us about the cognitive status of arithmetic. But Frege’s work 

is not to be disparaged as a (failed) attenipt to inform us about the role 

of mathematics in thought. It is a powerful mathematical!? analysis of the 

notion of natural number, by means of which we can see how a vast. body 

of mathematics can be deduced from one simple and obviously consistent 

principle, an analysis no less philosophical for its rigor, profundity, and 

surprise. 
A fantasy: After the Begriffsschrift Froge writes, not the Foundations 

of Arithmetic, but another book with the same title whose main claim is 
that, since arithmetic is deducible by logic alone from the triviality “the 

number of F's is the same as the number of Gs if and only if the Fs can 

be correlated one-one with the Gs,” arithmetic is analytic, not synthetic, 
as Kant supposed. Frege then argues for the analyticity of NF = NG ¢ 
F eq G on the ground that both halves of the biconditional have the same 
content, express the same thought. He considers an attempted defense of 
Kant: Since the existence of an object can be inferred from NF = NF, 
NF = NF uuust be regarded as synthetic, and therefore so must NF = 
NG «+ FeqG. Froge replies that 7+ 5 = 7+ 5 is analytic. 

If Frege had abandoned one of his major goals—the quest for an un- 

derstanding of numbers not as objects but as “logical” objects——taken as a 

See (Benacerraf, 1960). 
'2See (Benacerraf, 1995).
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starting point the self-evident and consistent VFVG(NF = NG @ F eq G), 
and worked out the consequences of this one axiom in the Begriffsschrift, he 

would have been wholly justified in claiming to have discovered a foundation 

for arithmetic. To do so would have been to trade a vain philosophical hope 

for a thoroughgoing mathematical success. Not a bad deal. He could also 

have plausibly claimed to demonstrate the analyticity of arithmetic. (Of 

course his own work completely undermines the interest of such a claim.) 

Perhaps the saddest effect of Russell’s paradox was to obscure from Frege 

and us the value of Frege’s most important work. Frege stands to us as 

Kant stood to Frege’s contemporaries. The Basic Laws of Arithmetic was 

his magnum opus. Are you sure there’s nothing of interest in those parts 

of the Basic Laws that aren’t in prose?



13 

  

The Standard of Equality of 

Numbers 

One of the strangest pieces of argumentation in the history of logic is found 

in Richard Dedekind’s Was sind und was sollen die Zahlen?, where, in the 

proof of that monograph’s Theorem 66, Dedekind attempts to demonstrate 

the existence of infinite systems. Dedekind defines a system S' as infinite 

if, as we would now put it, there are a one-one function y from S to S 

and an element of 5 not in the range of y. Since it is now known that set 

theory without the axiom of choice does not imply that a set that is infinite 

in the usual sense is infinite in Dedekind’s sense (although it does imply 

the converse), it is now common to prefix “Dedekind” when speaking of 
infinity in this stronger sense. The sets with whicli we shall be concerned 

are Dedekind infinite if they are infinite at all, however, and I shall therefore 

omit “Dedekind” before “infinite.” 

Theorem 66 of Was sind reads, “There are infinite systems”; the proof of 

it Dedekind offered runs: 

Proof.* The world of my thoughts, iie., the totality S of alt 
things that can be objects of my thought, is infinite. For if s 
denotes an element of S, then the thought s’, that s can be an 
object of my thought, is itself an element of S. If s’ is regarded 
as the image v(s) of the element s, then the mapping y on 
S determined thereby has the property that its image 5S’ is a 
part of S; and indeed S‘ is a proper part of S, because there 
are elements in S (e.g., my own ego [mein eigenes Ich}), which 
are different from every such thought s’ and are therefore not 

From Meaning and Method: Essays in Honor of Hilary Putnam, George Boolos, ed., 

Cambridge: Cambridge University Press, 1998, pp. 261~277. Copyright ©1998 Cam- 

bridge University Press. Reprinted with the permission of Cambridge University Press. 
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contained in 5S’. Finally, it is clear that if a, 6 are different 
elements of S, then their images a’, b’ are also different, so that 
the mapping y is distinct (similar). Consequently, S is infinite, 
q.e.d. 

* A similar observation is found in §13 of (Bolzano, 1851). 

It is tempting to think that Dedekind isn’t in as deep a hole as his men- 

tioning so wildly nonmathematical an item as his own ego might suggest 

and to suppose that he has merely chosen a bad example. Wouldn’t the 

sentence Berlin ist in Deutschland and the operation of prefixing Niemand 

glaubt daf have been just as good as Dedekind’s own ego and the operation 

that takes any object s in the world of Dedekind’s thoughts to that funny 

thought about s? Instead of the things that can be objects of his thought 

(whatever these might be) couldn’t he have cited (say) the set of German 
sentences, i.e., sentence-types, as an example of an infinite set? And had he 

cited that set, wouldn’t he have given an obviously correct. proof of Theorem 

66 by giving an obviously correct example of an infinite set? 

It is significant that nowhere in the remainder of Was sind und was sollen 

die Zahien? does Dedekind appeal to Theorem 66 in the proof of any other 

Theorem. Why, one might wonder, did not Dedekind simply omit the 

theorem and its proof, the incongruity of whose argumentation and subject 

matter Dedekind himself could not have failed to find glaring? 
Recall that the aim of Was sind, according to Dedekind, was to lay the 

foundations of that part of logic that deals with the theory of numbers— 

thus the theory of numbers is a part of logic—and that his answer to the 
title question of his monograph was that numbers are “free creations of the 
human mind.” Some of what that saying means emerges in Section 73, 

where he writes: 

If in observing a simply infinite system N, ordered by a map- 

ping «yp, the special character of the elements is completely dis- 

regarded, only their distinguishability is held fixed, and account 

is taken of only those relations to one another in which they are 

placed by the mapping ¢ that orders them, then these elements 

are called natural numbers or ordinal numbers or also simply 
numbers, and the basis element 1 is called the basis-number of 

the number series N. With regard to this freeing of the elements 

from all other content (abstraction), one can justifiably call the 

numbers a free creation of the human mind. The relations or 

laws which are derived just from the conditions a, (, 77, 6! in 71 

lq states that the successor of a number is a number; (, that 1 is a number and that 

mathematical induction holds of the numbers; +, that 1 is not the successor of a number; 

and 6, that successor is one-one.
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[these are Dedekind’s versions of what have come to be known 

as the “Peano Postulates”] and therefore are always the same 

in all ordered simply infinite systems, however the names acci- 

dentally given to the individual elements may be pronounced, 

form the first object of the Science of Numbers or Arithmetic. 

Thus, arithmetic is about certain objects, the numbers, abstracted from 

simply (we now say “countably”) infinite systems, systems satisfying the 

“Peano” conditions a, 3, -y, 6 under some appropriate choice of base element 

and successor operation. Since they have been abstracted from systems 

satisfying a, @, y, 6, the numbers too satisfy these conditions. Logic, 

Dedekind would appear to be claiming, suffices for the derivation of all, or 

at any rate all familiar, arithmetical facts from the mere assumption that 

the numbers, together with 1 and successor, are objects that satisfy the 

“Peano” conditions. (Dedekind proves that the existence of simply infinite 

systems follows from that of infinite systems.) 

The trouble with trying to prove Theorem 66 by mentioning the set of 

sentences of German is that Dedekind would probably have regarded a 

sentence (or any other abstract object) as as much a free creation out of 
ink-tracks or other physical objects as a number is a free creation out of 

objects. Dedekind did not cite the most obvious infinite system, the system 

of the natural numbers themselves, in the proof of Theorem 66. It would 

thus appear that he thought that a satisfactory proof of it must mention 

some infinite set of non-abstract items, out of which the natural numbers 

could have been freely created, and that he was therefore not at liberty to 

cite a set of sentences or abstract objects of any other sort as an example 

of an infinite set. 

Dedekind’s proof, however, is fallacious if thoughts are taken to be actual 

physical occurrences. Ignoring worries about opacity, we may grant that if 

u is a thought that s can be an object of my thought, and likewise for v and 

t, then u = v if and only if s =¢. It does not follow, and it is indefensible 

to assume, that for every object s, or at least for every object s that is an 

object of my thought, there is such a thing as the thought that s can be 

an object of my thought. There just aren’t all those thoughts around. (As 

Frege, commenting on Theorem 66, put it “Now presumably we shall not 

hurt Dedekind’s feelings if we assume that he has not thought infinitely 

many thoughts.”)? Dedekind makes this unwarranted assumption in the 

proof by using the definite article and speaking of “the thought that s can 
be an object of my thought.” Of course, without some guarantee that all 

those thoughts exist, the proof fails: Dedekind hasn’t defined a function on 

2tn (Frege, 1897), p. 136. I am grateful to Arnold Koslow for telling me of this 

quotation.
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the (whole) world of his thoughts. The present king of France strikes again. 

Thus Dedekind is in trouble that we do not appear to be in. We, but not 

he, can use the set of sentences of German as an example of an infinite set. 

The difficulty for us in doing so will shortly emerge. 

Dedekind’s notion of free creation’ raises too many problems for us to 

find it satisfactory: One somewhat less obvious difficulty it poses is a “third 

man” difficulty, that of saying why we don’t get different systems when we 

abstract twice from a system satisfying conditions a, 6, y, 6. Or do we get 

different, but isomorphic, systems? Or can we abstract only once? Best 
not to take him too seriously here. 

The view can be made more appealing and more plausible if we for- 

get about abstraction and free creation, and take Dedekind to be say- 

ing that statements about the natural numbers can be regarded as -log- 

ically true statements about all systems satisfying conditions a, 6, 4, 

6. Charles Parsons, in an illuminating study, “The Structuralist View of 

Mathematical Objects,”* has called this the eliminative reading of Was 

sind. Perhaps we might take Dedekind to be claiming that an arithmeti- 
cal statement, expressed by a sentence S in the notation, say, of second- 

order logic, in which all number quantifiers are relativized to the predicate 

letter N, 1 denotes one, and s denotes successor, has the logical form: 

VN, s, l(a, 8,7, 5(N, 8, 1) + S). (Addition and multiplication, etc., can be 

handled by familiar techniques due to Dedekind.) Thus the monadic pred- 
icate letter N, the monadic function sign s, and the constant 1 turn into a 

second-order mouadic predicate variable, a second-order monadic function 

variable, and a (peculiarly shaped) first-order variable, which are then uni- 

versally quantified upon. To conrplete the interpretation of the resulting 

scutonce, we might want to add that the first-order variables range over all 

the things there are. 
For any such arithmetical sentence S, let B(S) be the second-order sen- 

tence VN, s, 1(a, 3, y,6(N, 8,1) + S). D(S), it will be observed, contains 

no non-logical constants at all. We now want to inquire into the relation 
between S and D(S). 

Suppose that S$ is true, i.e., true when interpreted over the natural num- 

bers, together with successor and one, and that N’, s’, and 1’ satisfy 

a, 3,7, 6(N,s,1). Then since the natural numbers together with succes- 

sor and one also satisfy a, §,7,5(N, s, 1), by a valid second-order argument 
given by Dedekind, N’, s’, and 1’ are isomorphic to the natural numbers, 
successor, and one and therefore satisfy S. Thus D(S) is a logical truth. 

3For a more detailed account of this notion, see (Parsons, 1990). 

4(Parsona, 1990).
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Conversely, suppose that D(S) is a logical truth. Let 

(x) N,’ s,’ and 1’ satisfy a, 8, 7,6(N, s, 1). 

They therefore also satisfy S. Since the natural numbers, successor, and 

one also satisfy a, 3,77, 6(.N, s,1), they are isomorphic to N’, s’, and 1’, and 

therefore also satisfy S; that is, S is true. Thus, it would appear, we have 

shown that S is true if and only if D(S) is a logical truth. Does not this 
argument show that arithmetical truths are logical truths disguised only by 

the omission of an antecedent condition and a few symbols of logic? 

Of course—on the assumption (*), true, by our lights, that there are N’, 
s’, and 1’ together satisfying a, 3,7,6(N,s,1): We used this assumption 
when we argued that if D(S) is a logical truth, then S' is true.> We have 

had to make a true assumption, but one that we have as yet found no reason 

to regard as logically true, in order to show that we can effectively associate 

with each sentence of arithmetic, a sentence in the vocabulary of logic in 

such a way that with each truth and no falsehood of arithmetic there is 

associated a logical truth. To succeed this far in reducing arithmetic to 

logic we have had to make an assumption not yet certified as logically true: 

There are infinite systems. 

Is that adifficulty? It might seem not. We make a non-logical assumption 

to reduce aritlimetic to logic. We then throw away the ladder. But ladder 

or no, we have reduced arithmetic to logic, haven’t we? 

Parsons has pointed out a difficulty in supposing that we have.® He 

notes that if there are no infinite systems, then D(S) is true, for every 

arithmetical sentence S, so “... both A and A have true canonical forms, 

which amounts to the inconsistency of arithmetic.” 
Parsons’s observation leads us to the heart of the matter. Logicism is not 

adequately characterized as the view that arithmetic is reducible to logic if 

all that is meant thereby is that there is an effective mapping of statements 

of arithmetic to statements of logic that assigns logical truths to all and 

only the truths of arithmetic. Nor is it vindicated merely by exhibiting such 

a mapping &. For £ to vindicate logicism, it must show that arithmetic 

is “reducible to” logic, “really” logic, logic “in disguise,” “a part of” logic. 

Then at least, for any arithmetical sentence S, E(S) must give the content 

of S, must state, in the language of logic, how matters must be if and only 

if S is true.” But then E must do for falsity what it does for truth and also 

5We didn’t need it for the other half, since we are entitled to assume that there is 

a system satisfying a, 8,7,6(N,s,1). Was sind proves that this assumption could have 

been replaced by the assumption that there is an infinite set. 

§(Parsons, 1990). 
TIs it possible to say what logicism is without using intensional notions like part or 

content?
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assign logical falsehoods to the falsehoods of arithmetic; otherwise there 
will be certain truths S of arithmetic such that E(S) is compatible with 
E(—S), and no mapping that thus violates negation can be regarded as 
giving the content of statements of arithmetic in logical terms and hence 
as reducing arithmetic to logic. 

For arithmetical sentences, like all others, come in triples: For any two 
arithmetical sentences there is a third, their conjunction, that, however 
matters may be, holds when matters are that way if and only if both sen- 
tences hold when matters are that way. A mapping E under which E(SAS") 
is not equivalent in this sense to the conjunction of E(S) and E(S’) cannot 
be thought to give the content of all three of S, S’ and (S AS") and cannot 
therefore count as a reduction of arithmetic to logic. 

Similarly for negation: If for some arithmetical sentence S, E(=S) is 

not equivalent to the negation of E(S), then E does not give the content 

of both S and —S, and therefore does not show arithmetic reducible to 

logic. In advance of any possible reduction to logic certain arithmetical 
statements immediately (logically) imply certain others, and certain arith- 
metical statements are immediately incompatible with certain others. A 

reduction of arithmetic to logic, although it may reveal previously unrecog- 
nized implications or incompatibilities among the statements of arithmetic, 
cannot disclose that these immediate implications and incompatibilities ac- 

tually fail to obtain. 
For a mapping £& to vindicate logicism, then, E must at the very least 

respect the truth-functional operators on closed formulae. Since E(S) will 
always be logically true if S is true, E will respect negation if and only 

if E(S) is always logically false for false S. It is clear that Dedekind’s 

mapping 1 respects conjunction. 
But 1 does not respect uegation. -WN, s, l(a, 8,7, 6(N, s, 1) > S) is not 

logically equivalent to VN, s, l(a, 3,7, 6(N, 8 1) > 7S). The latter follows 

logically from the former, as Dedekind showed. But the former follows from 
the latter in general only under the assumption that infinite systems exist. 
Indeed, if $ is, say, 1 = 1, then the former is equivalent to 1, the latter 
to “there are no infinite systems,” and the conditional with antecedent the 
latter and consequent the former is then equivalent to “there are infinite 

systems.” 
If S is the statement “there are infinite systems,” a truth, but presumably 

hot a logical truth, then D(S) is a logical truth, as desired; but D(-S) is 
equivalent to 4S, and therefore not a logical falsehood. 

A third example: The mapping D assigns to “+17 x 14 = 228” a sentence 
that is (absent logically guaranteed infinite systems) consistent with what it 
assigns to “17x14 = 228.” D cannot therefore count, as reducing arithmetic 
to logic in any reasonable sense of the phrase.
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All would be well, of course, if, as a matter of logic, there were infinite 

systems, if Theorem 66 had been established as securely as, and in the 

manner of, Theorems 65 and 67. But no purely logical ground has been 

given for thinking Theorem 66 true. That, and not the non-mathematical 

character of the objects it mentions, is the real problem with Dedekind’s 

proof of Theorem 66. 

We ought to mention that there can be no effective mapping of sentences 

of arithmetic to sentences of logic under which truths of arithmetic are 

mapped to logical truths and falsehoods to logical falsehoods: Otherwise 

arithmetic would be decidable, since the truth-value of any statement could 

be ascertained by calculating the trutb-value of its image under the mapping 

in any one-element model. Nor is there a mapping of sentences of arithmetic 

to sentences of first-order logic under which the truths of arithmetic and 

only those are mapped to logical truths. Otherwise it would be possible 

to decide effectively whether an arithmetical sentence S' is true or false: 

Effectively enumerate all first-order logical truths; then the image of S 

under the mapping appears in the enumeration if and only if that of —S 

does not, and S$ is true if and only if its image appears. 

Infinity is cheap. As Dedekind showed, a domain § will be infinite if 

there are a one-one function y from S' to S' and an object in S not in the 

range of y, Indeed, it’s often easier than one may suspect to show a domain 

infinite. For example, in conjunction with the trivial truth “deaya #4 y,” 

the ordered pair axiom, commonly thought to be innocuous, is an axiom of 

infinity. Any domain in which both hold is infinite, for if a 4 b, then the 

function that assigns to cach object wc in the domain the ordered pair (a,7) 

will be one-one and omit (b, b) from its range. 

It is well-known that, very weak systems of set. theory guarantee that 
there are infinitely many objects: the conjunction of the mull set and unit 

set axioms supply an object and a one-one function meeting Dedekind’s 

criterion. It is thus not difficult to provide a theory committed to there 

being infinitely many objects. The difficulty (insuperable, I will urge) is to 

find a logically true theory with this commitment. 

We have seen that in order to be able to claim that the function that 

assigns VN, s,1(a, 8,7,5(N,s,1) — S) to any sentence S$ of arithmetic 

shows that “arithmetic is a part of logic,” Dedekind needs a proof from 

logical truths that there are infinitely many objects. No satisfactory way 

has yet presented itself. 

I want to consider the suggestion that a principle I call Hume’s principle 

can be used to help Dedekind out. As we shall see, Dedekind would prob- 

ably not like the suggestion. And in the end, I shall argue, we can’t accept 

it, either. 

“We are possest of a precise standard,” wrote Hume, “by which we can
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judge of the equality and proportion of numbers; and according as they cor- 
respond or not to that standard, we determine their relations, without any 
Possibility of error. When two numbers are so combin’d as that the one has 
always an unite answering to every unite of the other, we pronounce them 
equal; and ’tis for want of such a standard of equality in extension, that 
geometry can scarce be esteem’d a perfect and infallible science.”® Reflect- 
ing on Frege’s idea that statements about numbers are assertions about 
what he called concepts, we may formalize Hume’s dictum as a second- 
order formula. Let “#F” abbreviate “the number of objects falling under 
the concept F” and “F = G” express the existence of a one-one correspon- 
dence between the objects falling under F and those falling under G.° Then 
Hume’s principle may be written: VFVG(#F = #G o F &G). 

Frege attempts to prove Hume's principle in §73 of his Foundations of 

Arithmetic. The difficulty with the proof he gives there is that it appeals 

to the theory of concepts and objects, whose inconsistency Russell pointed 
out in his first letter to Frege. After having derived Hume’s principle from 
this inconsistent theory, Frege derives the axioms of arithmetic from Hume’s 
Principle. 

More exactly, in the Foundations of Arithmetic Frege gives definitions of 

zero, succeeds (“follows directly after’), and finite (natural) number, and 
shows, easily enough, that zero is a finite number, that anything that suc- 
ceeds any finite number is a finite number, that zero succeeds nothing and 
that if m, m’, n, and n’ are finite numbers, n succeeds m, and n’ suc- 
ceeds am’, then m — m’ iff n =n’. It is by no means evident, however, 
that. every finite number is snececded by something, and it was a matter 

of considerable diffieulty for Frege to prove it. The central argument of 

the Foundations o f Arithmetic is a fairly complete sketch of a proof that 
every finite number is sueceeded by # finite mumber; in proving this and the 
other facts about the numbers, Frege makes use only of Hume’s principle 

and the system of logic set forth in his Begriffsschrift. The intricacy of his 
reasoning is astonishing and repays careful attention. See the appendix for 
reconstruction. I do not know whether Frege realized that Hume’s princi- 

Ple plus the logic of the Begriffsschrift was all he used or needed. Perhaps 

not; he would bave had no reason to value the observation. In any event, 

it is a Pity that the derivability of arithmetic from Hume’s principle isn’t 

Own as Frege’s theorem. 
Frege thus succeeds where Dedekind has failed. He has demonstrated 

the existence of an infinite system. With hard work, he has proved the 

analogue of what Dedekind simply assumes to be the case for the system 

8 
Treatise LII,I 5 % y 4 para. o. 

°“F = G? abbreviates the second-order formula: Jp(V2[Fz — dy(Gy A pry) A _,f 

Valey — ds( Fr A pry)] AV2V2'VyVy'lpry A paly! + (r=ai oy=y)))-
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of objects x of his thought, that for each z, there is a y to which x bears 

the appropriate relation. 

Do not be deceived by the absence of the sort of wallpaper found in the 

Begriffsschrift into thinking that the Foundations is not fundamentally a 
mathematical work.'® In a letter of September 1882, Carl Stumpf suggested 

to Frege that it might be “appropriate to explain your line of thought first in 

ordinary language and then—perhaps separately on another occasion or in 

the very same book—in conceptual notation. I should think that this would 

make for a more favorable reception of both accounts.”!! Frege apparently 
took Stumpf’s suggestion, which was that his mathematical ideas be first 

published in ordinary language. At the heart of the Foundations there lies 

a proof. 
Frege outlines a demonstration in the Foundations that arithmetic, i.e., 

the basic axioms of the second-order arithmetic of zero and successor (from 

which that of full second-order arithmetic, of addition and multiplication, 

can be derived, as in Was sind; Frege seems never to have been interested 

in deriving the axioms of addition and multiplication), can be derived from 
Hume’s principle. Second-order arithmetic is consistent, presumably; Frege 

derives Hume’s principle from an inconsistent theory of concepts. Neverthe- 

less, an inconsistent theory may, indeed must, have consistent consequences, 

and it turns out that in the same sense in which second-order arithmetic 

may be derived from Hume’s principle in the system of logic of the Begriffss- 
chrift, Hume’s principle may be derived back from second-order arithmetic. 

(Deriving axioms from theorenis has been called “reverse mathematics” by 

Harvey Friedinan.) Hume's principle and second-order arithmetic, which 
is sometimes called “aralysis,” are thus equicousistent, and very effectively 
so: A proof of an inconsistency from either could easily be turned into a 

proof of an inconsistency from the other. 
In analysis, there are two sorts of variables, one sort ranging over the 

natural numbers, the other over sets of natural numbers. The axioms are 

the usual ones: the Peano axioms, together with the usual axioms for addi- 
tion and multiplication (which, as Dedekind showed, are dispensable), and 

a comprehension scheme: For any formula of the language of analysis, there 
is a set of all and only the numbers satisfying the formula. 
The Foundations of course shows that if analysis is inconsistent, so is 

Hume’s principle. How may the converse be shown? Let a be a set of 

natural numbers. Call the natural number n the grumber belonging to a if 
either a has infinitely many members and n = 0 or a has n — 1 members. 
The grumber of U.S. senators is 101, the grumber of roots of the equation 
“2—5 = 0” is 2, and the grumber of even numbers is zero, which is also the 

10Cf. (Benacerraf, 1995). 
l(Gabriel et al., 1980), p. 172.
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grumber of numbers divisible by four. It is then a theorem of analysis that 

the grumber belonging to a = the grumber belonging to @ if and only if the 

members of a and those of @ are in one-one correspondence, Any derivation 

in second-order logic of a contradiction from Hume’s principle could thus 

be turned into a derivation in analysis of a contradiction from the theorem 

of analysis about grumbers just cited. Thus if analysis is consistent, so is 

the result of adjoining Hume’s principle to second-order logic. 

Some trick like the introduction of grumbers is necessary because “the 

natural number belonging to” is not defined for all sets of natural numbers, 

indeed not defined for any set containing infinitely many natural numbers. 

There is no natural number that is the number of members of the set of 

evens; but the grumber zero belongs to this set. 

Frege, then, gave an intricate and mathematically interesting derivation 

of arithmetic from a simple, consistent, and trivial-seeming principle. Since 

the principle is as weak as any from which arithmetic can be derived, Frege’s 
derivation was “best possible.” 

Dedekind, of course, might well have objected to our suggestion that 

Hume’s principle be used to obtain an infinite system on the ground that 

the arithmetical notion the number belonging to that figures in the principle 

is undefined, and that arithmetic is therefore not shown to be entirely a part 

of logic. A weak reply can be made: There is a principle, discussed farther 

on, that deals only with objects and concepts, which licenses a definition of 

number, from which Humie’s principle can be derived. The principle is that 

for every concept F' there is a unique object x such that for all concepts 

G, G is in + if and only if F and G are equinumerous. Unlike Hume’s, this 
Principle does not explicitly mention numbers. The number belonging to 
F may of course be detined to be the unique z such that for all G, ete. 

Even if the objection that the expression “is iu” is not a logical “constant” 

is waived, this principle cannot be held to be a logical principle for a reason 

we shall consider at length: It commits us to the existence of too many 

objects. Here we should note that a truth’s being couched in purely logical 
terms is not sufficient for it to count as truth of logic, a logical truth, a truth 

that is true solely in virtue of logic. A distinction must be drawn between 
truths of logic and truths expressed in the language of logic. J suspect 

that failure to draw this distinction was largely responsible for there ever 

being any thought at all that the axiom of infinity might actually count as 

a logical truth. 
According to Hume’s principle, for any concepts F’ and G, there are 

certain objects, namely, the number z belonging to F and the number y 

belonging to G, such that z is identical to y if and only if F and G are 

equinumerous. It is the objecthood of numbers that explains why Hume's 
Principle, despite appearances, cannot be considered to be a truth of logic,



212 IZ. Frege Studies 

a definition,!? an immediate consequence of a definition, analytic, quasi- 

analytic, or anything of that sort. 

The reason that it may appear so is that it can easily be confused with 

a principle that has a considerably greater claim to the status of truth of 

logic. Assume that some version of the theory of types, including axioms of 

comprehension and extensionality, counts as logic. Then matters are as the 

theory of types has it: There are individuals, sets of individuals, classes of 

sets of individuals, etc. (The words “set” and “class” are used here just to 

keep the types straight: We’ve got classes of sets of individuals.) According 

to a comprehension axiom, for any set, there will be a class containing all 

and only the sets that are equinumerous with that set; by extensionality, 

there will be at most one such class. We may call classes containing all 

and only the sets that are equinumerous with any one set Russellnumbers, 

and say that the Russellnumber of a set is the Russellnumber that contains 

the set. The proposition that Russellnumbers are identical if and only if 

the sets they are Russellnumbers of are equinumerous is then a theorem of 

(this version of) the theory of types. 

Russellnumbers are classes of sets of individuals. One of the (ineffable?) 
doctrines of the usual formulation of the theory of types is that the types 

are disjoint. No set is a class or individual, and no class is an individual. 

Russellnumbers are not individuals. 

The disadvantage of this way of defining numbers, of course, is that arith- 

metic cannot be derived in the theory of types without postulating that 

there are infinitely many individuals. With honest toil, however, Frege suc- 

ceeds in proving from Hume’s principle the infinity of the natural numbers. 

Observe that although the theory of objects and concepts that is sketched 

in the Foundations is almost certainly inconsistent, there is a consistent 

fragnient of it that is all Frege needs, or uses, to derive arithmetic. Accord- 

ing to this fragment, there are objects (or individuals), first level concepts, 

under which objects may or may not fall, and second level concepts, un- 

der which first level concepts may or may not fall. So far, matters look 

pretty much as they do on the theory of types, if one substitutes “object,” 

“first level concept,” and “second level concept” for “individual,” “set,” and 

“class.” Crucially, though, Frege does not analogously define the numbers 

as those second level concepts under which fall all and only those first level 

concepts that are equinumerous with some one concept. Call such second 

level concepts numerical. Instead, he introduces a new primitive relation 

between objects and concepts (“is the extension of”) and then defines a 
number to be an object that is the extension of some numerical concept. 
(Numerical concepts, to repeat, are second level.) Thus Frege assumes that 

120n hearing me say what I meant by “Hume's principle,” a very famous philosopher 
exclaimed, “But that’s just a definition!”
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for every first level concept F' there is a unique object that is the extension 

of the second level concept under which fall all and only those first level 
concepts that are equinumerous with F’. 

The introduction of second level concepts is not necessary. All that Frege 

need do is introduce a primitive predicate “is in” for a relation between 

first level concepts and objects and assume that for any first level concept 

F there is exactly one object x such that for any first level concept G, G is 

in x if and only if F and G are equinumerous. Frege may then define the 

number “belonging to” F' as that object z. 

Notice the additional step Frege has taken. Unlike Russell, Frege has as- 

sumed there is a way of associating objects with numerical concepts so that 

different objects are associated with different numerical concepts. (Assume 

that coextensive concepts are identified.) This cannot be done, if there are 

only finitely many objects; if there are (say) eighteen objects, then there 

will be nineteen numerical concepts. It is a weighty assumption of Frege’s, 

to put it slightly differently, that the first level concepts can be mapped 

into objects in such a way that concepts are mapped onto the same object 

only if they are equinumerous, and it is a lucky break that the assumption 
is even consistent. 

The well-known comparison that Frege draws in §§64-69 of the Foun- 

dations between “the direction of line I” and “the number belonging to 

concept F” is therefore seriously misleading. We do not suspect that lines 
are made up of directions, that directions are some of the ingredients of 
lines. Had Frege appended to the direction principle, “The direction of line 

(is equal to the direction of line & if and only if J and & are parallel,” the 
claim that directions are points, we would never have regarded the principle 

as auything like a definition, and would perhaps have woudered whether 
there are enough points to go around. (In fact, there are: There are contin- 
hously many points and continuously many directions.) The principle that 
directions of lines are identical just in case the lines are parallel looks, and 

is, trivial only because we suppose that directions are one or more types 

up from, or at any rate are all distinct from, the things of which lines are 

Made. 

The principle that numbers belonging to concepts are identical if and 

only if the concepts are equinumerous, then, should count as a logical truth 

only if it is supposed that numbers do not do to concepts or sets the corre- 
sponding sort of thing, namely, fall under, or be elements of, them. On the 

theory of types, matters so fall out. But Frege’s proof from Hume's princi- 
ple that every number has a successor cannot be carried out in the theory 

of types: the proof cannot succeed unless it is supposed that numbers are 

Objects, 
For how does Frege show that the number 0 is not identical with the
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number 1? Frege defines 0 as the number belonging to the concept not 

identical with itself. He then defines 1 as the number belonging to the 

concept identical with 0. Since no object falls under the former concept, 

and the object 0 falls under the latter, the two concepts are, by logic, not 

equinumerous, and hence their numbers 0 and 1 are, by Hume’s principle, 

not identical. Notice that for this argument to work it is crucial that 0 

be supposed to be an object that falls under the concept identical with 0. 

2 arises in like manner: Now that 0 and 1 have been defined and shown 

different, form the concept identical with 0 or 1, take its number, call it 

2, and observe that the new concept is coextensive with neither of these 

concepts because the distinct objects 0 and 1 fall under it. Conclude by 

Hume that 2 is distinct from both 0 and 1. 

Frege proves that if n is a finite number, then it is succeeded by the 

number belonging to being less than or equal to n; the proof works because 

n is an object that can be proved not to fall under being less than n. 

Thus it is only to one who supposes that numbers are not objects that 

Hume’s principle looks analytic or obvious. Frege’s proof that every number 

has a successor depends vitally on the contrary supposition that numbers 

are indeed objects. 

A sentence is a logical truth only if it is true no matter what objects it 

speaks of and no raatter to which of them its predicates or other non-logical 

words apply. (The vagueness of the consequent, including that as to which 

words count as logical, is matched by that of the antecedent.) A sentence is 
not a logical truth if it is false when interpreted over a domain containing 

infinitely many things, and it is not a logical truth if, like Hume’s principle, 

it is false when oidy finitely many things belong to the domain. 
It is clear that an account of logical truth that attempts to distinguish 

Hume’s principle as a logical truth will have the hard task of explaining why 

Humie’s principle is a logical truth even though two other sitnilar-looking 

principles are not. These are the principle about extensions embodied in 

Frege’s Rule (V) and a principle about relation numbers that is strikingly 
analogous to Hume’s principle. They read: Extensions of concepts are iden- 

tical if and only if those concepts are coextensive; and: Relation numbers of 

relations are identical if and only if those relations are isomorphic. Russell 

showed the former inconsistent; Harold Hodes has astutely observed that 

the latter leads tc the Burali~Forti paradox.!5 
It will not do to say: Hume’s principle, unlike the other two, and like the 

principle by which we take ourselves to introduce the two truth-values, is 
a logical truth because it is consistent. 

For say that the concepts F and G differ evenly if the number of objects 

13(Hodes, 1984).
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falling under F but not G or under G but not F is even (and finite), 
The relation between concepts expressed by “F and G differ evenly” is 
an equivalence relation (exercise), and can of course be defined in purely 
logical (second-order) vocabulary. Now introduce the term “the parity of” 
for a function from concepts to objects and consider the parity principle: 
The parity of F is identical with that of G if and only if F and G differ 
evenly. 

The parity principle is evidently consistent. Let X be any finite domain 
containing the numbers 0 and 1. Let the parity of a subset of X be 0 if it 
contains an even number of objects and 1 otherwise. Then with “parity” 
so defined, the parity principle is true in the domain X, and is therefore 
consistent. 

However, the parity principle is true in no infinite domain. Here’s a sketch 

of the proof. Let X be an infinite set. Then, where Y and Z are subsets of 
? 

l{Y : Y differs evenly from Z }| 
=|{(A,B):4,BCX,ACY,BCZ,ANZ=4, 

BnY =@,|AU By is even, and Y = (ZU A) — B}] 
< |{(A,B):A,B CX and [AU B| is even }{ = |X]. 

Thus |{ Y : ¥ differs evenly from Z}| =[XI- 
Suppose now that f : PX + X and for all Y, Z, if fY = fZ, Y 

evenly differs from Z. Then for each x in X, |{Y : f¥ = z}| < |X|, and 
[PX] < |X| x |X] = |X|, contradiction."4 a 
Consistent principles of the form: The object associated in some manner 

with the concept F is identical with that associated in the same manner 

with G if and only if F and G bear a certain equivalence relation to One 
another, may therefore be inconsistent with each other. Hume's principle 
is inconsistent with the parity principle. Which is the logical truth? 

MA less natural example to the same purpose, but one that is less heavily dependent 

on set theory, is the following. Abbreviate: (Ariy[z # yA FaA Fy) v Arayiz # yAGrn 
Gy}) = Va( Fao Gz) as: F EquG. Equ is an equivalence relation. The principle: 

VEY GCF =-GiffF Equ 6G) is evidently satisfiable in all domains containing one or 

two members. It is, however, satisfiable in no domain containing three or more memberg 
and is therefore inconsistent with Hume’s principle. For suppose thata #bfxc # a. 

Define Rz as follows: If x 4 a, b, c, then Rx iff for some F,r= F and -Fz; but if ¢ 
is one of a, b, c, then let Ra, Rb, “Rc hold if none of a, 6, c is F for some F such that 

Fa, Fb, aF. ‘c; otherwise let Ra, Rb, Re hold if none of a, 8, c is F. : for some F such 

that Fa, +F, 'b, Fc; otherwise let ~Ra, Rb, Rc hold if none of a, 6, c is “F for some F 

Such that “Fa, Fb, Fc; otherwise let Ra, Rb, Ac hold. Then Srdy(z A y A Rx” Ry), 
Letd=~R. ifd= “F, then by the principle, Vz(Az > Fx). Thus d # a,b,c. If Ra, 
then for some F, d = ~F and 7Fd. But then Vz(Rz + Fz) and Fd. Thus ~Rd. So 
VFd=-F _, Fd), whence Rd, contradiction. 

‘°C. (Hazen, 1985).
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Indeed, not only do we have no reason for regarding Hume’s principle as 

a truth of logic, it is doubtful whether it is a truth at all. As the existence 

of a number, 0, belonging to the concept not-self-identical is a consequence 

of Hume’s principle, it also follows that there is a number belonging to the 

concept self-identical, a number that is the number of things that there 

are. Hume’s principle is no less dubious than any of its consequences, one 

of which is the claim, uncertain at best, that there is such a number. 

Crispin Wright claims that “there is a programme for the foundations 

of number theory recoverable from Grundlagen.” '® He calls the program 

“number-theoretic logicism” and characterizes it as the view that “it is 

possible, using the concepts of higher-order logic with identity to explain a 

genuinely sortal concept of cardinal number; and hence to deduce appropri- 

ate statements of the fundamental truths of number-theory, in particular 

the Peano Axioms, in an appropriate system of higher-order logic with 

identity to which a statement of that explanation has been added as an 
axiom.” ’ He adds that he thinks that it would “serve Frege’s purpose 

against the Kantian thesis of the synthetic a priori character of number- 

theoretic truths. For the fundamental truths of number theory would be 

revealed as consequences of an explanation: a statement whose role is to 

fix the character of a certain concept.” 8 
Wright regards Hume’s principle as a statement whose role is to fix the 

character of a certain concept, We need not read any contemporary theories 
of the a priori into the debate between Frege and Kant, But Frege can be 
thought to have carried the day against Kant only if it has been shown 

that Hume's principle is analytic, or a truth of logic. This has not been 
done, Nor has the view Wright describes been shown to deserve the mame 

“(number-theoretic) logicism.” It’s logicism only if it’s claimed that Hume's 
principle is a principle of logic, Wright quite properly refrains from calling 
it one. 

We have noted that Dedekind would not have been happy with the sugges- 

tion that the existence of infinite systems be derived from Hume’s principle. 

Nor, presumably, would Frege have rested content with it as the founda- 

tion of arithmetic. Hume’s principle may yield a great deal of information 

about the natural numbers, but it doesn’t tell us how they may be viewed 

as logical objects, nor even which objects they are. Nor, as Frege noted 

in §66 of the Foundations, does it enable us to eliminate the phrase “the 

number belonging to” from all contexts in which it occurs, in particular not 

from those of the form “ax = the number belonging to F.” 

Well. Neither Frege nor Dedekind showed arithmetic to be part of logic. 

1S (Wright, 1983), p. 153. 
(wright, 1983). 
18(Wright, 1983).
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Nor did Russell. Nor did Zermelo or von Neumann. Nor did the author of 

Tractatus 6.02 or his follower Church. They merely shed light on it. 

Appendix: Arithmetic in the Foundations 

Hume’s Principle #F = #G o F ~G. 

Definition 0 = #[x : « # a]. (Foundations §74) 

lL #F =06 Vae5Fz. (§75) 

Proof. Since 0 = #[x: 2 4 2], #F = Oiff F x [2:2 4 a]. Since Vz-a F @, 
Pr ie: #2] if VriF zx. @ 

Definition mPn iff IF iy(Fy A#F =nA#dl[z: FrAcz FZ y) =m). (876) 

2. mPnAm!Pn! = (m=m! an=n’). (875 para. 5) 

Proof. Suppose mPn and m'Pn’. Let F, y, F’, y’ be as in the definition 
of P. Suppose m = m’. Then #lz: FeArx Fy] = #lc: Fans #y'], 

whence le: Paar # y'] wle: Faraz # y| via some ¢. Since Fy and 

Fy, F = F' via pu {(y,y')} and then n = #F = #F’ =n’. Conversely, 

suppose n = n', Then since #F = #F'. F ~ F’ via some y. For some 

unique x, xyy’: for some unique 2’, yr’. Let 

9 = (vr {lry'). (ya) U {ea} ~ {ya'Dt- 
Then [rs Fr Aw # yl [rs Fir Ax  y/] via p and m = m’. (Since £ and 

might. be identical with y and y’, it is uecessary to include “-{(y, y/)} 
in the definition of ¢y.) 

3 PU. (§78 para. 6) 

Proof. Otherwise for some y, Fy atid #F = 0, contra 1. m 

Thus to show that xR*y > ...y-.-, it suffices to let F={z:...z...), 

assume a = ¢ V Fa and aRb, and show F8. 

4. «Ry + xR*y. (Begriffsschrift, Proposition 91) 

Proof. Suppose xRy and Vavb([(a = 2V Fa) AaRb] + Fb). Then Fy 
follows, if we leta =z and b=y. @ 

5. cR"y AyR*z + 2R*z. (Begriffeschrift, Proposition 98)
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Proof. Suppose rR*y, yR*z, and (*) VaVb([(a = x V Fa) A aRb| — Fb). 
Show Fz. Since yR"z, it suffices to show VaVb([(a = y V Fa) AaRb] — Fb). 
Suppose (a = yV Fa) and aRb. Show Fb. Since rR*y, by (*) Fy. We may 

suppose Fa. But then by (+) we are done. ml 

6. cP*n > ImmPn AVm(mPn — [xP*mV zc = m)). 

Proof. Let F = [z : ImmPz AVm(mPz — [zP*m V z = m))]. Suppose 
a=2xV Fa, aPb. Show Fb. Since aPb, ImmPb. Suppose mPb. By 2, 

m=a.Ifa=z, z =m, and we are done. So suppose Fa. Then for some 

m!', m'Pa, and xP*m! or z = m’. Since m!/Pa = m, m'!Pm. If xP*m’, 

then rP*m’Pm, whence by 4 and 5, P*m; if x = m’, Pm, whence by 4, 

zP*m. w 

7. OP*n— —nP*n. (§83) 

Proof. Let F = [z: azP*z]. Suppose a = 0 V Fa, aPb. Show Fb. Suppose 

bP*b. By 6, bP*a V b = a, whence by 4 and 5, a@P*a, contra Fa. Thus 

a= 0, 0P*0, and by 6, JmmP0, contra 3. © 

Definition m <n iffmP*nV m=n. Finite n iff0 <n. 

8. mPnA0P*n > Vale i mordnArcF#n). (§83) 

Proof. Suppose mPn, OP*n. If P*mV ax = m, then xP*n, by 4 and 5; and 

by 7,2 47 fae <n and « # n, then zP*n, and by 6, x < m. (“OP*n” 
cannot be dropped: if n = Frege’s oo1, ie., #[2: 0 < a], then nPn but 
z<niffe =n.) & 

9. mPnA0DP*n > # [as a2 < m)P#l[x ic <n). (882) 

Proof. Suppose mPn, 0P*n. By 8, [2:2 < im) © [ei 2 <n Aw Fn); since 

nin, #[c:2 <m|P#[2:2 <n]. eo 

10. mPn— (0<mAmP#[z: 2 < mM) -0< nAnP#{e: x < n)). (882) 

Proof. Suppose mPn, 0 < m. By 4 and 5, 0OP*n. Thus 0 < n. Suppose 

mP#([z :z < mj. By 2, #[x: 2 < ml] =n. By 9, nP#[r: a <n]. 

11. OP#|x:2 < Oj. (§82) 

Proof. Let F = [xr : x < Oj. FO; but by 6, if 2P*0, ImmP0, contra 

3. Thus Vz-(Fr Az # 0); and by 1, #[2 : Fr Ax # 0] = 0, whence 

OP#[z: 2 <0]. 

12. O<n-O0<nAnP#[e: 2 <n].
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Proof. If 0 =n, done by 11. Suppose 0P*n. Let F=[z:0< zAzPA{[r: 

x < z]]. Suppose m = 0V Fm and mPn. Show Fn. If m = 0, by 11, Fm. 
And then by 10, F'n. m 

13. Finite n = nP#[x: 2 < nj. (883) 

Proof. By 12. @
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Whence the Contradiction? 

Chapter 17 of Michael Dummett’s Frege: Philosophy of Mathematics' be- 

gins with the question: how did the serpent of inconsistency enter Frege’s 

paradise? In the section of that chapter called “How the serpent entered 

Eden” Dummett says, “The second-order quantifier presents an altogether 

different problem, and it is to its presence in Frege’s language that the 

contradiction is due.” Dummett regards Frege’s remarks concerning the 

second-order quantifier as insufficient to stipulate the references of terms (in 

particular, the truth-values of sentences) formed by second-order quantifi- 

cation and writes that Frege’s “amazing insouciance concerning the second- 

order quantifier was the primary reason for his falling into inconsistency.” 

But in the very last chapter of the book he says, “We may say that his mis- 

tuke lay in supposing there to be a totality containing the extension of every 

concept defined over it; more generally, it lay in his not having the glim- 
mering of a suspicion of the existence of indefinitely extensible concepts.” 

One might. wonder whether it was Frege’s insouciance or his naiveté that 

Dummett thinks is to blame for the error. But although it may seem as if 
Dummett is offering incompatible diagnoses of the contradiction, he has, I 

believe, a unitary account of its etiology to provide. 

There are two pieces of unarguable mathematical fact on which Dum- 

mett’s explanation of the contradiction rests. The first is that the first- 

order fragment of the system of Frege’s Grundgesetze is consistent.2 The 
second is that, as one might put it, one cannot assign different members 

of a set to different subsets of that set so that to every subset at least 

one member is assigned. (With the aid of the notion of the ordered pair, 

From Aristotelian Society Supplementary Volume 67 (1993): 213-233. Reprinted by 

courtesy of the Editor of the Aristotelean Society: ©1993. 

1(Dummett, 1991). Let me say that although I disagree with several of its central 
contentions, I greatly admire Dummett’s book. 

2A particularly perspicuous description of this system and proof of its consistency 

have been given by Terence Parsons (Parsons, 1987). A version of Parsons’ proof is 
presented below. 

220
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friends of plurals can make the appropriately general statement by saying: 
no matter what some objects may be, there are some things for which no 
item is such that the ordered pairs of that item and those things are alll 
and only those objects.) A generalization of the second fact, pointed out 
by Dummett, is that the set of all functions from and to a given set can be 
injected into that set. if and only if it contains exactly one member. 

As the argument of Zermelo shows that «U {{y € x: 7y € y}} is always 
a proper superset of the set x, and as, on the von Neumann construction 
of the ordinals, (Jz U {Lz} is always a larger ordinal than any ordinal in 
the set x, so, according to Dummett, the argument of the Russell paradox 
shows that ‘xVF(z = 'F — sF(x))—let us call this item r—can never 
belong to the domain, can never be one of the objects over which the 
first-order variables range. (I shall modernize notation throughout, often 
writing “'F” instead of “yF(y)” etc.) Note, though, that r is the extension 
of a concept whose name “VF(£ = 'F > —F(£))” begins with a second- 
order quantifier. Thus the introduction of second-order quantifiers forces 
an extension of the domain to comprise such new objects as r. If only first- 

order quantifiers are present, r cannot be defined, and it is possible to satisfy 
the first-order fragment over the natural numbers, as we shall see. But once 

second-order quantifiers are added, no domain is large enough to contain 

all extensions of concepts defined on that domain. Each domain gives rise 
to @ more encompassing one, containing all extensions of concepts defined 

over the original domain. It was because Frege didn’t have a glimmering of 

@ suspicion of the way each domain must give rise to a properly wider one 
that he could be insouciant about the second-order quantifier. 

Dummcett’s diagnosis is subtle: it is a striking but not particularly well 

known fact that the first-order fraginent of Frege’s system is consistent. 
And his account appears to be attractively conimonsensical, for it looks 
like a reformulation in Fregean terminology of familiar and incontestable 
set-theoretic facts, such as that the power-set of a set is never injectable into 

that set. But powerful and unified as it is, I think it is too recherché. There 
is a much simpler account of what went wrong which lays the blame, not on 
the stipulations Frege made concerning the truth-conditions for sentences 

beginning with second-order quantifiers, but on those for identities of value 

ranges. On the account I want to argue for, the culprit is the obvious one, 

Basic Law V. 
Before discussing Dummett’s analysis of Frege’s mistake about qnanti- 

fiers, I want to express some doubt concerning Dummett’s idea of an indef- 

initely extensible concept.? 

3A Superb discussion of this issue, with which I find myself in complete agreement, is 

found in (Cartwright, 1994). I myself discuss the matter in Article 2 of this volume, a 

Teply to Charles Parsons’ essay “Sets and classes” (Parsons, 1983c).
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“What the paradoxes revealed,” Dummett writes, “was not the existence 

of concepts with inconsistent extensions, but of what may be called indef- 

initely extensible concepts.” Dummett defines a definite totality as one 

“quantification over which always yields a statement determinately true 

or false.”* According to Dummett, “No definite totality comprises every- 

thing intuitively recognizable as an ordinal number,” and the concept of 

an ordinal number is for that reason a prototypical example of an indef- 

initely extensible concept. An indefinitely extensible concept has nothing 

that should be termed its extension, but has, rather, what may be called a 

sequence of extensions, of indeterminate ordinal length. Governing indefi- 

nitely extensible concepts like ordinal and set are principles of extendibility 

that take us from one of these extensions to the next in the sequence: 

the principles for ordinal and set presumably refer to operations such as 

anraU{a} and re cU{{yer: aye yh}. 
Dummett’s use of the term “totality” rather than “set” or “class” leads 

me to suspect strongly that he believes that we cannot actually quantify 

over all the ordinals (or sets) there are; that whenever we quantify over 
some ordinals, there is at least one ordinal we have failed to quantify over, 

e.g., JW U {UW}, where W is the totality of all those ordinals we take 
ourselves to be quantifying over. Of course Dummett knows perfectly well 
that there is no set of all ordinals (an ordinal being a set), no set containing 

all sets, and no class containing all classes. Nevertheless, it would seem that 

he does think that there has to be a--what to call it--totality? collection? 

domain? containing all of the things we take ourselves at any one time to 

be talking about. He would seem to believe that whenever there are some 

things under discussion, being talked about, or being quantified over, for 
example some or all of the ordinals, there is a sct-like item, a “totality,” 
to which they all belong. That is, he supposes that whenever we quantify, 
we quantify not over all the (ordinals or) sets that exist but only over 

some of them, and that, similarly, whatever sets we do on any occasion 

quantify over form a totality X which omits the item {x € X : 2 ¢ x}. 
Since { € X : x ¢ x} is a set (or a set-like item, an item “intuitively 
recognizable as a set”), we have not managed to quantify over all the sets 
there are. 

Benson Mates once stated: “Any thing or things whatever constitute the 

entire membership of a class; in other words, for any things there are, there 

4 There is a danger here of which Dummett seems unaware. Whether or not a totality 
is definite will depend, if Dummett’s words are taken literally, on what the predicates of 
the language are. Th{ (On, <)) is easily decidable (I am grateful to Ehud Hrushovski for 
explaining the proof of this folkloric result to me). Thus every statement in the language 
whose predicates are just < and =, and in which quantifiers range over what Dummett 
calls “the intuitive totality of all ordinals,” will have a “definite” or “determinate” truth 

value, and the ordinals under less-than could not be reckoned an indefinite totality.
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is exactly one class having just those things as members.”® And Nelson 

Goodman has written, “Yet by the logicians’ usage, any things whatever 

make up a class or set.”® Logicians (like Mates) who think so err. The 
following things don’t constitute the entire membership of any one class: 

the classes that don’t contain themselves. 

It may be replied, and I suspect that Dummett would agree, that nev- 

ertheless, whenever we use quantifiers, there must always be some domain, 

some totality of objects, over which our variables of quantification range; so 

if we take ourselves to be quantifying over all classes, then we must assume 

that there is a totality or domain containing all classes. And it may be 

thought that it is part of what we mean by “quantify over” that there must 

be some such domain. Certain textbooks may reinforce this impression by 

telling us that to specify an interpretation we must first specify a non-empty 

set (class, collection, totality), the universe of discourse (or domain), over 
which our variables range, and then specify subcollections of the domain 

for each monadic predicate letter, etc. 

But not all. If we look at the presentation of class theory found in Kelley’s 

General Topology,” we find that the theory presented there is a full-fledged 

theory of classes in which variables range over (pure) classes and in which 

“set” is defined to mean “member of a class.” Kelley writes, “A remark 

on the use of the term ‘class’ may clarify matters. The term does not 

appear in any axiom, definition, or theorem, but the primary interpreta- 

tion [Kelley’s footnote: Presumably other interpretations are also possible.] 

of these statements is as assertions about classes (aggregates, collections). 

Consequently the term ‘class’ is used in the discussion to suggest this in- 

terpretation.” 
Kelley's axiom of extent (extensionality) reads, “For each 2 and each y 

it is trne that wc = y if and only if for each z, z € z when and only when 

z€y.” His comment: “Thus two classes are identical iff every member of 

each is a meniber of the other.” 

Now it seems to me that insofar as we have any grip at all on the use 
of the phrase “quantify over,” we have to say that Kelley, in laying down 

his axiom of extent, is quantifying over all classes (aggregates, collections). 

I take it that when Kelley says “each,” he means it. How else are we to 

understand the axiom of extent, in view of Kelley’s comment, except as 

saying that any classes x and y are identical iff x and y have the same 

Members? 
But why should we for a moment think that therefore there 

collection of all the things Kelley was using his variables to range over 

must be a 
2 if 

5(Mates, 1981), p. 43. 
7 (Goodman, 1972), p. 155. 
(Kelley, 1955).
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one checks the exposition in General Topology, at. any rate, one will find no 

suggestion at all that there must exist some sort of super-class, containing 

all the classes that the theory talks about. As Kelley’s exposition makes 

plain, we can perfectly well explain or understand a standard formal lan- 

guage without having to suppose that there is a collection or other totality 

over which the variables of the language range: we can simply say: Our 

variables range over all classes (and “€” applies to any z and y, in that 

order, just when z belongs to y). 

Or: over all (“absolutely,” if you insist, all) objects there (“really”) are. 

If Frege thought his variables could so range, as of course he did, he was 

not in error. To his credit, Frege did not have the glimmering of a suspicion 

of the existence of indefinitely extensible concepts. 
I’ve argued elsewhere that by using the plural number in translating sen- 

tences that begin with second-order quantifiers we can make second-order 

quantification intelligible, even if we suppose that the first-order variables 

in our sentences range over all the objects there are. (Hartry Field once 

pointed out to me that my scheme cannot be used to translate sentences 

containing dyadic, or, more generally, polyadic, second-order variables.) I 

won't repeat the argument here, but turn instead to Frege’s alleged amazing 

insouciance. 

The account Dummett presents in Chapter 17 of the cause of the incon- 

sistency seems to me to offer a number of interpretive difficulties, some of 

which arise from the explanations Frege himself gives in the first. thirty- 

three sections of Grundgesetze, especially with the notorious “proof” that 

Frege offers in Section 31.8 Without being perfectly certain about the mat- 

ter, I take it that in that. chapter, Dummett is attempting to explain the 
origin of, or primary reason for, the inconsistency of Frege’s system, and 

not merely the failure of Frege’s arguinent in Section 31 for the conclusion 

that inconsistency cannot occur. If only the latter, then I do not see that 
he has provided an explanation of the inconsistency. (A failed consistency 

proof for a consistent system would hardly be a serpent in Eden.) I also 
take it, though, that Dummett wishes to claim that if one examines the 

consistency proof and sees why it fails, one will see that the blame for 

the contradiction is to be ascribed to Frege’s carelessness concerning the 

second-order quantifier. (But I am not sure, since at the end of the chapter 
Dummett states, correctly in my view, that the argument fails to show the 

consistency of even the first-order portion of the system.) 

A second difficulty concerns causation, responsibility, blame. What caused 
the avalanche? The cry of the yodeler? Or the presence of snow on the 
mountainside? If there had been no snow, there certainly would have been 

5In Section 31 Frege attempts to prove that every term of his formal system has a 

reference [Bedeutung], which of course must be unique.
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no avalanche. Is second-order quantification the yodel or the snow? I will 

argue that Dummett has taken what should be thought of as a “background 

condition” to be the cause of Frege’s trouble. 

A third worry concerns Dummett’s rather surprising claim that Frege’s 

explanation of the second-order quantifier, unlike the one he gives for the 

first-order quantifier, appears to be substitutional rather than objectual. 

Dummett says that there is meager evidence for attributing to Frege the 

classical conception of the totality of all functions from and to the domain.® 

This last worry first. 

A rather bad typographical error occurs on p. 218 of Dummett’s book, 

doubtless caused by the difficulty of reproducing Frege’s two-dimensional 

notation. What Frege actually said in the sentence Dummett quotes from 

Section 20 is “Now we understand by ‘WF (Va F(a) — F(T))’ the truth value 
of one’s always obtaining a name of the value True whichever function-name 

one inserts in place of ‘F’ in ‘“VWF'(Va F(a) > F(T))’.” Typo or no, one might 

well think that Dummett is probably right: Frege’s talk here of inserting 

function-names in place of second-order variables certainly accords ill with 

an objectual interpretation of the second-order quantifier. 

However, the evidence for the (standard) attribution of the classical con- 
ception strikes me as weighty and that for a substitutional reading of Frege’s 

second-order quantifiers equivocal at best. 

It is to be noted that Frege occasionally uses the language of substi- 
tutional quantification when discussing first-order quantification. In the 
Passage from Section 31 quoted by Dummett on p. 215, Frege says, “Now 

‘®(€)' has a reference if, for every referential proper name ‘A’, ‘®(A)’ refers 
to something. If so, this reference is cither always the value True (whatever 

‘A’ refers to) or not always.” We certainly should not be willing to ascribe 
to Froge a substitutional interpretation of the first-order quantifiers on the 
strength of that remark. 
Dummett cites a passage from Section 25 of Grundgesetze, where Frege 

writes, “Let Q(y()) be a second-level function of one argument of the 
second kind, whose argument place is indicated by y. Then VF Q4(F()) 
is the value True only when for every suitable argument the value of our 

second-level function is the value True.” Dummett says, “this is a comment, 

not a stipulation, since it is not laid down what VF 24(F(8)) is to be when 
the condition is not fulfilled; and no explanation is given of what constitutes 

a ‘suitable argument’.” 

“Suitable” is Dummett’s translation of passend (Furth renders it “fit- 

ting”), and at the end of Section 23, where he also defines arguments of 

the second kind as first-level functions of one argument, Frege does indeed 

SRichard Heck tells me that Dummett is now no longer entirely satisfied with the 

views he expressed on this matter.
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define passend. He says, “The objects and functions whose names are suit- 

able for the argument. places of the function are suitable [itals. Frege’s] for 

the function.” The suitability of argument-places is defined syntactically, 

in the obvious way. Note that Frege says “objects and functions,” treating 

them alike. 

Section 25, entitled “Generality with respect to second-level functions. 

Basic Law IIb,” is an explanation of the correctness of Basic Law IIb, 

“WF Mg(F(B)) + Ma(F(8)),” Universal Instantiation for functions. Frege 
glosses this Law, “What holds for all first-level functions of one-argument 

holds for any,” a gloss which seems to me to support an objectual read- 

ing. The use of “any” here, corresponding to the Roman letter “F”, 

which is an unbound variable in Frege’s symbolism, renders rather im- 

plausible the suggestion that he is talking only about functions that are 

definable in the language of the system. His next sentence is, “Conse- 

quently VF 2(F(8)) - Q4(~(B)) is always the True, whatever first-level 
function of one argument y(£) may be ...,” which again sounds as if he 

had an objectual reading of “VF” in mind. I take it that Frege, like Kelley 

when he says “each,” means it when he says “all,” “any,” or “whatever.” 

Frege says that VF Q9(F(8)) is true only when a certain condition is met 
since he is engaged in showing that then Qg(®(8)) will also be true: he is 
trying to justify IIb. Thus it would not be particularly to the point for him 

there to give sufficient conditions as well for the truth of VF Q,(F(8)). 

In any event, in Section 24, Frege docs give the requisite general account: 

“If after a concavity with a Gothic function letter there follows a com- 

bination of signs composed of the name of a second-level function of onc 
argument and this function letter, which fills the arguinent-places, then the 

whole denotes the Truc if the value of that second-level function is the True 

for every fitting argument; in all other cases it denotes the False.” 
To tell whether Frege understands his second-order quantifiers substitu- 

tionally or objectually, one must look at how he translates formulas of his 

symbolism containing those quantifiers into natural language. If he reg- 

ularly translates “WF” as “for every function ...,” or something similar, 

then we may conclude that he understands them objectually; if as “for ev- 
ery function name ...,” then substitutionally. I think the preponderance 

of examples favors an objectual interpretation. In addition to those in Sec- 
tions 24 and 25, three other good objectual examples are found in Sections 

20, 34, and 45, where Frege discusses Leibniz’s law, Frege’s own surrogate 

for €, and the ancestral, respectively. 

I am thus inclined to think it likely that in Section 25 Frege may have 

been supposing there that every concept is named by some function-name 

(and hence that he would have to accept that there are uncountably many 

function-names). Or more likely, lacking the notion of satisfaction, Frege
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may have simply expressed his meaning imprecisely in the sentence Dum- 
mett quotes. Despite his sophistication, care, and rigor, Frege did after all 
lack the notion of satisfaction (truth of a formula with respect to an assign- 
ment of appropriate items to its free variables), which would be introduced 
by Tarski about 40 years after the first volume of Grundgesetze appeared. 
I find it plausible that Frege would have accepted the natural Tarski-style 
definition of the satisfaction conditions for formulas of his language as a 
friendly amendment to his views. 

I don’t want to discuss the matter at any greater length, though, because 
no matter how Frege’s second-order quantifiers are to be construed, the 
concept crucial to Dummett’s discussion of Frege’s explanation of second- 
order quantification has a concept-name that it is very easy to construct: 
VF(é ='F — F(€)). 

If we abbreviate this formula as H(€) and then consider the sentence 
VF(H = 'F — F('H)), which we shall call TT, we find, according to 
Dummett, that the “stipulations intended to secure for it a determinate 
truth-value go round in a circle.” 

Dummett’s argument is that if we try to determine whether or not TT is 

true according to the stipulations Frege has made, we shall find that we are 

thrown back to determining whether or not TT is true and therefore cannot 
suppose that Frege has satisfactorily specified conditions that determine 
when TT is true. For, according to the specifications, TT is true if and only 
if the result of substituting each concept name for F in (H ='F > F('H)) 

is true (or as I prefer to think Frege must have meant, if and only if for every 

concept F, the extension of the coucept A is identical with that of F only 

if the extension of H falls under F'). And if so, then ('H ='H — H(‘A)) is 
true, and therefore so is H('H), which is identical to TT, the very sentence 

whose truth-value we are trying to determine. Dummett adds that if we had 
substituted G(é), abbreviating VF ('F = € + -F(€)), for H(€) “we should, 
with a little help from Axiom V, have obtained the Russell contradiction.” 
What this reasoning is supposed to show is unclear to me. At least this 

much is certain: from certain of Frege’s specifications for the second-order 

quantifier and the signs for equality and the conditional, we cannot, by 

employing one very obvious line of deduction, determine that H('H) is 
false. (We have after all substituted a concept name for a universal second- 
order quantifier, an odd way to proceed if we are trying to show H('H) 

true.) 
But we haven’t shown that we can’t show H('H) false by some other 

perhaps not so obvious line of argument, and we haven’t shown that there 

is no way to show H('H) true. 
The argument, curiously, makes no mention of, or appeal to, Basic Law 

V. It shows that Frege’s specifications tell us that among the conditions
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necessary for the truth of TT is the condition that TT be true. To show 

that the specifications tell us that among the conditions necessary for the 

falsity of TT is the condition that TT be false, it would appear to be 

necessary to appeal to Basic Law V (which is the obvious license for the 

passage from H('H) to VF('H ='F — F('H)). As it stands, however, the 
argument shows only that if H('H) is true, then Frege’s specifications will 

require that H('H) be true. Supplementation by Basic Law V would seem 

to be needed to show that if H('H) is false, Frege’s specifications will also 
require that it be false. 

However, by means of a non-obvious argument due to Curry, we can in 

fact deduce that H('H) is false. Let C(é) abbreviate 

dF(é ='F A F(€)) > 7H((#) 
Suppose C(‘C). Then 4F('C ='FAF('C)) — AH('H). But since 'C ='C 
and C('C), SF((C ='F A F(‘C)), and therefore -H('/H). Thus we have 
shown that if C(/C) holds, then H('H) is false. We must now show that 
C(‘C) holds. Suppose that for some F, ‘C ='F and F('C). By Basic Law 
V, V2(C(x) ++ F(x)). But since F('C), C('C). So if AF('C ='FAF(‘C)), 
then C('C), ie, SF('C ='FAF('C)) — [AF((C ='FAF('C)) > -H(‘A)I, 

and therefore IF('C ='FAF('C)) — 7~H(‘H), i.e., C('C) holds. Of course 
“4H('H)” could have been replaced in this argument by “H('H)” or “p” 
or “L”, With the aid of Basic Law V we can prove whatever we please. 

In Section 31 of Grundgesetze, Frege says, “By our stipulations [Festset- 

zungen], that ‘ey(e) = ‘ep(e)’ is always to have the same truth-value as 

Va(y(a) = g(a))’...” L find it hard to wnderstand why it is the stipula- 

tions Frege gave concerning, the second-order quantifier that are to be held 

respousible for the contradiction rather than this stipulation concerning the 

truth-values of identities between value-range tanies. 

Hume’s principle is the statement that no matter which things the Fs 

and Gs may be, the number of F's is the same as the number of Gs just in 

case the F's and Gs are in one-one correspondence. Dummett calls Hume’s 

principle “the original equivalence”; Crispin Wright calls it N~ (for numer- 

ical equality). If we let F ~ G be some standard formula of second-order 

logic expressing the equinumerosity of the objects assigned to the variables 

F and G, and let # be a sign for a function from concepts to objects and 

read #F as: the number of F's, then we may symbolize Hume’s principle: 

VEVG(#F = #G Oo FG). 

Some years ago J showed that any proof of an inconsistency in the theory 

obtained by adjoining Hume’s principle to second-order logic could be read- 
ily converted into the proof of an inconsistency in second-order arithmetic. 

Charles Parsons seems to have been the first person to realize!® that the 

10See (Parsons, 1983a).
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converse also holds (apart from Frege himself, to whom the ascription of 

such a recognition would be a charitable anachronism). It is instructive to 

consider the result of replacing the value-range operator’ by the cardinality 

operator # in Dummett’s discussion. It would seem that if the second-order 

quantifier were responsible for Frege’s difficulty, then by substituting “car- 

dinality,” denoted: #, for “value-range” in Dummett’s argument, we should 

be able to show that Frege’s specifications do not provide certain sentences 

about cardinality, analogous to TT, with truth-values. So let 7(1) abbre- 

viate VF (x = ##F — F(zx)) and let us try to determine the truth-value of 
I#I). 

We argue: for I(#J) to be true, VF(#I = #F — F(#I)) must be 

true, thus #J = #J — I(#J) must be true, and therefore [(#J) must be 

true. So we seem to have gone round in a circle and it might occur to us 

to conclude that the argument shows that had Frege instead stipulated, 

“#ep(e) = #ey(e)” is always to have the same truth-value as “a ~ y” 
[abusing notation], he would not have secured a determinate truth value 
for I(#1). 

But we have not used all the resources at hand. For, as Basic Law V 
was available to the real Frege so Hume’s principle would have been at 

the disposal of our imaginary Frege. And Hume’s principle enables us to 

see that /(#J) is in fact false. For assume I(#J), i.e., VF(##I = #F — 

F(#1)). Let G(z) be x # x. Then —/(#G), for otherwise 1(#G), i.e. 

VF(#G = #F — F(#G)), whence (#G = #G — G(#G)) and G(#G), 

i.e. #G # #G, inrpossible. Therefore also #J #4 #G. And now let F(z) 

be (r = #GV [x A #1 A I(z)]). Then since #/ does, but #G does not, 
fall under 1, J = F, and by Hunie’s principle, #7 = #F. Then by the 
definition of I(r), F(#1), ic., (#l = #G Vv [Al A AIA I(#D)). But that 

is absurd: #1 4 #G, as we just saw. And because Hume’s principle is 
consistent, we cannot also show /(#J) true. 

The situation is the opposite for the other truth-teller-like formula simi- 

larly obtained from the formula IF (x ='F AF 2) found in a variant proof 

of the inconsistency of Basic Law V: if J(r) is IF(2 = #F A Fx), then it 

turns out that we can prove J(#J) from Hume’s principle. 
It is certainly not the case that if Basic Law V is replaced with Hume's 

principle, then the truth-values of all sentences are determined thereby. 

Each of the four sentences “The number of natural numbers is/is not iden- 

tical with the number of numbers” and “the number of numbers is/is not 

identical with the number of (self-identical) objects” is consistent with the 

result of replacing V by Hume. Thus apart from the inescapable Gédelian 
incompleteness, there are some very fundamental questions about cardinal- 

ity that Hume fails to resolve. 

To recapitulate: Dummett’s argument shows only that if one does not
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appeal to Basic Law V, one cannot readily deduce from Frege’s stipulations 

concerning the second-order quantifier and the other usual logical symbols, 

what the truth-value of H('H) is. Similarly for Hume’s principle and (#1). 
If we supplement Frege’s explanations of the quantifiers with Hume’s prin- 

ciple, we can show that J(#J) is true (and its companion J(#J) false); 
we cannot show I(#J) false, since second-order logic plus Hume’s principle 

is consistent. However, assuming Hume’s principle hardly settles all ques- 

tions, even all elementary questions. If we supplement Frege’s explanations 

with Basic Law V, we find that we can deduce that H(’H) is true and also 

deduce that it is false. 

It is, in my view, not so much Frege’s insouciance concerning second-order 

quantifiers that was responsible for his downfall as his adoption of a theory 

about a function from second- to first-order objects that could not possibly 

be true, facilitated by a lingering attachment to the idea that “coniextual 

definitions” like Hume’s principle and Basic Law V, are, if not logically 

true, then near enough as could make no difference. If the difficulty were 

where Dummett takes it to be, the introduction of the cardinality operator 

should be as uncertain and dangerous as that of the operator assigning 

value-ranges to concepts. Some uncertainty there indeed is; but danger is 

not now conceivable, for the result of adjoining Hume’s principle to second- 

order logic and second-order arithmetic (“analysis”) are equiconsistent. 
It is of interest to examine Terence Parsons’ construction of a model for 

the first-order fragment of Frege’s system, which works by inductively as- 

signing denotations to value-range terms, Secing why it cannot be extended 

to the full system briugs out that it. is not amy ill-foundedness in Frege’s 

stipulations concerning the second-order quantifier that is to blame for the 

contradiction. 

In the model, the variables, which are all first-order, are to range over 

the natural numbers. Inductively define the rank of a value-range ternt 

‘aA(a), which may contain free variables, to be the least natura] nuinber 

greater than the rank of any value-range term contained in the formula 

A(a). Now add to the language of the system a constant i denoting i, for 

each natural number i. Order all closed value-range terms of the expanded 

language in an w?-sequence, with those of lower rank preceding those of 

higher. Let J be a standard pairing function. Now inductively assign a 

natural immber as denotation to each closed value-range term ‘a A(q), as 
follows: let m be the rank of ‘aA(a@). If for some term '8B(G) that is 
earlier in the w?-sequence than ‘aA(a), A(i) and B(i) have the same value 

(perhaps a truth-value) for all natural numbers i, then let ‘aA(a) denote 
the same number as ‘3B(G). (The definition is OK, since if there are two 

such terms '/3B(/3) and “yC(7), we may inductively assume that they have 
been assigned the same denotation.) Otherwise, let ’aA(a) denote the least
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number J(m,n) not yet assigned to any closed term of rank m. (Again, the 
definition is OK, since there are only finitely many terms of rank m that 
precede ‘a A(a) in the sequence.) 

The notion the value of A(i) is unproblematic, for the value of A(i) will 
depend only on the denotations of closed terms of lower rank, which may 

be assumed inductively to have been fixed, and a universal quantification 

Va D(x) is true if and only if for every i, D(i) is true. 
Then since there cannot be an earliest closed value-range term ‘a A(a) 

such that for some earliest earlier closed value-range term ‘3.B((), 'aA(qa) 
and ‘8B(8) have the same denotation iff for some i, (A(i) + B(i)) is false, 
Basic Law V holds in the model. 

As rereading it will make plain, Frege’s argument in Section 31 can in 

no way be regarded as an anticipation of this proof of Parsons’. It is a 

natural question to ask where Parsons’ proof fails, as it must, if second- 

order quantifiers are added to the language. Although, following Dummett, 

one might guess that an ill-foundedness in the truth-conditions will turn 

out to be responsible for the failure, that guess would be mistaken. 

The trouble is that if second-order variables are added, the language will 

then contain the open terms ‘a '(a), F a second-order variable. The rank 
of these terms is 0. We handled first-order quantifiers by adding constants i 

denoting members of the domain to the language. Were we to try to handle 
(monadic) second-order quantifiers similarly, we should have to add to the 

language a new monadic predicate constant S for each set 5 of members 
of the domain. But then whenever S and T are different subsets of the 

domain, we should have to assign ‘aS(a) and ’aT(a) different members 

of the domain as their denotations, which canuot be doue. Thus it is the 

Cantor Russell aporia that screws up the attempt to construct a model for 
Basic Law V in the full second-order language, and not any ill-foundedness 

in the truth-conditions for the second-quantifier. 

A recent paper by Richard Heck! sheds considerable light on Basic Law 
V and the origin of the contradiction. His article seems to me to do in, once 

and for all, the idea that “contextual definitions” like Hume’s principle or 

Basic Law V, have, in general, any privileged logical status. 

Heck observes that every sentence is equivalent to the existential quan- 

tification (over %) of some “contextual definition,” by which we here mean 

a sentence of form VFVG(%F = %G + E(F,G)), where F and G are vari- 
ables of the same type, usually not that of individuals, % is a sign for a 

function from the entities over which F and G range to individuals, and 

E(F, G) defines an equivalence relation on those entities. Basic Law V and 

Hume’s principle are contextual definitions, with Vz(F(z) + G(z)) and 

11 (Heck, 1992).
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F = G playing the role of E(F,G). 

Heck’s observation is proved thus: let a sentence y be given. Then the 

relation E(F,G) on concepts F and G expressed by: y V Vr(F'(r)  G(z)) 
is an equivalence relation on concepts. For either ¢ is false, in which case 

E(F,G) holds if and only if the same objects fall under F and G, or ¢ is 

true, in which case &(F,G) is the universal relation on concepts, i.e. holds 

no matter what F and G might be. Either way, & is an equivalence relation. 

Now suppose y holds. Let a be some object in the domain. For all F, let 

%F =a. Then, no matter what F and G may be, %F = %G holds; but 
also, by our supposition, so does y V Vr(F'r «+ Gr). Conversely, suppose 

VEVG(%F = %G 4 (yp VVa(Fr @ Gz))) holds, but y does not. Then 
VEVG(%F = %G 4 Va(F x  Gz)) holds. Russell’s argument then yields 
a contradiction. (Substitute % for ’.) 

Thus there is a contextual definition that implies any given non-logical 

truth y; moreover y implies the existential quantification of the definition. 

How to demarcate those contextual definitions that should count as logical 

truths in some extended sense of the expression from those that should not 

would seem to be a philosophical problem we have no hope of solving at 
present. 

An observation quite analogous to Heck’s, but concerning sentences of 

form Tr("y") — w (“T-sentences,” or “Tarski biconditionals”), has been 
made by Vann McGee.'? McGce shows that in any formal theory capable 
of proving the diagonal lemma (not a stringent requirement), any sente1ce 

whatsoever will be equivalent to some Tarski biconditional. (His argument 
is independent of the choice of the truth-predicate Tr( ) for the language 

of the theory.) The arguinent. is brief. Let g be an arbitrary sentence 

of the language. Let A(z) be the formula Tr(#) @ gy. By the diagonal 

lemuna, there is a sentence 4 such that the theory proves yo A(o yr), Le. 
yo (Tr(y") & y). Therefore, by the associativity (!) and commutativity 

of the biconditional, y is equivalent in the theory to the Tarski biconditional 

Tr(p) > op. 
McGee’s observation renders thoroughly implausible the assumption, nat- 

ural enough, that T-sentences, apart from a few special, well known, and 

easily isolable problem cases (e.g. Tr("y") «+ #, % having been obtained by 

applying the diagonal lemma to —Tr( )), are “partial definitions” of truth 

or possess only minimal content. One currently fashionable view of truth 

holds that all there is to the concept of truth is the infinite set of all Tarski 

biconditionals (minus a few trouble-makers), each of which makes almost 

no claim at all, but which taken together make a significant claim about 

truth. McGee's result suggests that the problem of purging the undesirables 

12(McGee, 1992).
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is likely to be difficult at best. 
With McGee’s and Heck’s examples in mind, it doesn’t take much to 

come up with an instance of the comprehension scheme of set theory equiv- 
alent (in the presence of the null set axiom) to any sentence y whatso- 
ever: SyVa(r € y + (~pA zr ¢ z)). Fortunately, we are past considering 
comprehension statements as having the slightest claim to our credence. 
Contextual definitions deserve the same regard. 

Sentences VF VG(%F = %G ~ E(F,G)) assert that the function denoted 
by %, which standard notational conventions insist be a function of “mixed” 
tyPe defined on all concepts, maps concepts into individuals in a way that 
Tespects the equivalence relation on those concepts defined by E(F,G). 
Whether there is any such function will depend typically only on how many 
individuals there are. If E(F,G) is Vz(F(z) ++ G(z)), as in V, there will 
be no suitable function for % to denote regardless of what the domain 
is; if E(F,G) is F = G, as in Hume, there will be a suitable function iff 
there are (Dedekind) infinitely many individuals; if E(F,G) asserts that 
(the values of) F is finitely different from G, then a suitable function will 

exist iff there are only finitely many individuals; if E(F,G) is Vz((F(z) 
F(x)) A(G(z) + G(z)), then no matter what the individuals may be, there 
will always exist a suitable function. 

Of course, for his derivation of arithmetic from Hume to work, Frege had 
to understand # as a function from concepts to objects (and not, say, as 

one from concepts to second-level concepts). Two difficulties then beset the 

thought that Hume is analytic: there must be infinitely many individuals 
and there must be a biggest number, the number of all the things there 
are. The second may be surmountable; the first, I have elsewhere argued, 
is not. Properly understood, Hume only seems to be analytic; seeing how 

it can be put te work reveals it as synthetic if either analytic or synthetic. 
And Basic Law V is not only not analytic, it is simply a (higher-order) 

logical falsehood. For contraposing and making obvious abbreviations, we 
may write the bad half of Basic Law V: VFVG(F #4 G—-‘'F #'G). The 
smooth breathing sign ’ is then seen to be a sign for a function allegedly 

mapping concepts one-one into objects, the non-existence of which was care- 

fully proved by Frege in the appendix to Grundgesetze, after his derivation 
of the Russell paradox. 

Here is a suggestion about the genesis of Frege’s error in putting forth 
Basic Law V. Seeing no way to “solve the Julius Caesar problem,” Frege 
plumps in the Grundlagen for extensions and the principle “extensions of 

concepts are the same iff the same objects fall under the concepts.” His 
quahns are assuaged by the evident structural similarity of this principle 
to Hume’s principle, which both appears to be thoroughly obvious to Frege 
and strikes him as the preeminent analytic principle governing the notion
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of a number. He takes it that the principle about extensions is, similarly, 

the preeminent analytic truth governing the notion of an extension. After 

Grundlagen, he is struck by another analogy: concepts-as-functions. And 

if concepts are functions, there must be objects, value-ranges of functions, 

corresponding to extensions, and a corresponding principle, (the full) Basic 

Law V, governing functions and their value-ranges. Frege is now hooked: 

the principle about extensions strikes him as a confirming instance of Basic 
Law V, indeed as its single most important confirming instance. 

But although we may guess at Frege’s trains of thought, I think we cannot 

explain how the serpent entered Eden except to say: it is a brute fact that 

you cannot inject the power set of a set into that set (although you can, if 

the set is infinite, map its power set into it in such a way that equinumerous 

subsets are always taken to the same element). Perhaps hoodwinked by an 

analogy with an analytic-looking principle about numbers, Frege simply 
failed to notice that he was trying to do precisely that. 

Confronted with the Russell paradox, Frege responded with a patch, 

which failed. It is not clear that had the patch worked, it would have 

counted as vindicating logicism, for it is by no means certain that Frege’s 
revised notion of an extension and the new version of Basic Law V govern- 

ing it could have counted as any more a logical notion and a logical truth 

than the notion of number itself and Hume’s principle. 

But there is a patch that works, and one not too distant in character 

fron Frege’s idea of concepts as “two-sided” entities.'5 And it seems fair 

to say that it has as much claim as Frege’s would have had (had it worked) 

to vindicate logicisin about the natural nunibers. But like Frege’s revision 

of Basic Law V, and unlike Hume’s principle aud the original Basie Law 
V, its drawback is that there is no notion, and certainly no unquestionably 

logical uotion, that the patched axiom can be thought to be analytic of. 

So let V(x) be w = x. Call a concept F bad if F = V & [a : aFa, ie., if 

there are just as many F’ objects, us non-F objects, as objects. Let H(F,G) 
hold iff either the same objects fall under F and G or F and G are both 

bad. E(F, G) is easily seen to define an equivalence relation. 
Then the arithmetic of the natural numbers can be derived in the result 

of adjoining VFVG(%F = %G «+ E(F,G)) to second-order logic; we may 
define zero as %{x : z # x] and successor in either the Zermelo or the von 
Neumann manner. Supplementation is required to obtain the theory of the 

real numbers. And it, is not difficult to show VFVG(%F = %G «+ E(F,G)) 
satisfiable.!4 

13Terry Parsons suggested to me this two-sided improvement of the repair given in my 

“Saving Frege from contradiction” (Article 11 in this volume), and inquired whether it 
is consistent. 

14Thus: @ is (von Neumann) 0; no ordered pair is a von Neumann ordinal. Let
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The example shows that Frege’s stipulations concerning the conditions 
under which an equality between value-range terms is true may be revised 
so that they assign each sentence at most one truth-value, without altering 
the class of well-formed expressions and without preventing the derivation 
of arithmetic or otherwise “paralyzing” the system, in away that preserves a 
reasonable amount of the naive understanding of the notion of an extension. 
(Of course we have drawn on an understanding of sets sophisticated by 
decades of experience and theory in devising the repair.) 
Dummett sketches a consistency proof for the first-order fragment of the 

system. It would be interesting to know exactly what the strength of the 
fragment is. Zero and the unordered pair can be defined, as ‘x(x # 2) 
and ‘z(z = x Vz = y). Hence so can each particular hereditarily finite 
set and successor (4 la Zermelo): {zx}, ie. ‘y(y = x). And one can define 
complements of these: V, ie. ‘x(x = x); V—a2,y, ie ’2(z2 #rAzFZy), 
etc. On the other hand, one can certainly not define € (otherwise one 
could form the term ‘x(-x7 € z)), and hence not C (for x € y iff {z} C 
y) and hence neither U nor M (for z C y iff rUy = y, iff Ny = 2). 
Thus Dummett is certainly right to call the system “paralyzed.” But it 
seems to me that the greater the paralysis, the less tenable his opinion 

that it is second-order quantification that is the primary reason for the 

inconsistency; only if the first-order fragment had been strong enough to 

yield arithmetic or an interesting portion of it, would it be tempting to 

ascribe the inconsistency to the second-order quantifiers. For example, 
if some constructive or predicative second-order version of Frege's system 

could be defined and shown to be consistent and adequate for arithmetic, 
then Dummniett’s claim would acquire a force it now lacks. 

One may compare the question why the Grundgesetze system is incon- 
sistent. with the somewhat curious question why (formal) arithmetic is in- 
coniplete. Quite evidently, one cannot either say that it is the presence of 

variables or that it is the presence of addition (and successor) even though 
variable-free arithmetic and arithmetic with multiplication alone are com- 
plete. The reason, I think, is that the two theories are mutilated, or at 

least very much weakened, fragments of the original. On the other hand, 

Do = {0}, Dns = {(z, i) : 2 © Dx Ai = 0,1}, and D=(JDn. D is infinite. If F isa 
finite subset of D, then for some n F C Dn, and (F,1) € Dn4i C D; if F is a cofinite 
subset of D, then for some n, D— F € Dn, and (D — F,0) € Day © D. Otherwise 

F is infinite coinfinite and therefore satisfies “bad.” Set %F = ({F,1),(D — F,0), or @ 

according as F is finite, cofinite, or infinite coinfinite. And then {(D,%) — VFWG(%F = 

AG + (V2( Fx ++ Ga) V F and G are bad)). For let F and G be arbitrary subsets of D. 

If F is cofinite, then %F = {D—F,0) € D. Moreover, since F is cofinite, F and G are not 
both bad. And then %F = %G iff %™G = (D— F,0) iff G is cofinite and D—G = D—-F, 

iff Va( Far ++ Gx). Similarly, if F is finite. Finally, if F is infinite coinfinite, then 4F = oO. 

Then %F = %G iff %G = 9, iff G is infinite coinfinite, iff G satisties “bad,” iff F and G 

satisfy “bad.” And if Vz(Fz — Gz), then F and G satisfy “bad.”
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it is perhaps slightly tempting to say, “You know, surprisingly, it’s the 

presence of multiplication in the language,” the idea being that addition 

without multiplication, as opposed to variable-free arithmetic or arithmetic 
without addition, is an interesting and natural fragment of the whole arith- 

metic. (Since addition “comes before” multiplication, arithmetic without 

addition is not “natural.”) Were there some minor and salient feature of 

formal arithmetic whose removal would yield completeness (multiplication 

is hardly “minor” ), we might be tempted to ascribe incompleteness to the 

presence of that feature. I conclude that since there are revisions to the 

system of Grundgesetze that restore consistency, permit the development 

of arithmetic, and are significantly less drastic than the wholesale elimina- 

tion of second-order quantification, it is not. the presence of second-order 

quantifiers or Frege’s specifications concerning them that are to be held 

responsible for the contradiction.
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1879? 

In “Peirce the Logician,” a paper in his recent collection of articles called 
Realism with a Human Face, Hilary Putnam takes exception to a remark 
of Quine’s, “Logic is an old subject, and since 1879 it has been a great one,” 
the first sentence of the preface to each of the first two editions (1950, 1959) 
of Quine’s textbook Methods of Logic.? (Putnam used Methods of Logic 
as a textbook in his logic courses in the late 1950s.) Putnam justifiably 
considers the statement a slight to Boole. But the remark is dropped from 
the prefaces to the third and fourth editions and I have not been able to 
find it anywhere else in either later edition.? 

In any case, I am grateful to Putnam for recalling the excised remark and 

thereby prompting me to rethink a view about the history of logic that I 

had held for a loug time: that 1879 was a watershed year for logic. 1879, of 
course, was tle year in which Frege’s Begriffsschrift was published. There 

is no question that. with its publication logic took a gigantic step forward. I 

want. to suggest here that there is a respect in which the advance represented 
by the Beyriffsschrift may not have been so great as some (inyself certainly 
included) have supposed. Not the advance wasn’t great; just not so great. 

Harvard University Press publishes an anthology entitled From Frege to 

Gédel: a Source Book in Mathematical Logic 1879-1931.4_ Among those 

whose help the editor, Jean van Heijenoort, acknowledges are Dreben, Par- 

sons, Quine, and Wang, all of whom have at one time been on the faculty 

of the university whose press publishes that work. It is interesting to see 
the Putnam of “Peirce the Logician” standing in opposition to the Frege- 

centrism that has hitherto prevailed in his home university. Much of this 

paper consists of ruminations on the history of logic which support the 

This paper was first published in Reading Putnam, edited by Peter Clark and Robert 

Hale, Oxford: Basil Blackwell, 1994. 

(Putnam, 1990). The essay "Peirce the Logician” is found on pp. 252-260. 
?The quoted sentence is on p. vii of both editions. 
3(Quine, 1972) and (Quine, 1982). 
4(van Heijenoort, 1967). 
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iconoclastic tendency of Putnam’s article. 
The historical note to Chapter 46 of the fourth edition of Methods of Logic, 

called “Classes,” reads, “The construction illustrated in the definition of 

ancestor was introduced by Frege in 1879 for application to number. It 

was rediscovered independently a few years later by Peirce, and again by 

Dedekind, who propounded it in 1887 under the name of the method of 

chains.”> In his Mathematical Logic, Quine writes, “The line of reasoning 

used in D30 was first set forth by Frege in 1879 (Begriffsschrift, p. 60) in 

defining what I have called the proper ancestral.”® Later we shall later take 

a look at this historical commonplace. 

It is well-known that Quine’s later, post- Mathematical Logic view is that 

the discovery of the ancestral was not an advance in logic at all, but only 

an advance in the theory of classes, a portion of “mathematics.” Although 

the ancestral is described in his textbook on logic, Quine’s account of it 

is contained in Part IV, “Glimpses Beyond”——beyond logic, as the term, 

according to the later Quine, is properly used, of course. Putnam has 

views about the scope of logic that differ interestingly from Quine’s and 

from my own; before discussing the year 1879, I want to lay out Putnam’s 

views about the scope of logic and what I take to be our differences on this 

question. 

In Philosophy of Logic, Putnam argues that “(a) it is rather arbitrary to 

say that ‘second-order’ logic is uot ‘logic’; and (b) even if we do say this, 

the natural widerstanding of first-order logic is that. in writing down first- 
order schemata we are implicitly asserting their validity, that js, making 

second-order assertions.” 7 

He suggests that it is one quite natural choice to take statements like 

“For all classes, SM, P, if all S are Af and all M7 are P, then all S are 2,” 

which refer explicitly to classes, as statements of logic. He holds that this 

statement expresses the validity of the inference: Vr(Sa — Ala), Va( Ma > 
Pr) ..W2(Sz — Px). At least some statements expressing the validity of 

certain valid inferences should thus be counted as logical truths. 
He writes, “The decision of the great founders of modern logic ...was 

unhesitatingly to count such expressions as IF as part of logic, and even to 

allow such expressions as JF?, with the meaning for every class of classes.”® 
He continues, “Suppose, however, we decide to draw the line at ‘first-order’ 

logic (‘quantification theory’) and to count such expressions as ‘SF’, ‘IF’, 
ete. as belonging to mathematics.”® But, one might wonder, if one draws 

S(Quine, 1982), p 204. 
8(Quine, 1955), p. 221. 
7(Putnam, 1971), p. 32. 

§(Putnam, 1971), p. 30. 
®(Putnam, 1971), p. 31.
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the line here, what happens to expressions like “VF” and “VF”? Are these 

still expressions of logic? Putnam here seems to be hinting at a position 

on which truths of the form VF|V...VF,y, y a valid first-order formula, 

should be counted as logical truths, while truths IF y, which on his view 

assert. the existence of classes with certain properties, should not. 

To object that J is definable in terms of V and negation is to miss the 

point of this view, which is that those “II,” statements obtained from valid 

formulae of first-order logic by prefixing strings either of universal second- 

order quantifiers VF or of their definitional equivalents ~J-F are more 

justifiably counted as logical truths than class-existence assertions and other 

true “X” statements. 

In “Peirce the Logician,” Putnam writes: 

(1) Where to draw the line between logic and set theory ... is 

not an easy question. The statement that a syllogism is valid, 

for example is a statement of second-order logic. (Barbara is 

valid just in case 

VEIVGVA(V2( Fr - Gr) AVa(Gr — Hz) > Va(Fxr - Hz)), 

for example). If second-order logic is “set theory,” then most 
of traditional logic becomes set theory. (2) The full intuitive 
principle of mathematical induction is definitely second-order 

in anybody's view. Thus there is a higher-order element in 

arithmetic whether or not one chooses to “identify numbers with 

sets” just as Frege realized.!° 

And at the Quine conference in San Marino, Putnam explicitly said he 
wanted to “split the difference” between Quine and me, and to count 

second-order wniversal quantifications of valid first-order schemata, but only 
those, as logical truths. Some fretting over a few uncomfortable aspects of 

this position is called for. 

First of all, Putnam writes, “Barbara is valid just in case 

VIVGVH (V2( Fs > G2) AVa(Gr > Haz) > Va(Fr — Hx)).” 

This is what R. C. Jeffrey calls Loglish. What’s not perfectly clear to me 

is what the formula “VF...” is supposed to mean. What does the first- 

order variable z range over? One naturally supposes over (absolutely) all 

the things there are. Otherwise, the second-order statement would not 
give the full force of the validity; one can, one supposes, make a Bar- 

bara syllogism about any things whatsoever. But if so, then what do the 

10(p utnam, 1990), p. 259. There are some first-order quantifiers missing from the text, 

which I have here restored.
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second-order variables range over? Classes? Well O.K.; but then it had 

better not be that all classes are things. But then can one or can’t one 

speak about everything—and by everything, I mean everything including 

all classes there might be—with one’s first-order variables? Putnam would 

be the last person to want to say that one could use the word “everything” 

to quantify over everything but one could not use a universal quantifier to 

do so. 

But if it means “If F,G, and H are classes, everything that belongs to 

F belongs to G, and everything that belongs to G belongs to H, then 

everything that belongs to F belongs to H,” how is one to symbolize: 

If each thing that is a class containing all ordinals is a class that 

is not a member of anything and each thing that is a class that 

is not a member of anything is a class that is the same size as 

the universal class, then each thing that is a class containing all 

ordinals is a class that is the same size as the universal class 

a valid, indeed syllogistically valid, statement, each of whose propositional 

coustituents is true, according to the currently standard theory of classes? If 

one symbolizes it as VF VGVA (Va(F'a > Gr) AVa(Ga > Hx) 3 Va( Fa > 
Hx)), with “2” ranging over all classes, and “F'x” abbreviating “z is a class 
containing all ordinals,” etc., then how is this statement supposed to be a 

consequence of the second-order assertion about classes? The problem, of 

course, is that according to the standard theory of classes, there aren’t any 

classes that contain all classes that contain all ordinals, ete. 

I don’t wish to suggest that. these difficulties can’t somchow be overcome. 
In a pair of articles published some years ago,!! 1 suggested that. the plural 

munber can be used in explaining what. validity of Barbara comes to. It is 
admittedly rather taxing te pronounce the explanation, and to do so risks 

the Hilarious response: “That’s clearer than introducing classes?” But here 

goes: 

No matter what certain things—call them F' things—may be, 

no matter what certain things—call them G things—may be, 

and no matter what certain things—call them H things—may 

be, if everything that is an F' thing is a G thing, and everything 

that is a G thing is an H thing, then everything that is an F 
thing is an H thing. 

Not so bad after all, and even if appreciably more awkward, certainly less 

involved with classes and the serious theoretical difficulties that attend their 

11“To Be is To Be a Value of a Variable (or To Be Some Values of Some Variables),” 
and “Nominalist Platonism,” reprinted as Articles 4 and 5 in this volume.



15. 1879? 241 

introduction than the formulation offered by Putnam. Whether use of the 

plural number frees one from these worries or not, it remains the case that 

talk about classes won’t get one out of the sorts of difficulty that prompted 

their introduction in the first place. 

Other possible responses, of course, are to admit a hierarchy of classes, 

superclasses, superduperclasses, etc., to claim that, actually, we can’t talk 

about everything at once, to invoke some doctrine of typical or systematic 

ambiguity, or to mutter something about a ladder. I prefer the tongue- 

twisting to the mystical or the nonsensical, and particularly to the nonsen- 

sical that advertises itself as such, “strictly speaking.” 

Putnam’s remark that mathematical induction is second-order and that 

there is a higher-order element in arithmetic is perplexing. The position of 

the remark in Putnam’s paper makes it seem as if he were arguing against 

a Quinean. But the remark is one that Quine could happily accept. 

I suspect—hope—that the view Putnam wanted to put forth is that just 

as statements like the second-order statement expressing the validity of 

Barbara should be regarded as logical truths, so the ancestral should be 

counted as a logical notion. The (weak) ancestral A, of a relation R may 

be defined by a formula that is a universal second-order quantification of a 
first-order formula: zR,y iff 

VE (Fy AVuNz(Fz AwRz — Fw) - Fo). 

Thus a good deal of the content. of arithmetic, expressible with the aid of 

the ancestral, would count as logic. 

If Putnam wishes to count the ancestral as a notion of logic, then one 

watits to know about. inferences involving the ancestral. Are any of them to 

be counted as logically valid? What about inferences in which a statement 

to the effect. that one person is an ancestor of another is a premiss? Here’s 
a favorite example of mine, a near-relative of an inference made by Frege 

in deriving (83) of the Begriffsschrift: 

Xavier is an ancestor of Yolanda. 2P.y 
Yolanda is blue. By 

Any parent of anyone blue is red. VwV2(Bw AzPw — Rz) 
Any parent of anyone red is blue. VwV2(Rw AzPw — Bz) 
.. Xavier is either red or blue. . Axv Br 

Of course “xP, 7” here abbreviates its second-order definition. 

There is a way to express, in English, an argument that shows the validity 
of this inference without explicitly introducing the notion of a class. By 

the first premiss, no matter who certain people may be, if Yolanda is one of 

them and every parent of any one of them is also one of them, then Xavier 

is one of them too. Now consider the people who are either red or blue.
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By the second premiss, Yolanda is one of them. By the third and fourth 

premisses, every parent of any one of them is also one of them. Thus Xavier 

is one of them, and is therefore either red or blue. 

T find it an uncomfortable position to want to admit the ancestral as a 

logical notion, but not to admit. as (logically) valid inferences such as the one 

just given which involve the ancestral in at least a moderately interesting 

way. Does one want to accept a doctrine on which the foregoing argument 

is not a piece of logic, in the fullest sense of the word? 

But then if the inference is logically valid, then either the statement that it 

is valid is not itself valid or some true Iz statements are logical truths. The 

reason is that the statement that the inference is valid will be a universal 

quantification (with respect to P,R,B) of a formula in which a universal 

second-order quantifier occurs in the antecedent of a conditional; its prenex 

equivalent will thus begin: VPVRV BaF ... I would have supposed that the 

desire to count the statement that Barbara is valid as itself valid would 

have arisen from a more genera], and perfectly reasonable, wish: to count a 

true statement to the effect that any given inference is valid as itself valid. 

Thus Putnam’s position on the scope of logic strikes me as unstable: 

either certain plainly logical modes of reasoning fail to count as such or 

more than just the valid I, sentences are going to have to come out as 

logical truths. 

In the articles I mentioned, I offered a scheme of translation from the 

notation of second-order logic into natural language augmented with de- 

vices for cross-reference. (Such devices are a necessary addition to natural 
language if one wishes to translate sentences in first-order notation with 

even a inoderately complicated quantifieational structure into natural lan- 

guage.) The key feature of the scheme was the clause for the translation 

of the second-order existential quantifier “3X,” which was te be rendered 

roughly as “There are some things that, are such that ...”'!? Uuder the 

assumption that the first-order variables range over all the things there are, 

the translation of IXVz( Xz + 72 € x) into English is equivalent, not to a 
contradiction, but to the trivial truth: if there is at least one thing that is 

not a member of itself, then there are some things that are such that each 

thing is one of them if and only if it is not a member of itself. 

As was mentioned in Article 4 above, Charles Parsons claimed that there 

appeared to be no non-artificial way to translate “VX” into natural lan- 

guage, and that any translation would seem to have to proceed via the 

equivalence of “VX” with “jiX-.” David Lewis later suggested, however, 

that the construction “No matter what some (or certain) things X may be 

.” is a perfectly adequate way to render second-order monadic universal 

124 small qualification must be made to account for the “null class.”
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quantifiers into familiar English. 
Lewis’s suggestion was particularly striking to one who had been taught?4 

that it was not perfectly correct toread “Wa(Fx — Gz)” as “for every z, if 
isan F, x isa G,” since “every” cannot be followed by a linguistic item that 
also functions as a pronoun, and that the proper way to read it was: “No 
matter what a thing may be, if it isan F, then it isa G.” Pluralizing “a” to 
“some” (and pronounced: [sm], not [sum], as Helen Cartwright points out), 
or to “certain,” yields the desired correct and natural version of “WX.” 

A more serious drawback, first pointed out to me by Hartry Field, is that 

the scheme provides no way to translate into natural language second-order 

dyadic, or, more generally, polyadic, quantification. In favorable cases, of 

course, pairing functions will be definable in the language and higher-degree 

second-order quantification reducible to monadic. But the availability of 

pairing functions cannot be considered to be guaranteed by logic: any do- 

main closed under an ordered pair function contains (Dedekind) infinitely 

many objects if it contains at least two. Field’s observation appears to be 
unassailable. 

In the absence of a way to translate sentences of second-order logic con- 

taining second-order polyadic quantifiers into natural language, must we 

regard second-order polyadic logic as capable of beg made intelligible 

only via quantification over polyadic relations, and thus as legitimate only 

when first-order quantifiers range over a set? 

T am not sure, but I don’t see that we must. We need not regard trans- 

latability of a notation into language we already understand as a necessary 

condition of the intelligibility of that notation. To be sure, our ability 

to translate second-order monadic statements into English enables us to 

take them as having a sense the one given by the translation. (The is- 

sue, of course, is whether they have a sense when the first-order variables 

range over objects that do not together constitute a set.) But the pro- 

visiou of a translation scheme into an antecedently understood language 

need not be the only way to confer sense upon statements in some no- 

tation; we didn’t learn our mother tongue that way, for sure. And after 

all, we understand the basic formal machinery of second-order logic rather 

well; the syntax (including the devices of quantification and predication, 

as well as elementary proof theory) of polyadic second-order notation can 

be understood by one who understands that of polyadic first-order logic 

and monadic second-order logic. Moreover, we can imagine sufficiently well 

how enough additional resources—“pro-verbs”— might have been present in 

natural language for us to be able to translate into it the entire formalism 

of polyadic second-order logic. Thus I incline to think that our understand- 

13 As I had been, by C. G. Hempel.
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ing of both the syntax of polyadic second-order logic and the semantics of 

polyadic first-order and monadic second-order logic has combined with our 

ability to envisage an extension (possibly a quite radical one) of the lan- 

guage we speak to afford us an understanding of the semantics of polyadic 

second-order logic, even though we cannot express that understanding in 

the language we presently speak. 

I shall not speculate on the question whether we can imagine extensions of 

English that would make possible a translation scheme for such third-order 

statements as “SadFAr(aF A Fr),” “x” again being understood to range 

over all objects. Instead, hoping that J have opened the way for Putnam to 

move closer to my position, and aware that I have sufficiently nudged him 

in that direction, I shall now turn to one of the historical issues raised by 

Putnam’s paper, the extent to which 1879 was an “epochal”! year in the 
history of logic. 

The main point of “Peirce the Logician” seems to me entirely correct: 

preat accomplishments in logic were made before 1879. I want to begin to 

sharpen the point by describing an observation about propositional logic 

that Boole made towards the end of his 82-page monograph The Mathe- 

matical Analysis of Logic,'® which was published in 1847. 

In the next-to-last section, called “Properties of Elective Functions” (elec- 

tive functions are truth functions, or in current parlance, Boolean func- 

tions), Boole notes that, as we would now put the matter, any formula 

(xr) of propositional logic containing the propositional variable x is equiv- 

alent to the formula (y(1) A x) V (y(0) A 72). Here 1 and 0 are constants 
of propositional logic for truth and falsity. The disjuncts are incompatible, 

and nothing is lost by replacing the Boolean exclusive disjunction with the 

inclusive V. 
What Boole realized was that iterating this operation shows that an arbi- 

trary propositional formula 9(21,..., 2m) is equivalent to the disjunction of 

the 2” formulas (y(i1,...,im) A +21 A... A+2m), where each i; is either 1 

or 0 and +2; is 2; or —x; according as 7; is 1 or 0. Boole termed the equiv- 
alence the law of development, and called (his analogues of) the constant 
formulae p(i1,.--,%m) the moduli of y(71,...,2m). Since each modulus is 

equal to 1 or O (and it can be easily calculated which), every propositional 

formula y(r1,-..,2%m) is, as Boole saw, equivalent to the disjunction of 

those formulae 2; A... A +2, for which the moduli ¢(i1,..., im) do not 
vanish (are not = 0). Thus Boole knew that every formula of propositional 

14Thus van Heijenoort: “A great epoch in the history of logic did open in 1879 when 
Gottlob Frege’s Begriffsschrift was published.” (van Heijenoort, 1967), p. vi. 

15(Boole, 1847). The monograph is much less well known than Boole’s Laws of Thought 

(Boole, 1916), probably because it is too short for a proper book, and too long to be 

included in a collection of articles.



15. 1879? 245 

logic is equivalent to one in what we now call perfect disjunctive normal 

form. 

Boole clearly had the idea of all possible distributions of truth-values: 

“It is evident that if the number of elective symbols is m, the number of 

different moduli will be 2™, and that their separate values will be obtained 

by interchanging in every possible way the values 1 and 0 in the places of 

the elective symbols of the given function.” Thus one main feature of the 

method of truth-tables, usually credited to Post and Wittgenstein, was on 

prominent display in Boole’s early monograph.!® Another feature was not: 

the now familiar manner in which the truth-values of compound sentences 

are inherited from those of their components; for that reason, it would be 

injudicious, I think, to try to credit Boole with the discovery of truth-tables. 

No edition of Methods of Logic provides a natural deduction system for 

Boolean notions. It may be that Quine was inclined to minimize the signifi- 

cance of the propositional calculus simply because truth-functional validity 

is decidable. Although quantifiers are important in logic—very important— 
it is not strictly true that “their importance cannot be overemphasized.” 

It may have taken the rise of the computer for us to see the interest and 

importance of the propositional calculus, but it is not now possible to for- 

get that a problem about the propositional calculus, the P = NP problem 

(which Putnam worked on with Martin Davis in the 50s, by the way), is 
8enerally considered to be one of the ten most important unsolved prob- 
lems in the whole of mathematics. We now see the decidable as a realm 

with an interesting structure in which Boolean notions are anything but 

trivial. Truth-functional validity is certainly decidable, but it is also, in 

the apt technical term, hard. Logie is an old subject, and since 1847 it has 

been a hard one. Quine himself has of course made important contributions 

to propositional logic, which, he has noted with apparent pride, contribu- 

tors to engineering journals have frequently cited. The offending sentence 
having been removed from later editions of Methods and with “Boolean” 

a term now known to every student of programming, amends should be 

thought made. 

Along with the publication of the Begriffsschrift, another event of logical 

note occurred in 1879. A passage in the introduction to Volume 4 of the 

Writings of Charles S. Peirce!’ relates that according to lecture notes taken 

by a student of Peirce’s, Allan Marquand, Peirce gave a lecture in December 

of 1879 in which he presented the following axiomatization of arithmetic: 

16 (Kneale and Kneale, 1984) contains an extensive and very useful account of Boole's 
Mathematical Analysis of Logic and Laws of Thought. 

7The Passage, to which Joe Ullian called my attention, is in (Frisch et al., 1982), 

vol. 4, p. xliv.
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1. Every number by process of increase by 1 produces a number. 

2. The number 1 is not so produced. 

. Every other number is so produced. 

. The producing and produced numbers are different. 

a 
a
 

In whatever transitive relation every number so produced stands to 

that which produces it, in that relation every number other than 1 

stands to 1. 

6. What is so produced from any individual number is an individual 

number. 

7. What so produces any individual number is an individual number. 

Letting “Pry” mean “x by process of increase by 1 produces y,” we may 

symbolize these: 

1, Va(Nz — Fy(Pry A Ny)) 

2. N1;V2(Na — -Pr1) 

. VWy(Ny Ay #1 dar Pry) 

me
m 

Oo
 

. Vavy(Na A Ny A Pry — x #y) 

5. VR(Trans(2) AVicVy(Nic A Ny A Pory > Rye) 2 Vae( Na Aw 41> 

Rxr1)) 

6. Vay(Na A Pry > Ny) 

7. Vay(Ny A Pry — Nz) 

“Trans(R)” abbreviates: VzVyVz(Rry A Ryz — Raz), of course. 

The editors write that Peirce went on to define the relation “greater 

than.” Not having seen Marquand’s notes, I can only guess that the def- 

inition ran, more or less: a number is greater than another if it stands to 

that other in every transitive relation in which every number so produced 

stands to that. which produces it. If so, then Axiom 5 would be equivalent 

to the statement that every number other than 1 is greater than one. 

There are at least one and possibly two serious omissions from Peirce’s 

axiomatization. It is not clear from Peirce’s language that at most one 

number is produced by process of increase by 1 from any number. What. he 

says allows, I think, that. some number produces two distinct numbers, and
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that the tree of finite sequences of zeros and ones or even the full infinitary 

tree of finite sequences of objects in any one set whatsoever might be a 

model of his axioms. Perhaps, though, the phrase “the producing and 

the produced numbers” in Axiom 4 is meant to imply uniqueness of the 

produced number; we might then adjoin the conjunct VzVyVz(Nz A Pry A 

Pxrz— y = z) to the symbolization of 4. 

The second omission is that Peirce’s axioms, even with the emendation 

of Axiom 4 just given, do not guarantee that production is one-one, that 

is, that different, numbers produce different numbers. Dedekind’s condition 

6 in The Nature and Meaning of Numbers [Was sind und was sollen die 

Zohlen?| explicitly provided just such a guarantee. The omission from 

Peirce’s list is serious: Peirce’s axioms are true in the three-element. model 

in which 1 produces 2, 2 produces 3, and 3 produces 2: 

1 ———> 2 3 
~~ 

But we can easily supply Peirce with the necessary axiom: 

VaVyV2Vu( Pry A Pzw - (n= ze y=w)). 

What is worth dwelling on in Peirce’s list of axioms is not what it leaves 

out, but what it contains. The fifth axiom, which says that whenever R 

is a transitive relation which includes the relation on numbers is produced 

by, then every umber other than 1 bears # to 1, is remarkable. It is, 
audibly, a second-order axiom, universally quantifying over all relations 

of a certain sort: “in whatever transitive relation ...in that relation ...” 

What the axiom says, and how it is supposed to work, though, may not be 

immediately apparent. 

However, translating “is produced (by process of increase by 1) by” as 

“succeeds” enables us see that it implies the principle of mathematical 

induction. For suppose that 1 has a certain property F and that every 

number that succeeds a number with property F also has property F. 

[FIAV2(Nz A Ny A Fz A Pry — Fy).| We are to show that every number 

has F. Let R be the relation that holds between w and z if and only if w# and 

z are numbers and if z has F then w has F. [Rwz iff NwANzA(Fz — Fw),.] 
Ris transitive, by the transitivity of material implication. Moreover, every 

number produced by a number stands in FR to that number, for if y is 

produced by 2, i-e. y succeeds z, then by our supposition, if z has F, y 

has F, that is to say, y stands in R to z. [Pry — (Fr — Fy), and so 

Pry — Ryz.} By Axiom 5, every number other than 1 stands in R to 1.
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That is, if x is a number other than 1, if 1 has F, then z has F; since 1 

does have F’, « has F. Thus every number z has F. 

In the presence of the other axioms, mathematical induction implies 

Peirce’s Axiom 5; we may safely leave this derivation to the reader. 

It is at least moderately plausible to conjecture that Peirce recognized 

that mathematical induction thus followed from Axiom 5 and conversely. 

But whether or not he did, it is certain that the idea of applying the logic 

of relations to the “primitive” relation of one number’s succeeding another 

in order to characterize the natural number series was in the air over Bal- 

timore, far from that over Jena, the year the Begriffsschrift was published. 

The date of the preface of the Begriffsschrift is 18 December 1878, and 

there is absolutely no question that Frege’s achievements were thus much 

in advance of those of Peirce, even if one ignores Peirce’s omissions. The 

opening paragraph of van Heijenoort’s (1967) introduction to the Begriff- 

sschrift enumerates several of the excellencies of Frege’s book. I note with 

pleasure, by the way, that van Heijenoort refers to the definition of the 

ancestral as “a logical [my italics] definition of sequence.” 18 I am not now 

concerned with the excellencies of Frege’s work but want instead to raise 

the question of whether Frege was actually the first to define the ancestral. 

Peirce camic close, we have seen, but whatever he may be thought to have 

done, Frege had him beat by at least a year. 

x bears the (strong) ancestral of the relation R to y if y belongs to 

every class containing all objects to which <r or some member of the class 

bears Ro rRty iff VA(W2(rRz V dw( Kw A wRz)) 4+ Wz) > Ky), ie. 
VA(Va(eRz + Wz) AWuN2z( Kw AwR: + Kz) + Ky). The class of all 
objects to which zr bears the ancestral of A is itself a class containing afl 

objects to which a or some member bears ft. Was Frege the first. perso 

to define a class in this mamer, as the class of objects belonging to all 

classes satisfying a certain condition, where that class is itself one of the 
classes that satisfy the condition? Frege gives the definition of the ancestral 

of a relation in Section 26 of the Begriffsschrift. His “elucidation” of his 

(symbolic) definition is: 

If from the two propositions that every result of an application 

of the procedure f to z has property F and that property F 

is hereditary in the f-sequence it can be inferred, whatever F 

may be, that y has property F, then I say: “y follows x in the 

f-sequence,” or “z precedes y in the f-sequence.” 

Did anyone give such a definition before Frege? Of course it must be some- 

what vague what “such” denotes here. 

18(van Heijenoort, 1967), p. 1.
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The preface to the second edition of Richard Dedekind’s monograph, 

The Nature and Meaning of Numbers, dated 24 August 1893, contains the 

statement, 

About a year after the publication of my memoir I became ac- 

quainted with G. Frege’s Grundlagen der Arithmetik, which had 

already appeared in the year 1884. However different the view 

of the essence of number adopted in that work is from my own, 

yet it contains, particularly from §79 on, points of very close 

contact with my paper, especially with my definition (44).!9 

Definition (44) runs: “If A is an arbitrary part [subset] of S, then we will 
denote by Ag the intersection of all those chains (e.g. S) of which A is a 

part; this intersection Ag exists (cf. 17) because A itself is a common subset 
of all these chains. Since by 43, Ag is moreover a chain, we will call Ag the 
chain of the system A, or for short the chain of A.””° K is a chain with 

respect to a function y, it may be recalled, if every image of a member of K 

is a member of K, if as we would say, K is closed under y. Thus according 

to Dedekind’s definition, y € Ao if VK(Vz(z € Az € K)AVw(w € 
K — y(w) € K) + y € K). It is clear that Dedekind’s definition of Apo is 
strikingly like Frege’s of “y follows x in the f-sequence,” and is “such” a 

definition. 

Was sind was first published in 1888, nine years after the Begriffsschrift. 
In the preface to the first edition, dated 5 October 1887, Dedekind wrote, 

The design of such a presentation I had formed before the publi- 

cation of my paper on Continuity, but only after its appearance 

and with many interruptions occasioned by increased official du- 

ties aud other necessary labors, was I able in the years 1872 to 

1878 to write out a first draft on a few sheets of paper, which 

several mathematicians examined and in part discussed with 
me,?1 

The question thus arises whether those few sheets of paper contained any- 

thing like the definition of Aj Dedekind would later give in Section 44 of 
his published monograph. 

The answer may have come to light only as recently as 1976, with the 

publication of Pierre Dugac’s Richard Dedekind et les Fondements des 

Mathématiques,?? which contains a large number of unedited texts, includ- 

19(Dedekind, 1901), p. 42. 
?0(Dedekind, 1901), pp. 57-58. 
21 (Dedekind, 1901), p. 32. _ 

?2(Dugac, 1976). am extremely grateful to Jan Sebestik, of the Institut d’Histoire des 

Sciences, Université de Paris I, for calling my attention to Dugac’s book and its appendix 

LVI, which contains Dedekind’s 1872-1878 draft of Was sind und was sollen die Zahlen?
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ing the first draft of Was sind mentioned by Dedekind. It turns out that 

the draft contains most of the ideas and proofs found in the later version, 

including the definition of a chain, that of a principal element (Hauptele- 

ment), which is an element of the given set S that is contained in all chains 

(Dedekind emphasizes “all”), and the argument that the system of princi- 

pal elements is itself a chain. These all appear near the beginning of the 

draft. Dedekind’s first definition of “chain” reads: “A part K of S shall 

be called a chain (or any other name) if K’ is a part of K.”™ It strongly 

appears that different parts of the draft were composed at different times, 

for Dedekind later defines a group in the same way: “(with respect to this 

mapping) G is called a group if G’ is a part of G.”** B is then called 

dependent on A “if B is a part of every group of which A is a part.” A 

theorem immediately follows: “The system of all things dependent on A is 
a group, which shall be designated Ag.”*8 Dedekind was evidently dither- 
ing over which term to use. Later in the manuscript he settles on “chain,” 

defines it as before, defines a thing, b, in S to be dependent on a thing, a, 

in S if “every chain that contains a contains b,” introduces the notation: 

(a) to denote the system of all things dependent on a, and proves that (a) 

is a chain.2” Towards the end of the draft there is even a fourth series of 

similar definitions and theorems. 

Dedekind and Dugac give only the span of years 1872-1878 as the period 

during which the draft was written. But since it appears that different 

parts of the draft were composed at different times (for it seems rather 

unlikely that, Dedekind would have written down much the same thing four 

times over within the space of a year or two), it is quite possible that 

Dedekind formulated the definition of Ag for the first time several years 

before 1878, possibly towards 1872, and quite possibly before Frege arrived 

at the definition of “y follows a in the f-sequence.” It may be that we shall 
never know who came first, and perhaps that is all to the good. Reading the 

draft. couvinees me, however, that it is at least as probable that Dedekind 

had the definition of Ap before Frege had that of the ancestral as that he 

had it after. 

The draft contains much else that is familiar from the monograph: def- 

mitions of one-one mapping, (Dedekind!) infinity, the connection between 

the principle of complete induction™ and the notion of a principal element, 

the recursion equations for addition (not multiplication), and the assertion 

23(Dugac, 1976), p. 295. 
24(Dugac, 1976), p. 296. 
25 (Dugac, 1976). 
26(Dugac, 1976). 

27(Bugac, 1976), p. 298. 
8 Farly on in the draft one finds the parenthetical phrase “(Schlu8 von n auf n+ 1)”; 

in the Grundlagen Frege refers to induction as “die Schlussweise von n auf n+ 1.”
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that numbers are creations of the human mind (Geist). Notable is the elab- 
orateness of the development of the theory of chains that Dedekind gives 

towards the end of the draft, after the fourth definition of “chain” (count- 
ing that of “group” as the second). Another remarkable feature, as Dugac 

notes, is the absence of an analogue of Theorem 66 of Was sind, “There are 

infinite systems,” and hence of any dubious or non-mathematical proof of 
that theorem. 

Dedekind, of course, did not quite define the ancestral of a relation. 

But the difference between his definition of Ag (with respect to a map- 

ping y) and Frege’s of the ancestral is small. y is an element of Ao iff 

VK(V2(z2 € A> z€ K) AVu(w € K — pwe K) >y € K); cR*y iff 
VK (V2(2Rz — Kz) AVwV2(Kw A Rwz — Kz) Ky). Dedekind’s notion 

is less genera] than Frege’s in what is perhaps a significant respect: it covers 

only functional, rather than arbitrary, relations. For Dedekind to have had 

a notion fully as general as Frege’s, however, he need only have changed 

the definition of K’ from: {yw : Kw}, ie. {z : dw(Kw A yw = z)}, to: 
{z : dw(Kw A Rwz)}. The difference between the definitions of Ag and 
&* is insignificant in comparison with the idea of making definitions in this 

manner at all. 

Whether or not Dedekind anticipated by a few years one of Frege’s great- 

est discoveries, there is another year before 1879, 1858, which it would not 
be implausible to take as the one in which logic became a “great” subject. 

Indeed, logic as we now know it might be said to have arisen precisely on 
24 November 1858. For on that date, according to the preface to Conti- 

nuity and Irrational Numbers, Dedekind succeeded in discovering the “true 

origin in the clements of arithmetic” of the theorem that every bounded 
increasing function on the reals approaches a limit.2? The key idea needed 

to prove the theorem rigorously was one of the most celebrated of all logical 

construetions, Dedekind’s definition of the real numbers via cuts in the ra- 

tional numbers. Although exceedingly familiar, the construction seems to 

me to be of possible philosophical interest in a way that has not been much 
remarked upon. Let me review it and describe the aspect I find noteworthy. 

Take as given the set Q of rationals and the less-than relation on them. 

In Section 4 of Continuity, called “Creation of the Irrational Numbers 

[Schépfung der irrationalen Zahlen],” Dedekind defines a cut as a pair 
(A, B,) of non-empty classes of rationals such that every element of A, 
is less than every element of B,. Every rational number r produces two 

cuts, viz. ([¢:¢ < rl,fa:¢@>7]) and (lg: ¢@ <7],l¢:¢ 2 7]), which are 
identified, regarded as “inessentially different.” Some cuts, however, e.g. 

(lg:q< V2], [q > V2]), are not produced by any rational number. 

3 (Dedekind, 1901), p. 2.
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“Now anytime a cut (Ai, Ag) occurs that is produced by no rational num- 

ber, we then create [erschaffen,*° emphasis in the original] a new, irrational 

number a, which we regard as completely defined by this cut (Ai, Ag); we 

shall say that the number a corresponds to this cut, or that it produces 

this cut.”3! If a is produced by (Ai, Ag) and f by the essentially different 

cut (8, Bz), then @ is said to be less than f if and only if A, is properly 

included in B, (in which case Bo is also properly included in Ag). 

In The Nature and Meaning of Numbers Dedekind argues that the term 

“free creation [freie Schdpfung |” is an appropriate one to apply to the 

natural numbers. His thought is that one may come to recognize the num- 

bers by considering an arbitrary system satisfying the “Dedekind—Peano” 

axioms while “disregarding” all non-structural aspects of that system. De- 

spite Dedekind’s use of “erschaffen” in Continuity, it is plausible that he 

regarded the creation of the irrationals and that of the natural numbers as 

two instances of the same phenomenon. On Frege’s view, of course, nothing 

at all is created by inattention or postulation: one merely recognizes what 

there is. Frege, though, would certainly have accepted the mathematical 

part of Dedekind’s claim, which can be symbolized:?? 

VX[X CQAN#X AQAVG(Xa— [Wr(r <q Xr) A 
ar(q<rA Xr)]) > dla(Vr(Xr or <a) AVr(-Xr +a <7))| 

From our point of view, the crucial aspect of Dedekind’s construction is that 

iterating it produces nothing new, as he proves in Section 5 of Continuity. 

Unlike the rationals, every cut in the reals (a well-defined notion, since 

less-than on the reals has been defined) is produced by a real. (Indeed the 

ent (A;, Ag) in the reals is produced by the real corresponding to the cut 
({r: de Aya Ar < a)}, {rs dal Ag Ag < r}) in the rationals.) Thus after 

taking the rationals, making all possible cuts in them, and then introducing 

in Dedekiud’s manner numbers corresponding to these cuts, one obtains no 

new numbers by taking the numbers one has so far gotten, making all 

possible cuts in them, and then introducing new numbers corresponding to 

the cuts made the second time around. 

Cuts are two-sided. Dedekind defined them as pairs (A1, Ag) of sets 
of certain sorts of numbers in which Ag is the set of all numbers of the 

30My colleague Irene Heim informs me that the etymologies of “erschaffen” and 
“Schépfung” converge, but only at a rather remote date. 

31 (Dedekind, 1901), p. 15. 
32Q is the set of rationals, “g” and “r” are variables ranging over the rationals, and 

“a” a variable ranging over the reals. In words, “for every downward closed concept X 

under which only rational numbers fall, under which some but not all rational numbers 

fall, and under which no greatest rational number falls—cuts determined by rationals 
necessitate this proviso—there is a unique real number greater than every rational falling 

under X and less than or equal to every rational number not falling under X.”
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relevant sort not in A,. Cuts, however, are not numbers; instead, tlicy 

“are produced by” numbers, “correspond to” them, or “define” them. It 

is thus natural to think of a cut not as a first-order object, but either as a 

pair of second-order entities (Ai, A2), as two second order entities A, and 

Az, or, perhaps most naturally, as a second-order entity A together with 

another one N, a “sort of number,” such that Vz(Ax > Na), de Ax and 
da-Azx. It is equally natural to formalize Dedekind’s account of the reals 

in second-order logic with the second-order variables ranging over cuts (or 

their left-hand halves), and relativized first-order variables ranging over the 

numbers, which are the objects Dedekind is primarily interested in. 

Like cuts, Fregean concepts are also two-sided; they are functions from 

objects to the two truth-values. There is a striking analogy between De- 

dekind’s definition of the reals as objects to which cuts in the rationals 

correspond uniquely (if one ignores inessentially different cuts) and Frege’s 

ill-fated attempt in Basic Law (V) of Grundgesetze to introduce extensions 
as objects corresponding uniquely to concepts. Both begin with a domain of 

objects, take all possible second-order two-sided entities of an appropriate 

sort over that domain, and then introduce (recognize, Frege would say) 

certain objects in the domain in one-one correspondence with those second- 

order entities. Repeating the operation yields (or in the case of Frege, 

is supposed to yield) no objects not obtained (or recognized) after the 

operation has been performed only once. 

Frege, as is well-known, was not altogether confident about Basic Law 

(V). “I have never concealed from myself its lack of the self-evidence which 
the others possess, and which must properly be demanded of a law of logic” 

he wrote in the Appendix to Grundgesetze; carlier, as he notes there, he had 
said, “A dispute can arise, so far as I can see, only with regard to my Basic 

Law concerning courses-of-values (V).” Saul Kripke once wondered aloud 

why Frege did not make the experiment of seeing whether or not Cantor's 
paradox could be derived in the formal system of Grundgesetze. It is of 

course conceivable that he simply did not know of it; it is not conceivable 

that he did not know of Cantor’s proof that the power class of a class is 

not equinumerous with it, for Section 164 of Volume II of Grundgesetze 

contains the following noteworthy paragraph: 

We thus require a class of objects, which stand to onc anothcr 

in the relations of our domain of quantities, and this class must 

certainly contain infinitely many objects. Now to the concept 

finite number there belongs an infinite number, which we have 

called “endless” [endlos|; but this infinity still does not suffice. 
If we call the extension of a concept that is subordinate to the 

concept finite number, a CLASS OF FINITE NUMBERS, then
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to the concept class of finite numbers there belongs an infinite 

number, which is bigger than endless; i.e. the concept finite 

number can be mapped into the concept class of finite numbers, 

but the latter cannot be mapped into the former.** 

Frege cites Dedekind’s work in his own. It strikes me as a quite plau- 

sible speculation that the success of Dedekind’s well-known construction 

may have given Frege confidence that a similar procedure could be used to 

introduce extensions in the manner he wanted and needed. 

Dedekind’s construction, of entities of one sort out of entities of another 

sort, is certainly not the first “logical construction” in mathematics. Hamil- 

ton’s definition of the complex numbers as ordered pairs of reals, as good a 

logical construction as any ever made, antedates it by twenty-five years.*4 
I shall not attempt to say whether I think Hamilton’s philosophically bril- 

liant construction counts as a contribution to logic, however.*® Of special 
interest in Dedekind’s work, as opposed to Hamilton’s, is the use of what 

Quine would regard as set theory and what I, and I hope Putnam, would 

call logic. I wonder whether any piece of mathematics remotely comparable 
in logical sophistication antedates it. 

In thus speculating upon the causes of Gottlob Frege’s acceptance of 

Grundgesetze’s deadly Basic Law (V), I have strayed rather far from the 
theme of Reading Putnam. But I recall from undergraduate days a certain 

professor of mine who once remarked that the way to seduce good students 

into philosophy was to teach them the Frege- Russell definition of number. 

I had been thus led astray, and if I ain now to be faulted for dallying still 

in the carly history of logic, I simply propose to transfer the blame to the 

author of that remark, Hilary Putnam. 

33(Frege, 1903), vol. II, p. 161. 
34 Thirty-nine, if one considers publication dates. 

35 Hamilton's treatment is a piece of philosophy if ever there was one. The insight was 

not merely to recognize that a problematic sum of a real and a product of a real with 
the square root of ~1 could be explicated as an unproblematic pair of reals, but also to 
understand that the new problem the explication seems to give rise to—whether one can 

really add and multiply pairs of reals—is irrelevant to mathematics, since it is obvious 

which definitions of the various operations on pairs of reals have to be given.
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The Advantages of Honest Toil 

over Theft 

He [Russell] had a secret craving to have proved some straight 

mathematical theorem. As a matter of fact there is one: “22° > 

No if a is infinite.” Perfectly good mathematics. 

— J. R. Littlewood! 

In the section of his and Martha Kneale’s Development of Logic called 

“Russell’s Theory of Logical Types,” William Kneale writes, 

It is essential for mathematics that there should be no end to 

the sequence of natural numbers, and so Russell finds himself 
driven to introduce a special Axiom of Infinity, according to 

which there is some type with an infinity of instances, and that 

presumably the type of individuals, which comes lowest in the 

hierarchy. Without this axiom, he tells us, we should have no 

guarantee against the disastrous possibility that the supply of 

numbers would give out at some highest number, i.e., the num- 

ber of members in the largest admissible set. 

There is something profoundly unsatisfactory about the axiom 

of infinity. It cannot be described as a truth of logic in any 

reasonable use of that phrase, and so the introduction of it as a 

From Mathematics and Mind, Alexander George, ed., Oxford: Oxford University Press, 
1994, pp. 27-44. Copyright ©1994 by Oxford University Press, Inc. Used by permission 

of Oxford University Press, Inc. 
I am grateful to Tony Anderson, David Auerbach, Richard Cartwright, Philippe de 

Rouilhan, Michael Hallett, Elliott Mendelson, Michael Resnik and Linda Wetzel for 

helpful comments. Research for this paper was carried out under grant no. SES-8808755 
from the National Science Foundation. 

1 (Littlewood, 1986), p. 128. 
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primitive proposition of logic amounts in effect to abandonment 

of Frege’s project of exhibiting arithmetic as a development of 

logic ... But even if we abandon all hope of carrying out Frege’s 

programme in full and say boldly that Russell’s axiom is re- 

quired as an extra-logica] premiss for mathematics, how can we 

justify our acceptance of it? What are the individuals of which 

Russell speaks, and how can we tell whether there are infinitely 

many of them? ...[H]e even suggests that there may be [no in- 
dividuals] because everything which appears to be an individual 

is in fact a class or complex of some kind. With regard to [this] 
possibility, which seems very mysterious, he adds cheerfully that 

if it is realized, the axiom of infinity must obviously be true for 

the types which there are in the world. But he does not profess 

to know for certain what the situation is, and he ends by saying 

that there is no known method of discovering whether the ax~ 

iom of infinity is true or false. [Footnote in Kneale and Kneale: 
Introduction to Mathematical Philosophy, p. 143.]? 

The irritated tone of Kneale’s commentary is noticeable; but one might 

well think that something more like utter exasperation with Russell’s proce- 

dure is called for: In Principia Mathematica,’ a work supposedly intended 

to show arithmetic a part of logic, more than nine hundred and fifty pages of 

text? precede the official introduction of the axiom of infinity. Just once in 

Volume I is the axiom inentioned, in the introduction to the second edition, 

on p. xxiv. On p. 335, Russell states, 

We might, of course have included among our primitive propo- 

sitions the assumption that more than one individual exists, or 

some assumption from which this would follow, such as 

(Ad, 2, y).dla. ~ oly. 

But very few of the propositions which we might wish to prove 

depend upon this assumption, and we have therefore excluded 

it. It should be observed that many philosophers, being monists, 
deny this assumption. 

The wisecrack may distract the reader from the outrageous claim that few 

of the propositions we might wish to prove depend on the assumption that 

there are at least two individuals. 

2(Kneale and Kneale, 1984), pp. 657-672, esp. p. 669. 
3(Whitehead and Russell, 1927). 
4More than 800 in the first edition.
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Perhaps there are only a few propositions that depend just on that as- 

sumption and on nothing stronger; but the existence of the cardinal number 

2, equivalent in Principia to the existence of at least two individuals is one 

of those, and without its truth the development of arithmetic is impossible. 

The importance of the propositions depending on this axiom that we might 

wish to prove may offset the smallness of their number. 

And of course a much stronger statement is needed than that of the ex- 

istence of at least two individuals. The first two Peano postulates, in the 

order given them by Russell in Introduction to Mathematical Philosophy, 

assert that zero is a (natural) number and that the successor of a number 
is a number; the fourth states that zero is not the successor of a number; 

the fifth is the principle of mathematical induction. These are very eas- 

ily proved in Principia without the assumption of any special axiom. The 

third, however, states that different numbers have different successors; to- 

gether with the first three and Russell’s definitions of zero, successor, and 

natural number, it implies the truth of the axiom of infinity, which asserts 

there are infinitely many individuals. The first four Peano postulates are 

theorems of every forma] system for arithmetic that I know of; it is hard to 

see how any development of arithmetic could fail to deliver them. 

Three axioms of Principia have struck commentators as having dimin- 

ished claims to logical truth: those of reducibility, choice, and infinity. 

(Russell calls the axiom of choice the “multiplicative axiom.”) Of these 
only the axiom of infinity is required for a Principia-style development of 

the arithmetic of the natural numbers, basic to all mathematics, but it is 

the only one of the three of which no mention is made in the first edition 

of Volume I, where indeed not a word is spoken of the need to assume a 

special axiom) guaranteeing the truth of the third Peano postulate. 
In order to determmme whether Russell has unjustifiably minimized the 

role of the axiom of infinity by thus tucking it away, to raise certain further 

worries, to point out certain perhaps underappreciated virtues of his pro- 

cedure, and to compare his with the sublime (and therefore consistent) ac- 
count of number found in Frege’s Grundlagen der Arithmetik, we shall have 

to race over some all too familiar material: the development of arithmetic 

in the modernized theory of types TT, which, for the sake of simplicity 

and ignoring Russell’s own strenuous efforts to dispense with classes, we 

shall pretend was the theory Russell was expounding. The version we shall 

explain is essentially the one given in Gédel’s “On formally undecidable 

Propositions of Principia Mathematica etc.,” but without symbols for zero 
and successor, and without the assumption that the natural numbers are 

individuals. 
In TT, the objects of type 0 are the individuals, whatever they are; those 

of type n + 1 are the classes of objects of type n, n a natural number.
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Objects of types 1, 2, and 3 we'll call sets, classes, and class-classes, re- 

spectively. Variables rn, Yn, 2n,--- range over objects of type n; for every 

natural number n, there is an axiom 

Van41VYn+i(Wen(z € 2+ 2€ y) +r =y) 

of extensionality and infinitely many comprehension axioms 

Fyn+1Vin(z € yo y) 

y a formula not containing y,,,1 free.® 
We shall frequently use a,6,c,... as variables ranging over individuals 

(in addition to x9, Yo, 20,---); ZY, 2,---, over sets; m,n, A, B,C,..., over 

classes, and X,Y, Z,..., over class-classes. 

A is the null set; V is the universal set, that is, the set of all individuals. 

@ is the null class; 0, alias zero, is {A}. Like those that follow, these sets 

and classes all exist by comprehension and are unique by extensionality. 

z—ais{b:bexrAbfA a}, yt+ais {b:b € yVb =a}, and sA, alias the 
successor of A, is {7 : da(a € tA x —a€ A)}. 

Ala Frege and Russell, n is a number if and only if 

VX(0E XAVA(A € X + 8A € X) > n€ X), 

that is, iff 2 belongs to every class-class to which zero and the successor of 

every member belong. m,n,... range over (natural) uumbers. 

The first, second, and fifth Peano postulates are trivial to prove. (Appli- 

cations of induction of course require comprehension.) Aud it is very easy 

to prove the fourth, that 0 is not the successor of a number: every member 

w of .sn is non-empty but 0 has an empty member, The difficulty is to see 

that different. numbers have different. successors. This will turn out to be 

the case iff @ is not a nnmber. 
Infin ax, mtroduced in Section 120 of Principia Mathematica, reads 

a € NC induct. Dd, dla. 

In our terminology, for all n, n has at least: one member; equivalently, @ is 

not a number. 

Not only is it more than dubious whether any version of the axiom of 

infinity can be regarded as a logical truth, this formulation disguises what 

is being asserted more than need be. As usual, define a set. x to be finite if 

and only if 

VA(A € AAVyValy € A> yt+ae A) > 2 EA) 

5We will often drop type subscripts when the type of a variable is clear form the 

context.
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A less ad hoc formulation of the axiom of infinity is: V, the set of individu- 

als, is not finite. Of course, the two versions are fairly easily interderivable. 

Thus it might be thought a matter of “taste” which one assumes. Perhaps 

so, but it would be absurd to claim that. “ is not. a number” expresses the 

statement that there are infinitely many individuals as directly as does “V 

is not finite.” 

However that may be, I shall want to argue that this lapse from per- 

spicuity is the only charge against Russell mentioned in this essay that 

can be made to stick and that in Principia Mathematica Russell has in 

no way given us grounds for complaint that he has disguised, obscured or 

minimized the role of the axiom of infinity. 

If, following Russell, we say that x sm y if and only if there is a one-one 

function with domain z and range y, then with the aid of a lemma provable 

by induction on n, and asserting that if x € n, then x sm y iff y € n, it is 

easy enough to show that 9 is not a number if and only if the third Peano 

postulate holds, i.e., iff different numbers have different successors. 

The proofs, found in Appendix I, are short and routine. They show how 

short the logical distance is between the axiom of infinity and the third 

Peano postulate. One could well think it not much less of a cheat. for 

Russell to have assumed the axiom of infinity and then derived the third 

Peano postulate from it than it would have been for him to proclaim the 

postulate a truth of logic outright. 

Russell once wrote, sarcastically, I believe, that “The method of ‘pos- 
tulating’ what we want has many advantages; they are the same as the 

advantages of theft, over honest toil. Let us leave them to others and pro- 
ceed with our honest. toil.”§ 

Russell’s procedure may scem to suffer further when compared with the 
account of number found in Frege’s Grundlagen der Arithmetik. It will be 
recalled that in Sections 74-83 of that work, Frege outlines a derivation of 

(second-order) arithmetic in the logical system given in his Begriffsschrift 

from the principle that the number belonging to the concept F is the same 

as that belonging to the concept G if and only if the objects falling under 
F are in one-one correspondence with those falling under G. Frege derives 

this principle, sometimes called the number principle, or Hume’s principle, 

from an inconsistent theory of objects, extensions (a species of object), 

and concepts of various levels. A number is defined as the extension of 
some second-level concept under which falls some first level concept along 

with all and only those first-level concepts that are equinumerous with it. 

Being extensions, numbers are objects. Frege’s criterion for the identity 

of extensions, that extensions of concepts (of the same level) are identical 

§(Russell, 1919), p. 71.
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if and only if the same entities fall under them, is inconsistent, not only 

with respect to extensions of first-level concepts, as Russell showed, but 

also with respect to extensions of concepts of any higher level. Thus it is 

clear that the theory Frege implicitly employed in the Grundlagen to define 

number is inconsistent. 

Suitably formalized, however, Hume’s principle can be shown to be equi- 

consistent with the arithmetic that Frege wished to derive from it: a proof of 

a contradiction in the system that results when Hume’s principle is adjoined 

to the logic of the Begriffsschrift can (easily) be turned into a contradiction 

in second-order arithmetic, and, as Frege in effect showed, vice versa.’ The 

derivation of arithmetic from Hume’s principle that Frege sketched can 

be elaborated into formal] deductions of the (infinitely many) axioms of 

second-order arithmetic. The most remarkable part of Frege’s argument 

is his proof that every natural number has a successor. It utilizes a much 
more interesting mathematical idea than any found in Russell’s derivation 

of the Peano postulates: zero, successor of, and natural number having 

been defined, and less than being defined as the ancestral of the relation 

an object bears to any of its successors, the number of objects less than or 

equal to any given natural number a can be shown to be a successor of a. 

Recall also that Frege wished to show how numbers could be “conceived as 

logical objects.” It is clear enough that before Russell’s communication to 

him of the Contradiction, Frege supposed that the identification of numbers 

with certain sorts of extensions expressed a recognition of nuinbers as logical 
objects, and that. the mere recognition of the truth of Huine’s principle 

did not. As many commentators have noted, what is perhaps not clear 
is why Frege should have supposed this. Questions of cousistency aside 

(!), what is there about extensions that, makes them, and not. uuinbers, 

logical objects in the absence of an account such as Frege tried ta give? 

Extensions of concepts are supposed to be the same if and only if the objects 

falling under one of the concepts are identical with those falling under the 
other. To say when numbers are the same, simply change “extensions of” 

to “numbers belonging to” and “identical” to “in one-one correspondence” 
in the foregoing sentence. Although it certainly requires a somewhat more 

complex formula to express that some objects are in one-one correspondence 

with others than to express that some objects are identical with others, one 

may reasonably doubt whether that difference entitles us to conclude that 

extensions are logical objects, but numbers are not. 

Frege, it is also well known, failed to find a way out: his proposed solution 

to the difficulty turned out to be inconsistent with the assertion that there 

are at least two numbers. There is a modification of the notion of an 

7Cf. Articles 12 and 13 in this volume.
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extension that works, however. Say that a concept F is small iff the objects 

falling under F cannot be put in one-one correspondence with all the things 

there are. Say that F equiv G if and only if, if either F or G is small 

then the same objects fall under both. Equiv is an equivalence relation. 

Introduce subtensions by assuming that the subtension «F of the concept F 

is identical with +G if and only if F equivG. This assumption can be shown 

consistent relative to second-order arithmetic, and can be used to define 

numbers: let 0 = +[2 : x 4 a], ie., let 0 = *F, where Va(Fa o ¢ # x); 
let sy = *[x : x = yj; and let x be a number iff, as usual, VF(FO A 
Vy(Fy — Fsy) — Fx). The development of arithmetic then proceeds 
smoothly enough. (Peano three is no problem since Jzxz = 2; thus 0 4 

+[x : x = x]; thus there are at least two objects; thus for every y, [x : x = y] 
is small.) 

If subtensions are logical objects, then we have a way of recognizing 

numbers as logical objects; if not, despite their resemblance to extensions 

and the consistency of the axiom governing them, then we have even less 

reason than before to agree with the view that extensions, “had Rule V 

been consistent,” would be logical objects. 

Whether extensions, subtensions, or numbers are logical objects or not, 

it may seem, from a Fregean point of view, that Russell’s definition of the 

numbers as certain sorts of class fails in two respects: invoking the axiom 

of infinity invalidates a claim to have shown numbers to be logical objects; 

defining them as certain classes (of sets of individuals) forbids him from 
thinking he bas shown them to be logical objects. To show numbers to be 

objects, Russell would have had to show which individuals they are. 

My aim so far has been to depict Russell's account of number in the 

worst, possible light, as a series of tedious definitions and deductions in 
an inadequate theory to which an inelegantly formulated axiom has been 

surreptitiously adjoined with no justification other than to derive an indis- 

pensable but otherwise unobtainable theorem, and in which the definitions, 

moreover, obviously fail to satisfy one basic requirement of the enterprise 
of setting up a theory of number at all. 

What then did Russell achieve? The answer may be found by reflecting 

on the “perfectly good” piece of mathematics mentioned in Littlewood’s 

remark. This proposition and its proof, found in Vol. IT at +124.57, con- 

stitute, I want to claim, the mathematical core of the theory of natural 

numbers given in Principia Mathematica.® 
Never forget that the natural numbers form not merely an infinite totality, 

but one that is Dedekind infinite. Assuming now some theory of sets sucli as 

ZF, we say that a set is finite if and only if (as in the definition given above) 

5The theorem is erroneously ascribed to Tarski in one well-known excellent text: 
(Lévy, 1979), p. 80.
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it belongs to ali classes (here = sets) that contain the null set and contain 
all results of adjoining to any member any one object. Equivalently, a set x 

is finite if and only if there is a natural number i such that z can be put into 

one-one correspondence with the set of natural numbers less than 7. A set is 

Dedekind infinite if and only if it can be put in one-one correspondence with 

a proper subset of itself. Equivalently, a set z is Dedekind infinite if there 

is a one-one correspondence between the set of all natural numbers and a 

subset of z (not necessarily a proper subset). The set of natural numbers 

is, trivially, Dedekind infinite according to the either of these equivalent 

definitions. A set is infinite if and only if it is not finite, Dedekind finite 

if and only if not Dedekind infinite. It is easy to show that no finite set is 
Dedekind infinite; it requires some assumption that is not a theorem of ZF 

such as the axiom of choice to show that no infinite set is Dedekind finite. 

Russell, who was admirably clear on the distinction, called the finite sets 

“inductive” and the Dedekind infinite sets “reflexive”; it is a pity that this 

excellent terminology has not become standard. 
According to the theorem Littlewood ascribed to Russell, if a is an infinite 

number, then 2” > Xo. What does the theorem mean? Theorems about 

cardinal numbers are often best understood as encrypted theorems about 

one-one correspondences. After decoding, the theorem states that if x is 

an infinite set (with cardinal number a), then the set of natural numbers 

(which has cardinal number No) can be mapped one-one into the power 
set PPx of the power set Px of x (which thus has cardinal number 2? 
thus Ny < 22" ), that is, that PPx is Dedekind infinite; but that there is no 

one-one correspondence between the set. of natural numbers and the power 
set of the power set. of az (thus Xy 4 22°, and so 22" > &q). The more 
interesting half of the theorem is thus that if.r is an infinite set. then PP. 

is Dedekind iitinite, 
How, then, may this half of theorem be proved? Let a be an infinite 

set. The null set is a subset of « of cardinality 0. If y is a subset of x of 
cardinality n, then since y is a finite subset of the infinite set z, y is not 

identical with x; thus there is some element a of x not in y and y U {a} is 
a subset of z of cardinality n +1. By mathematical induction, for every 
natural number n, there is a subset of x of cardinality n. Thus for each 
finite n the set S, of subsets of x of cardinality n is nonempty, and if m #n, 

Sm and S, are disjoint and hence distinct. Each S,, is a subset of the power 

set Pr of z. Thus n+ S, is a one-one function from the set of natural 
munbers into PP zx. 

(The other half of the theorem, according to which 22" 4% No, is immedi- 
ate: if 22" = No, then since a < 2% < 22" by Cantor’s theorem, a < No, @ is 
finite, and then so are 2%, 27", and No, impossible. I am not sure whether 
Littlewood had this, the “stricilyless-than,” half of the theorem in mind
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when he made his remark.) 
Thus although one can point to a specific place in Principia where Rus- 

sell proved the theorem ascribed to him by Littlewood, it would not be 
unreasonable to give: “PM, passim” as a citation for the theorem. To be- 
labor the obvious: call the members of the infinite set x individuals. Then 
PPzx comes to type 2 and S,, to the Russellian version of n; the Dedekind 
infinity of PPz is witnessed by Sp and the function, which assigns S,41 to 
each S, and A itself to each member A of PPz not of the form S,,. Put in 
Russellian terminology, the point is that Russell did not assume the type of 
individuals to be reflexive. He supposed it non-inductive and showed that 
it follows from that weaker supposition that type 2 is reflexive, and thus 
includes a subcollection similar to the set of natural numbers. 

Not only can it not be proved in set theory without choice that there 

are no infinite Dedekind finite sets, it cannot even be proved that there do 

not exist infinite sets whose power set is Dedekind finite. And by adapting 
to the theory of types the Fraenkel—-Mostowski method for showing the 

independence of various forms of the axiom of choice from set theory with 

individuals it can be shown that it is consistent with the theory of types 

supplemented with the axiom of infinity that the type of all individuals is 

infinite while the type of sets, i.e., all classes of individuals, and hence the 

type of all individuals as well, is Dedekind finite.9 
The idea of the proof is simple. Working in the theory of types, we shall 

build a model {7, Ti, T2,...} of the theory of types in which Tp is infinite, 
but in which there is no one-one mapping of the Russell numbers into 7}. 

Begin with an infinite (Dedekind infinite if you like) set 7p, of individuals. 

Define a permutation 2 to be a one-one function whose domain and range 
ure Ty. Say that m fixes a set. 2 of individuals if for every a € x, Ta = a. 
Now suppose 7, defined, aud za defined for all a in T,,. If 8 is a subset of 

Th, let rf = {1a : a € 3}, and let Ty41 be the set of those subsets J of Ty 
such that for some finite set x of individuals, 79 = ( for all 7 that fix z. 

Thus each T,, is a subset, in general a proper subset, of type n. 
It is easy to see that 7; consists of the sets of individuals that are either 

finite or have a finite complement (relative to To). If n is a Russell number, 

then mm = n, for every 7, and thus 7 is in Ty (take x = A); similarly for 
the set N of Russell numbers: +N = N for every 7, and therefore N is in 

T3. 

The sets T,,, together with the sets belonging to them, turn out to form a 

model m of the theory of types and the statements that there arc infinitely 

Many individuals but Dedekind finitely many classes of individuals. The 

details of the proof are given in Appendix II. 

9Cf. (Jech, 1973), ch. 4, and (Felgner, 1971), ch. 3.
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Russell showed that there are Dedekind infinitely many classes of classes 

of individuals from the assumption that there are infinitely many individ- 

uals. But, as we have just observed, Dedekind infinity could not have been 

found any lower: without the aid of some such assumption as the axiom of 

choice it cannot be proved from the axiom of infinity that the individuals 

or the classes of them form a Dedekind infinite totality. 

Of course there is a simpler reason why the numbers must first appear 

two types up if only the axiom of infinity is assumed. In the theory of types 

there is no way to define the numbers as sets of individuals and hence no 

way to define them as individuals. More precisely, for every formula ¢(2) 

containing exactly the (set) variable x free, the sentence !3z y(x)!° ex- 
pressing the existence of exactly three sets satisfying y(z) is not a theorem 

of the theory of types. Thus there are no formulae O(x), 1(z), and 2(z) 
such that 720(z), 721(x), and 7£22(xr) can be proved to exist and differ from 
one another; otherwise S!3z (0(x) V 1(z) V 2(z)) would be provable. 

In fact, it can be shown more generally that for any formula y(r) of TT 

and any integer i > 2, the sentence 

[Az p(r) + V{Sinaa =a: n <i and for some o C {0,..., 7}, 
i=) {nCr:r €o}}] 

is provable in TT. (nCr is the binomial coefficient.) As the only rows of 
Pascal’s triangle from which 3 can be obtained by summing entries are 121 

and 1331, for any formula g(r), 3!32 p(x) + A!2aa = a V Al3aa = a is 
provable in TT. Since d!2aa = a V A!8aa = a is not a theorem, neither 
is 5132 y(:r). Thus, if our resources are confined to those of the theory of 

types with the axiom of infinity, the natural numbers can’t be classes of 

individuals. (The mod 2 numbers could be, however.) 

In his first. proof that every set. cur be well-ordered, Zermelo in effect. 

showed how to extend the theory of types plns the axiom of intinity to make 

it possible to define the numbers as individuals. It will be instructive to 

examine the extension and definition, which it is perhaps not too farfetched 

to take to formalize the theory of arithmetic of Frege’s interlocutor at the 

beginning of Die Grundlagen der Arithmetik, who, according to Frege, will 

likely invite us to “select something for ourselves—anything we please—to 

call one.” 

Let us add to the language of the theory a symbol # for a function f 

whose values for arguments of type 1 are of type 0. And now let us take as 

a new axiom a strengthened version of the axiom of choice for type 1:1! 

(*) Faae€rovresr 

That is, Azty32(p(z) Ag(y)Av(z)Az # yAz ¢ zAy ¢ 2AVul(p(w) @ w= ZV = 
y Vw =2z)). 

ll By replacing items with their singletons, we can see that “choice drops down”; thus
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We can now define 0 as fTo, 1 as f(To—0), 2 as f(To -O—1), etc. (Had we 
asked Frege’s man on the street to tell us what two was, he would surely 

have invited us to select something else—anything else we please—and call 

it two.) 
By the argument of Zermelo’s proof, there is a unique well-ordering R 

of Tp in which f(To — A) is the R-least element of Ty — A, for any proper 

initial segment A of R. We may then define b to be the successor of a if 

ab and for no c, aRcRb, and a to be a natural number if every 5 such that 

bRa or b = a is zero or a successor. The axiom of infinity here guarantees 

that every natural number has a successor. 

Thus simply by adding a new function symbol to the language of the 

theory of types and a suitable axiom governing the function denoted by it, 

we have found a way to “recognize” the numbers as individuals. Of course, 

there was no need to bring in a function symbol; we could have adhered 

more closely to the syntactic style of the theory of types by introducing a 
constant C of type 4, along with the axiom 

daa ex Fla(a ce ra {{x}, {x, {a}}} €C). 

“But,” it may be objected, “isn’t that cheating? We are trying to find indi- 

viduals with which to identify the natural numbers. However, not any old 
means of finding them is allowed. We have to use means that are recogniz- 

ably logical. I don’t see that the importation of a brand-new function sign, 

designating who knows what function (or the use of a higher-type constant: 
there’s no difference), counts as a logical means of finding individuals that 

CAD serve as the natural numbers. We don’t know which function 9 denotes; 

you've just. pulled something out of thin air to do the work you wanted to 

have clone,” 
Let us note this objection for now and examine another means of recog- 

nizing the numbers as individuals. ; ; 

Suppose that we add to the theory of types a function sign # whose 

values for arguments of type 1 are of type 0 and take as a new axiom: 

#2 = #yorsmy 

(“sm” abbreviates “is similar to,” defined as usual). 

Then, as Frege showed in Grundlagen, if, working without azioms of 

extensionality, the axiom of infinity or any version of the axiom of choice, 

we define 0 as 

1a sy(Vec Zy Aa = #y) 

if we had introduced a function sign p and a strengthened version of choice for type n+ 1: 

Arn tn € tn+1 — PEnt1 € In¢11 

we could then have defined a suitable 0 and proved (+).
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define c to succeed 6 iff 

Fasydz(z =yt+tadadyAb= #yAc= #2) 

and define a to be a natural number iff 

Va(0 € x AVbVe(b € & Ac succeeds b +c Er) a € 2) 

then we can prove the Peano postulates, together with all necessary exis- 

tence and uniqueness assumptions, It is an immediate consequence that the 

individuals form a Dedekind infinite totality, and that the axiom of infinity 

therefore holds after all. Moreover, the numbers have indeed been defined 

as individuals. 

For all its excellences, this method of obtaining the natural numbers at 

the lowest level of the type hierarchy is as much subject to the objection 

that we have no idea which function the new symbol refers to as was the 

postulation described above of a particular choice function f for type 1. 

(E.g., if 7 is a permutation of Tp, then where a is the value of #2 and b 

that of #y, 7a = 1b iff ¢ sm y holds.!) It can be said with equal justice in 
both cases that nothing establishes, determines, fixes the function to which 

the newly introduced function symbol refers. No one struggled harder than 

Frege to overcome the apparent lack of fixity of the function referred to 

by “the number of (belonging to).” But it has often been remarked that 

whatever other problems may have beset Rule V of Grundgesetze, for Frege 
to use that axiom to introduce extensions and then to define a number as a 

certain sort of extension, is to advance little if at all in settling the question 

to which items number words refer: if we are tmeertatu whether numbers 

are conquerors, we are not going to be helped out. of the slongh by being 

told that. numbers are extensions. (FE think Michael Dummett pointed this 

out to me more than twenty-five years ago.) 

It may be thought that we know what it is for one item to bear the re- 

lation indicated by “€” to another better than we know which particular 

function is designated by “the number of,” and certainly better than we 

know which function is designated by 3. To the extent that this is so, or 

supposed so, Russell’s treatment of the numbers will be, or seem, ideolog- 

ically superior to Frege’s in the sense of Quine, superior in respect of the 

clarity or determinacy of the notions of which it avails itself. Russell may 

assume as an axiom a statement that Frege can prove, but Frege utilizes a 

notion that can neither be expressed in Russell’s language, a sublanguage 

of Frege’s, nor, apparently, freed from a very familiar sort of indeterminacy. 

Of course, there is indeterminacy aplenty in the theory of types. As in 

the theory of complex numbers, i and — i are indiscernible—any truth 

12The “Irving Caesar” problem.
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remains true in which “i” and “ — i” are everywhere interchanged--+so in 

the theory of types “e” and “¢” may be uniformly interchanged at any 

one type (thanks to the existence of a unique complement in its type for 

every item not of the type of individuals). More exactly, for any n, if y is 

a theorem of the theory of types, then so is the result of replacing every 

atomic formula of the form 2p € yn+1 in y with its negation. (In set theory 

we cannot perform this sort of switch: 4yVr-2 € y is, but SyVx a € y is not, 

a theorem of set theory.) Moreover, such interchange can be performed at 

any one type independently of whether it is performed at any others. Thus 

the theory of types is indeterminate in at least 2%° ways. 

But this sort of indeterminacy also infects the theory of objects and 

first- and higher-level concepts that was employed by Frege: we are free 

to interpret the predication Fr as asserting that the value of 2 fails to 

fall under the concept denoted by F. Thus in any event a new sort of 

indeterminacy arises with the introduction of either # or 0. 

Of course the axiom: #z = #y «+ x sm y (Hume's principle) is not to 
be regarded as a definition of number; it is merely a consistent principle 

whose addition to a suitable higher-order (indeed, second-order) logic yields 

a system in which the basic notions of the arithmetic of natural numbers 

can be defined and their most familiar properties proved. Thus with the 

aid of a familiar-seeming principle, Frege has given a remarkably simple 

axiomatization of arithmetic whose consistency is not at present subject 

to doubt. (The tragedy of Russell’s paradox was to obscure from Frege 

and from us the great. interest of his actual positive accomplishment.) It 

has been my aiin these last. few pages to point out a number of respects 

in which Russell's account of arithmetic stands comparison with the one 
Frege is now known to have provided. 

The construction of the numbers with the aid of a choice function, which 

was sketched above, shows, I think, that Hume’s principle cannot be thought 

to he the foundation of arithmetic. One of zero’s properties, and a very im- 

portant one too, is that it is the number of things there are that are not 

self-identical; but, as our discussion of Frege’s man in the street showed, 
there is also a perfectly sensical alternative development of the idea that 

zero, or one (if you prefer to begin the number series there), is the “typical 

object.” It is also to be noted that there is no trace in the construction of 
the idea that 2, for example, is the class of all couples; nor is use made in the 

construction of a function injecting Russell numbers into the individuals. 

Moreover, by the trick of reserving 0 for the number of things that are 
self-identical and “pushing each natural number up one,” we can define # 

80 as to prove Hume’s principle in the theory of types plus the axiom of 

infinity and our strengthened version (*) of choice. 

I now want to take up the question whether Russell’s introduction of
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the axiom of infinity in Volume II of Principia Mathematica amounts, as 

Kneale put it, “to abandonment of Frege’s project of exhibiting arithmetic 

as a development of logic.” Of course the axiom of infinity cannot be 

counted as a truth of logic, and no one was clearer on that score than 

Russell himself. 

From the fact that the infinite is not self-contradictory, but is 

also not demonstrable logically, we must conclude that nothing 

can be known a priori as to whether the number of things in 

the world is finite or infinite. The conclusion is, therefore, to 

adopt a Leibnizian phraseology, that some of the possible worlds 

are finite, some infinite, and we have no means of knowing to 

which of these two kinds our actual world belongs. The axiom of 

infinity will be true in some possible worlds and false in others; 

whether it is true or false in this world we cannot tell.!* 

We may take the axiom of infinity as an example of a propo- 

sition which, though it can be enunciated in logical terms, can- 

not be asserted by logic to be true. ... We are left to empirical 

observation to determine whether there are as many as n indi- 

viduals in the world. ... There does not even seem any logical 

necessity why there should be even one individual [Footnote in 

original:The primitive propositions in Principie Mathematica 

are such as to allow the inference that at least one individual 

exists. But I now view this as a defect. in logical purity.]--- why 

in fact there should be any world at all.!4 

In Principia Mathematica, Whitehead and Russell say, 

If, for exzunple, Ne‘Indiv = v, then this proposition is false for 

any higher type; but this proposition, Nc‘lndiv = v, is one which 

cannot be proved logically; in fact it is only ascertainable by a 

census, not by logic. Thus among the propositions which can 

be proved by logic, there are some which can only be proved 

for higher types, but none which can only be proved for lower 

types. 

“Infin ax,” like “Mult ax,” is an arithmetical hypothesis which 

some will consider self-evident, but which we prefer to keep as a 

hypothesis, and to adduce in that form whenever it is relevant. 

Like “Mult ax,” it states an existence theorem ... 

\t seems plain that there is nothing in logic to necessitate its 

'3 (Russell, 1919), p. 141. 
4(Ruseell, 1919), pp. 202-203.



16. The Advantages of Honest Toil over Theft 269 

truth or falsehood, and that it can only be legitimately believed 

or disbelieved on empirical grounds.!® 

And, in Volume III: 

Great difficulties are caused, in this section [“Generaliza- 

tion of number”], by the existence-theorems and the question 
of types. These difficulties disappear if the axiom of infinity 

is assumed, but it seems improper to make the theory of (say) 

2/3 depend upon the assumption that the number of objects in 

the universe is not finite. We have, accordingly, taken pains not 

to make this assumption, except where, as in the theory of real 

numbers, it is really essential, and not merely convenient. When 

the axiom of infinity is required, it is always explicitly stated 

in the hypothesis, so that our propositions, as enunciated, are 

true even if the axiom of infinity is false.1® 

But if Russell made it plain that he did not consider the axiom of infinity 

to be a truth of logic, “asserted by logic to be true,” what becomes of the 

project of showing arithmetic to be a development of logic, of logicism? 
Russell was a logicist, wasn’t he? 

To determine whether or not he was one, it might just be advisable to 

consult iis writings instead of common opinion. It turns out that Russell 

was rather niore cautious in certain works than others in proclaiming that 
mathematies can be reduced to logic, or is identical with it. The question 

whether Russell was or was not a logicist cannot, I think, be given a direct 

answer, and ought to be replaced with questions of the form, “Was Rus- 

sell a logicist in work X7" What can be said is that he expressed logicist 

views in certain works and refrained -significantly, it seems to me—from 

expressing them in others, notably Principia Mathematica, in which, as it 

happens, there are rather few remarks on the relation between logic and 

mathematics; perhaps Whitehead and Russell considered it unnecessary to 

supply many, for the work is, after all, an extended disquisition upon just 

that subject. Those there are, however, make it doubtful that the authors 
should be considered logicists, i.e., defenders of the view that mathematics, 

or arithmetic, or at least the Peano postulates, can be derived by logical 
Means alone from statements true solely in virtue of logic and appropri- 

ate definitions of mathematical notions. Principia is not quite 2000 pages 

long, and it is hard to be perfectly certain that one has not overlooked a 

significant remark or failed to put together separated comments that would 

15Quotations from (Whitehead and Russell, 1927), vol. II, x, pp. 203 and 183, respec- 
tively, 

16 (Whitehead and Russell, 1927), vol. III, p. 234.
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make it plain that its authors do after all count as logicists. However, there 

appears to be only one section of Principia that explicitly deals with the re- 

lation between logic and mathematics, at the beginning of the introduction 

to the first edition. There Russell and Whitehead list three aims of the logic 

which occupies Part I of Principia. They are, in reverse order, the avoid- 

ance of the contradictions, the precise symbolic expression of mathematical 

propositions, and the one that concerns us: 

effecting the greatest possible analysis of the ideas with which 

it deals and of the processes by which it conducts demonstra- 

tions, and ...diminishing to the utmost the number of the un- 

defined ideas and undemonstrated propositions (called respec- 

tively primitive ideas and primitive propositions) from which it 

starts.!7 

Later, the first aim is described, rather differently, as “the complete enumer- 

ation of all the ideas and steps in reasoning employed in mathematics.” 18 

It is evident that one who claims to have enumerated all the ideas and 

steps involved in mathematical reasoning need not imply that that reason- 

ing is logical reasoning, or even that the third Peano postulate is a truth 

of logic. However justly, it might well be said that Zermelo—Fraenkel set 

theory provides such an cnumeration; to say so is, obviously, not to be 

committed to the view that its axioms are logical truths. Russell’s second 

description of his first. aim provides no reason to take him to be conimitted 

to the central thesis of logicisin. 

Nor does his first description. The most thorough analysis possible of 

mathematical ideas and argumentation might well have as its outcome that. 
the third Peano postulate is equivalent to the axiom of intinity, but leave 

entirely open the question whether the latter is a truth of logic. Russell 

repeatedly states that it is not one, and he did not take it to be a primitive 

proposition; moreover, he claimed to have proved from primitive propo- 

sitions only the conditional with consequent Peano three and antecedent 
Infin ax. 

One may distinguish, as Carnap has usefully done,!® two theses of logi- 

cism, the first of which states that the concepts of mathematics can be 

explicitly defined from logical concepts; the second, that the theorems of 

mathematics can be deduced from logical axioms by logical means alone. 

We may call these the definability thesis and the provability thesis of logi- 

cism. 

17 (Whitehead and Russell, 1927), vol. I, p. 1. 

18(Whitchead and Russell, 1927), vol. 1, pp. 2-3. 
9(Carnap, 1931).
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Establishing the definability thesis will show that all truths of mathemat- 

ics can be expressed in the vocabulary of pure logic. But it is important 

to distinguish truths expressed in the vocabulary of pure logic from truths 

that are true “by virtue of logic alone,” i.e., logical truths or truths of logic 

properly so called. Russell’s way of making this distinction was between 

propositions that are “enunciated in logical terms” and those that are “as- 

serted by logic to be true.”2° “Szayx # y” is a truth, and expressed in 
logical vocabulary, which Russell, correctly in my view, did not regard as 

a logical truth. One who accepts the theory of types will almost surely 

regard Infin ax as true and in logical vocabulary, but one who so regards 

it need not therefore take it to be a logical truth. Establishing both theses 
would certainly show the truths of mathematics to be logical truths, but 

establishing the definability thesis alone does not suffice to do this, and 

hence certainly does not establish the provability thesis. No one, I take it, 

counts as a full-fledged logicist who does not endorse the provability thesis 

as well as the definability thesis. 

It seems fair to take Russell’s aim in Principia to have been the systematic 

exposition of a sufficiently large portion of mathematics to enable the reader 

to see that, and how, the whole of the subject could be treated in its system, 
in the sense that every concept of mathematics could be defined in terms 

of the primitive ideas of the system and every theorem of mathematics 

either proved from its priniitive propositions, or suitably related to other 

Propositions of inathematics. In Principia then, Russell was an advocate of 
the definability thesis, but not of the provability thesis of logicism. It was 

never part. of his aim there to show that (say) Peano three, as opposed to “If 
Infin ax then Peano three,” could be derived from the primitive propositions 

of the system. Whitehead aud Russell might have paraphrased Boole and 

called their work The Logical Analysis of Mathematics. To provide such 

an analysis, however, it is not requisite to derive from logic the whole of 

elenientary mathematics. 

Once the idea is abandoned that the aim of Principia is to vindicate full- 

fledged logicism, to exhibit arithmetic as a development of logic, there is 
little to object to in Russell’s modus operandi. The axiom of infinity is intro- 
duced at the appropriate point: in Subsection +120 “Inductive cardinals,” 
of Section C, “Finite and Infinite,” of Part III, “Cardinal Arithmetic,” the 

part with which Volume II begins. Part I of Principia is entitled “Math- 

ematical Logic,” Part II, “Prolegomena to Cardinal Arithmetic.” Where 

else should the axiom of infinity have been introduced? 

When pronouncing on the relation of logic to mathematics, Russell is 

significantly less circumspect in the exoteric [ntroduction to Mathematical 

0(Russell, 1919), pp. 202-203.
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Philosophy than he is in Principia: 

Pure logic, and pure mathematics (which is the same thing), 

aims at being true, in Leibnizian phraseology, in all possible 

worlds, not only in this higgledy-piggledy job-lot of a world in 

which chance has imprisoned us. 

The consequence is that it has now become wholly impossible 

to draw a line between the two; in fact, the two are one ... The 

proof of their identity is, of course, a matter of detail ... If there 

are still those who do not admit the identity of logic and mathe- 

matics, we may challenge them to indicate at what point in the 

successive definitions and deductions of Principia Mathematica 

they consider that logic ends and mathematics begins. It will 

then be obvious that any answer must be arbitrary ... 

Assuming that the number of individuals in the universe is not 

finite, we have now succeeded not only in defining Peano’s three 

primitive ideas, but in seeing how to prove his five primitive 

propositions, by means of primitive ideas and propositions be- 

longing to logic.?! 

These remarks and others that might be cited might well lead one to take 

Russell to be advocating a position he himself has given the best. of reasons 
for rejecting, since lie has elsewhere been as explicit as possible that he does 

not regard the axiom of infinity as a logical truth. To the challenge Russell 

lays down, one may respond that every proposition deduced in Principia 

is indeed a truth of logic, but Peano three, a proposition of mathematics if 

any is, has not been deduced there. 

The last. quotation, however, suggests a more charitable reading of Intro- 

duction to Mathematical Philosophy, under which one niay interpret Russell 

to be claiming the ideutity of the concepts of mathematics with those of 

logic, the derivability of all the Peano axioms but the third, and the prov- 

ability of “if Infin ax then Peano three.” On this reading, the frequent omis- 

sions of an important qualification of the logicist thesis must be thought 

careless, if not propagandistic. In Introduction to Mathematical Philosophy, 

then, Russell can perhaps be considered to espouse the definability thesis 

of logicism, but to hedge significantly on the question whether the provabil- 

ity thesis holds. It is therefore arguable that Russell does not significantly 

change his mind between the writing of Principia Mathematica and Intro- 

duction to Mathematical Philosophy, and that in neither work should he be 

seen as fully committed to logicism. 

21 Quotations from (Russell, 1919), p. 192, pp. 194-195, and pp. 24-25, respectively.
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Appendix I 

Lemma [fx € n, thenz sm y iff y En. 

Proof. Induction. The lemma is trivial if n = 0, since A sm y iff y = A. 

Suppose z € sn. Then for some a € z,24—a € n. Suppose z sm y via 
f. Then fa € y,z—asm y— fa,y— fa € n by theih., and y € sn. 

Conversely, suppose y € sn. Then for some b € y,y—b € n. By the i.h., 

z2—asm y—bDviasome f, and thus z sm y via g, where domain(g) = z, 

gc = fe forc € z—a, and ga=b. B 

Theorem 9 is not a number iff different numbers have different successors. 

Proof. Suppose that @ is a number. @ is empty. 0 is not empty. By 
induction we may assume that for some number n, 7 is not empty, but 

sn, which is a number, is empty. Thus n # sn. Since sn is empty and 

ssn = {x : da(a € tz Ax —a € sn)},ssn is also empty, and by Ext, 
sn = ssn. Since ssn is also a number, n and sn are different numbers 

with the same successor. Conversely, assume that @ is not a number, m,n 

are numbers and sm = sn. Since sm is a number, sm 4 @, and for some 

z,x2€sm= sn. Then for some a,b,aé€2,b€2,2-a€ mandxr—ben. 

Then « —asm 2 —b via f, where domain({) = 2-4, fb=aifbéz—a, 
and fe =e fore €r—a,c 4b. If z € m,z sm x —<a by the lemma, whence 

2sm ar — 6, aud z € n by the lemma again. Similarly, if z €n, z Em. By 

Ext, m= 7. © 

Appendix ITI 

In M, Ty satisfies the formula “x is infinite”: since there is in fact no one- 

one function from any finite set of natural numbers onto Jo, no function in 
M witnesses the finitude of To. 

We now show that T; does not satisfy “x is Dedekind infinite” in M. 

Suppose that {,¢ M, witnesses the Dedekind infinity of T,. Abbreviate 

“oz {{n}, {n, {z}}} © f” by “fn.” Then f is a one-one function with domain 
N such that for every n in N, fn € T;. Since f € M, there is some finite 

x C Tp, such that xf = f for every x that fixes x. There are only finitely 

many y such that y C x or Tg—y © x. Thus for some n in N and some finite 

y © To, y is not a subset of x, and either fn = y or fn = Ty—y. Let a be an 

individual in y~z, and let b be an individual in neither y nor x (some such 6 

exists since x and y are finite and there are infinitely many individuals). Let 

7m permute a and b but do nothing else. 7 fixes z; so mf = f. Then if fn = y, 

ty =afn =nfon = fn = y, and if fn = To — y, then y = To — fn. and
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since x7p = To, ny = 1(To — fn) = xTo —a fn = To -—afan = To —fn=y. 

In either case my = y,a © y, whence b = na € my = y. But b ¢ y, 

contradiction. 

We now show that M is a model of the theory of types. 

That extensionality holds in M is clear: if z,y € Tr4i,2 4 y, then for 

some z,z € zor z€y. But then z € Ty. 

As for comprehension, let z!,..., 2” be a list containing all variables free 

in a formula y each z* ranges over some one type or other. By induction 

on y, for any 7, any objects o!,...,0" of the appropriate types, M - 

p(ol,...,0") iff ME y(nol"..., 70"). 
Now let x, bea variable ranging over type n, rn, 2',...,2™ bea list con- 

taining all variables free in a formula ~. We must see that for any objects 
o},...,0” in M of the appropriate types {o € Tn : M £ y(o,0!,...,07)} 
€ T,r+41. Notice that for each n, T,, is a definable subset of type n, and there- 

fore for each formula y, “M - y(o,01,...,0™)” defines a definable relation. 
It thus suffices to show that if g = {0 € T, : M - y(o,o!,...,0™)}, then 
for some finite z C To, 17q = q for every a that fixes z. 

For each i, 1 <i <m, let z; be a finite subset of Tp such that 7o* = o# for 

every 7 that fixes z;. Let z = z,U...U2,,. Suppose 7 fixes z. We show that 

wq = q. W fixes 21,...,2%m, and so no’ = o0',1<i<m,1T, = Ty. Suppose 

o € xq. Then 1—'o0 € g; m0 € Ty and ME (1710, 0!,...,07);0 € TTn 
and M F ¢(o,70!',...,70™);0 € T, and M FE y(o,0!,...,07); and so 
o€ q. Thus mq C gq. And if o € q, then 2~!0 € 1~1q, whence, similarly, 

noe q, and o € mq. Sog C mq C q, done.
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On the Proof of Frege’s 

Theorem 

In his doctoral dissertation, “Logicism, Some Considerations” (Princeton 

University, 1960), Paul Benacerraf defended a two-part thesis: (1) what 
arithmetic can be reduced to should not count as logic; and (2) the reduc- 

tions of arithmetic to [whatever] do not provide the epistemological support 

for arithmetic which it had been thought a reduction to logic would supply. 

Thirty-five years have gone by since Paul submitted his dissertation. 

Reread today, it remains remarkably persuasive, its argumentation shrewd 

and common-sensical. The main claim of the dissertation has passed into 

the folklore of the philosophy of mathematics, in part because of Paul’s 

teaching, but primarily, I believe, because claims similar to those of the 

dissertation were advanced and defended by Quine in subsequent publica- 

tions. To say so is certainly uot to suggest that Quine was influenced by 

Paul, but. rather to voice regret that Paul never saw his way to publishing, 

early on, a book derived from his dissertation. Such a book would have am- 
plified aud strengthened the reasons given by Quine for rejecting logicism. 

(Or rather, Quine’s argumentation would have amplified and strengthened 

the reasoning that would have appeared in Paul’s book.) 

In the spring of 1961, Paul presented his dissertation in a class he gave 

on the philosophy of mathematics. He read it to us I remember being 

irritated by what I was hearing. It seemed perverse, contrary to doctrines 

that had been put forth by Russell (hadn’t he discovered what the number 
two really was?), by Hempel (hadn’t he explained in a famous article that 

the work of Frege, Russell and others had reduced arithmetic to logic?), and 

by Quine himself (hadn’t he shown how to derive arithmetic in the system 
of a book called Mathematical Logic?). My sense that something was wrong 

First Published in Adam Morton and Stephen P. Stich, eds., Benacerraf and his Crit- 

ics, Cambridge, Mass.: Blackwell, 1996, pp. 143-59. Reprinted by kind permission of 

Blackwell Publishers. 
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with Paul’s line of argument took a long time to disappear, perhaps twenty 

or twenty-five years, and was in part responsible for a number of papers. I 

hope that some of these are not completely in error. 

T have come to agree with Paul, or Paul as he was in 1961, but my curiosity 

about subprograms of logicism, about reductions of arithmetic or fragments 

thereof to interesting theories, which Paul’s course also stimulated, persists. 

It gave rise to the present paper. 

We shall consider the concept expressed by “the number of” from a logi- 

cal, indeed a Fregean, point of view. With Frege, we shall suppose that “the 

number of” denotes a kind of function that takes concepts as arguments 

and yields objects as values; we shall further suppose that the function is 

total, ice., defined on every concept, and further still, that the function is 

extensional in the sense that it assigns the same object to concepts F and 

G whenever the same objects fall under F and G. 

We do not make any further assumptions about the function denoted by 

“the number of.” In particular, we do not assume that it assigns the same 

object to F and G whenever and only whenever F' and G are equinumerous, 

that is, we do not assume the truth of Hume’s principle, explained below. 

So we may call ours a logical investigation of the concept of number, or at 

least a logical investigation of that which is expressed by “the number of.” 

Of course, we shall carry out our considerations in a formal setting: we 

use the sign “#”, sometimes called “octothorpe,”! to symbolize “the num- 

ber of” and take as our background system of logic standard axiomatic 

second-order logic, together with a principle expressing the extcnsional- 

ity of the function denoted by “#”, Thus octothorpe, when attached to a 
monadic second-order variable, yields a term of the type of individual vari- 

ables and the formula c= #F', F a monadic second-order variable and or 

an individual variable, is well formed. It would therefore be appropriate to 

call # a concept-object function sign. Under standard seinantics, according 
to which function signs denote total functions, VFa!z a2 = #F counts as a 

logical truth. 

In the language L with which we shall be concerned, # is the sole non- 

logical constant. A model (for L) will be an ordered pair (D,f), Da 

non-empty set and f a function from the power set of D into D. Of course, 

VFilzz = #F is true in any model. 

Hume's principle is the sentence: VFVG(#F = #G + F = G); F = Gis 

some standard second-order formula expressing the existence of a one-one 

correspondence between the objects falling under the denotation of F' and 

those falling under that of G (all such “standard” formulas are provably 
equivalent in axiomatic second-order logic, indeed in predicative axiomatic 

ICE. p. 42 of The New Hacker’s Dictionary, second edition (Raymond, 1993), where 
the term is called “rare.” On p. 39 of the first edition (1991) it was classified as “common.”
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second-order logic). Hume's principle is not valid; as is well known and as 

will readily follow from what is shown below, it is false in any model in 

which D is finite. It follows from the axiom of choice that for every infinite 

D, there is a function f such that Hume’s principle is true in (D, f). Indeed, 

Hume’s principle is true in an arbitrary model (D, f) if and only if for all 

subsets A, B of D, fA = fB iff there is a one-one function from A onto B. 

Although Hume’s principle is false in all models in which the domain is 

finite, it does have models (N, f) where N is the set of natural numbers. 

Define f as follows: for any subset A of N, let fA 
=n-+1 if A is a finite set containing n members, and 

= 0 if A is infinite. 

Then Hume’s principle holds in (N,f). For let A,B C N. If A is finite, 

and has, say, n members, then fA =n+1, andso fA=fBiff fB=n+1, 

iff B has n members, iff there is a one-one function from A onto B. But if 

A is infinite, then fA = 0 and so fA = fB iff fB =0, iff B is infinite, iff 

there is a one-one function from A onto B. (Any two infinite sets of natural 
numbers are equinumerous.) 

Frege arithmetic is the system obtained by adjoining Hume’s principle to 

axiomatic second-order logic. The proof given above that Hume’s principle 

has a model in the natural numbers can easily be adapted to show the 

relative consistency of Frege arithmetic to standard second-order arithmetic 

(“analysis” ). 

Frege's theorem is the result, sketched by Frege in The Foundations of 
Arithmetic and correctly proved in detail by him in Basic Laws of Arith- 

metic, that. “zero,” “(immediately) precedes,”? and “natural number” can 

be so defined in Z that the Peano postulates can be proved in Frege Arith- 
metic. 

The suggestion® that, even if not logically true, Hume’s principle can be 

regarded as an “explanation” of the concept of a natural number, might 

lead us to inquire where in the proof of Frege’s theorem Hume’s principle 
is actually used and how much of the proof can be carried out by means 
that we should regard as purely logical. Our inquiry will shed light on the 

way in which Hume’s principle acquires its strength. It will also reveal 

the surprising fact that on Frege’s definitions of “zero,” “precedes,” and 

“natural (= finite) number,” the Peano postulates contain a redundancy. 
We shall take the Peano postulates to be the following seven statements: 

? Terminology is awkward here. We take it that “precedes” and “succeeds” are con- 
verses and that a number is succeeded only by its successor, Thus 2 precedes 3 but not 

3 Advanced by Crispin Wright in (Wright, 1983), p. 153.
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(a) zero is a natural number; 

(b) If m is a natural number and m precedes n, then n is a natural 
number; 

(c) If m is a natural number and precedes n and n’, then n =n’, so that 

the restriction of the relation precedes to the natural numbers is a 

many-one, i.e., a functional, relation; 

(d) If m is a natural number, then for some n, m precedes n, so that the 

restriction of precedes to the natural numbers is a “serial” relation, 

and hence a relation that is the graph of a total function from the 

natural numbers to the natural numbers; 

(e) No natural number precedes zero, so that zero is not in the range of 

that function; 

(f) If natural numbers m and m’ precede n, then m = m’, so that the 
restriction of precedes to the natural numbers is a one-many relation 

and the function is an injection; and 

(g) Mathematical induction holds for the natural numbers: For all classes 

X, if 0 is in X and whenever a natural number m is in X and m 

precedes n, n is in X, then all natural numbers are in X. 

Frege’s theorem then states that the Peano postulates can be proved in 

Frege arithmetic: that is, there exist definitions of “zero,” “precedes” and 

“natural mumber” under which the translations into L of (a) (zg) can be 

proved in Frege arithmetic. 
We shall frequently use the term “finite” as a synonym of [a] natural 

number.” 

Before beginning our discussion of Hume’s principle and the proof of 

Frege’s theorem we should discuss the logical properties of concept-object 

function signs like octothorpe. 

In standard first-order logic a function sign, when interpreted over a 

model, denotes a function that assigns to every object in the domain of 

a model a unique object in the domain. We have similarly supposed that 

# is a sign for a total function, thus # will assign a unique object in the 

domain of a model to every subset of that domain. 

Though nothing in the sequel depends upon it, we also make a supposition 

that is not completely routine, viz. that the formula Vz(Fr «+ Gz) — 

#F = #G is a logical truth. Let us refer to the formula V2(F'2 + Gz) > 

#F = #G as “FE,” for “functional extensionality (for octothorpe).” FE 
will be a logical truth on any one of three sorts of extensional semantics.
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Most importantly, on the usual model-theoretic account, the axiom of 

extensionality guarantees that FE will be true in any model under any 

assignment of subclasses of the domain of the model to its free variables 

F and G. For if Vz(Fz ++ Gz) is true, then by extensionality, the same 

subclass will be assigned to F and G, and #F will denote the same element 

of the domain as #G. 

If one interprets second-order formulas using plurals, then if the an- 

tecedent Vr(F'x ++ Gr) is true, then the objects assigned to F will be 

the same objects as those assigned to G, in brief and par abus de langage, 

the F's and Gs will be the same. Then, since the F's are the Gs, whatever 

“the number of” may mean, the number of F's will be the same as the 

number of Gs, and therefore #F = #G will be true. Thus again FE will 
be a logical truth. 

Finally, if one understands FE in a manner like that in which Frege 
himself would have understood it, it is also always true. For on the way of 
taking it we are envisaging, the antecedent will say, approximately, that the 

same objects fall under F as fall under G (“approximately,” because of the 

“concept horse” difficulty: “fall under” requires completion with names or 

variables of the type of objects). But then if the antecedent Vz(Fz ++ Gz) 

is true, the concepts F and G bear to each other the relation that Frege calls 

the analogue of identity for concepts.* It then follows, or would certainly 
seem to follow, that F and G fall under the same higher-level concepts. 

And then G will fall under the higher-level concept [H : #F = #H], since 

F falls under it, and therefore the consequent #F = #G will be true. 

Another way of expressing the last argument is this: On Fregean seman- 

tics, Var( Fur Gr) > Vx(xF + G) is a logical truth (y a second-level 

concept. variable), from which it follows by instantiating x() as #F = #(). 
that FE is also a logical truth, since #F = #F certainly is one. 

So let us take it that since # is a total concept-object function sign that 

“acts extensionally,” FE counts as a logical truth. Hoping that Frege’s 

proof will be recognized as a major accomplishment of the standard logical 

tradition, I emphasize that on the obvious and natural extension of the 

usual model-theoretic semantics to function signs of concept-object type, 

FE is valid: its universal closure is true in all models. 

Of course FE is directly derivable from Hume’s principle in second-order 

logic, for F ~ G immediately follows from V2(F'x > Gr). 

It is also to be noted therefore that on these three systems of seman- 
tics, Frege’s Basic Law (Vb), which may be symbolized. nearly enough, 

as Va(Fx «+ Gz) + 'F ='G, will also count as a logical truth. It was 
the converse (Va) that got Frege into trouble. Notice that (Va) may be 

4See his “Comments on Sense and Meaning” in (Hermes et al., 1979).
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written: “V2(F2 o Gr) > 'F #'G, and read: if concepts bear the ana- 
logue of difference to each other, then their extensions are different. (One 

can’t inject all subdomains of a domain into that domain.) Of course, 

WFIVG( PF = 'G > V2( Fz  Gz)) is without doubt a logical truth. 
Log is the system in the language L extending axiomatic second-order 

logic to which FE has been added as the sole new axiom. Totality of 

the function denoted by # is expressed in the rules of inference of Log, 

which permit free instantiation and generalization with terms #F. The 

comprehension-scheme 

ARV 2 ees Vitn(R21 eee Dn ~), 

y an arbitrary formula of Z and # not free in y, is certainly assumed to 

be an axiom-scheme of second-order logic and hence also of Log. We also 

suppose that all ordinary rules of classical logic are available in Log. Every 

theorem of Log is therefore valid. 

Since the set of its theorems is recursively enumerable, Log is incomplete 

with respect to standard, i.e., full, semantics for second-order logic. But 

it is of course sound with respect to that semantics, and the usual sorts of 

model-theoretic arguments can be used to show non-derivability in Log. So 

Hume’s principle is not a theorem of Log. 

Since every occurrence of a monadic second-order variable in a forniula 

of Log is either before an object variable, after V or 4 or after #, the 

provability of FE in Log entails that of the schenia 

Ve( Fare Gr)... Fo. 0 2..G...), 

as the obvious induction on complexity of formulas... F’... shows. 

We now note that for any formula yg and any variable or, we may introduce 
the term #[c : yg] by defining the formula y = #[x + y] as 

aF(y= #F AV2(F2< y)) — (F not free in vy). 

Comprehension alone, in the presence of the rules of inference, yields 

dF (Alyy = #F AVa2( Faro ¢)); 

comprehension and FE then yield 

Ayiak(y = #F AVe(Fr e ¢)), 

since Vz(F'r + y) and Vz(Gzr + y) imply Vz(F'r + Ga). Thus for any 
variable z and formula y, comprehension and FE license the introduction 

of the term #[z : y].5 For any formulas » and y, we can then prove 

Valp + ~) > #[z: 9] = #[z: Y]. 

5]t is appropriate to comment here on slight differences in the present notation from



17. On the Proof of Frege’s Theorem 281 

These preliminaries completed, let us now see what portions of Frege's 
argumentation can be carried out in Log. There are six definitions to be 
made, of “number,” 0,° P (precedes, i.e., immediately precedes), * (the 
strong ancestral), *= (the weak ancestral), and “natural number.” 

“z is a number” is defined: IF x = #F. 
O is defined as the term #[z : x # a], licensed by FE and comprehension 

as usual. There are many other constant terms that can be formed with the 
aid of #. Frege defines 1 as #[z : z = 0]. We may also define 2, 3, etc. as 
#[z > 2 =OVa=1], #[2:2=0Vr=1V2 =2QI, etc. The existence of 0, 
of 1, of 2, of 3, ... is thus provable in Log; what is not is the distinctness of 
0 and 1, of 0 and 2, of 1 and 2, ... The existence of “anti-zero,” the number 

#[x : = z] of things there are, is also provable, but not its distinctness 
from 0. We might also introduce the number #[z : z is a number] of num- 
bers there are, and once we define “finite,” the number #{z : z is finite] of 
finite numbers there are. (It will be easy to show that anything finite is 
a number.) Even with the aid of Hume’s principle, all that can be proved 

about the identity and distinctness of these three numbers is that if an- 

tizero is the number of finite numbers then antizero is also the number of 
numbers. 

Frege defined “rm immediately precedes n” as IFac(FrA#F =nA#ly: 

Fy Ay # x] =m). His phrase for this relation (in Austin’s translation) was 
“n follows in the series of natural numbers immediately after m.” It will be 
convenient to use a slight variant of Frege’s definition. So we define mPni: 

AF AGIy(Gy AVr( Fro GrAr xy) Am=#F An= #6). 

It is easy to prove OP 1 in Log: take F as [ir : 2 # a], G as [xr : z = O}, 
and y as O. It is something of an exercise to prove 1P2; one way to do 

it is by cayes: O = 1 vs. 0 4 1. However, matters are somewhat delicate: 
2P3 cannot be proved. For tet the domain consist of two objects, a and 

b, aud, where # denotes f, let f@ = f{a,b} = a and f{a} = f{b} = 6. 
Then 0, 2, and 3 denote a, 1 denotes 6, and there are no subsets A and 

B of the domain such that {A = fB =a, but A is obtained by removing 
one element from B. Thus OP1 and 1P2, but not 2P3, count as truths of 

logic. 

that of Wright, Dummett, and Heck. Where 1 write #F and #([z : y], these authors 

would all write: #aFx and #ay, respectively. Thus these authors all take # (which 

they write: N) to be a variable-binding operator, attaching to an object variable and a 

formula, while 1 take it to be a functor, attaching to a monadic concept variable. I prefer 

#F because I do not find it necessary to indicate at every turn that concepts may or 

may not apply to objects and #[x ; y] because it is on occasion useful to pretend that it 

is composed of # and a notation [z : y] for a concept. But it is to be emphasized that 
each of us has the resources for defining the other's notation (see three sentences back) 

and that these differences are merely stylistic. ; . 
®We use boldface for terms of Log and lightface for ordinary decimal numerals.
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Vm-mP0 is derivable in Log from Hume’s principle: Assume mPO. Then 

for some F, G, y, Gy, Vz(Fz 3 GraAz fy), m=#F, and 0 = #G, ie., 

#[z: 2 42] = #G. By Hume’s principle, [z : x 4 2] ~ G, whence Vz7Gz, 
contra Gy. 

But we certainly can’t prove Vm—-mP0 in Log alone, for it is consistent 

that there is only one object, and thus consistent that 0 = 1; hence since 

we can prove OP 1, OPO is consistent; thus we can’t even prove ~OPO. (The 

attempt to deduce a contradiction from (GyA...A0 = #G) fails for lack of 

Hume’s principle, which is needed to infer [x : x 4 x] = G or its equivalent 

Vz—Gz from the supposition 0 = #G.) 

Vm-mP0 is not explicitly mentioned in Die Grundlagen, but Frege ex- 

plicitly proves it in Grundgesetze, as Proposition 108. Proposition 78.6 of 

Die Grundlagen is that every number except 0 is preceded by some num- 

ber. §44 of Grundgesetze makes it plain that Frege did not intend 78.6 to 

imply its converse, Vm—mP0. Unlike its converse, 78.6 is in fact provable 

in Log. For on disabbreviating and slightly reformulating the natural first 

symbolization: 

Vn(n is a number An 4 0 — Im(m is a number A mPn)), 

one obtains: 

Wn(AGn = #GAn¢ #[a: 2 4 2] — ImIAFIGIy(GyA 

Va(F2o Grazr fy)Am=#F An= #6)). 

Bot ifn = #G and n #4 #[e: er ¥ al, then by FE, for some y, Gy. Then 
take F = (#2: GarAwr #y\ and m= #F. 

The natural proof of 78.5 of Die Grundlagen, which states that if mPn 

and an! Pr! then m = m! iffn = on’, ie, that P is a one-one relation 

(“beiderseits cindentig” ), appeals to Hume's principle at. several points. In 

the natural proof of this crucial proposition, one freely passes back and forth 

between the existence of one-one correspondences between objects falling 

under concepts with certain numbers and the identity of those numbers. 

Since the natural derivation of 78.5 from Hume’s principle is given in a 
paper by Heck and the author,’ we omit it here. 

And like Vm-mP0, the one-one-ness of P is not provable in Log. As 
before, let the domain consist of two objects, @ and 6, but this time let 

f@ = f{b} = f{a,b} =a and f{a} = b. Then 0 denotes a, 1 denotes b, 2 
denotes a, and so 1 # 2 is true; but OP1 is (always) true and OP2 is also 
true: take {b} as G. 

Let us give the designations “NPZ,” “PM1,” “P1M,” and “P11” to the 

sentences 

Vin-mP0, 

7 Article 20 in this volume.
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YmvnVn'(mPn A mPn! + n=n'), 

YmV¥m'Vn(mPn A m'Pn— m= m’),and 

Vmvm'VnVn' (mPn Am! Pr! > (m =m! on=n')). 

These express, respectively, that nothing precedes zero, that precedes is a 

many-one relation, that precedes is a one-many relation, and that precedes 

is a one-one relation. Of course P11 is equivalent to the conjunction of PM1 

and P1M. Thus although we cannot prove either NPZ or P11 in Log, we 

can, as we have seen, prove them in Log from Hume’s principle. 

We now wish to show that the conjunction of NPZ and P11, although 

implied by Hume’s principle, does not imply it. It suffices to construct a 

model (N,g), where N is the set. of natural numbers, in which NPZ and 

P11 are true and Hume’s principle is false. 

For any AC N, let gA 
= n+2 if A is a finite set containing n members, 

= O/if A is infinite and cofinite, and 

= 1 if A is infinite and coinfinite. 
Then the term 0 designates f@, which is the natural number 2; the term 

1 designates f{ 6}, which is the natural number 3; the term 2 designates 
F{F9, f{FO}}, etc.8 

It is clear that Hume's principle fails in (N,g). Let A be N and B be 
the set of even natural numbers. Then F ~ G is true when A and B are 

assigned to F and G, but #F and #G respectively denote 0 and 1 under 

this assignment. 
To sce that NPZ and P11 are true in (N,g) we shall investigate the 

conditions under which they are true in an arbitrary model (D, f). 
The corollary to our first lemma asserts that NPZ holds in a model (D, f ) 

if the object assigned by f to the null set is assigned to no other object. 

Lemma 1 + NPZ + VF(#F = #[2: 2 4 2] ~ Vr-F 2) 

Proof. When decoded, NPZ, i.e., ¥m—=m PO, is -ImAFAGAy(GyAV2(F ro 

GrAaz#yAm= #F A#{[x: x # 2] = #G), which is equivalent to: 
“AG (AyGy A #|2 : 2 #2] = #G). (The latter clearly implies the former, 
and a counterexample to the former can easily be constructed from one to 
the latter.) m 

Corollary (D, f) | NPZ iff for all AC D, if fA = 0 then A= 0. 

It is clear from the Corollary that NPZ is true in (N, g), for if gA = g, 

gA = 2, A contains no members and A = @. 

®What do you get if you drop all “f"s?
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Let us abbreviate “Sy(Gy AVa(Fr o GrAzy))” by “FC, G.” The 
notation is intended to suggest: F' falls short of being G by just one object. 

Now call A and B f-equivalent iff fA = fB. And write: A C, B to mean: 

for some x in D, x ¢ A, and B = AU{z}. The corollary to the next lemma 
says that PM1 holds in (D, f) if and only if, whenever A C; B, A’ C; B’, 
and A and A’ are f-equivalent, then B and B’ are f-equivalent. 

Lemma 2 | PM1 © VFVFVGVG'(F C,) GAF' GQ, GA#F = #F' > 

#G = #G’). 

Proof. When decoded, PM1 reads: VmVnWnVFVF'VGVGVyVy' (m = #FA 
m= #F'An = #GAn' = #G' AGYAGY AV2(Fr © Gra F 
y) AW2(F’2 @ Geary’) > n=), ie, VFVFVGVG yy (#F = 
#F' AGYAG'y AV2(Fr oO Graz #y)AVe(F’2t oO Gear F#y') > 
#G = #G’). © 

Corollary (D, f) — PM1 ifffor all A, A’, B, B', if AC, B and A' C, B’, 

then if fA=fA', thn fB=fB'. 

The following corollaries supply similar conditions for P1M and P11. 

Lemma 3 + PIM © VFVF'VGVG'(F GC, GA F’ C, G'A#G = #G’ > 
#F = #F’"). 

Proof. Like that of Lemma 2. 

Corollary (D, f) — P1M iff for all A, A’, B, B',if AC, Band A! C, B’, 

then if fB = fB', then fA = fA’. 

Lemma 4 + PIL GO VFVFYVING'( EF C1 GA F Cy G! -9 (BE = BR Oo 
#G = #6’). 

Proof. By Lemmas 2 and 3. @ 

Corollary (D, f) / P11 iff for all A, A’, B, B’, if AC, B and A’ Cy B’, 
then fA = fA’ iff FB = FB’. 

We can now see that P11 also holds in (N,g), in brief because any set 
that differs by one element from an infinite—cofinite or infinite-coinfinite 
set. is itself infinite-cofinite or infinite-coinfinite, respectively. 

In more detail: Suppose A C; B and A’ C, B’. If A is finite, with, say, 
n members, gA = n+ 2 and gB = n+ 3; then gA = gA’ iff gA’ = n+ 2, 
iff A’ has n + 2 members, iff B’ has n +3 members, iff gB' = n+ 3, iff 
gB = gB'. If A is infinite and cofinite, gA = 0 and therefore gB = 0, since 
a superset by one element of an infinite—cofinite set is also infinite—cofinite;
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but then gA = gA’ iff gA’ = 0, iff A’ is infinite-cofinite, iff B’ is infinite - 
cofinite, iff gB’ = 0, iff gB = gB’. And, similarly, if A is infinite—coinfinite, 
gA = 1 and gB = 1, whence gA = gA’ iff A’ is infinite—coinfinite, iff B’ is 
infinite—coinfinite, iff 9B = gB’. 
We have now concluded the proof that Hume’s principle does not follow 

from the conjunction of NPZ and P11. The reason, in a nutshell, is that 
Hume looks only at the “insides” of concepts and not at their “outsides,” 
and thus if Hume holds in a model, then the same ob ject must be assigned 
to any two equinumerous subsets of the domain, regardless of whether their 
complements are equinumerous or not. 
We can now see more clearly how Hume's principle exerts its influence 

through NPZ and P11. Assume that NPZ and P11 hold in a model (D, f). 
Suppose now that there are natural numbers i and i’ and subsets B and B’ 
of D, such that i < i’, B contains i+ 1 elements, B’ contains i’ +1 elements, 
and fB = fB'. Then there are subsets A, A’ of B, B’, respectively, that 
contain i and 7’ elements, respectively, and so by PIM, fA = fA’. By 
induction, there is a non-empty subset A’ of D such that f@ = fA’, contra 
NPZ. Thus if two finite subsets of D are f-equivalent, they are equinumer- 
ous. And in like manner, if A is finite and A’ is infinite, fA # fA’. 

Suppose that for some natural number i, any two i-element subsets of D 

are f-equivalent. Then by PM1, any two (i + 1)-element subsets of D are 
also f-equivalent. Thus finite subsets of D are f-equivalent if and only if 

they are equinumerous. 
We now define a sequence {ai},¢, of elements of D: ao = f; aiz1 = 

f{ay,... ,a,}. Suppose that for some least j, some i < j, a, = aj. By NPZ, 

7 #0, and therefore for some qg, 7, ¢ <7, i=@+land j =r+1. Then 

Flag... .cdg} = aqy1 = a = a, = Ora = f{ao,---14r}. So {a0;-+-, dq} 

and {ap,... ay} ave equinumerous. But since g <r < J, the cardinality of 

{ag,...,ag} is ¢+1 and the cardinality of {ao,..-,a,} is r+1. Thus i = j, 
contradiction. So if i 4 j, a; # a;, and {a; : i € N} is a countably infinite 
subset of D. Moreover, if A is any infinite subset of D, fA # ai. 

Thus a restricted version of Hume’s principle holds in (D, f): if A is 

finite, then fA = fA! iff A and A’ are equinumerous.° 
Notice that we could not have concluded that if A and A’ are countably 

infinite subsets of D, then fA = fA’: N and {the evens} are countably 

infinite subsets of N, gN = g{the evens}, but NPZ and P11 are true in 

(N, 9). 
We turn now to the definition of the natural numbers and the deduction 

°Thanks here to Richard Heck. Heck has observed that this weakened form of Hume's 

Ptinciple is equivalent to the conjunction of NPZ, (c), and Vn(OP"=n — vim (mPn A 

™m! Pn — m = m’)), which is a consequence of P1M. Here one can define “is finite” as 

“possesses a well-ordering whose converse is a well-ordering.”
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of the Peano postulates from NPZ and P11. It is apparent at the outset 

that, however we define “natural number,” (c), (e) and (f) will follow, for 
these are relativizations of PM1, NPZ and P1M to the predicate “natural 

number.” (Note that there are no function signs in our formulation of the 
Peano postulates.) 

If 2 is an arbitrary relation, then the strong ancestral R* is defined: 

cR*y = VF (Vd(aRd — Fd) \VdVa(Fd A dRa — Fa) > Fy). Two impor- 
tant facts about the strong ancestral, proved in Frege’s Begriffsschrift, are 

that if sRy, then +R*y and that if cR*y and yR*z, then rR*z. 

The weak ancestral + R*“y may be defined: tR*yVy = z. It is an exercise 

to prove this definition equivalent to: VF (Fz A VdVa(Fd A dRa — Fa) > 
Fy). 

Important for our purpose is the following lemma connecting the strong 

and weak ancestral: 

Lemma 5 | cR*y — 3z(zRy AcR*=z). 

Proof. Let Fa = Az(zRa AzR*-z). Then rRa — Fa, for if cRa, then 
certainly Fa: take z = x. And Fd AdRa — Fa: Suppose Fd and dRa. 

Then for some z, zRd and zR*~z, and therefore +R*-d. But since dRa, 

Fa. The lemma follows by the definition of the strong ancestral. & 

Finally, “n is finite,” i.e., “n is a natural number” is defined, simply, as: 

OP**n. It is trivial to prove (a) that 0 is finite and easy to prove (b) that 
if m is finite and precedes n, then 1 is finite and that anything finite is a 

number. 

It is also casy to prove should this be surprising? mathematical induc- 

tion in the form: 

PO AViNa( Fi AmPn 4 Fn) -+ Vin is tinite + Fr). 

We can also prove induction in the more useful and stronger-looking form: 

FOAVmVn(m is finiteA Fm AmPn— Fn) - Vn(n is finite > Fn). 

To prove the stronger-looking form from the weaker-looking, define Gz as: 

Fz Az is finite; then, using (a) and (b), apply the weaker-looking form to 

G. (g) is nothing other than a reformulation of the stronger-looking form. 

We have just seen that there is at least one clear and correct interpretation 

of the claim that mathematical induction is a truth of logic plus appropriate 

definitions. Moreover, the proof of induction in Log simply formalizes the 

usual trivial argument. for taking it to be a logical truth. 

To sum up thus far: Mathematical induction, in either of the two forms, 
can be proved in Log; (a) is a trivial consequence of the definition of “natural 
number”; (b) is an easy consequence of that definition; (c), (e), and (f)
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follow, as we have seen, from NPZ and P11; and (g) is just mathematical 
induction in the second, stronger form. 
What of (d)? 
The central argument of Die Grundlagen der Arithmetik, sketched in 

8882-83 of that work, was intended to show that (d) follows from Hume’s 
principle. In those two sections Frege asserts that (d) can be proved by 
deriving it from 

(1) dP# |x : 2P*"d] AdPa— aP#{[a: 2P* =a] 

and 

(2) OP#[2 : 2P* =z] 

with the aid of a version of the weaker-looking form of induction. But by 

the time he came to write out a proof of (d) in Grundgesetze der Arithmetik, 
Frege had changed his mind about the possibility of carrying out the one 

he had sketched in Die Grundlagen, for he asserts in Grundgesetze that (1) 
appears to be unprovable and instead derives (d) from 

(l') dis finite AdP#[z : zP*“d] AdPa > aP#[z : xP**a] 

and (2) with the aid of the stronger-looking form of induction (which of 
course can be derived from the weaker-looking form).!° 

In fact, “zero,” “precedes” and “natural number” now having been de- 
fined, (d) follows from (a)-(c) and (e)~(g) in Log, as a slight modification 
of Frege's corrected argument shows. 

It is remarkable that this should be so. For let e be an arbitrary individual 

constant and 7 an arbitrary predicate letter. In general, the analogue 

Vin(eR**m — damén) 

of (d) will not follow from the conjunction of the analogues of (a)-(c) and 

(e)-(g): 

eR**e, 

YmnVn(eR*-m AmRn — eR*~n), 

VmVnVn' (eR*=m AmRnAmRn! > n=7n'), 

Vm(eR*=m — —mRe), 

VmVm'Wn(eR*=m A eR*=m! AmRn Am’ Rn > m =m’), 

10For a fuller account, see Article 20 in this volume.
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VX ([Xe A VmVn(eR*-m A Xm AmRn = Xn)| > 

VmleR™m — Xml). 

(The first, second, and last of these are logical truths, certainly.) These six 
sentences will all be true, but ¥Vm(eR*"m — AnmRn) will be false, in the 
model in which e denotes the sole object in the domain and RF is assigned 

the empty relation. Thus we cannot even prove IneRn or Ardyz # y from 

their conjunction, and it might thus appear that we cannot prove anything 

significant in Log from the conjunction of (a)-—(c) and (e)-(g). In particular, 
one might readily think that we should not be able to prove the seriality 

of precedes on the class of natural numbers, for how, one might wonder, do 

O and P differ from e and R? If a certain relation is one-one and nothing 

bears that relation to zero, how are we supposed to be able to prove without 

further assumptions that. the relation has an infinite field? 

What is surprising is that this is just not the case. We can prove InOPn 

and irdy x ~ y in Log from (c), (e) and (f), the relativizations to “natural 

number” of PM1, NPZ, and P1M and therefore prove from these that there 

are Dedekind infinitely many natural numbers. For if we define “natural 

number” as we have done, we can in fact prove the seriality of precedes on 

the class of natural numbers, and thus that the restriction of P to “nat- 

ural number” defines a one-one function from that class onto one of its 

proper subclasses. Jt immediately follows that we can prove that there 

are Dedekind infinitely many natural nnmbers. All this, it is to be en- 

phasized, can be done without further appeal to Hume’s principle, or (the 

unrelativized forms of) NPZ, PM1, or P1M. 
Here, then, is the proof; each of Lemmas 6 through & shows that. in 

Log the proposition that follows the turnstile “ft ean be proved from the 

non-logical hypotheses, if any, that. preeede it. 

Lemma 6 (e), (f)' OP ** a -+ -aP*a. 

Proof. O= #[z : 2 # z}. If OP*O, then by Lenima 5, for some z, z PO and 
OP*=z. Thus z is finite and by (e) we have a contradiction. So -OP*O. 

Now assume d is finite, ie., OP*“d, dPa and aP*a. Then OP*-a. By 

Lemma 5, for some z, zPa and aP*“z, whence zP*z. Since OP*“a and 

aP*=z, z is finite. Since dPa, zPa, and d and z are finite, z = d by (f), 

and therefore dP*d. Thus d is finite A ~dP*d AdPa — -aP*a. 
Lemna 6 now follows by (g). & 

Lemma 7 (e) + OP#(z : x is finite A zP*=0]. 

Proof. Since 0 is finite and OP*=0, #[x : z is finiteAxP*-OAz 4 O|P#{x : 
x is finiteArP*=O0], by the definition of P. SinceO = #[z : x # a}, it suffices 
to show that #[x : x is finite AzP*=O Az ¢ 0| = #[z : c $ a], and hence
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by FE, to show that Vz(z is finiteArP*“OAz #0 4 2 # x). Now suppose 

z is finite, sP*“0, and x 4 0. Then xP*0; by Lemma 5, for some z, zP0 

and zP*=z; since « is finite, so is z, contra (e). ™ 

Lemma 8 (c), (e), (f) + d is finite A dPaA dP#{x : x is finite and 
tP*"d] — aP#{z : x is finite and xP*=a]. 

Proof. Suppose d is finite, dPa and dP#|z : x is finite and P*=dj. Then 

a is finite, and by (c), a = #[z: z is finite Az P*=d]. Since a is finite and 

aP*a, it is immediate from the definition of P that #[x : z is finite A 

tP*-aAz # al|P#{[z : z is finite A «P*a]. It thus suffices to show that 
#[z : z is finite AxP*-aAz 4 a] = #|zr: z is finite A xP*=d], and thus by 

FE, to show that Vz(z is finite AcP*“aAzr a+ z is finite \cP*“d). 

Now suppose z is finite. Assume «P*“a and x # a. Then zP*a, and so 

by Lemma 5, for some z, tP*=z and zPa. Since z is finite and xP*=z, z is 

finite. Since zPa, dPa, and z and d are finite, z = d by (f), and so rP*“d. 

Conversely, assume +P*~d. Since dPa, by facts about the ancestral, +P*a, 

whence zP*=a, But since a is finite, by Lemma 6, ~aP*a, whence x # a. 

From Lemmas 7 and 8 it follows by (g) in Log from (c), (e) and (f) 
that if mm is a natural number, then m precedes the number of natural 

nuubers that bear the weak ancestral of precedes to m: m is finite > 

mP#(r : + is finite and «P*=m]. So from (c), (e) and (f), Log proves (d): 

m is finite 3 Jim Pn. Thus on Frege's definitions of “zero,” “precedes” 

and “natural munber,” (a), (b) and (g), unsurprisingly, turn out to be 
logical truths: (d), surprisingly, turns out to be a consequence of the others. 

The proof we have given that, on Frege's definitions, (d) follows from 

(c), (c) and (f) is a modification of Frege’s proof from Hume’s principle 
that every finite number precedes some number. In Frege’s proof, Hume’s 
principle is used only to obtain NPZ and P11. Once these are in hand, 

Hume’s principle is used thereafter only to yield FE, which is an axiom 

of Log and which we have argued should count as a logical truth. The 

modification consists in relativizing a number of variables to the predicate 
“natural number,” replacing almost every occurrence of a number term 

#[z : y] with one of the term #([z : z is finite A y] and appealing when 
necessary to the stronger-looking, rather than the weaker-looking. form of 

mathematical induction. 
We conclude by showing that the Peano postulates, under Frege’s defi- 

Nitious, are rather weak. We shall show that they do not imply even the 

disjunction of NPZ, PM1 and P1M. As before, we will construct a model 

(N, f): Forany ACN, let fA
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= n-+2 if Ais a finite set containing m members 

2ifA=N 

0 if A= N — {0} or N — {0,1} 
= 1 otherwise, in particular if A= N — {1}. 

So fO=fN =2. 
By Lemma 1, (N,f) & NPZ: fN = f@. By Lemma 2, (N, f) PMI: 

let A, A’, B and B’ be N — {0,1}, N — {O}, N — {1} and N, respectively. 
By Lemma 3, (N, f) 4 P1M: let A, A’, B, and B’ be N — {0}, N — {1}, 
N and N, respectively. 

Since N C,; A for no A C N, it is clear that in (N, f), 0 denotes 2, that if 

j > 1, then (j,*) satisfies mPn iff k = 7+1, and that the objects satisfying 

“natural number” in (N, f) are the positive integers greater than 1. Thus 

the Peano postulates all hold in (N, f). 
We have of course taken advantage of the unrestricted range of the vari- 

ables in NPZ, PM1 and P1M in order to falsify these sentences while keeping 

the Peano postulates, with their (generally) restricted ranges, true.
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Frege’s Theorem and the Peano 

Postulates 

Two thoughts about the concept of number are incompatible: that any 

zero or more things have a (cardinal) number, and that any zero or more 

things have a number (if and) only if they are the members of some one 

set. It is Russell’s paradox that shows the thoughts incompatible: the sets 

that are not members of themselves cannot be the members of any one set. 

The thought that any (zero or more) things have a number is Frege’s; the 

thought that things have a number only ifthey are the members of aset may 

be Cantor’s and is in any case a commonplace of the usual contemporary 

presentations of the set theory that originated with Cantor and has become 
ZFC. 

In receut years a number of authors have examined Frege's accounts of 

arithmetic with a view to extracting au interesting subtheory from Frege’s 

formal system, whose inconsistency, as is well known, was demonstrated by 

Russell, ‘PFhese accounts are coutained in Frege’s formal treatise Grundge- 
setze der Arithmetik and his earlier exoteric book Die Grundlagen der Arith- 

metik. We may describe the two central results of the recent re-evaluation 

of his work in the following way: Let Frege arithmetic be the result of ad- 

joining to full axiomatic second-order logic a suitable formalization of the 

statement that the F's and the Gs have the same number if and only if 

the F's and the Gs are equinumerous. Then (1) Frege himself succeeded in 

deriving arithmetic from Frege arithmetic and (2) Frege arithmetic is equi- 

consistent with full second-order arithmetic (and is thus consistent, with 

moral certainty). So Frege derived arithmetic from a single consistent and 
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obvious-seeming principle, if not from logic alone, as he had hoped he had. 

A number of the articles responsible for the re-evaluation of Frege’s formal 

work are collected in William Demopoulos’ anthology, Frege’s Philosophy 

of Mathematics.! 
Frege, we now see, thus provided a consistent theory of the natural num- 

bers altogether different from those of Dedekind, Russell and Whitehead, 

Zermelo, von Neumann, and the several founders of combinatory logic and 

the lambda-calculus. Particularly noteworthy is the difference between 

Frege’s account and that found in Principia Mathematica: for Frege, num- 

bers are certain objects that lie at the bottom level of a type-theoretical 

hierarchy, while for Russell and Whitehead, they are situated two levels 

above the bottom of a similar hierarchy. 

Here we investigate the Fregean conception of number; we are going to 

show that on Fregean definitions of zero, (immediately) precedes,” and nat- 

ural number, but without use of the aforementioned principle, the Peano 

postulates contain a notable redundancy, whose discovery can, with only 

a smal] amount of exaggeration, be attributed to Frege, since the proof of 

redundancy is an adaptation of Frege’s proof that the series of natural num- 

bers is infinite. Thus the study of the details of Frege’s work has yielded a 

result coucerning the extremely familiar Peano axiomatization. We begin 

the investigation by recalling an old observation of Henkin’s concerning a 

dependency ainong the Peano postulates.? 

Suppose that the Dedekind Peano postulates are fornmilated as usual in 

a second-order language containing a constant. 0 (for zero) and a onc-place 

function sigu s (for successor): 

(i) VWa0 # sr 

(ii) WarVy(s0 = sy -2 or = y) 

(iii) Mathematical induction: Vi'(2'0 A Var( Fa -» Bsr) -9 Vir Pr), 

Henkin observed that (iii) implies the disjunction of (i)and (ii). 
We may see this as follows: by (iii), the range of the first order variables 

is the class of denotations of 0,s0,ss0,... Either these denotations are all 

distinct, in which case (i) and (ii) both hold, or they are not and for some 
least m, s™O denotes the same object as s"0, for some n > m. If m = 0, 

(i) fails but (ii) holds; if m > 0, (ii) fails but (i) holds. 
It is easy to construct models in which each of the seven conjunctions 

+(i)+ (ii) + (iii) other than — (i) —(ii)+ (aii) holds; so no other dependencies 

aniong (i), (ii), and (iit) await discovery. 
Our main interest is in the Fregean conception of number and we shall 

1 (Demopoulos, 1995). 
*We use “precedes” to mean “immediately precedes” (rather than “is less than”). 

3(Henkin, 1960).
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accordingly follow Frege in not assuming that the relation precedes is the 
graph of a total function on the natural numbers, or even a functional 
relation. Accordingly, we formulate the Peano postulates in the language 
{0, P, N}, with P a binary predicate letter for “precedes” and N a unary 
predicate letter for “is a natural number,” as the universal closures of the 
following seven formulas: 

(a) NO 
(b) NnAmPn—- Nn 

(c) NmAmPnAmPr! > n=n! 
(d) Nm—  InmPn 
(e) Nn-—--nP0 
(f) NmA Nm AmPnAm'Pn-> m=! 

(g) FOAVmVn(FmAmPn— Fn) > Fn. 

The background logic of our investigation will be axiomatic second-order 
logic. 

(g) is of course a formulation of mathematical induction. It is immediately 
implied by the stronger-looking 

(h) FOAVmVn(NmA FmAmPn — Fn) > Fn. 

But (h) is equivalent to (g) in the presence of (a) and (b): Let Gn = 
NnAFn. Then (a), (b) and the antecedent of (h) yield GO and VmVn(GmaA 
mPn — Gn); so by (g), Gn, whence Fn. 

The conjunction of (a), (b) and (g) is equivalent to the celebrated Dede- 
kind Frege Russell definition of N from 0 and P: 

DefN V.r(Nae oe VE(FOAWmVn( Fim AmPn 4 Fn) > Fr)). 

We first examine dependencies among (c), (d), (e) and (f} under the as- 
sumption of DefN. It will help matters if we give (c), (d), (e), and (f) more 
suggestive designations. Thus we dub (c) Functionality, (d) Totality, (e) 
Exiledom (the sequence of natural numbers never returns to its point of 
origin), and (f) Injectivity. 

We shall use: * to denote derivability from DefN (in axiomatic second- 

order logic). 
Formalizing Henkin’s argument, we see that F* FAT + Ev IL. 

In a similar vein, we may see that k* F A ~T — EAL, by formalizing 

the following argument: If F holds, every object satisfying Nir bears ( the) 

P(-relation) to at. most one object; if -T holds, some object satisfying N.r 

bears P to no object. By (a), (b) and (g), the objects satisfying Nr arc 

just the denotation ag of 0, the unique object. ai, if it exists, to which ag 

bears P, the unique object az, if it exists, to which a, bears P, ...Now if 

i<j and a, exists, then a; exists, but a; does not bear P to a,: otherwise
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we have a loop and so T holds; nor can every a; exist, for then, since every 

a; bears P to a;41, T again holds. So the a;s eventually give out without 

ever repeating. But then E and I both hold. So we have 

K* “(FA TA-AEA-I) (Henkin), 

as well as 

K* “(FAATAEA-I), 

HK A(FAATAAEAYN), and 

K* A(FAATAAEA-—I). 

We shall discuss the twelve other possibilities below. One of them, however, 

deserves mention here: It is not the case that }* FAEAI — T, for (a), (b), 
(g), F, E and I are all true and T false in the model consisting of a single 

element which does not bear P to itself; of course, that single element will 

be the denotation of 0, and it will therefore satisfy Nz. 
The use of the constant 0, rather than a monadic predicate letter Z (for 

“fs a zero”) in the formulation of E and DefN is important. In particular, 

the assumption that there are not two zeros has significant consequences. 

For suppose we reformulate the Peano Postulates in the language {Z, P, N} 

as the universal closures of: 

(a') Zn—4aNn 
EZ AnZn 

UZ ZmAZn->m=n 

(b) NmAmPn— Nn 

F Nin AmPnAmPr! 3+ n =n! 

T Nin — Sai Pn 

EO 2mANn > anPm 

I Nin A Nin’ AmPn Am! Pn -s an = nl 

(o’) VE(Va(Za2 > Pr) AVdVa( Pd AdPa > Fa) > Va(Nax - Fr)) 

and, correspondingly, redefine N: 

RedefN Vn(Nn o VF(V2(Z2 > Fr) AVdVa(Fd AdPa — Fa) — Fn)). 

We can derive (a’) A (b) A (g’) from Redef.N, and thus also derive (h’), i-e., 

VF (V2(Z2 — Fr) AVdVa(Nd A Fd AdPa — Fa) — Vx( Nz — Fr)). 

But not only can FA E’ AI - T not be derived (in axiomatic second-order 

logic) from RedefN A EZ A UZ, as the model with a single element a such 

that Za, ~aPa, and Na shows, neither can any of 

FAT—+E'vI, 

FAAT > EF’ vI, 
FAT + EB! v-l, and 
FAT > AE’ VI.



18. Frege’s Theorem and the Peano Postulates 295 

be derived from RedefN A EZ, as the following easy countermodels respec- 

tively show: 

({a, 6, c}, {a, b}, {aa, be, cc}), 
({a, 6, c, d}, {a, 6, c}, {aa, bd, cd}), 

({a, 6, c}, {a,b}, {aa,bc}), and 
({a, 6, c}, {a, b}, {ac, bc}). 

(a, b,c, d are any four objects. The members of the second set in each model 

are the objects satisfying Z there. The members of the third are the ordered 

pairs satisfying P. In each model all objects satisfy N.) 

So, as will appear later, F, T,E,I are totally independent if RedefN and 

EZ but nothing else is assumed. 

We now add to the treatment of number given so far the distinctly Fregean 

ingredient. Jt will be of interest to stick with the language {Z, P,N} for 
the time being. 

Frege held that numbers are objects, but that what he called “a statement 

of number,” i.e., a statement saying how many things there are of a certain 

kind,* contains an assertion about a concept. Concepts, according to Frege, 

are denotations of predicates, or values of monadic second-order variables; 

objects are denoted by terms that may appear on either side of the sign of 

identity. To express this aspect of Frege’s account of number, we introduce 

a sign # for a totally defined function. # is read “the number of things that 

..” and is a function-sign of “mixed type”: when attached to a monadic 

second-order variable F, # produces a term #F' of the same type as a 

first-order variable n. So n = #F is well-formed. We emphasize that # is 

to denote a total function and thus that VFd!inn = #F will be valid. We 

assuine that the axioms and rules of second-order logic guarantee in some 

manner the derivability of VFalnn = #F. 

We now define Z and P: 

DefZ Vn(Zn 4 IF (n= #F AVz-F2)); 
DefP YmVn(mPn 4 3FIG3y(Gy AVe(Fr 9 Grazr fy) Am=3F 

An=#G). 

DefP is a slight reformulation of Frege’s definition of “precedes.” 

We shall use: |’ to denote derivability from DefZ, Def P, and RedefN. 

According to DefZ, a zero is the number belonging to some empty con- 
cept. 

By DefZ alone, |’ EZ, for IFVz(F'z + x # 2) is one of the compre- 

hension axioms of second-order logic, and therefore |’ JFWr-F zr, whence 

H anak (n = #F AVz-F2), i.e., -! Jn Zn. Also by DefZ alone, 

H UZ + VFVG(Vr-Fr AVz-Gz + #F = #G), 

4One of Frege's examples is “Jupiter has four moons.”
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whose right side may be read: Empty concepts have the same number. 

“Empty concepts ...” is an immediate consequence of Functional Exten- 

sionality (FE) 

Va( Fr Gr) + #F = #6, 

which could well be considered a truth of logic, as it is valid under any 

extensional semantics for languages containing the function sign #. For if 

Vz(Fzr «+ Gz) is true, then the same class of objects will be assigned to 

the variables F and G, and then #F = #G will be true.> The converse of 

FE is inconsistent, as the argument of Russell’s paradox shows. But FE is 

itself an immediate consequence of Hume’s principle 

#F = #6 -F SG, 

where F = G is some standard second-order formula for equinumerosity. By 

now it is well known that Hume’s principle is consistent. However, Hume’s 

principle holds in no finite domain and cannot be considered a truth of 

logic. 

Our principal result is that T can be derived from F, E’ and I in’, i-e., 

that +’ F AE’ AI = T, which is perhaps surprising in view of the earlier 

observation that /* FAB AI — T. 

To prove this theorem we define the ancestral R* of an arbitrary relation 

R: 

hy =VF(Wa(rRa + Fa) AWdVa( Fd AdRa > Fa) > Fy). 

We write: fy to mean: iy Vy =r. 

Among the consequences of the definitions of R* and 22° are: 

(1) Wavy (ar Ry — «ht y), 
(2) VaVy(r'y AyR*z = £R*:), 

(3) VaeVy(2Rty > dz(akR*=z AzRy)), 
(4) VaVy(FrArRy - Fy) 4+VaVy(FrArkR*-y — Fy), and 
(5) VWaVy(r Ry o VE( Fs AVdVa( Fd A dRa > Fa) — Fy)). 

Frege’s definition of “natural number” was Vn(Nn + 0P*=n), rather than 
DefN, but by (5), the definitions are equivalent. 
We now prove that L’ FAB’ AI > T. 

Lemma 1. |’ E’ AI > (Nx — 72P*z). 

Proof. Suppose Zz and zP*zx. By (a’), Nx. By (3), for some z, rP*~2 
and 2Pr. By (b) and (4), Nz, contra EB’. So Vz(Zz — -2P*z). 

‘FE is further discussed in Article 17 of this volume.
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Suppose Nd, dPa and aP*a. By (b), Na. By (3), for some z, aP**z 

and zPa. By (1) and (2), zP*z. By (b) and (4), Nz. By I, z =d. Thus 
dP*d. So VdVa(Nd A -dP*d A dPa — —aP*a). 

By (h’) (and the comprehension scheme of second-order logic), the lemma 

follows. (The proof does not cite DefZ or Def P, by the way.) ™ 

Lemma 2. V E’ > (Za > AG(aP#G AV2(Gzr + Nz A 2xP**a))). 

Proof. Suppose Za. Then by DefZ, for some F’, VraF'x and a = #F. By 

second-order logic, for some G, Vz(Gz ++ Nx AxP*~a). To show aP#G it 

is enough, by DefP, to show that for some y, Gy and Vz(Fa 4 GzuAr # y). 

Let y =a. Since Za, Na; and trivially, aP*—a. So Ga. 
Suppose Gz and x 4 a. Then Nz and xP*a. By (3), for some z, rP*z 

and zPa. Since Nx and P*~z, Nz, by (b) and (4). So Nz, zPa, and Za, 
contra E’. Since VzF x, V2(Fr«3 GrAxfy). 

Lemma 3. 1 FAE/AI > (NdAdPaAdP#F AV2(F'x + NxAxP*=d) > 
AG (aP#G AV2(Gr o Nx AxP*a))). 

Proof. Suppose Nd, dPa, dP#F and Vz( Fx ++ Nx AxP*=d). By second- 

order logic, for some G, Vz(Ga + Nz AxP*~a). We must show aP#G. 

By F, a = #F-. So it is enough to show #F P#G. Since NdanddPa, Na; 
and trivially aP*=a. So by DefP it suffices to show V2(N2AxP*"aAz 4 

aw NzAgrP**d). Assume Nz. 
Suppose rP*=a and x # a. Then xP*a and by (3), for some z, 2P*~z 

and zPa. Since Na and rP*=z, Nz by (b) and (4). By I, z =d, whence 
tP*=d, 

Conversely, suppose «.P*=d, Since dPa, rP*a, whence xP**a. If x =a, 
then Pr, contra Lemna 1. Sor 4a. 

Theorem 1. +’ FAE/ AIT. 

Proof. By comprehension, (h’), and Lemmas 2 and 3, +’ F AB'A I- 

(Nm — 3G(mP#G AV2(Ge + Nz AxP*m))). Thus W FAE AI 

(Nm > 3nmPn), ie, KH FAE' AIL T. 

Let us now write: | to mean derivability from “Empty concepts have the 

same number,” Def0, DefP and DefN, where Def0 is Vn(n = 0 — IF(n = 

#F AV2xF2)). 
We then have 

+ Wn(Zn + n = 0) — DefZ A RedefN. 

Combining our results, we have 

FFAT-EvVI, 
FFAAT-EAI, and 
+ Wn(Zn +n =0) > (FAE' AIT).
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Substituting - = 0 for Z-, we have 

FFAEAI—T. 

It follows (by propositional logic) that 

-KF—TA(EVI). 

We now show that this result is best possible in the sense that no stronger 

truth-functional compound of F, T, E and I can be derived. 

Let 

i] = {F,T,E,T}, 
(2) = {F, T, E, -I}, 

3) = {F,T,-E,T}, 
[4] = {HAF,T,E,T}, 

(5] = {HF, T,E, aT}, 

(6 = {-F, T, -E, T}, 

[7] = {-F,T, AE, —T}, 
[8] = {HF, aT,E, Tj, 

2] = {oF, -T, E, —T}, 
(10) = {AF,=T,-=AE, Tj, and 
fu} = {4F,7T,-5,—T}. 

Since (F — TA(EVI)) is truth-functionally equivalent to A{1v...v A[11], 
in order to show that + A for no truth-functional compound A of F,T,E 

and T stronger than (F — T A (EV 1J)), it will suffice to provide a model 
(1), f) of each [ij, b < i < 11. Henceforth we write: iPr to mean P 

applies to 72,72. In each of the eleven models, f : PD -+ 1; and so “empty 

concepts” and indeed FE will hold: @ will denote /@ and so Def will hold; 

mPn if there exist A,B and y in B such that m= fA, n= fB, ACB 
and A = B— {y}, and so DefP will hold; and N will apply to f@ and those 

elements of D to which {@ bears P* and so DefN will hold. 

[1]: Let D = N = {the naturals}. Let fA=n+1 if |AJ=n, fA =O0if 
|A| is infinite. Then if m > 0, mPn iff n= m+ 1 and OPn iff n = 0. 

[2|: Let D = {0,1}. Let fO =0 and f{0} = f{1} = f{0,1} =1. Then 
OP1, 1P1, not: OPO, and not: 1P0. 

[3]: Let D = {0}. Let f@ = f{0} = 0. Then OPO. 

[4]: The model for [4] is the most complicated one. Let D = N,E = 
{the evens},O = {the odds}. Let fO=1, fE = 1, fA =2n+1if 
|A| =n, fA = 2n if for some B C O,0 < |B] = nand A = EUB, and 
fA = 0 otherwise. Then we have 1P3P5P7P etc. and 1P2P4P6P
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[5]: 

[6]: 

7]: 

[8]: 

[9]: 

{10}: 

[11]: 

etc. Moreover, 0PO0 and 0P1; and 0P2, 0P4, 0P6, etc.; and P holds 

between no other pairs except: those indicated. 

F fails because 1P3 and 1P2. T clearly holds. But E and I hold too, 

because the objects to which N applies in this model are the positive 

integers, and the only pairs of positive integers among which P holds 

are those indicated in: 1P3P5P7P etc. and 1P2P4P6P etc. 

Let D = {0,1,2,3}. Let f@ = 0, f{0} = 1, f{1} = 2 and fA=3 

otherwise. Then 0P1,0P2,1P3,2P3,3P3 and nothing else holds. 

Let D=N. Let fA=n if |A| =n, fA=0 if A is infinite Then 0 
denotes 0; OPO, OP1, 1P2, 2P3,... and nothing else holds. 

Let D = {0,1}. Let 0 = 0, f{0} = 1, f{1} = 0 and {0,1} =0. 
Then 0P0,0P1, 1P0, but not: 1P1. 

Let D=N. Let fO = f(N-{0}) =2,fN=1, fA=n+2ifl/Al =n, 
and fA = 0 otherwise. Then 0P0,0P2, 0P1,2P1,2P3P4P... and 

nothing else holds. Here 0 denotes 2 and the objects to which N 

applies are 2, 3, 4, etc. and also 1. Since 2P1 and 2P3, F fails; since 

for all a, not: 1Pa,T fails. But E and I hold, since although 0P2 and 

OP1, N does not apply to 0. 

Let D = {0,1,2,3}. Let fO =0, f{0} = 1, f{1} = 2, f{0,1} =1, 
{0,2} = 2, f{0,1,2} = 1, f{1,2,3} = 2, f{1,2} = 2, F{1,3} = 1, 
f{0,1,2,3} = 3, and fA =1 otherwise. Then O0P1, 0P2, 1P1, 2P2, 
1P2, 2P1, 1P3, 2P3 and nothing else holds. 

let D = {0,1}. Let fO =0, f {0} = f{1} =0, and f{0,1} =1. Then 

OP0 and OP1, but not: 1P0 and not: 1P1. 

Let D = {0,1,2}. Let f@ = 0, f{0} = 1, f{1} = 0, f{2} = 0, 

f{0,1} = 0, {0,2} = 0, f{1,2} = 1 and f{0,1,2} = 2 Then 
OP0,0P1,1P0, 0P2,1P2, and nothing else holds. 

So if + A, A a truth-functional compound of F,T,E,I, then + (F — 

TA(EVI)) -A. 
In any model for the language {#} of the form ({a}, f), it must be that 

aPa, since ff = f{a} =a. Thus the model described far above consisting 
of a single element not bearing P to itself, which shows that 

MFAEAI—=T, 

cannot be converted to a model for {#, 0, P, N} of {F, -T,E, I} (and Def0, 

DefP, DefN and “Empty concepts ...”).
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The central argument of Frege’s Foundations of Arithmetic is a sketch of a 
proof that every natural number precedes some object (which will of course 

itself be a natural number). The argument sketched by Frege proceeds by 

showing that OP#([z : sP*—0] and that if d is a natural number,® dPa and 
dP#{z : xP*=d], then aP#(z : zP*=a]. Our proof that W FAB’ AI— T 
is a modification of Frege’s argument: instead of showing that if n is a 

natural number, nP#(|z : «P*“n], we in effect show from F, FE’ and I that 
any natural number 7 is the number of some concept G such that Va2(Ga 

OP*=2P*=n). Frege’s proof appealed to Hume’s principle, which, as Frege 

showed, is also sufficient for F, K, and I; our derivation of (F - TA(EVI)) 
appeals only to “empty concepts have the same number” and the definitions 

from # of 0, P, and N. 

®Frege realized that he needed this condition ond only in Grundgesetze der Arithmetik 
and not in Die Grundlagen der Arithmetik. For more details on his error, see Article 20 
in this volume.
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Is Hume’s Principle Analytic? 

The reduction, however, cuts both ways. It is not easy to see 

how Frege can avoid the seemingly frivolous argument that if 

his reduction is really successful, one who believes firmly in 

the synthetic character of arithmetic can conclude that Frege’s 

logic is thus proved to be synthetic rather than that arithmetic 

is proved to be analytic. 

— Hao Wang! 

There are a number of issues on which Crispin Wright and I disagree, 
some of them substautive and some merely terminological. For example, 

we disagree over whether the term “analytic” can be suitably applied to HP 

and whether a derivation of arithmetic from HP would establish a doctrine 

appropriately called “logicism.” I also have certain reservations, which I 

shall set ont later, about his notions of explanation and reconceptualization. 

However, [ think the areas of agreement about the interest of Frege's deriva- 

tion of arithmetic are both wide-ranging and far more significant than those 

of disagreement. In particular I want to endorse Wright’s closing suggestion 

that “the problems and possibilities of a Fregean foundation for mathemat- 

ics remain [wide?] open” and the remark made earlier in his paper that 

This article first appeared in Richard G. Heck, Jr., ed., Logic, Language, and Thought, 

Oxford: Oxford University Press, 1997. Reprinted by kind permission of Oxford Univer- 
sity Press. 

A version of this paper was presented to a 1994 American Philosophical Association 

syMposium on the topic of logicism. Crispin Wright was the co-symposiast and Charles 

Parsons the commentator. 
Michael Dummett much dislikes the designation “Hume’s principle” because the remark 

in Hume’s Treatise (I, II, 1, para. 5), which Frege cited with approval and from which 
the name derives, presupposes the doctrine that a number is an item composed of units. a 

doctrine Frege is presumed to have refuted. Since this paper first appeared in a Festschrift 

for Michael, I used the designation “HP” instead. Cf. Chomsky and “LF”. 

(Wang, 1957), reprinted in (Wang, 1963), pp. 68-81. The quotation, together with 
other extremely interesting observations, appears on p. 80. 

301



302 IT, Frege Studies 

“the more extensive epistemological programme which Frege hoped to ac- 

complish in Grundgesetze is still a going concern.” I also want to emphasize 

that I consider Wright to have made a great scientific contribution in show- 

ing contemporary readers how the deduction of the Peano postulates from 

HP could be carried out and in formulating the conjecture, subsequently 

verified, that HP is consistent.” 
The first issue I want to take up is whether a derivation of arithmetic 

from HP vindicates logicism. 

My view is: no logic, no logicism. 
It is clear what has to be established in order to show the truth of some- 

thing we can call logicism with a clear conscience. Arithmetic has to be 

shown to be provable from an extension by definitions of a theory that is 

logically true. In technical parlance, arithmetic has to be interpreted in a 

logically true theory. It cannot be, trivially: Arithmetic implies that there 

are two distinct numbers; were the relativization of this statement to the 

definition of the predicate “number” provable by logic alone, logic would 

imply the existence of two distinct objects, which it fails to do (on any 

understanding of logic now available to us). 

Wright states that if it has to be made out that HP is a truth of logic, 

then “the prospects are unimproved,” the prospects, I take it, being those 

for establishing a species of logicism. I infer that he does uot consider HP to 

be a truth of logic. Nor do I: the principle implies the existence of too inany 

objects. So I do not conclude, as Wright does, that the proof of Frege’s 

theorein by itself establishes logicisan. It only shows the beautiful, deep, 

and surprising result that arithmetic is interpretable in Frege arithmetic, a 

theory whose sole non-logical axiom is HP. 

Wright argues, though, that since HP is analytic, the proof yields “an 
upshot still worth describing as logicinut, albeit: rather different, from the 

conventional understanding of the tern.” I might be prepared to agree that 

something describable as logicisin in a different understanding of that term 

would have been established if HP had been shown to be analytic or akin 

to something properly called a definition. But I doubt that it can be. 

Having to discuss whether HP is analytic is rather like having to consider 

whether hydrogen sulfide is dephlogisticated. One can certainly see reasons 

why one might be tempted to call H,S dephiogisticated; but if I am right 

in thinking that to dephlogisticate is to combine with orygen, there are 

conclusive reasons for not doing so. 

The main reason why the notion of analyticity is all but useless in dis- 

cussing propositions of mathematics like HP is that, although an analytic 

statement is supposed to be one that is true in virtue of the meanings of the 

2(Wright, 1983). The derivation is on pp. 154~168. The discussion of number-theoretic 

logicism III is on pp. 153~154.
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terms contained in sentences expressing it (and syntactic features of those 

sentences), the phrase “true in virtue of meanings” leaves it indeterminate 

how much mathematics may be used to get from facts about meanings to 

the truth of the statement, or, more exactly, how much mathematics it 

is allowable to use in deriving the statement (or the statement that that 

statement is true) from reports of meanings. In brief, we are not told how 

strong the mathematics is that “in virtue of” permits. The stronger the 

mathematics permitted, the greater the number of analytic mathematical 

truths, of course. The point, in essence, is due to Gédel and is different 

from the objection raised by the question “Why mathematics rather than 
geology?” 

In the interest of trying to get at what’s really at issue between Wright 

and myself, however, I shall ignore the standard difficulties presented by 

“analytic,” including the uncertainty what the interest or point of classify- 

ing a statement as analytic is and the worry that complex logical argumen- 

tation might itself create semantic content,? and suppose that I understand 
the concept sufficiently well, well enough at least to know what’s meant 

by calling “all vixens are foxes” etc. analytic and by saying that there is a 

semantic connection between “vixen” and “fox.” 

At the outset, let me acknowledge that I have no knock-down argument 

that will persuade a diehard defender of the claim that HP is analytic to 

abandon the view. All I shall offer are what strike me as some rather, and 

perhaps sufficiently, weighty considerations against that position. 
At first glance, HP might certainly seem analytic. In its statement “num- 

ber” means “cardinal number,” and, one would naturally wonder, isn't it 

a matter of the semantic counection between “cardinal number” and “one- 

one correspondence” that two concepts lave the same cardinal number just 

when the things falling under one of them can be put in one-one correspon- 
deuce with those falling under the other? Isn’t the cardinal of z the same 

as that of y just when there’s a. one-one correspondence between x and y, 
and that because of what “cardinal number” means? So isn’t the left hand 

side of HP close enough in meaning to the right hand side for it to count 

as analytic? Doesn’t the left hand side have the same sense as the right?4 

Let me begin to respond to this argument by recalling two features that 

analytic statements have been traditionally supposed to enjoy: first, they 

are true; secondly and roughly speaking, they lack content, i.e., they make 

nO significant or substantive claims or commitments about the way the 

world is; in particular, they do not entail the existence either of particular 

objects or of more than one object. (It may be held that some analytic 

3This possibility is suggested by a remark of Frege about condensation in §23 of his 

Begri ffsschri ft. 

4Thanks here to Arthur Skidmore.
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statement might entail the existence of at least one object, as will be the 

case if every logical truth counts as analytic.) 

Some have been tempted by the idea of analytic statements that happen 

not to be true, eg., “the present king of France is a royal.” On the view 

in question, the semantic connection between “king” and “royal” suffices 

to ensure the analyticity of the entire statement, despite the failure of its 

subject to denote. But analytic statements are, and (since we are playing 

along) are analytically, analytic truths, and the view may be put aside. 

The example is worth noting, however, for, as I am going to suggest later, 

HP suffers from a defect similar to that of “the present king of France is a 

royal,” which would not be analytic even if there were presently a (unique) 

king of France, since, of course, it would not be analytic that there is one. 

The main significant worry for the defender of the analyticity of HP 

concerns the quite strong content that it appears to possess. HP has con- 

sequences having to do with certain features of the domain of objects over 

which its first-order variables range, in particular with the number of those 

objects there are. Much of the most interesting work in mathematical logic 

in the last: twenty years or so has dealt with comparisons of strength of 
various logical and mathematical statements, examining which well-known 

theorems of mathematics can be derived from which logical principles (and 

vice versa!) in which background theories. We now know that Frege arith- 

metic is equi-interpretable with full second-order arithmetic, “analysis,” 

and hence equi-consistent with it. Learning that HP is analytic would not 

help us in the slightest with the problem of assessing the strength of various 

theorems, fragments and subtheories of analysis, all of which would, I sup- 

pose, have to count as analytic. The first part of my worry about content. 

is that HP, when embedded into axiomatic second-order logic, yields au 

ineredibly powerful mathematical theory. 
Wright will say: Hooray! Math is analytie after all. But. we don’t know 

what follows from its being so and we will have to study the sub-analytic 

to see what (logically) entails what just as hard as before. It is known that 

HP does not follow (a word I will not surrender) from the conjunction of 
two of its strong consequences: the (interesting) statements that nothing 
precedes zero and that precedes is a one-one relation. If HP is analytic, 
then it is strictly stronger (another non-negotiable term) than some of its 
strong consequences. It is also known that arithmetic follows from these 

two statements alone, and that arithmetic is strictly weaker than even their 
disjunction.® Faced with these results, how can we really want to call HP 

analytic? 

Frege, for a lengthy stretch of his career, held that the existence of in- 

5 For proofs of all these results, see my “On the Proof of Frege’s Theorem,” reprinted 

as Article 17 in this volume.
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finitely many objects could be seen to follow from a set of principles and 
definitions that could, by his lights, be counted as analytic. He abandoned 
the view in 1906, according to Dummett, when he realized that his at- 
tempted patch to Basic Law V would not work. It is doubtful that Russell 
could be considered a logicist in the full sense of the term while writing 
Principia, whose stated aim is to analyze the notions employed in mathe- 
matics, not to show arithmetic to be a branch of logic. Despite the Gédel 
incompleteness theorems and Russell’s protestations that the axiom of in- 
finity was no logical truth, it was a central tenet of logical positivism that 
the truths of mathematics were analytic. Positivism was dead by 1960 
and the more traditional view, that analytic truths cannot entail the ex- 
istence either of particular objects or of too many objects, has held sway 
since. Wright wishes to overthrow the tradition, but it should be asked 
how a statement that cannot hold if there are only finitely many objects 
can possibly be thought to be analytic, a matter of meanings or “conceptual 
containment.” 

On the symbolization that I prefer, HP reads: 

VFVG(#F = #G 4 F xG) 

where “F s G” is an abbreviation for a second-order formula expressing 

that there is a one-one correspondence between the objects falling under 

the concept F and those falling under the concept G. We need not here 
write out the formula, but must remember that it contains some first-order 

quantifiers. We inust also remember the grammatical category of “#.” 

“octothorpe”: it is a function-sign, which when attached to a monadic 
second-order variable like “F,” produces a term of the same type as in- 

dividual variables that occur in “F = G.” It is essential to the proof of 
Frege's theorem that octothorpe be so construed. 

Thus octothorpe denotes a total function from concepts to objects. Logic, 

plus the convention that function signs like octothorpe denote total func- 

tions, will guarantee that VF'ilaz #F = z is true. It will not guarantee that 

HP is, 

HP entails, as Wright has put it with exemplary force and Cartesian clar- 
ity, that there is a partition of concepts into equivalence classes. in which 

two concepts belong to the same class if and only if they are equinumer- 

ous. If there are only & objects, & a finite number, then, since there are 

&+1 natural numbers < k, there will be & + 1 equivalence classes, 92. 

a. class containing each concept under which zero objects fall. a class con- 
taining each concept under which exactly one object falls, ..., and a class 

containing each concept under which all k objects fall. (We need not here 
assume that concepts are individuated extensionally.) Thus, if there are 

only & objects, there is no function mapping concepts to objects that takes
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nonequinumerous concepts to different objects, for there won’t be enough 

objects around to serve as values of the function, since k + 1 are needed. 

So if HP holds—even if only the left-right direction (the same direction as 

in the fatal Basic law V) holds—there must be infinitely many objecis. 

One person’s tollens is another’s ponens, and Wright happily regards the 

existence of infinitely many objects, and indeed, that of a Dedekind infinite 

concept, as analytic, since they are logical consequences of what he takes 

to be an analytic truth. He would also regard the existential quantification 

of HP (over the positions occupied by octothorpe) as analytic. But what 

guarantee have we that there is such a function from concepts to objects 

as HP and its existential quantification claim there to be? 

I want to suggest that HP is to be likened to “the present king of France 

is a royal” in that we have no analytic guarantee that for every value of 

“F.” there is an object that the open definite singular description “the 

number belonging to F” denotes. I shall also suggest that there may be 

some analytic truths in the vicinity of HP with which it is being confused. 

I hope that the suggestions will do justice both to the thought that there 

is a strong semantic connection between “the number of ...” and “one-one 

correspondence” and to the traditional idea that analytic truths do not 

entail the existence of a lot of objects. 

Our present difficulty is this: just how do we know, what kind of guaran- 

tee do we have, why should we believe, that there is a function that maps 

concepts to objects in the way that the denotation of octothorpe does if HP 

is true? If there is such a function then it is quite reasonable to think that 

whichever function octothorpe denotes, it maps nonequinumerous cuncepts 

to different objects and equinumerous ones to the same object, and this 

moreover because of the meaning of octothorpe, the number-of-sign or the 

phrase “the number of.” But. do we have any analytic guarantee that there 

is a function that works in the appropriate manner? 

Which function octothorpe denotes and what the resolution is of the mys- 

tery how octothorpe gets to denote some one definite particular function 

that works as described are questions we would never dream of trying to 

answer. (Harold Hodes’ article “Logicism and the ontological commitments 

of arithmetic’® contains much wisdom about these mysteries of mathemat- 

ical reference.) Nevertheless, it would seem that if there is such a function, 

then whichever function octothorpe does denote, it also does the trick.” 

Thus, I am moved to suggest, very tentatively and playing along, that the 

conditional whose consequent is HP and whose antecedent is its existential 

quantification might be regarded as analytic. The conditional will hold, 

§(Hodes, 1984). 

"Hartry Field has made a similar suggestion in his review of Wright’s Frege’s Con- 
ception of Numbers as Objects, which is reprinted in (Field, 1989).
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by falsity of antecedent, in all finite domains. By the axiom of chuice, the 
antecedent will be true in all infinite domains, but then, we may suppose, 
nothing will prevent the consequent from being true. 

Talso find plausible the suggestion that the right-to-left half of HP, which 
states that if F and G are equinumerous, then their numbers are identical, 
is analytic. It is the left-to-right half, which states that if F and G are not 
equinumerous, then their numbers are distinct, that blows up the universe. 
(E.g., consider the concept non-self-identical; call its number zero. Now 
consider the concept identical with zero; call its number one. By the left- 
ome half of HP: since the concepts are not equinumerous, zero is not 
one. 

The analogy with Basic Law V is obvious. Frege divided Basic Law V 
into Va, the left-to-right half, and its converse Vb. It was the left-to-right 
half that gave rise to Russell’s paradox. Vb has considerable claim to being 
regarded as a logical truth: (a) it is valid under standard semantics, thanks 
to the axiom of extensionality; (b) if the F's are the Gs, as the antecedent 
asserts, then whatever “extension” may mean, the extension of the Fs is 
the extension of the Gs; and (c) if the antecedent holds, then the concepts 

F and G bear a relation to each other that Frege called the analogue of 

identity. Thus under each of three familiar systems of formula-evaluation, 
Vb can never turn out false. In the case of both HP and Basic Law V, 

we have a principle whose left-to-right half requires that there be a func- 
tion from concepts to objects respecting certain non-equivalences of those 

concepts. Unless enough objects exist. these non-equivalences cannot be 

respected. All that the right-to-left halves demand is that the equivalences 
be respected, as they can be trivially, by mapping all concepts to one and 

the same object. VFVG(V2r(F co Gr) + #F = #G), which has the same 
form as Basic Law Vb, can equally justifiably be claimed to be a logical 

truth, and the stronger VFVG(F = G — #F = #G) much more plausibly 
thought analytic, in virtue of the meaning of “#,” than its converse. 

There is a further difficulty, or at. any rate a further aspect of the same 

difficulty: If numbers belonging to concepts F' and G are supposed to be 

identical if and only if F and G are equinumerous, then how do we know 
that, for every concept, there is such a thing as a number belonging to that 

concept? We should not be led astray by the concision, symmetry, and 
apparent familiarity and obviousness of 

#PF=#GoFRrG 

into ignoring the fact that octothorpe is a function sign {for a function of 

higher type). Like constants and the usual sort of function sign, it may 

help in concealing significant existential commitments. (Perhaps because 

of that danger, Quine, concerned with ontology and logic’s role in its study,
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almost entirely avoids constants and function signs in his textbook Methods 

of Logic.) 
An analogy may help: if volumes are supposed to be translation- and 

rotation-invariant, finitely additive, and non-trivial, with singletons and 

balls of radius r having volumes 0 and 4mr3/3, respectively, then, as the 

“paradoxical” Banach—Tarski theorem shows, not every bounded set of 

points in 3-space has a volume. It would thus be illegitimate to intro- 

duce a sign for a totally defined function from bounded sets of points in 

3-space to real numbers and assume that the function was translation- 

invariant, etc. And one had therefore better not say: it is analytic that 

volume is translation-invariant, etc., and it is analytic that there is always 

such a thing as the volume of any bounded set of points in 3-space, for the 

conjunction of the two statements claimed to be analytic is false. 

Similarly, if numbers are supposed to be identical if and only if the con- 

cepts they are numbers of are equinumerous, what guarantee have we that 

every concept has a number?® Or, if we take ourselves to know that with 

every concept there is functionally associated some object, then how do we 

know that the associated object is a number belonging to F? 

It will be useful here to formulate HP in a way that expressly brings 

out its existential commitments. Let Numbers be the statement: for every 

concept F, there is a unique object x such that for every concept G, z is a 

number belonging to G if and only if F is equinumerous with G. Is Numbers 

analytically true? I see no reason at all to believe that it is analytic that 

for every F, there is such a (unique) object a. To reply that it is, since 

Numbers follows from HP, and HP is analytic, would seem to beg a question 

that ought uot to he begged. 
Even more strongly, [don’t see any reason to think that it’s analytic that 

objects can be so assigned to concepts that any two concepts are assigned 

the same object if and only if they are equinumerous. It is not. only the 

existence of a function of higher type making such an assignment of objects 

to concepts that: seems synthetic to me: the weaker modal claim that objects 

can be so assigned strikes me as synthetic as well. 

I repeat that one person’s ponens is another’s tollens and admit again 

that I don’t have a knock-down argument against Wright’s view. 

I now want to raise some objections to Wright’s notion of a reconceptu- 
alization and his use of the term “explanation.” 

Discussing Frege’s (more-or-less) analogous case of directions and paral- 

lelism, Wright says, “we have the option ...of re-conceptualizing, as it were, 

the state of affairs which is described on the right. That state of affairs is 
initially given to us as the obtaining of a certain equivalence relation ...; 

8Profound thanks here to Peter Clark.
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but we have the option, by stipulating that the abstraction is to hold, of so 

reconceiving such states of affairs that they come to constitute the identity 

of a new kind of thing ...of which, by this very stipulation, we introduce 

the concept.” 

Part of the problem with this suggestion is this: in HP, numbers belong- 

ing to concepts are themselves among the objects over which the first-order 

variables on the right hand side range. Talk of re-conceptualizing a state 

of affairs would be in order only if the objects supposedly introduced by 

stipulation were new, objects that had not been previously quantified over. 

Whether old objects can be chosen to be identical or not under the right 

conditions would not seem to be a matter that it could be up to us to de- 

cide. It is here that the analogy between directions and lines and numbers 

and concepts breaks down: no one supposes that directions are any sort 

of constituent of lines, but on the Fregean treatment of number, numbers 

quite definitely are objects that both fall under concepts and are associ- 

ated with concepts, as their numbers. However, when the objects allegedly 

introduced by this sort of stipulation are already objects quantified over 

in the equivalence relation, unexpected, and sometimes unwelcome, results 

can occur when we attempt to identify certain of them. We can’t, for ex- 

ample, stipulate that old objects be assigned to concepts in such a way that 

if some old object falls under one concept but not another, then the two 

concepts are to be assigned different, objects. 

Wright says, “The concept of direction is thus so introduced that that two 

lines are parallel constitutes the identity of their direction. It is in no sense 
a further substantial claim that directions exist and are identical under the 

described circumstances. But nor is it the case that, by stipulating that the 

principle is to hold, we thereby forfeit the right to a face-value construal of 

its left-hand side aud thereby to the type of existential generalization which 

a face-value construal would license.” All well and good for directions. 
maybe, but what if the objects introduced on the left are already among 

those discussed on the right? Could there not then be a danger that a 
“substantial further claim” about those very objects, taken together, would 

be entailed? 
And of course there is such a danger: the generalized biconditional, or the 

biconditional with its free variables, taken as an axiom, might then entail 

that, e.g., there are many, many objects, too many for it to be capable of 

being regarded any longer as analytic. 
One might think: but does that not automatically show that HP isu't 

analytic? How can an analytic truth be false in certain domains, indeed 

false in all the finite domains? There is of course a reply that is ready to 
hand, viz. that it’s analytically false that the objects that exist constitute 

any one of those finite domains. The response strikes me as incredible, but
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again, I don’t have a knock-down argument against the analyticity of HP, 

only a bunch of considerations. 

(Heidegger would hardly have welcomed the response, “Because, analyti- 

cally, there is always the number of things that there are; so there couldn't 

have been nothing rather than something.” ) 

One final remark on reconceptualization. How can one call the left-hand 

side of HP a reconceptualization of the right if it can’t always be made to 

hold whenever the right-hand side does? Of course if the variables range 

over a set, one can always pick some new objects to play the role of the 

numbers belonging to subsets of that set, but why is one so sure one can 

do this if there is no set of objects over which the variables range? 

Wright’s idea that the role of HP is that of an explanation also worries 

me. 

In Frege’s Conception of Numbers as Objects, Wright writes: “the funda- 

mental truths of number theory would be revealed as consequences of an 

explanation : [note the colon] a statement whose role is to fix the character 
of a certain concept.”? In the present paper, Wright calls HP “a princi- 

ple whose role is to explain, if not exactly to define, the general notion of 

cardinal number.” 

Wright is impressed by the form of HP: a biconditional whose right limb 

is a formula defining an equivalence relation between concepts F and G 

and whose left limb is a forinula stating when the cardinal numbers of F 

and G are the same, Since the sign for cardinal numbers does not occur in 

the right limb, can one not appropriately say that HP erplains the concept 

of a cardinal number by saying what it is for two cardinal numbers, both 

referred to by expressions of the form “the number of...” to be identical?!® 

Certainly. HP states a necessary and sufficient condition for an identity 

#F = #C to hold. Morcover the formula defining the condition doesn’t 

contain #. So if one wants merely to sum up this state of affairs by saying 

that HP explains the concept of a cardinal number, I would not object. 

However, it is hard to avoid the impression that more is ineant, that 

Wright holds that to call a statement an explanation of a concept is to 

assign it an epistemological status importantly similar to the one it was once 

thought analytic judgments, including definitions, enjoy. It is to this further 

suggestion that I wish to demur. I can’t help suspecting that Wright is using 

“explanation,” at least in the phrase “explanation of a concept,” as a term 

of art, as a member of the same family circle as “analytic,” “definition” or 
“conceptual truth,” that the only reason he does not call HP an “analytic 

definition” is that it is not of the form: Definiendum(z) = Definiens(z), 

9(Wright, 1983), p. 153. 
‘OF am grateful to Wright and Richard Heck for helpful comments on the whole of this 

paper but am particularly grateful to them here.
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and that he supposes it to be a super-hard truth like “all bachelors are 
unmarried” or “all equivalence relations are transitive.” 

The phrase “whose role” occurs in both quotations and may suggest that 

Wright thinks that HP has one and only one [pre-eminent] role, for “whose” 

seems in both places to mean “of which the” rather than “of which a.” This 

thought seems to me to be incorrect. HP might be taken as an axiom, the 

sole (non-logical) axiom in some axiomatization of arithmetic. It might be 

a sentence we want to show to be needlessly strong for some purpose, e.g., 

deriving arithmetic. It might serve as something to be obtained from Basic 

Law V. It might be used as an example of a beautiful proposition. Ete. ete. 

But there’s no such thing as the [unique] role of HP. 

It is certainly true that one of the ways in which HP can be used is to fix 

the character of a certain concept. Here’s how: lay Hume down. Then the 

concept the number of... will have been fixed to be such that numbers 

belonging to concepts will be the same if and only if the objects falling under 

one of the concepts are in one-one correspondence with those falling under 

the other. But Hume is no different in this regard from any other statement 

that we might choose to take as an axiom. The axiom of choice fixes the 

concept of a set in a similar manner. Laid down, it determines that for any 

set of disjoint nonempty sets, there is a set with exactly one member in 

common with each of those sets. The principle of mathematical induction 

fixes the character of the natural numbers, The statement that bananas 

are yellow fixes the character of the concept of a banana. So nothing is 

said when it is said that one of the roles of HP is to fix the character of the 

concept of a cardinal number. And HP doesn’t have a unique role. 
Let me now defend niyself about the “bad company” argument. What 

I think 1 was doing was illustrating that what is called (unfortunately, as 

Wright has stated) “contextual definition” is not, in general, a permissible 
way of introducing a concept. I didn’t mean to be arguing that it never 
was and gave the example of the principle governing truth-values as an- 

other example of a legitimate contextual definition. Different examples had 
different purposes. I cited Hodes’ splendid observation that the relation- 
number principle (the relation number belonging to F is identical with that 
belonging to S if and only if R and S are isomorphic relations) leads to 

the Burali—Forti paradox in order to point out that Basic Law V was not 
an isolated case and that HP might well be expected to be powerful if con- 
sistent (as it is). I gave the example of parities in order te show that one 

couldn’t say that a contextual definition is OK if only it is consistent. (I 

had thought of nuisances, but I seemed to recall actually having heard of 

the “parity” of a set, and the notion is in any case a natural one.) The 

example of a principle true iff there are no more than two members was 

designed to show that one didn’t need heavy involvement with set theory
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to find a contextual definition incompatible with HP. And did I ever say 

that it would be impossible to demarcate the good contextual definitions 

from the bad? I merely said that it would seem to be a problem we have 

no hope of solving at present. I have to reserve judgment on the question 

whether Wright has solved the problem, but I certainly hope he has. 

Wright says I was wrong to say that there is no notion that V**, my 

revision of Frege’s Basic Law V, is analytic of; what is true, he says, is 

“that there is no prior, no intuitively entrenched notion, no notion given 

independently, which V** is analytic of.” I happily accept the correction. 

T now want to make a somewhat conciliatory remark. I have been aspers- 

ing, at great length, the idea that HP is an analytic truth, all the while 

taking “analytic” to bear something like the sense it has in current philo- 

sophical discourse, namely, “truth in or by virtue of meanings.” I think 

that is the sense in which Wright uses the term too. But there may be 

another notion of analyticity on which the analyticity of HP might well be 

more plausible. 

It is the idea of Gédel’s, as outlined in both his paper “Russell’s math- 

ematical logic” and his 1951 Gibbs lecture to the American Mathematical 

Society,!! according to which a proposition is analytic if it is true “owing 

to the nature of the concepts occurring therein.”!2 Concepts, he says in 

the Gibbs Iccture, “form an objective reality of their own, which we cannot 

create or change, but only perceive and describe.” By reflection, which of 

course includes philosophical or mathematical or other intellectual work, 

we can solctimes arrive at an understanding of the natures of certain con- 

cepts that is sufficient to enable us to see the truth of certain propositions 

in which they oceur. With the passage of time, our understanding of those 

concepts may improve and the trath of ever more analytic propositions be- 
come evident to us. Perhaps, as Shoenfield has irouically suggested, the 

rejection of the “axiom” of constructibility is one example of improvement. 

in our perception of the meaning (in Gédel’s sense) of “set” or of the nature 

of sets. 

The thought that understanding of abstract objects may be achieved 

through a sort of perception of them, which is crucial to Gédel’s concep- 

tion of the analytic, will certainly strike many contemporary philosophers 

as unacceptably mystical and at any rate highly implausible. (Perhaps, 

paradoxically. there is even a tinge of materialism in the suggestion that 

\1See also Article 7 in this volume. 

12. Gédel also describes propositions as analytic if they are true in virtue of the meanings 

of the terms expressing them, but it should be understood that his notion of meaning 

is much broader than that of “linguistic” meaning. For example, Gédel held that it is 
a matter of the meanings of “set” and “€” that the axioms of set theory hold. The 

difference between the senses he attached to “meaning” and “concept” would not seem 

to be particularly significant.
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our knowledge of abstract objects arises from “something like a perception” 

of them: could there not be ways in which we interact with abstracta that 

yield knowledge of them that are not at all like perception?) But if—-IF_.a 

Gédelian notion of analyticity could be made out, then HP might well be 

among the first candidates for this new sort of analytic truth. Perhaps by 

taking the thought in the right way, we can “see” that if nothing exists, 

then zero, at least, has to exist, for it is then the number of things there 

are, and therefore that something does exist after all, but then there have 

to exist at least two things, for ... This Fregean argument may strike one, 

as it does me, as a good example of the kind of reflection Gédel might have 

thought showed that the proposition that there are infinitely many natural 

numbers is analytic, on his understanding of “analytic,” if not on that of 

most of those who use the word. Maybe in the end we could also thus “see” 
the truth of HP. 

But even on such a Gédelian view of the analytic, at least two difficulties 

would confront the view that HP is analytic. 

The first is that (it is noé neurotic to think) we don’t know that second- 
order arithmetic, which is equi-consistent with Frege Arithmetic, is consis- 

tent. Do we really know that some hotshot Russell of the 23rd Century 

won't do for us what Russell did for Frege? The usual argument by which 

we think we can convince ourselves that analysis is consistent— “Consider 

the power set of the set of natural numbers ...”—is flagrantly circular. 
Moreover, although we may think Gentzen’s consistency proof for PA pro- 

vides sufficient reason to think PA consistent, we have nothing like a similar 

proof for the whole of analysis, with full comprehension. We certainly don’t 
have a constructive consistency proof for ZF. And it would seem to be a 

genuine possibility that the discovery of an inconsistency in ZF might be 
refined into that of one in analysis. Saying exactly which theories are known 

to he consistent is a difficult problem made even more difficult when one 

hears of respected mathematicians telling of their failed attempts to prove 

Q inconsistent, but ZF and analysis, and therefore also Frege arithmetic. 
are theories that are surely in the black area, not the grey. While we may 

regret that these theories may well be consistent and that it would prob- 
ably be wise to bet on their consistency, we must not despair: we do not 

know that they are and need not yet give up the hope that someone will 

one day prove in one of them that 0=1. Uncertain as we are whether Frege 
arithmetic is consistent, how can we (dare to) call HP analytic? 

One final worry, perhaps the most serious of all, although onc that may 
at first appear to be dismissible as silly or trivial: as there is a number. 

zero, of things that are non-self-identical, so, on the account of number 

we have been considering, there must be a number of things that are self- 
identical, i.e., the number of all the things that there are. Wright has
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usefully dubbed this number, #[z : x = 2], anti-zero. On the definition of 

<, according to which m < n iff SFAG(m = #F An = #GA there is a 

one-one map of F into G), anti-zero would be a number greater than any 

other number.!* Now the worry is this: is there such a number as anti-zero? 
According to Zermelo—Fraenkel set theory, there is no (cardinal) number 

that is the number of all the sets there are. The worry is that the theory 

of number we have been considering, Frege Arithmetic, is incompatible 

with Zermelo—Fraenkel set theory plus standard definitions, on the usual 

and natural readings of the non-logical expressions of both theories. To be 

sure, as Hodes once observed in conversation, if #a is taken to denote the 

cardinal number of a when a is a set and some favorite object that is not 

a cardinal number when a is a proper class, then HP will be a theorem 

of von Neumann set theory. But on that definition of #, # will not be 

translatable as “the cardinal number of.” ZF and Frege arithmetic make 

incompatible assertions concerning what cardinal numbers there are. And 

of course, the response “Well, these are just formalisms; the question of 

their truth or falsity doesn’t arise or makes no sense” is hardly available 

to one claiming that HP is analytic, ie., an analytic truth. So one who 

seriously believes that it is has to be bothered by the incompatibility of the 

consequence of Frege arithmetic that there is such a number as anti-zero 

with the claim made by ZF + standard definitions (on the natural reading 

of its primitives) that there is no such number. 
It. is thus difficult to see how on any sense of the word “analytic,” the 

key axiom of a theory that. we don’t know to be consistent and that con- 

tradicts our best-established theory of number (on the natural readings of 

its primitives) can be thought of as analytic. 

13By the Schréder-Bernstein theorem, which can be proved in second-order logic, < 

is antisymmetric: ifm <n< m, then m =n.
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Die Grundlagen der 

Arithmetik, §§82—83 

(with Richard G. Heck, Jr.) 

Reductions of arithmetic, whether to set theory or to a theory formulated 

in a higher-order logic, must prove the infinity of the sequence of natural 

numbers. In his Was sind und was sollen die Zahlen?, Dedekind attempted, 

in the notorious proof of Theorem 66 of that work, to demonstrate the 

existence of infinite systems by examining the contents of his own mind. 

The axioms of General Set Theory, a simple set theory to which arithmetic 

can be reduced, are those of Extensionality, Separation (“Aussonderung” ) 

and Adjunction: VwVzdyVr(a € yor € zVax=w). It is Adjunction that 
guarantees that there are at least two, and indeed infinitely many, natural 

nunibers, The authors of Principia Mathematica, after defining zero, the 

successor funetion and the natural numbers in a way that made it easy 

to show that the successor of any natural number exists and is unique, 

were obliged to assume an axiom of infinity on those occasions on which 

they needed the proposition that different natural numbers have different 
successors. 

In §§70-83 of Die Grundlagen der Arithmetik, Frege outlines derivations of 

some familiar laws of the arithmetic of the natural numbers from principles 

he takes to be “primitive” truths of a general logical nature. In §§70-81, 

he explains how to define zero, the natural numbers, and the successor 

relation; in §78 he states that it is to be proved that this relation is one- 

one and adds that it does not follow that every natural number has a 
successor; thus by the end of §78, the existence, but not the uniqueness. of 

First published in Matthias Schirn, ed., Philosophy of Mathematics Today. Oxford: 

Clarendon Press, 1997. Reprinted by kind permission of Oxford University Press. 

We are grateful to Kathrin Koslicki and Jason Stanley. The first author also wishes 

to express his thanks to the Alexander von Humboldt Foundation. 
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the successor remains to be shown. Frege sketches, or attempts to sketch, 

such an existence proof in §§82-83, which would complete his proof that 

there are infinitely many natural numbers. 

§§82-83 offer severe interpretive difficulties. Reluctantly and hesitantly, 

we have come to the conclusion that Frege was at least somewhat confused 

in these two sections and that he cannot be said to have outlined, or even 

to have intended, any correct proof there. We will discuss two (correct) 

proofs of the statement that every natural number has a successor which 

might be extracted from §§82-83. The first is quite similar to a proof of this 

proposition that Frege provides in Grundgesetze der Arithmetik, differing 

from it only in notation and other relatively minor respects. We will argue 

that fidelity to what Frege wrote in Die Grundlagen and in Grundgesetze 

requires us to reject the charitable suggestion that it was this (beautiful) 

proof that he had in mind when he wrote Die Grundlagen. The second proof 

we discuss conforms to the outline Frege gives in §§82-83 more closely than 

does the first. But if it had been the one he had in mind, the proof-sketch 

in these two sections would have contained a remarkably large gap that 

was never filled by any argument found in Grundgesetze. In any case, it is 

certain that Frege did not know of this proof. 

We begin by discussing §§70-81. 

In §70, Frege begins the definition of equinumerosity by explaining the 

notion of a relation, arguing that like (simple) concepts, relational concepts 

belong to the province of pure logic. In §71, he defines “the objects falling 

under F and G are correlated with each other by the relation y.” Using 
modern notation, but. strictly following Frege's wording, we would write: 

Vao(Fa A -~db(agh A Gh) AVan(Ga A dbCeb A bpa)). 

‘To put. the definition slightly more transparently, the objects falling muder 

F and G are correlated by ¢ iff 

Va( Fx — Fy(Gy A xyy)) AVy(Gy > A2(F2 A xypy)).- 

In §72 Frege defines what it is for the relation y to be one-one (“beiderseits 

eindeutig,” “single-valued in both directions”): it is for it, as we should 

say, to be a function, ie., VdVaVe(dya A dye — a = e), that is one-one, 

iLe., VdVbVa(dipa A bya — @ = b). Frege then defines “equinumerous” (“gle- 

ichzahlig”): F' is equinumerous with G iff there is a relation that correlates 

the objects falling under F one-one with those falling under G: 

dylVa(Fr — Fy(Gy A xpy)) A Vy(Gy — Aa(Fr A apy)) A 

VdVaVe( dpa A dye — a = e) AVdVbVa(dya A bya — d = b)}. 

We abbreviate this forinula: F = G.
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At the end of §72, Frege defines the number that belongs to F as the 

extension of the concept “equinumerous with the concept F.” He also 

defines “n is a (cardinal) number”: there is a concept such that n is the 
number that belongs to F. His next task, attempted in §73, is to prove 

a principle that Crispin Wright once called N= (for numerical equality),! 

Michael Dummett calls “the original equivalence,”? and we call “Hume’s 

Principle”: the number belonging to F is identical with that belonging to 

G iff F is equinumerous with G. 

The trouble with the definition of number given in §72 and the proof 

of Hume’s Principle given in §73 is that they implicitly appeal® to an in- 

consistent theory of extensions of second-level concepts. Russell of course 

demonstrated the inconsistency of Frege’s theory, presented in Grundgesetze 

der Arithmetik, of extensions of first-level concepts; a routine jacking-up of 

Russell’s argument shows that of the theory Frege tacitly appeals to in 

Grundlagen.* It is by now well known, however, that Frege Arithmetic, 

ie., the result of adjoining a suitable formalization of Hume’s Principle to 

axiomatic second-order logic, is consistent if second-order arithmetic is, and 

is strong enough to imply second-order arithmetic (as of course Frege can 

be seen as attempting to prove in Grundlagen). Indeed, Frege Arithmetic 

and second-order arithmetic are equi-interpretable; in Appendix 2 we show 

how to interpret Frege Arithmetic in second-order arithmetic. 

Writing: #F to mean: the number belonging to the concept F’, we may 
symbolize Hume's Principle: #F = #G oF = G. 

The development of arithmetic sketched in §§74-81 makes use only of 

Frege Arithmetic and can thus be reconstructed in a consistent theory (or 

one we believe to be so!). Nothing will be lost and much gained if we 

henceforth suppose that. Frege’s background theory is Frege Arithmetic. 

In §74, Frege defines 0 as the mumber belonging to “not identical with 

itself": O= #[r: 2 4 2]. (lr: ...£,..] is the concept being an object x 
such that ....... .) Frege notes that it can be shown on logical grounds 

alone that nothing falls under {x : « # a]. In §75, he states that Vz—F'r + 

(Wa-Gar «+ F = G) has to be proved, from which Vz-F z > 0 = #{z: Fz] 

(Wright, 1983). 
2(Dummett, 1991). 
3The appeal is made when Frege writes “In other words:” at the end of the second 

Paragraph of §73. 
4Let (V) be VFVGUF ='G oo VX(FX + GX)). Then (V) is incotsistetit (in third- 

order logic). For let F be [X : VH(Wa(Xz 0 @ ='H) > ~HX)] and let X be [x ir = 'F]. 

Suppose FX. Then VH(V2(Xz o 2 ='H) 7 HX). So Vr(Xz +r = 'F) + WF X. 

whence “FX by the definition of X. Thus ~FX. So for some H, Va(Xe > + = "H) 
and 7X, and then X’F © 'F =’H. By the definition of X again. 'F ='F —'F ='H. 
'F ='H, and by (V), VX(FX + HX), contra -FX and HX. (We use “'” to mean 
“the extension of” and “[:... ]” to denote concepts (of whatever level).)
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follows. These have easy proofs; Frege outlines that of the former in detail. 

876 contains the definition of “n follows immediately after m in the 

‘natiirliche Zahlenreihe’ ”: 

AF is(FroA#F =nA#ly: Fy Ay # 2] =m). 

It is advisable, we think, to regard the relation defined in this section as 

going from m to n, despite the order of “n” and “m” in both the definiens 

and definiendum of “n immediately follows m in the natural series of num- 

bers.” Thus we shall symbolize this relation: mPn (“P” for “(immediately) 
precedes” ). 

Call a concept Dedekind infinite if it is equinumerous with a proper sub- 

concept of itself; equivalently, if it has a subconcept equinumerous with the 

concept being a natural number. With the aid of the equivalence of these 

definitions of Dedekind infinity, it is not difficult to see that nPn if and 

only if n is the number belonging to a Dedekind infinite concept. Thus the 

number of finite numbers, which Frege designates: oo, but which we shall as 

usual denote: No, follows itself in the “natiirliche Zahlenreihe,” in symbols, 

NoPNo. Since No is not a finite, i.e. natural, number, we shall translate “in 

der natiirlichen Zahlenreihe” as “in the natural sequence of numbers.”® 

§77 contains the definition of 1, as #[xz : z = 0], and a proof that OP1. 
In §78, Frege lists a number of propositions to be proved: 

1. OPa->a=1,; 

2. l= #F oaArFs; 

R1l= $F ->(FraFy -+7=y); 

4, dr Fr AVaVy( Fr A Fy 2 = y) -> l= $F; 

5. P is one-one (“beiderseits eindeutig”), i.e., 7Pn Aim’ Pn’ > (m = 
m! + n=n ).6 

5Timothy Smiley observed that “in the natural series of numbers” is to be preferred 

as a translation of “in der natiirlichen Zahlenreihe” to Austin’s “in the series of natural 

numbers” (Smiley, 1988). We have substituted “sequence” for “series” throughout. 
®Frege does not indicate what proof of 78.5 he might have intended. Here is an obvious 

one that he might have had in mind. 

Suppose mPn and m’ Pn’. Then for some F,F’,2,2', Fz, F'a', #F =n, #F' = n', 

#ly: Fy Ay #2] =m, and #[y’: Fly’ Ay! £2'] =m. 
Assume m = m', Then by Hume’s Principle, there is a one-one correspondence ¥ 

between the objects y such that Fy and y # z and the objects y’ such that P’y’ and 
y’ # 2’. We may assume that if yyy’, then Fy, y 4 2, F’y’, and y’ 4 x’. Let yey 

iff (ypy’ V [y = c Ay’ = 2']). Then w is a one-one correspondence between the objects 
falling under F and those falling under F’, and so by Hume’s Principle, n =n’. 

Assume n = n’. By Hume's Principle, let y be a one-one correspondence between the
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Frege observes that so far it has not yet been stated that every number 

immediately follows or is followed by another. He then states: 

6. Every number except 0 immediately follows a number in the natural 
sequence of numbers. 

It is clear from §44 of Grundgesetze’ that Frege did not take (6) to imply 
that 0 does not immediately follow a number, that -2P0. This proposition 
is proved separately in Grundgesetze, as Proposition 108, and will be used 

later on here, at a key point in the argument. 

§79 contains the definition of the strong ancestral of y, “x precedes y in 

the y-sequence” or “y follows xz in the y-sequence”: 

VF (Va(apa + Fa) — VdVa(F'd — dya — Fa) > Fy), 

which was Definition (76) of the Begriffsschrift. Frege will use this defini- 

tion in §81 to define “member of the natural sequence of numbers ending 
with 7.” We shall use the standard abbreviation: xp*y for the strong 

ancestral. To prove that if rp*y, then ...y..., it suffices, by the compre- 

hension schema iF Va(F'a «+ ...a...) of second-order logic, to show that 
Va(apa — ...a...) and VdVa(...d... + dpa — ...a...). We call this 
method of proof Induction 1. (Induction 2 and Induction 3 will be defined 
below.) 

Here and below, we associate iterated conditionals to the right. Thus, 

e.g., “A — B-—C” abbreviates “(A — (B > C)).” This convention pro- 
vides an easy way to reproduce in a linear symbolism one major notational 

device of both Begriffsschrift and Grundgesetze. 

Frege mentions in §80 that it can be deduced from the definition of “fol- 

lows” that if b follows a in the y-sequence and c follows 6, then c follows a; 

the transitivity of the strong ancestral is Proposition (98) of the Begriffss- 

chrift, The proof Frege gives there can be formalized in second-order logic 
only with the aid of the comprehension schema (or something to the same 

effect); however, there is an easier proof that makes use only of the ordi- 

nary quantifier rules, applied to the universal second-order quantifier in the 

definition of y*. For the proof in §§82-83, Frege will also need Proposition 
(95) of Begriffsschrift: if xpy, then xyp*y, which easily follows from the 

definition of y*. 
At the very end of §80 Frege states that only by means of the definition 

of following in a sequence is it possible to reduce the method of inference 

objects falling under F and those falling under F’. We may assume that if yy’, then 
Fy and F’y’. Let ypy’ iff (FyAy A 2A Fy’ Ay! # 2! A lydy' V (ya! Azyy’))). Then 
y is a one-one correspondence between the objects y such that F'y and y # z and the 

objects y’ such that F’y’ and y’ # z’, and so by Hume’s Principle, m = mi’. 
7 All references to sections of Grundgesetze der Arithmetik are to sections of Volume 

I of that work. The numbering of sections starts over again in Volume II.
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(“Schlussweise,” which Austin mistranslates as “argument”) from n to n-+1, 
to the general laws of logic. Of course, the method of inference from n to 

n-+1 is what we call mathematical induction; Frege’s remark may be taken 

to be a claim that mathematical induction can be proved with the aid of 

the definition of the ancestral of P. 

In §81 Frege defines the weak ancestral: “y is a member ofthe y-sequence 

beginning with 2” and “sz is a member of the y-sequence ending with y” are 

to mean: zyp*y V y = z. We shall use the abbreviation: ry*~y. He states 

at the beginning of the section that if ~ is P, then he will use the term 

“natural sequence of numbers” instead of “-sequence.” We thus have five 

terms: “y follows z in the natural sequence of numbers,” “x precedes y ... ,” 

“y immediately follows x ...,” “x is a member of the natural sequence of 

numbers ending with y,” and “y is a member ... beginning with x.” Weshall 

abbreviate these as: zP*y, cP*y, xPy, xP*~y, and zP*~y, respectively. 

Induction 2 is the following method of proof, in which weak ancestrals 

occur as hypotheses: To prove that if rp*~y, then ...y..., it suffices to 

prove 

and 

(ii) VdVal(...d...—+dya—...a...). 

Induction 2 quickly follows from Induction 1: if (i) and (ii) hold, then so 

does Va(rga > ...a...); thus if ryp*y, then ...y.-., by Induction 1. But if 

r= y, then by (i), -..y... again. Frege proves Induction 2 as Proposition 

144 of Grundgesetze. 
A hasie fact about the weak ancestral, to which we shall repeatedly ap- 

peal, is Chat. .r*a and thas rg* a, provided that ry* d and dpa, for then 

cither p*dya, wp*dpta, and xp'a, or 2 = dpa, ya, and eta, by (95) 
and (98) of the Begriffsschrift, That xp*a if 2p*"d and dya is Proposition 

134 of Grundgesetze der Arithmetik; that cy*=a if xp*a is Proposition 136. 

Frege has not yet defined finite, or natural, number. He will do so only 

at the end of §83, where “n is a finite number” is defined as “n is a member 

of the natural sequence of numbers beginning with 0,” ie., as: OP*=n. By 

Induction 2, to prove that ...n... ifn is finite, it suffices to prove ...0... 

and VdVa(...d...+dPa—...a...). 
In the formalism in which we are supposing Frege to be working the ex- 

istence and uniqueness of 0, defined in §74 as #[x : x # a], are given by 
the comprehension scheme for second-order logic and the standard conven- 

tion of logic that function signs denote total functions. Thus # denotes 

a total function from second- to first-order entities and the existence of 
#|z : 2 = a], that of #[x: a 4 2], and that of #[2: a2 = #[z: 2 F z]]
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will count as truths of logic. The propositions that 0 is a natura! number 

and that any successor of a natural number is a natural number follow 

immediately from the definition of “natural number”; 78.5 says that P is 
functional and one-one. So apart from the easily demonstrated statement 

that nothing precedes zero, by the end of §81 Frege can be taken to have 

established the Dedekind—Peano axioms for the natural numbers, except 

for the statement that every natural number fas a successor. 
Using the notation we have introduced, we may condense §§82-83 as 

follows: 

§82. It is now to be shown that—subject to a condition still to 

be specified—(0) nP#{z : xP*=n]. And in thus proving that 
there exists a Number & such that nPk, we shall have proved 

at the same time that there is no last member of the natural 

sequence. ... 
...It is to be proved that (1) dPa — dP#([z : xP*"d| > 

aP#{z : 2P*=al. 
It is then to be proved, secondly, that (2) OP#[z : xP*=0]. 

And finally it is to be deduced that (0’) 0P*"n — nP#{[zr : 
zP*-n]. The method of inference (“Schlussweise”) here is an 
application of the definition of the expression “y follows x in 

the natural sequence of numbers,” taking [y : yP#[z : xP*=y]] 

for our concept F’.8 

883. In order to prove (1), we must show that (3) a = #[z: 
tP*“aAxr # aj. And for this again it is necessary to prove that 

(4*) [ry : rP*=aAz F al has the same extension as [z : rP*=d]. 
For this we need the proposition that (5') Va(0P*=a — 7-aP*a). 
And this must once again he proved by means of our definition 

of following in a sequence, on the lines indicated above. 

We are obliged hereby to attach to the proposition that 

nP#{z : xP*=n], the condition that OP**n. For this there 
is a convenient abbreviation ...: n is a finite number. We can 

thus formulate (5’) as follows: no finite number follows itself in 
the natural sequence of numbers. 

(We have added some reference numbers; (1) is Frege’s own. Prinies 

indicate the presence of a finiteness condition in the antecedent: the asterisk 

8This sentence seems to throw Austin. But we take its last half to mean: when onc 
takes for the concept F' what is common to the statements abont d and about a, about 
0 and about n, and thus that the concept in question is {y: yP#(z : zrP*=yl]. (Austin's 
translation makes it sound as if some binary relation holding between d and a and also 

between O and n were meant. However good his German and English may have been, 

Austin was no logician. It is time for a reliable English translation of Grundlagen.)
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* in (4*) indicates (what at least appears to be) a reference to extensions.) 
It might appear that Frege proposes in these two sections to prove, not 

(0), but (0’), as follows: First prove (5’) by an appeal to the definition of 
P*. Then derive (4*) from (5’) and (3) from (4*). From (3) derive (1). 
Prove (2). Then, fimally, infer (0’) from (2) and (1), by a similar appeal to 
the definition of P*. 

However, it will turn out that this precise strategy cannot succeed. It 

cannot be (4*) and (3) that Frege wishes to derive—(3), e.g., is false if 
a = No, as we shall see—but rather certain conditionals (4’) and (3'), whose 
consequents are (4*) (or rather an equivalent of it) and (3). 
We do not, of course, know how Frege might have tried to fill in the 

details of this proof-sketch at the time of composition of Die Grundlagen. 

In particular, we do not exactly know how he would have proved (5'). (We 

can be reasonably certain that his proof of (2), however, would have been at 
least roughly like the proof we shall give below.) But, since he later proved 

a version of the following lemma as Proposition 141 of Grundgesetze, it 

seems plausible to us to speculate that he might have intended to appeal to 

it or something rather like it in his proof of (5'). The lemma is a logicized 

version of the arithmetical truth: if i < k, then for some j, j7 + 1 = k and 

i<j. 

Lemma rP*y — 42(zPy AxP*=z), 

Proof. Let Fa = dz(zPa AxP**z). Then tPa — Fa, for if «Pa, then 

certainly Fa: take z = 2. And Fd AdPa — Fa: Suppose Fd and dPa. 

Then for some z, sPd and rP**2z. By the basic fact about the weak 

ancestral, «P*-d. But since dPa, Fa. The lemma follows by Induction 

1.2 

With the aid of the lemma, we can now use Induction 2 to prove (5/). 

Proof. 0 = #(x: a2 #2]. By Hume’s Principle and the definition of P, 

VzzP0, and therefore by the lemma, —0P*0. 

Now suppose dPa and aP*a. Then by the lemma, for some z, zPa and 

aP*~z, ie., either aP*z or a = z, and therefore either zPaP*z or zPa = z. 

In either case zP*z. Since dPa and zPa, z = d by 78.5 and so dP*d. Thus 
-~dP*d AdPa — -~aP*a. 

(5’) now follows by Induction 2. m 

(5') merits a digression. The part of Die Grundlagen der Arithmetik enti- 

tled “Our definition completed and its worth proved” begins with §70 and 

ends with §83; the concluding sentence of §83 reads, “We can thus formu- 
late the last proposition above as follows: No finite number follows itself 

in the natural sequence of numbers.” Apart from its position in the book
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and the fact that Frege mentions it in both the table of contents and the 

recapitulation of the book’s argument at the end of Die Grundlagen, there 

are a number of reasons for thinking that Frege regarded this proposition 

as especially significant. 

First, there is, according to Frege, an interesting connection with count- 

ing. When we count, he points out in §108 of Grundgesetze, we correlate 

the objects falling under a concept ®(£) with the number words in their 
normal order from “one” up to a certain one, “N”; N is then the number 

of objects falling under ®(£). Since correlating relations between concepts 

are not in general unique, “the question arises whether one might arrive 

at a different number word ‘M/”’ with a different choice of this relation. By 
our stipulations, M would then be the same number as N, but at the same 

time one of the two number words would follow after the other, e.g., ‘N’ 

after ‘iM’. Then N would follow in the series of numbers after M, i.e., after 

itself. Our Proposition [(5’)] excludes this for finite numbers.” We find this 
argument of considerable interest, but will not enter into a discussion of its 
correctness here. 

Secondly, one of Frege’s major philosophical aims, as is well known, was 

to show that reason, under the aspect of logic, could yield conclusions for 

which many philosophers of his day might have supposed some sort of Kan- 
tian intuition to be necessary. The proof of (5’) is a paradigm illustration 
of how the role of intuition in delivering knowledge can be played by logic 

instead. 

One inight think that the truth of (5’) could be seen by the following 
mixture of reason and intuition: (5’) says that there is no (non-null) loop 
of P-steps leadiug from a back to a whenever a is a finite number. So if a 

is finite but not. zcro and there is a loop from a to a, then within the loop, 

there is some number 2 that (inmediately) precedes a, and therefore there 

is a loop from 2x (through a, back) to z. But since a is finite, there is a 

finite sequence of P-steps from zero to some number d preceding a; since 

precedes is one-one, d = 2, and therefore there is a loop from d to d. Thus 
a loop “rolls back” from a to d, and then all the way back to zero. But 

there is no loop from zero to zero; otherwise some number would precede 

zero, and that is impossible. . 

Of course, Frege’s proof of Proposition 145 avoids any appeals to intuition 

like those found in the foregoing argument. 

Finally, in Proposition 263 of Grundgesetze, Frege shows that any struc- 

ture satisfying a certain set of four conditions is isomorphic to that of the 

natural numbers. We find it quite plausible to think that Frege realized 

that the statements that the natural numbers satisfy these conditions cen- 

stitute an axiomatization of arithmetic and regarded them as the basic laws
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of arithmetic, the Grundgesetze of the title of his book.9 Since one of these 

conditions is the one that (5’) shows to be satisfied, there is considerable 

reason to think that Frege regarded (5’) as one of the basic laws of arith- 
metic. End of digression. 

(4*) at least appears to mention extensions of (first-level) concepts and 

may well do so. But (4*) is unlike the definition of cardinal number and 

proof of Hume’s Principle in that any mention of extensions it contains is 

readily eliminable without loss: Frege could have written to exactly the 

same point, “a member of the natural sequence of numbers ending with a, 

but not identical with a is a member of the natural sequence of numbers 

ending with d, and vice versa.” 

It is evident that Frege cannot in fact be proposing to derive (4*) or the 

equivalent 

(4) Va2([2P*"a Ax 4a] + 2P*"d) 

from (5’) since both of these contain free occurrences of “d”. Since the 

supposition of §82 that dPa is clearly still in force, it might be thought 

that Frege wishes to derive 

(44) dPa 3 Vx([zP*=aN2 # alo 2P**d) 

from (5). 
However, if d = a = Np, then, as we have observed, dPa; and then, since 

aP*=a, (41) has a true antecedent and false consequent. Thus it cannot be 

(4) that Frege is proposing to derive from (5/). 
We inay note, though, that Wa([rP* -aAw é al «> P= d) can be derived 

from dPa and walt a, So we may take it that Frege is proposing to derive 

(4) OP* +a -+ dPa eo Var(heP* aA ¢ alo rP* d) from (5/). 

(4!) OP*=a > dPa > Va((2P*“a Ag # al ox P"*d). 

Proof. Suppose 0P*“a and dPa. Assume rP*=a Ax # a. Then xP*a. 

By the lemma, for some c, cPa and zP*=c. By 78.5, c=d. Thus +P*"d. 
Conversely, assume rP*=d. Since dPa, xP*a by the basic fact about the 

weak ancestral, and so +P*~a. If ~aP*a, then also x # a. But since 

OP*~a, it follows from (5’) that indeed -aP*a. Thus (4’) is proved. ™ 

Nor could Frege be proposing to derive (3) a = #[z : 2P*-aAz # 4] 
from any proposition he takes himself to have demonstrated. For (3) is 
false if “a” has No as value. In fact, #[x : xP*“Ng Ax # No] = 0. For 
if rPNy, then since NoPNo, zx = No, by 78.5. Let S be the converse of 

°¥For elaboration of this suggestion, see the second author's “The development of 
arithmetic in Frege’s Grundgesetze der Arithmetik’ (Heck, 1993).
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P. Then if XoSz, 2 = No. Thus if NgS*z, c = No. (Let Fa = a = Ny 

in the definition of S*.) But the ancestral is the converse of the ancestral 

of the converse. So if xP*No, then ¢ = Ng. Thus rP**Nq iff x = Np, 

and therefore for no 2, xP*"Ny Ax # Ng. By a proposition given in §75, 

#(a :2@P*X Ar x No] = 0. 

However, it is important to observe that at this point it is not only the 

conjunct dPa of the antecedent of (1) that is assumed to be in force; the 
other conjunct dP#[xz : x P*“d] is also assumed to hold. (It is easy to be 
oblivious to this further assumption since “a = #[z : tP*“aAz aj” 

does not mention d. But it is supposed at this point that a is such that 

dPa, and it is likewise also supposed that d is such that dP#|x : xP*=d].) 
Since a = #[z : xP*“a A x ¥ a] follows from these two conjuncts and the 
consequent of (4’), we may take it that Frege wishes to prove (3’): 

(3') 0P*-a — dPa — dP#[z: 2P*"d| + a= #[2:2Panxz Fal. 

Proof. Suppose dPa and dP#{z : xP*-d]. Then by 78.5 (the other way), 
a = #(x : xP*~d}. Suppose further that 0P*“a. Then by (4’), Va([aP*=aA 
x #a]< 2P*-d). By Hume's Principle, #[x : xP*“aAnxz 4a] = #[z: 
xP*-d). Thusa=#([x:2P*-aAz al. 

We come now to the difficult question how Frege proposes to derive (1) 
from (3’). Frege tells us that to prove (1), we must show (3). But (3) 
is not unconditionally true. However, (3’), whose consequent is (3) and 

whose antecedent contains a conjunct stating that the value of “a” satisfies 

the condition of finiteness, can be proved. Thus it might seem reasonable 

to think that. Frege may be proposing, as in the case of (4) and (3), not 

to derive (1) from (3), but some conditional instead whose antecedent ex- 
presses a finiteness condition and whose consequent is (1). Moreover, since 

dPa is one of the clauses of the antecedent, if we take 0P*“d as another 

conjunct of the antecedent, we need not also take 0P*=a. So we let (1’) be 

OP*=d — dPa — dP#[xz : xP*“d| + aP#{z : xP*= a]. (1’) follows readily 
from (3’): 

(1’) OP*=d— dPa > dP#{z : P*=d] — oP #{x : xP*= al. 

Proof. Suppose that 0P*=d, dPa and dP#([z : xP*=d]. By the basic fact 

about the weak ancestral, 0P*=a. By (3'), a = #[z: rP*“aAz # a]. Since 

a = a, aP*=a, By the definition of P, #[z: eP*-aNz # af P#[r sr P a]. 

Thus eP#|x : 2P**aj. @ 

It may be useful to recapitulate here our (somewhat intricate) derivation 

of (1’) from (5’) and the other propositions to which Frege appeals: 

Suppose 0P*=d, dPa and dP#{z : «P*=d]. By the basic fact about the 

weak ancestral, 0P**a, and thus by (5’), ~aP*a. IfrP*~a and x # a, then
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zP*a, and so by the lemma, for some z, xP*=z and zPa. By one half of 

78.5, z = d, and so xP*=d; conversely if xP*“d, then by the basic fact, 

xP*a, whence x # a (since -aP*a) and xP*~a. Thus Vz(rP*"ahz fat 

zP*=d), which is (4), and so by Hume's Principle, #[z :2P*=aAx # al = 
#[2 : eP*=d], and therefore dP#{z : zP*-a Ax # al. By the other half 

of 78.5, a = #[2 : 2P*“a Az F al, which is (3). Since aP*=a (trivially), 

by the definition of P, #[z : rP*“a Az # alP#{z : x P*=al, and therefore 

aP#|z : xP*=al. 
(2) is proved much more easily. 

(2) OP#{x : xP*=0]. 

Proof. 0 = #|z:2 4 2]. By Hume’s Principle and the definition of P, 
VznzP0. By the lemma, Vz—xzP*0, and so Vz-(xzP*“0Az # 0). By aresult 
of §75 mentioned above, #[z : xP*-0 Ax 4 0] = 0. But OP*=0, whence 
#|¢ :2P*“OA 2 4 O0|P#{z : x P*- 0], and therefore OP#[z : cP**0]. & 

(0’) must now be derived from (1) and (2). It is not possible to appeal to 
Induction 2 because of the presence of “0P*d” in the antecedent of (1’). 

But, it might be supposed, Frege can appeal here to Induction 3, which he 

explicitly demonstrated in Grundgesetze as Proposition 152: To prove that 

if zy*“y, then ...y..., it suffices to prove 

(i) ...a4... 

and 

(ii) ViVa(ap*=d > ...d... dpa —...a...). 

Note the formula “x** d,” whose presence weakens (ii) and thereby strength- 
ens the method. The derivation of Induction 8 from liduction 2 is signif 

icantly more interesting than that of Induction 2 from Induction 1. It 

appeals to the comprehension scheme of second-order logic and uses a tech- 

nique sometimes called “loading the inductive hypothesis.” (At the begin- 

ning of §116 of Grundgesetze, Frege writes, “To prove proposition (7) of 

§114, we replace the function mark ‘F(£)’ with ‘“4(aP*=€ — —F(€)).’ ”) 

Proof of Induction 3. Suppose (i) and (ii). Let Ga =...a...A zp" 4 
(second-order comprehension). Now, ry**<z trivially; thus by (i), Gz. We 
now show VWdVa(Gd — dya — Ga): Suppose dya and Gd, ie., ...d... and 
xp*=d. By (ii), ...a.... By the basic fact about the weak ancestral, r*~4@- 
Thus VdVa(Gd — dpa — Ga). By Induction 2, Gy, whence ...y...™ 

(0’) is now immediate from (2) and (1’) by Induction 3 let x =0, 9 = P, 

youn,and...y... iff yP#(x :aP*=y).
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We believe that no one will seriously dispute that this proof of (0'), which 

features a derivation of (1’) from (5’) and an appeal to Induction 3, is 
Fregean in spirit, ingenious, and of a structure that fits the proof-sketch 

found in §§82-83 rather well. But there are a number of strong reasons 

for doubting that Frege had it in mind while writing these two sections. 

Accordingly, we shall refer to it as the conjectural proof.)° 

First of all, Frege twice says that (1) isto be proved, once in §82 and again 

in §83. He says, moreover, “The method of inference here is an application 

of the definition of the expression ‘y follows x in the natural sequence of 

numbers’, taking [y : yP#[x : xP*~y]] for our concept F.” It would thus 
seem natural to take Frege as arguing by appeal to Induction 1 or Induction 

2 (with P as y). Frege mentions the condition that n be finite, but does 
not also mention, as he might easily have done, the need to assume that d 

(or a) is finite as well. Thus it would seem overly charitable to assume that 

the argument he really intended proceeds via Induction 3. 
Secondly, notice that Frege says in §83 that (5’), which Frege proved 

in Grundgesetze by appeal to Induction 2, “must likewise (‘ebenfalls’) be 

proved by means of our definition of following in a series, as indicated 
above.” It seems plain that Frege does not intend to use Induction 3 to 

prove (5'); “ebenfalls” suggests that the induction used to prove (0’) would 
be like the one used for (5’). 
The most telling objections to the suggestion that Frege was intending 

to sketch the conjectural proof in Die Grundlagen, however, arise from a 

close reading of Section H (eta) of Part II of Grundgesetze. We quote and 
coniment upon part of Section H." 

H. Proof of the Proposition 

OP*=b — bP#[x : xP*=)| 

§114. Analysis 

We wish to prove the proposition that the Number that belongs 

to the concept 

member of the number-series ending with b 

follows after b in the number-series if 6 is a finite number. Here- 

with, the conclusion that the number-series is infinite follows at 

once; i.e., it follows at once that there is, for each finite number, 

one immediately following after it. 

Of course, what is conjectural is whether the proof is Frege’s, not whether it is a 

(correct) proof. 
1 The present translation is 

We have changed Frege’s notation to our own an 
based one due to the second author and Jason Stanley. 

out d added some material in brackets.



328 IZ. Frege Studies 

We first attempt to carry out the proof with the aid of 

Proposition (144) [viz., ag*“b — Vd(Fd — Va(dga — Fa) — 
(Fa — Fb)], replacing the function-mark “F(€)” with “€P#Iz: 
zP*=€].” For this we need the proposition “dP#[x : zP*“d] —> 
dPa — aP#|z : rP*=a)”. 

That is to say, one’s “first” idea might be to prove (0’) by applying Induction 

2 to the concept [y : yP#{z : xP*y]], which would, among other things, 
require a proof of (1). (A footnote, to which we shall return, is attached to 
this last. sentence.) 

Substituting ...in (102) [viz., #[2 : Fr Ax # b] = c > 
Fb — cP#F], ...we thus obtain “#[z : rP*“aAz # a] = 
a — aP*“a — aP#|z : cP**a),” from which we can remove 
the subcomponent “aP*“a” by means of (140) [viz., ag*~al. 
The question arises whether the subcomponent “#[xz : zP*“aA 
x 3% al =a” can be established as a consequence of “dPa” and 
“dP#|a : 2P*-d]”. 

Put differently, the problem reduces to that of proving 

(3t) dPa — dP#|z : rP*"d| — a = #[4:7P** adr Za), 

which is (3') without the finiteness condition 0P*=a, and which, together 

with the relevant. instance of Frege's Proposition 102, inyplics (1). 

By the funetionatity of progression in the number-series .... 

we have “dP Hie ae? dl vdPa ov #UrsaePt dja”... We 
thus attempt to determine whether “flr aAw fal © 
# le: Pt)” can be shown to be a consequence of "dPar. ..« 
For this it is necessary to establish “[bP**a A b # al o bP** a” 
as a consequence of “dPa” ... 

That is, (3') will follow from 

(41) dPa > Va([zP*“anz #al + «Pd), 

an easy consequence of Hume’s Principle, and the one-one-ness of P. 

For this it is necessary to establish “bP*=d — (bP*“aAb # 
al” and “[bP*=a A b # a] — bP*=d” as consequences of “dPa”. 
But it turns out that another condition must be added if “b # a” 

is to be shown to be a consequence of “bP*=d” and “dPa.” By 

(134) we have “bP*=d — dPa — bP*a”. If 6 coincided with
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a, then the main component would transform into “aP*a”. By 

(145) Jour (5’)], this is impossible if a is a finite number. Thus 
the subcomponent “0P*~a” is also added. 

Admittedly, the desired application of (144) thereby be- 

comes impossible; but with (137) [viz., ag*=e — egm — ag*=m] 
we can replace this subcomponent with “OP*“d” and derive 

from (144) the Proposition [152], “(ag*=b — Vd(Fd — ag*=d 
— Va(dga — Fa)) — (Fa— Fb))” ..., which takes us to our 
goal, 

That is, to establish the first half of (41), we need to know that -aP*a; 
this will follow from (5’) and the additional assumption that a is finite. 
However, this new assumption must then be carried along throughout the 
proof, transforming (4) into (4’), (3t) into (3’), and (1) into “OP*=a > 
dP#|a2 : 2P*-d] — dPa — aP#[z : xP*=al,” from which (1’) easily 
follows. The attempt to prove (0’) via Induction 2 then fails, since we 
simply have not proved (1), though we can still complete the proof by 

making use of Induction 3 instead. 

It is, we think, difficult to read these paragraphs without supposing that 

they reveal Frege’s second thoughts about his idea in Die Grundlagen of 

applying Induction 2 to prove (OP*"n — nP#([z : xP*=n]) by substituting 

ly : yP#[x : eP*-y]] for F. The attempt won’t work, he says. because 

we need the hypothesis that a is finite in order to derive ~aP*a, which 

is needed for (6P*“d — dPa — 6b # a), which is in turn necessary for 

the rest of the proof. Read side by side with §§82-83 of Die Grundlagen. 

Frege’s discussion in these paragraphs strikes one as penetrating and direct 

criticisin of bis earlier work. Moreover, the criticism suggests a way in which 

the conjectural proof can be regarded as Frege’s after all: it is the proof 
obtained on amending the proof-sketch of §§82-83 in the way suggested in 

this section of Grundgesetze. 

It is striking that the formal proof Frege actually gives in Grundgesetze. 
though closely related to the conjectural proof, is not quite the same proof. 

The forma] proof,!? given in §§115, 117, and 119, does proceed by deriving 

(0’) by means of Induction 3 (Frege’s Proposition 152), from (1’) (= €150'*) 
and (2) (=154). And the proof of (1’) does begin with a derivation of (4") 

(= £149), from (5’) (= 145). But (1’) is not derived froin (4’) via (3'): the 
argument is slightly different. 

12For a fuller account, see (Heck, 1993). For the benefit of interested readers, Appendix 

3 of the present paper contains translations into our notation of relevant parts of Frege's 

Proofs, 

13By Proposition xn we mean the proposition labeled with Greek letter z which occurs 

during, as opposed to after, the proof of proposition number n.
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This part of the Grundgesetze proof, translated into English plus our 

notation, runs as follows: By the basic fact about the weak ancestral it 

suffices to show that if 0P*“a, dPa, and dP#\|z : 2P*=dj, then aP#{[z : 
xP*-al. By (4’) and (an easy consequence of) Hume’s Principle, we have 
that #[x : aP*-a Az # al = #[x : xP*d] (cf. 149). But substituting 
into Proposition (102) quoted above, we have #[r : xP*-aAz # a] = 
#|2 : a2P*"d| > aP*-a > #[2 : eP*“d|P#[a : P*=a]. Hence, by (140), 
#([z : P*“d|P#|x : cP*=al (cf. 8150). Since dPa and dP#[x : xP*“d], 
a= #([x : eP*=d| (cf. 7150), whence aP#[2 : xP*=a] (cf. 6150) and we 
are done. 

Comparing this argument with the relevant portion of the conjectural 
proof, one sees immediately how little they differ from each other; one 

might therefore overlook (or ignore) the fact that (3’) does not actually 
appear in the proof given in Grundgesetze. But the omission of (3’) is 

significant, since the “proof” discussed in §114 explicitly highlights (3') as 

what must be proved if (1) is to be derived from (4). The typical point of 
a section of Grundgesetze headed “Analysis” is to describe a formal proof 

found in “Construction” sections that follow it. Thus on reading §114, one 

would naturally expect the following proof to include, not just proofs of 

the results of adding a finiteness condition to (4t) and to (1), but also, as 

part of the derivation of the latter from the former, a proof of a proposition 

similarly related to (3). As we said, however, the derivation of (1’) from 
(4') in §115 does not go via (3’). That (3') is so much as mentioned in 
§114 is therefore bound to seem mysterious unless one reads it as we have 

suggested, ic., as criticism of Frege’s own “first attempt” to prove (0‘) in 

§§82 83 of Die Grundlagen, for (3t) or (3) is indecd an intermediate step 
in thet proof. 

This observation concerning how the Grundgesetze proof differs fron the 
conjectural proof also suggests a plausible explanation of the origin of the 

mistake of which we have accused Frege. Consider the two lists of proposi- 

tions: 

(1') OP*"d — dPa > dP#{z : £P*=d| > aP#([z : xP*=a] 
(3') OP*"a > dPa — dP#{[z: 2P**d| + a=#{2:2P*-aAz ¥ a] 
(4) OP*"a + dPa > Vax({4P*-a A x # a] + 2P*=d) 
(5‘) OP*=a — 7aP*a 

(1) dPa—dP#[x : 2P*“d| > aP#([x: xP*=a] 
(3') dPa— dP#\r :2P*=d| +a = #(2:2P*=aAr Ht a] 
(41) dPa + V2([2P*=a nx 4 a] ++ 2P*=d) 
(51) >aP*a
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As we have seen, (4’) follows from (5’), (3’} from (4’), and (1’) from (3’). 
But notice also that (4) follows from (5'), (3t) from (4'), and (1) from (3'), 
as obvious modifications of our proofs show. Frege, able to prove (5’) and 

desirous of proving (1), may well have lost sight of the need for a finiteness 

condition somewhere in the middle of his argument—perhaps he had not yet 

fully written out the argument in Begriffsschrift—and mistakenly concluded 

that he could deduce (1) from (5’). If forced to guess, we would suppose 

that it was between (4’) and (1), i.e., at (3t) or (3’), that the finiteness 
condition vanished, for it is there that the Grundgesetze proof differs from 

the conjectural proof. 

The first sentence of the second paragraph of §83 calls for some discussion. 

Frege writes there that we are obliged “hereby” (“hierdurch”) to attach to 

the proposition that nP#[r : 2P*“n] the condition that 0P*"n. One 
might be forgiven for thinking that, in so stating, Frege is indicating that 

this condition is required by the presence of the finiteness condition in 

(5'), since it is with an indication of how (5’) is to be proven that the 
previous paragraph ends, But this thought cannot be right. Frege says in 

§82 that, once (1) and (2) are proved, “it is to be deduced that OP**n — 
nP#[x : zP*=n]” by means of Induction 2. Thus what subjects n in (0) 
to a finiteness condition is not the presence of such a condition in (5’), but 

the kind of proof of (0’) being given in the first place. “Hierdurch” refers 

to the use in the proof of (0’) of the “definition of following in a series, on 

the lines indicated above,” that is, as was discussed in §82. 

There is one final piece of textual evidence to which we should like to 

draw attention. As we said earlier, a footnote is attached to Proposition 

(1) when it is first mentioned in §114: “This proposition is, as it seems, 

unprovable, but it is not here being asserted as true, since it stands in 
quotation tuarks.” The uatural explanation for this remark of Frege’s is 

that he once did believe (1) to be provable, namely when he wrote Die 

Grundlagen, and any defender of the view that Frege was outlining the 

conjectural proof in §§82-83 will have the occurrence of this remark to 

explain away. 

Apart from the light it may throw on the question whether Frege made 

a reparable error, the footnote is astonishing. Note that Frege says, not 

that (1) seems to be false, but that it “seems to be unprovable” [itals. ours]. 
There is, moreover, reason to suppose Frege believed (1) to be not false, but 
true. For one thing, had Frege believed it to be false, he presumably would 

have said so. Furthermore, Frege’s difficulty was probably not that he did 

not know how to prove (1), but rather that he did not know how to prove 

it in his formal system. There is a very simple proof of (1) which depends 

only upon (1’), Dedekind’s claim that every infinite number is (the number
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of a concept that is) Dedekind infinite,!* and the observation, made earlier, 

that “d is Dedekind infinite” is equivalent to “dPd’. We may take (1’) to 

be one half of a dilemma, the other half of which is: 

-0P*-d — dPa > dP#{z : cP*“d] — aP#[x : P*~al. 

This proposition may be proved as follows: suppose the subcomponents. 

Since d is not finite, it is Dedekind infinite. So dPd, and since dPa, d= a 

and (1) follows immediately. 
This proof is one Frege might well have known. It is not at all difficult and 

once (1’) has been proved, a proof of (1) by dilemma immediately suggests 

itself. Moreover, Frege was familiar with Dedekind’s claim and, at least 

while he was working on Part I of Grundgesetze, believed it to be true.}5 

As for the observation, not only is it easily proved, it is natural, in Frege’s 

system, just to use “dPd” as a definition of “d is Dedekind infinite” (cf. 

Grundgesetze, Proposition 426). We conclude that Frege believed (1) to be 
a true but unprovable formula of Frege Arithmetic. 

Frege’s belief that (1) is unprovable in Frege Arithmetic was mistaken, 

however. A proof of (1) can be given that makes use of techniques that 

are different from any found in §§82-83 of Die Grundlagen or in relevant 

sections of Grundgesetze, but with which Frege was familiar. What we shall 

prove is that the hypothesis 0P*=d of (1’), that d is finite, is dispensable. 
More precisely, we shall prove that if dP#[z : 2P**dj, then #[r : eP**d] 
is finite, from which it follows that d is finite, since by Proposition (143) 

of Grutudlgeseize (viz., dPb — aP*b 5 aP*=d), any predecessor of a finite 

number is finite. 

Theerem (FA)'® Suppose dP # le: 2P od]. Then Ble sa P* rad] is finite. 

Proof. Iu FA, define he: fa: OP** ar] -> [rs P** dl] by: 

y if yPh(n) 
A(n) if 7dyyPh(n). 

The definition is OK since P is one-one. 

Since in general yR*z ++ 2(RY)*y,!” Va(aP*"d + d(PY)*=2), and so h 
is onto. Therefore |z : P*=d] is countable, i.e., either finite or countably 

h(0Q)=d; A(n+1)= { 

‘40Of course in set theory without the axiom of choice, i.e., ZF as opposed to ZFC, this 
claim cannot be proved. 

'5See Frege’s review, published in 1892, of Cantor's “Zur Lehre vom Transfiniten.” Of 
course, if Frege did know of this proof and believed (1) to be unprovable, then he must 

have believed Dedekind’s result too to be unprovable, which he (rightly) did. For further 

discussion, see the second author’s “The Finite and the Infinite in Frege’s Grundgesetze 
der Arithmetik” (Heck, 1997). 

'6This result is due to the second author; the present proof, to the first. 
17 RY is the converse of FR.
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infinite. If the latter, then #[x : 2P*-d] = No and by the supposition of 
the theorem, dPNo. But as we saw just after the proof of (4’), rP*=Ny 4 

z= No. Since dPNp, dP*=No, d = No, and #[z : xP*=d] = 1, contra 
#|z : aP*~d] = No. Therefore #[x : xP*“d] is finite. 

Thus Frege could have proved (1) after all and thus appealed to Induc- 
tion 2 to prove (0’). Of course the technology borrowed from second-order 
arithmetic used in the proof just given, particularly the inductive definition 

of h, is considerably more elaborate than that needed to derive Induction 3 

from Induction 2. The conjectural proof is unquestionably to be preferred 

to this new one on almost any conceivable grounds. 

So. Frege erred in §§82-83 of Die Grundlagen, where an oversight marred 

the proof he outlined of the existence of the successor. Mistakes of that sort 

are hardly unusual, though, there are four or five ways the proof can be 

patched up, and Frege’s way of repairing it cannot be improved on. But 

even if one ought not to make too much of Frege’s mistake, there is lots to 

be made of his belief that (1) was true but unprovable in his system. One 
question that must have struck Frege is: If there are truths about numbers 

unprovable in the system, what becomes of the claim that the truths of 

arithmetic rest solely upon definitions and general logical laws? Another 

that may have occurred to him is: Can the notion of a truth of logic be 

explained otherwise than via the notion of provability?
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Appendix 1. Counterparts in Grundgesetze of some 
propositions of Die Grundlagen 

  

  
  

  

Proposition Proposition of 

of this paper Grundgesetze 

Hume's Principle 32, 49 

VanFr + 0= #[r: Fo 94, 97 
78.1 114 

78.2 113 

78.3 117 

78.4 122 

78.5 90 

78.6 107 

72zP0 108 

Induction 1 123 

The basic fact about the weak ancestral | 134, 136 

The Lemma 141 

Induction 2 144 

(5’) 145 

(4’) a149 
(1’) 150 
Induction 3 152 

(2) 154 
(0') 155     
  

Appendix 2. Interpreting Frege arithmetic in 
second-order arithmetic 

The language (of second-order arithmetic) contains variables x, y, z,... oveT 

natural numbers; variables a, 8, -y,... over sets of numbers; and variables 

p,o,... over binary relations of numbers. (We do not need variables over n- 

place relations for n > 2.) Its non-logical symbols are 0, s, +, x,<. Terms t 
are built up out of 0,s,+, x as usual; the atomic formulas are t = t', t < t’, 
at, ptt’; formulas are then built up as usual. 
The axioms of second-order arithmetic are induction: (a0 A Vz(az — 

asx) — ax) [a single formula]; the recursion axioms for successor, plus and 
times and the definition of less-than: 0 # sz, st = sy ~>r=y, r+0=17, 
g+sy=s(r+y),cxO0=Orxsy=(rxy)+a,r<yo WsztzcHy 
and the comprehension axioms (which are axioms of standard second-order 
logic): JaVa(ar + A), IpVzVy(pry + B), A a formula in which a is not 
free and B a formula in which p is not free.
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Since we have + and x, we could have dispensed with binary relation vari- 

ables; and since we have binary relation variables, we could have dispensed 

with + and x and set variables: J, = Ary? 2(z? + 2ay + y? + 32+ y = 22), 
is an onto pairing function. Thus if we have + and x, we have J, and so we 

can replace ptt’ by a.J(t,t’). And we can definer+y = z and zxy = z from 
0 and s using binary relation variables: z+ y = z iff Vp(p0z A VuVu(puu — 

psusv) + pyz); x x y = z iff Ve(p00 A VuVo(puv — psu(v + 2)) — pyz). 
And, uninterestingly, we can replace ax by pxz. 

The least number principle can be proved from the induction axioms as 
usual. 

Introduce the notation: {x : A} as usual: {x : A}¢ abbreviates Ja(Vylay 
++ Az(2 = yAA)|Aat), or, equivalently, Va(Vylay + dz(x = yA A)| — at). 
[a,y new].28 

Definition a = f via p = Vr(az  Ay(By A pry)) A Vy(By + da(ax A 

pxy)) \VaNyVaVb(pay A pab > (2 = a+ y =5)) 

Definition a = 6 = Jp(a = B via p). 

Definition N = {i:i =i}. 

1. - # is an equivalence relation. 

24 {i:i<m} x {i:i<n}om=n. 

3. LK ACN & {i: 7 < n}). 

4. -/ Ne aVan({i:i<n} xa). 

1 will be used without citation below; it is evident how to prove it. 

Sketches of proofs of 2, 3, 4 in analysis are given below. 

5. FAlr[an({i:i<n} eadAz=n+1)V(N vadx=D0)]. 

Proof. By 2, 3, 4. @ 

Definition #e = 12[An({i:i <n} PaAz=n+1)V(N Fadz =O). 

Theorem | #a= #8 oa 8. 

Proof. Case 1. #a = 0 = #8. Thena = N = f. Case 2. #a = 0. 

#B=n+1. Then a = N, B= {i:4 <n}, and -(a = 3), by 3. Case 3. 

#a=m-+1, #8 =0. Similar to case 2. Case 4. #a=n+1= #/. Then 

awzf{i:i<n} =f. Cased. fa=m+l1, #2 =n+1,m ~#n. Then 

aw {i:i<m}, B= {i:i <n}, and by 2, -(a = #). # 

18Thanks here to Roy Dyckhoff.
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Proof of 2. Suppose not. By the least number principle, let n be least 

such that for some least m < n, {i : i < m} = {i : i < n}, via some 
p. m,n # 0, hence for some j,k, m = sj,n = sk. Soj <k <n. Let 

b = p(j); a = p(k); let o = (( — {(3,6), (a, k)}) U {(a, b)}) — {(9, #)}- 
Then {i:i < j} = {i:i < k} via o, contra leastness of n. & 

Proof of 8. Suppose N ~ {1:7 <n}, n least. Let N ~ {1:7 < n} via p. 

Clearly n = m+1, some m. m <n. Let i be such that p(i) = m. Let 
o(j) = o(j) if j < i and let o(j) = p+) iff >i Then Nx {i:i< 
m} via o, contra leastness of n. H 

Proof of 4. Suppose that for no n, {i: 4 < n} ~ a. We prove the existence 

of a one-one function p mapping N onto a. 

Say that o is good to n if o is a function; domain(c) = {i : i < n}; for 
alli < n, a(t) € a; for all j < i <n, o(j) < o(i); and for alli < n, if 
k € a and k < a(3), then for some j < i, k = o(j). Officially: o is good 
to n iff ViVpVq(cip A cig — p = q) AVi(Apaip i < n) AViND(oip > 

ap) ANN Nai <iAajg A cip — q <p) AViVkVa(ak AcipAk <p 

5j(j < iAojk)).] 
@ is good to 0. If o is good to n, then o U {(n, least member of a 

not in the range of o)} is good to sn (the existence of the least member 

of a not in the range of o follows from our supposition). By induction, for 

every nm, some @ is good to n. If ¢ is good to n, a’ is good to n/, and n> n’, 

then by induction for every i <n, o(i) = o'(é). By conyprehension, let 
p= {ln k) 2 do(o is good to sn and a(n) = k)}. It is sufficiently clear that 

pis a function; domain(p) == N; for all i, p(/) © an if i < a, pi) < ali), and 
ifk € a, k < plz), then for some y <i, & = pj). We umat show that a is 
onto a. Since pli) <p) whenever j < i, for every kk < p(k), otherwise 

for sotne least. A, p(k) < 4A, and then p(p(k)) < p(4), contra leastness of &. 
Thus if k € a, then A) < p(k), and so for some j < hy Ae = p(j). Thus p is 

onto a. Ml 

Appendix 3. Translations into present-day notations of 
§§115, 117, 119, and part of §113 of Grundgesetze 

Below we use boldface instead of Fraktur and notation introduced above in 

place of Frege’s own, we omit the signs indicating which rule of inference is 

applied and reference numbers to axioms of Frege’s system, and we utilize 

certain easy equivalences (e.g., p Ag for =(p — —q)). 

§113 (part) 

ag*b + Je(egb A aq*=e) (141 
Ve(egh — -ag*=e) — -a9*b (142
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(88): 

(142): 

§115 

130 

147 

(143): 

134 

(145): 

(137): 
(A): 
(77): 

(96): 
(102): 
(140): 

(70): 
(137): 

§117 

(137): 

naP*"d—-d=c—-7aP**c 
naP*=d — dPb — cPb — -aP**c 
7aP*"d — dPb — Ve(ePb — -aP*~e) 
naP*-d — dPb — -aP*b 
aP*b — dPb — aP*-d 

bq*"a — 7bq*a + a=b 
abg*a — bg*-a — b=a 

bq*-aAb#éa— bg*ta 

bP*-aAb#a— bP*a 

dPa — (bP*-aAb 4a) > bP*“d 

(bP*“d — (bP*-aAb# a)) > dPa — ((bP*-aAb £a) 
«+ bP*=d) 

bP*"d — dPa — bP*a 
7aP*a — bP*=d— dPa—-b#a 

OP*-a > bP*-d— dPa— b#a 

bP*-a > 0P**a > bP*“d— dPa > (bP*=aNb# a) 

dPa— 0P**a— bP*-d — (bP*-aAb 4a) 
dPa — 0P*=a — ((bP*=a Ab # a)  bP*=d) 
dPa > 0P**a = ([zr:2P**aAz ¢ alb + bP*=d) 
dPa — 0P**a > Va([z:2P*"aAz #4 ala aP*=d) 
dPa > 0P**a > #[r: 2P*=aAx <a] = #[z: xP**d] 
dPa > 0P**a > aP*“a > #[z: 2P*"d/P#[z : cP*=a] 
dPa > 0P**a > #[c: cP*"d|P#[z : x P**a] 
#[4 : ¢P*=d) =a — dPa — OP**a > aP#{z: zP**a] 
dP#[x : 2 P*=d)] — dPa > OP**a — aP#[z : cP**a] 
dP#{x : 2P**d] — OP**d — dPa — aP#{[z : eP*=a] 
Vd(dP#{r : xP*=d] + OP*=d — Va(dPa 

> aP#[z : zP*=al)) 

Vd(Fd — ag*=d — Va(dga — Fa)) — (Fd — aq**d 

— Va(dga — Fa)) 
Vd(Fd — ag*=d — Va(dga — Fa)) > (Fd — aq**d 

—+ dgb — Fb) 
Vd(Fd — ag*=d — Va(dga — Fa)) — (=Fb — agq**d 

— dqb — -Fd) 
Vd(F'd — aq**d — Va(dga — F'a)) — ((ag**b — -Fb) 

— ag*=b — aq**d — dqb- —Fa) 

Vd(Fd — ag*=d — Va(dga — Fa)) — ((ag*=b > -Fb) 
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140 

(144): 

(151): 

150 

(152): 

$119 

126 
(130): 

(58): 

97): ( 
(102): 
(140): 

(1533): 
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— dgb — (aqg*“d — —Fd)) 
Vd(Fd — aq*=d — Va(dga > Fa)) > ((aq*"d A Fd) 

+ dgb — (aq*=b A Fb)) 
Vd(Fd — ag*=d — Va(dga > Fa)) > Vd((aqg*"d A Fd) 

— Va(dga — (ag*=a A Fa)) (151 
aq*a 

Fa — (aq*=a A Fa) 
aq*=b — Vd((ag*=d A Fd) — Va(dga — (ag*“a A Fa))) 

— (Fa — (ag**bA Fd)) 
ag*=b — Vd(F'd — aq*-d — Va(dga — Fa)) 

— (Fa > (ag**b A Fb)) 
aq*-b — Vd(Fd — ag*“d — Va(dga — Fa)) 

— (Fa— Fb) (152 

Vd(dP#{[z : 2P*=-d] — 0P*=d — Va(dPa 
— aP#{[z : xP*=al)) 

OP*=b > OP #[z : zP*=0| + bP#[z : 2P*=O] (153 

naP*0 
aP**0—-0=a 

aP*-0-a=0 

alc: aP*"0Ag £ Ola 
Va-[x:aP*“OA x ¢ Ola 
#lz : 2P*“0A r #0] = 0 
OP*=0 > OP#{[c : cP*=0] 
OP# le: 2 P*= 0] (154 

OP b — bP Abr: Pee dl (155 

Propositions cited but not proved above: 

(58) 
(70) 
(77) 
(88) 
(96) 
(97) 
(102) 
(130) 
(137) 
(140) 
(144) 
(145) 

F(fa) > F(o[x : afz]a) 
ePd— ePa>-d=a 

F(fa) — F({x: fzja) 
dPe—aPe-+d=a 
Va(ua — va) > #u = #u 
Varua — #u =0 

#[ce ux Az ~cl=m— uc > mP#u 

F(aq**c) — F(ag*c Vc =a) 
ag*~e > egm — aq**m 

aq**a 

aq*=b — Vd(F'd — Va(dga > Fa)) > (Fa — Fb) 
OP*=b + -=bP*b
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Constructing Cantorian 

Counterexamples 

Cantor’s theorem states that there is no one-to-one correspondence between 

any set A and the power set PA of A, i.e., that there is no one-one function 

mapping anyset Aonto PA. Cantor’s theorem is an immediate consequence 

of either of two propositions, one, “g : A onto PA,” to the effect that no 

function maps any set A onto PA; the other, “if :PA— ,_, A,” stating 

that no one-one function maps PA into A. Let us cail the former “Not 

Onto” and the latter “Not 1-1.” 
Not 1-1 follows directly from Not Onto: Suppose f : PA ~— A. For zx in 

A, let g(x) = the unique B such that f(B) = z, if there is such a B; and 
let g(z) = A otherwise. Then g: A — PA. By Not Onto, some subset 

B of A is not in the range of g. But then for some C 4 B, f(C) = f(B) 

lotherwise B = 9(f(B))] and f is thus not one-one. 
Not Onto can, of course, be proved by the exceedingly familiar diagonal 

argument: Suppose g: A ~ PA. Let B= {r € A: r¢g(x)}. BCA. 

But B = g(x) for no x in A, and so g is not onto A. Note that this proof 

of Not Onto provides an explicit definition, viz.: {2 € A: x ¢ g(z)}, from 

g, of a subset of A that is not in the range of g. 
The derivation we gave of Not 1-1 from Not Onto does not, however, 

similarly provide an explicit definition from f of a pair B,C, of sets such 

that B # C and f(B) = f(C). If we define g from f as above and take 
B={réA:z ¢ 9(xr)}, we may conclude that for some C # B, f(C) = 

f (B), but the proof gives us no hint as to the identity of any such C’. 

There is a familiar direct proof of Not 1-1, again a diagonal argurnent: 

Suppose f: PA + A. Let D= {xeé A: 3E(f(E)=rArg E)}. DCA, 
so for some x € A, f(D) =z. Ifa ¢ D, x € D. Sox € D and thus for 

This article and the accompanying note by Vann McGee were first published in The 
Journal of Philosophical Logic 26 (1997): 237-239. Both are here reprinted with the 
kind permission of Kluwer Academic Publishers. 
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some &, f(F) =z and x ¢ FE, whence D # E. Since f(D) = ¢ = f(E), f 
is not one-one. (In a variant argument one considers {x € A: VE(f(£) = 

a—x ¢ B)}.) 
But again, this direct proof, although it does give an explicit definition of 

D and show that for some E, D # E and f(D) = f(E), does not explicitly 

define any such FE. (And the variant argument does no better.) 

Thus although we can, given g: A — PA, explicitly define a counterex~ 

ample to the statement that g is onto PA, it may well appear that we 

cannot, analogously given f :PA—+ A, explicitly define a counterexample 

to the statement that f is one-one. Not Onto might seem to be “construc- 

tively” provable in a way that Not 1-1 is not. 

Not so. 

Take f : PA — A. For any relation r, let r, = {y: yrz Ay # 2}. Let us 

call a relation r good iff r is a (reflexive) well-ordering of a subset of A and 
for every z in the field F(r) of r, f(r2) = =. 

Let R be the union of all good r. If r and r! are good, then one of r and 

r’ is an initial section of the other; therefore R is itself good. 

Let C = F(R). CCA. Let x = f(C), andlet B= R,. C, x and B are 
all explicitly defined from f/f. 

Ifz¢C, then RU{(y,2): y € C or y = z} is good and therefore x € C. 
Tims 2 EC. 

Since « ¢ {y: yRr Ay # rz} = B, BAC. Siuce R is good, x = f(Rr) = 
f(B). But xr = f(C). Thus f is not one-one. So there is a proof that 

deHnes a counterexample after all. 
We note that since BR, C F(2), we have proved a nonobvious strength- 

ening of Non 1 1: IF f: PA -» A, then for some B,C, B ACL BOC and 

F(B) = f(C). 

Editorial note (by Vann McGee): 

This paper was written in the spring of 1996, shortly before the anthor’s 

death. In another version of the paper, Professor Boolos gave a somewhat 

less direct proof that is interesting because it helps illuminate the connec- 

tion between Not 1~1 and the set-theoretic paradoxes. (That there is such 

a connection is clear; Basic Law V, the source of all Frege’s woe, was the 

denial of an instance of the second-order version of Not 1-1.) Here is a 

sketch of the alternative proof: 

Given f : P.A— A, define a function H from the universe of hereditarily 

well-founded sets into A by setting H(z) equal to f({H(y) : y € z}). An 
induction shows that, if f is one-one, H is one-one, so that H embeds the 

whole universe of hereditarily well-founded pure sets into the set A. But 
this, as we shall see, is impossible. 

One way to see that H cannot be one-one is to observe that, if it were,
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then applying replacement to H~! would give us a set consisting of all 

hereditarily well-founded sets, impossible on account of Mirimanoff’s para- 

dox. 

For present purposes, however, a more useful demonstration is to note 

that, because {H(a) : a a (von Neumann) ordinal} is a set (since it is 
included in A), it follows by replacement that, if H is one-one, then the 

image under H~—! of {H(a) : a an ordinal} is a set. But this gives us a set 
of all ordinals, impossible on account of Burali-Forti’s paradox. 

Thus the restriction of H to the ordinals is not one-one, so that there 

exists an ordinal y such that, for some 6 < 7, H(@) = H(y). Finding the 

least such y and setting B = {H(a): a < 6} and C = {H(a): a < y} 
gives us our counterexample (the same one as before) to Not 1-1; B 4 C, 

but f(B) = f(C).
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Mathematical Induction 

According to the principle of mathematical induction, (0) and (1) below 
imply (2) below, where §n indicates the immediate successor of n: 

(0) P(0) holds. 
(1) For every natural number n, if P(n) holds then P(§n) holds. 
(2) For every natural number n, P(n) holds. 

The principle is central in mathematics. To refer back to systems mentioned 

in the introductory notes to Parts I and II, mathematica] induction figures 

as a central axiom in first-order and second-order Peano arithmetic PA? and 

PA?; deriving mathematical induction was a central goal in the attempts 

of Frege and of Russell to provide a logical foundation for mathematics, as 

it also is a central goal when, following Zermelo, mathematics is developed 

in a set-theoretic framework like Z or ZFC. And the status of the principle 

is the central question for two articles in the present part. Article 24 asks 

how best. to justify the principle. Article 22 considers paradoxes that have 

led some to doubt whether it is justified at all. 

Article 24 notes that the principle of mathematical induction can be 

derived from the well-ordering principle, according to which, if there is any 

natural number n such that P(n) fails, then there is a least such. Also, 
it can be derived from Frege’s or Russell’s logical definitions of natura! 

number, since these have built in the inductive property as part of what it 

is to be a natural number. (The idea in these definitions is to define zero 

and immediate successor first, and then define a natural number as anything 

that is zero or stands to zero in the ancestral of the immediate succession 

relation.) Also the principle can be derived from set-theoretic definitions of 

natural number, because the axioms of set theory include a well-foundedness 

principle for elementhood € that subsumes the well-ordering principle for 

order < on natural numbers. (The idea in set-theoretic definitions is that 

a number is identified with the set of its predecessors, so that 0 = 0.1 = 
{0} = {0}, and so on; thus the order relation < on natural numbers just 
is elementhood € as it applies to natural numbers.) But in all these cases 
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mathematical induction is being derived from assumptions that themselves 

are of a more or less transparently inductive character. The question raised 

by the article is whether it can be derived from assumptions for which this is 

not so, The answer suggested by the article is that Scott’s work, mentioned 

already in Article 6 of Part J, provides such a derivation. 

Article 22 considers the ancient sorites paradox, which arises when the 

principle of mathematical induction is applied to a vague condition P(n). 

More specifically, there is a vague division of natural numbers into “large” 

and “small,” with “small” meaning something like “so small that n grains 

of sand don’t make a heap” or “so small that n hairs on a man’s head won’t 

save him from being bald.” The paradox consists simply in the fact that the 

following, taken together, are inconsistent with mathematical induction: 

(0) Ois small 
(1) For every natural number n, if n is small then §n is small. 
(2’) Not every natural number 7 is small. 

Or rather, the paradox consists in that fact plus facts about the status of 

each of (0’),(1’), and (2’) taken separately. (0’) is obviously true. (1’) is 
widely held to be at least not obviously false. (2') again is obviously true, 

since for instance the number that has been called googolplezx is not small. 
Clearly, one can derive from (0’) and (1’) an explicit contradiction to 

the assertion that googolplex is uot small. Oue can do so in googolplex 

steps, by first deriving that 1 = §0 is small, then deriving that 2 = §1 = 
$80 is small, and so on. What the article shows is that given adequate 

notational resources, ole Can arrive at au explicit, contradiction very much 

wore specdily than that. And what. the article concludes is that because 

(1) leads so speedily to an inconsistency with obvious truths, it, ought. to 
be regarded as obviously false, contrary to widely held opinion. 

By “adequate notational resources” are meant notations for the addition, 

multiplication, and exponentiation functions, along with the usual recur- 

sion equations that define addition as repeated succession, multiplication 

as repeated addition, and exponentiation as repeated multiplication: 

z+0 = £ 

zr+§y = (x+y) 
x:0 = 0 

a-8y = a24+anr-y 
2 = 1 
oY = gg 

It is the fact that exponentiation is fast-growing, that it can give large val- 

ues for small arguments, that underlies the results of the article. The 

list could in fact be extended to include still faster-growing functions,
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by defining super-exponentiation as repeated exponentiation, super-duper- 

exponentiation as repeated super-exponentiation, and so on. If we write (0) 

for addition, (1) for multiplication, (2) for exponentiation, (3) for super- 

exponentiation, we can define the still faster-growing Ackermann function 

a by a(n) = n(n)n. So we have: 

a(0) = 0+0 = 0 

a(3) = 3° = 7,625,597,484,987 

and then the fast growth really begins. A number of matters pertaining to 

such fast-growing functions that are in the background in Article 22 come 

to the foreground in later articles. 

Lengths of Proofs 

First some notation. Given a formal system S and a formula y, let (5S, ~) 

be the length of the shortest proof of yp in S, if y is provable in S, and co 

if y is not provable in S. Now consider two formal systems $ and £, where 

the latter is a restriction or sub-system of the former—or to put the matter 

positively, the former is an extension or super-system of the latter. That is 

virtually the relationship between ZFC and Z, or Z and PA, or PA? and 
PA!, It may happen that though there is a proof of y in both systems, 

A(£,) is dramatically greater than A($,y) so that there is a dramatic 
slow-down in the proof of y when one passes from $ to £—or to put the 

matter positively, A($,y) is dramatically less than A(£,), so that there is 
a dramatic speed-up in the proof of » when one passes from £ to §. 

Of course, the extreme case would be when A($, ¢) is finite while A(£, yp) 
is infinite; in other words, y is provable in $ but not in £. Specifically, that 

happens with the sequence ZFC, Z, PA?, PA!: This is a sequence of systems 

of strictly decreasing strength. Generally, the methods used by mathemat- 

ical logicians to prove slow-down/speed-up results are refinements of those 
used to prove unprovability/provability results. And the prototype for the 

latter are the methods used by Gédel to prove his celebrated incompletc- 
ness theorems, of which more later. It is hardly an exaggeration to describe 

the whole subject of lengths of proofs as a spin-off from Gédel’s theorems. 

All the remaining articles in this part are directly or indirectly linked to 

Gédel’s theorems. Two are so linked by being about lengths of proofs. 

1T> mention some other work of the author not unrelated to the material in this 
section, (Boolos, 1974a) and (Boolos, 1975b) are more technical, mathematical papers 
on formal arithmetic.
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Articles 23 and 25 have the following format in common. In the back- 

ground there is a result, known in a general way to specialists, about lengths 

of proofs. The first aim of the article is to present an example, accessible to 

non-specialists, where the short proof in one system is small enough that it 

can actually be written down in a few pages, while the long proof in another 

system is literally astronomically long. The second aim is to raise, if not to 

settle, the question of the philosophical and/or pedagogical bearing of such 

examples. In Article 23, the example is based on the exponential function, 

in Article 25, on the Ackermann function. 

Article 23 concerns Gerhard Gentzen’s cut-elimination theorem. This 
connects two formulations of first-order logic, an ostensibly stronger one 

with a certain rule “cut” and an ostensibly weaker one without “cut.” The 

theorem says that any derivation in the ostensibly stronger system can be 

transformed into a derivation in the ostensibly weaker system, which is 

therefore not really weaker after all. Derivations in the system without cut 

are in various ways much more “direct” than derivations in the system with 

cut, and that is what makes the cut-elimination theorem a useful lemma in 

proving many substantial theorems in mathematical logic. But derivations 

in the system without cut can also be very much longer than derivations 

in the system with cut, and the first aim of the article is to provide an 
accessible example. As explained in the article, the relationship between the 

systems without and with cut is paralleled by the relationship between the 

tree method, used in some introductory logic texts, in its versions without 

and with a certain rule of “splitting.” 
Article 25 concerns the relationship between first-order and second-order 

logic. Anything that. is expressible in first-order terms and is a theorenl 
of pure second-order logic is a theorent of pure first-order lagic, since if 

it is theorem in pure second-order logie, then it is valid, and anything 

expressible in first-order terms that. is valid is a theorens of first-order logic. 

Nonetheless, the derivation in first-order logic can be very much longer than 
the derivation in second-order logic, and the first aim of the article is to 

provide an accessible example. 

A pedagogical question is raised by these articles. The usual practice in 

introductory courses is to teach only first-order and not second-order logic 

(and where the tree method is used, only the version without splitting). 
Is this an appropriate choice, given that practically speaking second-order 

methods can lead to speedier results than can first-order methods (let alone 

the tree method without splitting)? A philosophical question is also raised. 

Many have taken our grasp of the meaning of the logical particles in natural 

language to be mentally represented by a grasp of the rules for something 

like a system of first-order logic (and some have taken it to be representable 
more specifically by a grasp of the rules for something like a system without
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cut). Is this a plausible representation, given that we can grasp the validity 

of arguments like those in the examples, where a first-order derivation (to 

say nothing of one without cut) would be astronomically long?* 

The Incompleteness Theorems and Semantic 
Paradoxes 

While nominalists and finitists may have hailed Russell’s and other set- 

theoretic paradoxes as exposing the evils of “abstract entities” and “com- 

pleted infinities,” Russell himself thought that what was responsible for 

them was a kind of vicious circularity that can be found at work even 

in cases where there is no abstraction or infinity involved, notably in the 

so-called semantic paradoxes. Among these the one with the most direct 

analogy to Russell’s paradox is the heterological or Grelling paradox. An 

adjective is autological if it is true of itself, like “short” or “polysyllabic” or 

“English,” and heterological if it is untrue of itself, like “long” or “monosyl- 

labic” or “French.” The paradox results when we ask whether heterological 

is heterologica]. The answer seems to be that it is if and only if it isn’t. 

This is recognizably the analogue for adjectives of the Russell paradox for 
sets. 

But it is also is recognizably an analogue for adjectives of the ancient 

liar or Epimenides paradoz for sentences. This paradox arises when we ask 

whether the sentence, “This very sentence is false,” is true. The answer 

seems to be that it is true if and only if it is false. The liar paradox occurs 

in various disguises, for instance the preface paradox. Even if an author is 

committed to the truth of every sentence in the body of a book, it seems 

rational to add im the preface an acknowledgment of human fallibility on 

the order of, “Some sentence in this book is false.” But if every other 

sentence in the book happens to be true, this one will have the same status 

as “This very sentence is false.” The same general family as the Grelling 

and Epimenides paradoxes has other members, including those called the 

Berry paradox, the Richard paradoz, and so on. 

There is a relationship between the liar paradox and Gédel’s original 

proof of his first incompleteness theorem. The hard work in Gédel’s proof 

consists in showing how in a language like that of PA?, which was designed 

for talking about numbers and their arithmetic properties, we can in effect 

2Again to mention not unrelated work, another remediable limitation of the tree 

method as usually presented in textbooks is treated in (Boolos, 198-4f). In a larger 

sense, concern for pedagogy is reflected in the successive editions of his co-authored 

textbook, Computability and Logic, as well as in reviews of popularizations, texthooks. 

and courseware, (Boolos, 1986), (Boolos, 1990c), and (Boolos, 1990d). Everyone hopes 

that experimental psychology will eventually produce results applicable to issues in the 

teaching of logic, as of other subjects; but how far this is from being the case at present 
is suggested by a note in Cognition, (Boolos, 1984d).
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talk instead about formulas and their syntactic properties. Godel assigns to 

every formula a of the language of PA! a code number, and thus since num- 

bers have numerals, a code numeral "a'. GGdel also constructs a formula 

n(x) expressing that x is the code number of a formula that is provable in 

PA*. For instance, 77(" 1”) expresses that the constant falsehood L is not 
provable in PA!, which is a way of asserting the consistency of PA!. 

The resources available in a language like that of PA! for thus talking 

about itself are not quite as rich as the resources available in a language 

like English for talking about itself, and this is just as well, in view of how 

the resources available in English can lead to paradoxes like that of the liar. 

One cannot in the language of PA! produce a formula that says of itself 

that it is not true. But Gédel shows that one can do something analogous, 

producing a formula 7 = 4(PA?) that says of itself that it is not provable in 
PA!. It says this in the precise sense that -y ++ >7("-7) is provable in PA!. 

What’s more, Gédel shows that, if PA! is consistent, then y isn’t provable 

in PA!, so that what 7y says of itself is quite true, and y is an unprovable 

truth. This is his first incompleteness theorem, slurring over technicalities. 

Though 7 = 4(PA') is unprovable in PA!, it is provable in PA? or Z or 

ZFC, and that is how one shows that these theories are strictly stronger than 

PA}. But the incompleteness theorem applies to these stronger systems, 

too, and they have Gédel sentences +(PA?), (Z),7(ZFC) of their own. In 

fact the incompleteness theorem applies to any stronger theory at least as 

strong as PA!, provided it is a theory of the usual type, where there is a 

“mechanical” rule for determining whether a formula counts as an axiom of 

the theory or not. In the case of PA!, we can see, or so we think, that the 

rules only count as axioms things that are true, and so, since truth implies 

consistency, we conclude that PA! is consistent. and 4(PA') truce. 
Article 26 presents a new proof of the first incompleteness theorem rough- 

ly satisfying the proportion: 

new proof : original proof :: Berry paradox : Epimenides paradox 

The afterword underscores that what is new about the new proof is its being 

based on a new principle or new paradox, not its being any shorter. (The 

article is indeed shorter than Gédel’s classical paper, but that is because the 

hard work of setting up the code numbering and apparatus related thereto, 

which is the same in both proofs, is omitted.) 
Article 27 originally appeared as one of several invited commentaries on @ 

position paper by Roger Penrose on the implications of Gédel’s theorem, re- 

lated to his best-seller, The Emperor’s New Mind (Penrose, 1989). Penrose 
is only the latest of many who have attempted to draw from the theorem 

implications for the philosophy of mind, and in particular, the implication
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that no “mechanical!” procedure could match our abilities to “see” the truth 

of mathematical assertions. The thought is that if a mechanical procedure 

generates only mathematical assertions that we are able to see to be true, 

then it cannot generate all such mathematical assertions. For consider the 

theory J’ whose axioms are the mathematical assertions generated by the 

mechanical procedure in question. The thought is that we can see that 7(T) 

is true, much as we can see, that y(PA!) is true, whereas T itself cannot 

prove that 7(T) is true, by Gadel’s theorem. 
Logicians are virtually unanimous in their judgment that there is a fallacy 

in this line of thought, but it is at least a point in favor of Penrose that 

they are not unanimous in their diagnoses as to just where the fallacy 

lies. A first line, taken by many, would say the mistake lies in overlooking 

the possibility that it might in actual fact be the case that the procedure 

generates only mathematical assertions we can see to be true, without our 

commanding a clear enough view of what the procedure generates to enable 

us to see that this is the case. A second line, taken by others, would say 

that even if we do see that the procedure generates only mathematical 

assertions we think we see are true, it might be rational to acknowledge 

human fallibility by refraining from concluding that the procedure generates 

only mathematical assertions that are in actual fact true. (This latter line 

recalls the paradox of the preface.) Gédel’s thoughts about this sort of 

question are indicated in Article 7 of Part I (and in the lecture to which that 
article is an introduction). The author’s thoughts about it are indicated 

in the article under discussion. Very roughly, G6édel’s view is more like the 

first line of response just indicated, and the author’s more like the second 

line, as might have been expected from his expressions of partial skepticism 

about set theory in sone of the articles in Part L 
Article 28 concerns the most systematic device available to a natural 

language like English for speaking about itself: quotation. An elegant 

version of the liar paradox due to W. V. Quine illustrates the use of this 
device: 

‘yields a falsehood when appended to its own quotation’ 

yields a falsehood when appended to its own quotation 

Logicians from Frege to Quine have complained that the conventional rules 

for use of quotation marks are somewhat illogical and subject to ambiguity, 

and have proposed reformed rules. The starting point of the article is the 

observation by one of the author’s students that the reforms proposed so 

far do not suffice to preclude all ambiguity. Michael Ernst’s paradox is that 
the following: 

‘b’ appended to ‘a’
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ambiguously denotes either of the following two expressions: 

ab 

b’ appended to ‘a 

After explaining just what is desired—an unambiguous rule of quotation 

for a language whose expressions are linear sequences of symbols from a 

finite alphabet—the article presents a solution. 

Article 29 concerns a spin-off from Raymond Smullyan’s popularization 

of Gédel theory by way of logical puzzles. Smullyan has us imagine an is- 

land inhabited by just two types of people, knights, who always speak truly, 

and knaves who always speak falsely. Some of the knights have official cer- 

tificates of knighthood, while others don’t. Suppose now an islander says, 

“I am uncertified.” What can we conclude? A knave wouldn’t make this 

statement, because coming from a knave it would be true, while a certi- 

fied knight wouldn’t make this statement, because coming from a certified 

knight it would be false. So the speaker must be an uncertified knight. 

The analogy with the Gédel sentence, which says it is unprovable, and is 

an unprovable truth, should be plain. But the puzzles about knights and 

knaves have a life of their own, and Smullyan complicates some of them by 

supposing there also exist normals, who may speak truly or falsely at will, 

or that the inhabitants may take yes—-no questions in English but answer 

them in their own tongue, of which all that is known is that either “bal” 

means “yes” and “da” nicans “no,” or the reverse. The article takes up the 

ultimate complication along such fines, and presents a. solution. 

Article 30 concerus Gédel’s second incompleteness theoren: for PA'. The 

resources available in a langnage like that of PA! for talking about itself 

are rich enough that the result of the first incompleteness theorem, in the 
hypothetical form of the assertion that if PA! is consistent, then yy isn’t 

provable, or ar(" 17) + a4(Ty7), or equivalently >7(" 17) — +, is prov- 

able in PA!. The first incompleteness theorem says that if PA! is indeed 
consistent, then the consequent of this conditional isn’t provable in PA); it 

follows that the antecedent can’t be provable in PA!, which is to say that 

the consistency of PA! isn’t provable in PA!. That is the second incom- 

pleteness theorem, slurring over technicalities. But there is no need to say 

more by way of explanation of the second incompleteness theorem here, 

since explaining it is precisely the aim of the article. 

It may just be mentioned that the theorem dashed the hopes of David 
Hilbert, who had hoped to silence finitist criticism of classical mathematics 

by producing a proof using only finitist mathematics (something weaker 

than PA!) to prove the consistency of classical mathematics (something 
stronger than PA!), It means that the most one can hope for in general 

is to produce is a finitist proof that if one system is consistent, then so 15
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another: a relative consistency proof. 

The article consists of two parts: first, a monosyllabic explanation of 

the statement of the theorem as promised by the article’s title; second, a 

polysyllabic explanation of the proof thereof, added at the request. of the 

editor of Mind, where the article first appeared. The cognoscenti, familiar 

with other expositions of the incompleteness theorems, will note what is the 

distinguishing feature of the the account in this article. What is known as 

modal logic adds to classical logic one-place connectives O and o intended 

to represent necessity and possibility in some sense. In discussing Gédel’s 

theorems about what is or isn’t a theorem, his proofs about what is or isn’t 

provable, it seems a natural idea to use the symbol O for provability and the 

symbol o (definable as -O-) for consistency (definable as undisprovability). 

The distinctive feature of the account in this article is the use of modal 
symbolism to simplify the exposition. 

The serious, sustained application of the methods of modal logic to the 

study of the proof theory in general and the incompleteness phenomenon in 

particular is known as provability logic. A brief and inevitably incomplete 

description of this field, including the author’s work in it, is contained in 

an afterword at the end of this volume.® 

3 Again to mention not unrelated work, (Booles, 1988a) on alphabetical erder relates 

to that topic somewhat as Article 28 relates to quotation. Article (Boolos: 1980e) is a 

review of (Smullyan, 1978) emphasizing the intrinsic interest of its puzzles even apart 
from their use in popularizing Gadel’s theorems.
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Zooming Down the Slippery 

Slope 

The principle of mathematical induction asserts that a predicate applies 

to every natural number if it applies both to zero and to the successor of 

every natural number to which it applies. We use “’” and “#” to denote, 

respectively, the successor function and zero—our reason for using “7” 

rather than “0” will become apparent later on—and use “sz” as a variable 

ranging over the natural numbers. We call the statement expressed by the 

result of inserting a predicate into the induction schema: 

HAVE (. ee et) ar. 

induction with respect. to that predicate. 

Let. us call a natiral number small if it is below the vieinity of one billion 

(= 1000000000), Because of the presence of the inipreeise term “vicinity” 

in its definition, “is small” is a vague predicate. Despite the vagueness of 
“is smell,” it is nevertheless clear that, [7 and 0 are smail and that 20, 

= 1073741824, and LOQUOOQUU0 are not. As I understand “vicinity,” one 

million is not in the vicinity of one billion; thus I suppose that one million 

is small. 

Are vague predicates of numbers, like “is small,” counterexamples to the 

principle of mathematical induction? Call the statement that for every 

natural number n, if n is small, n+1 is small, the induction premiss. Since 

zero is small but one billion is not, “is small” is a counterexample to the 

principle of mathematical induction if and only if the induction premiss is 

true. But is the premiss true? That is, is the successor of a small number 

always a small number? 

Reprinted with kind permission of the editors from Nowis 25 (1991): 695-706. 
T am grateful to many people for helpful conversation about the content of this paper, 

which dates from 1981, but especially so to my colleagues Ned Block and the late James 

Thomson, and to Paul Benacerraf, Philip Kitcher, Harry Lewis, and Rohit Parikh. 
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I think that on reflection most would agree that one cannot regard the 
induction premiss as true and would give as a ground for thinking it false 
some such reason as: the premiss has a false consequence, e.g. the statement 
that if zero is small, so is one billion. I do not here want to take up the 
interesting questions why one might be tempted to regard the induction 
premiss as true or what true proposition or propositions there might be 
which we are confusing with the induction premiss; instead I want to look 
at the character of the reasons we have for thinking it false. 

An important aspect of the induction premiss is that its falsity is not 
apparent. The argument: 

Zero is small. 

If zero is small, then one billion is small. 

Therefore, one billion is small. 

presents no paradox; it is an uninteresting (valid) argument with an obvi- 

ously false second premiss. 

Unlike the second premiss of this argument, the induction premiss does 

not seem to be obviously false. It is false—it has to be false, since in 

conjunction with a truth it implies a falsehood. The trouble is that it looks 

true; for after all, isn’t a number merely one Jess than a number in the 

vicinity of a billion itself in the vicinity of a billion? A large part of what 

makes the paradoxes of vagueness paradoxes is that although we know that 

the troublesome premisses have false consequences, those premisses look 

true anyway, and the conclusion that they are false is one we feel constrained 

to accept. Can we dispel the sense of constraint? Is there a way to change 

the way the induction premiss strikes us, perhaps by showing its falsity in 

a way that makes it look evidently false? 

Using “Sz” to abbreviate “x is small,” we may symbolize the induction 

preiniss: Vz2(Sx2 — Sz’). And letting [i] be the result of writing down é 
consecutive occurrences of “’”, we may assert that S# is true (since zero 
is small) and 5#[{1000000000] is false (since one billion is not small). 
Why do we think that Vr(Sz — Sx‘) is false? We may reason: if it is true, 

then so are all members of the set {(S#[i] + S#[i + 1]) : i < 1000000000}. 
which contains one billion U(niversal) I(nstantiation) instances of Vz(Sz — 
Sz‘); therefore so is the “spanning” conditional (S# — $#[1000000000)): 
but this is absurd, since its antecedent is true and its consequent is false. 

Let us look at the middle step in this reasoning according to which if 

for all i < 1000000000, (S#{i] 4 S¥#{i + 1]) is true, then so is (S# — 

S#[1000000000]). Why do we find this step convincing? 

One possible answer is that we can prove that if all those instances are 

true, then so is the spanning conditional. But it would appear that in 

order for a proof to have any chance of actually showing this, it must also
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show that for any n (and not just m = 1000000000), if all members of 

{(S#[i] + S#[i+ 1]) : i < n} are true, ie. if for all i <n, i+ 1 is small if 
i is, then (S# — S#[n]) is true, i.e. n is small if 0 is. 
And this stronger statement can be proved, by the following inductive 

proof: if n = 0, it is trivial that if for all i <n, i+ 1 is small ifi is, then n 

is small if 0 is. Moreover, the statement holds for n+ 1 if it holds for n, for 

then if for alli <2+1,i+1 is small if 7 is, for alli <n, i+ 1 is small ifi 

is and thus n is small if 0 is; and furthermore, n + 1 is small if n is (since 

n<n-+1), and therefore n+ 1 is small if 0 is. By induction, for every n, 

if for all i <n, i+ 1 is small ifi is, then n is small if 0 is. 

The trouble with this line of argument against the induction premiss is 

that the appeal to induction made in the argument enjoys no dialectical 

advantage over an “appeal” to the negation of the induction premiss. The 

proof shows the truth of Vz(Vy < z(Sy — Sy’) — (S# — Sz)) by an 
appeal to induction with respect to the predicate (Vy < x(Sy — Sy’) > 

(S# — Szx)), a formula compounded from the vague S. The statement 
we are trying to prove is itself obtained by inserting S into a slightly less 

familiar version of the induction schema: 

Va(Vy <a(...y...2...y'..) 4... ee.) 

It is hard to see why we would be any more justified in rejecting the induc- 
tion premiss by appeal to induction with respect to the compound predicate 

than we would by appeal to the result of inserting the simpler predicate “is 

small” into the slightly less familiar version of the induction schema. And 

then of course it is equally hard to see why we wouldn't be just as justified 
in rejecting the induction premiss more simply by appealing to induction 

with respect. to “is small,” or still more simply by citing the negation of the 

induction premiss. 

Another possible answer is that we know that the spanning conditional 

is a logical consequence of that billion-membered set and that it follows 

that the spanning conditional is true if all its members are true. We would 

thus seemed to be equipped with a perfectly adequate reason for regarding 

the induction premiss as false, viz. that logical consequences of truths are 

truths. 
A sentence is a logical consequence of a set of sentences if it is true in 

all interpretations in which all members of the set are true. And we can 

of course prove in set theory together with the usual familiar definitions 

that the spanning conditional is true in every interpretation in which all 
instances of the induction premiss are true. In order to reach our desired 

conclusion we need only show that there is an interpretation in which the 
domain is the set N of natural numbers, “#” and “’” denote zero and 

successor, and S has as its extension the set of all small numbers.
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It is a theorem of set theory (plus definitions) that for any set M of 

natural numbers there is an interpretation whose domain is N, in which 

“#” and “’” denote zero and successor and S has M as its extension. We 

thus need only see that there i a set containing all and only the smal] 

natural numbers. 

Of course if there is such a set M, then the notions of consequence and 

interpretation need not have been invoked in the first place, for then N — 

WM also exists and is nonempty, since 1000000000 is a member. Like any 

nonempty set of natural numbers, it has a least member, which since zero 

is small, is not zero and is therefore a successor of which the predecessor, 

a small number whose successor is not small, is a counterexample to the 

induction premiss. 

Well, is there such a set? Isn’t {n € N : n is small} such a set? Yes, 
certainly, if it exists. But how do we know that it exists? 

It might be answered that if “<” and “10°” are eliminated in the standard 

way, then Vz(Sz — x < 10°) — ayV2(z € y + Sz) is a logical consequence 
of the axioms of set theory, ZFC. This conditional says that if everything 

small is less than a billion (as is the case), then there is a set containing 

the small numbers. 

The hitch here is that in order to establish the truth of the conditional 

(assuming the truth of the axioms of set theory) without appeal either to 

the contention that there is a set of small numbers or to the claim that 

there is an interpretation in which S has as its extension the set of all small 

numbers, it would appear that we have to derive this conditional from the 

axioms of set theory. But unless there is some way of doing this other than 
by formalizing the argument that first comes to mind—if everything small 

is less than a billion, then “Sz” is coextensive with one of the 2", where 
n = 10°, disjunctions of different formulae z = i, i a set-theoretic term for 

some number less than a billion ...—we are far better off attempting to use 

UI and modus ponens a billion times to show the falsity of the induction 
premiss. 

Our difficulty is that since there is no obviously correct way to define “is 

small” in the language of set theory, there is no obviously correct extension 

of set theory by a definition, in which we can appeal to an Aussonderungsax- 

iom (an axiom of separation) to show the existence of {n € N : nis small}. 
In any case it seems that we regard the induction premiss as false cither 

because we accept set-theoretical axioms governing the vague predicate “is 

smali” or because we simply accept certain instances (or familiar variants) 
obtained by inserting “is small” or its compounds therein. ! 

1An alternative suggestion, made to me by Philip Kitcher, is that we regard the 
induction premiss as false because we take ourselves to have a procedure which when 
applied to any number generates an argument that shows the number to be small if zero
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Is there, however, a reason of a different character for rejecting the pre- 

miss, one which rests neither on set-theoretical principles involving “is 

small” nor on a tacit or explicit appeal to induction with respect to predi- 

cates containing “is small”? It would be nice to have a reason that might 

actually be used to confute a skeptic who claimed, scampishly, to believe 

in the induction premiss as well as in all of mathematics and logic. 

I think there is. I’ve asked a number of people the following question: 

Take a perfectly standard system of natural deduction, say the one given 

in (Mates, 1972).2 Offhand and trying as best as you can to ignore the 
fact that I am asking you this question, how many lines would you say the 

shortest deduction in Mates’ system of S#[1000000] from S# and Vz(Sz — 
Sz’) contains? I’ve usually gotten answers on the order of a million; people 
have occasionally guessed two million, perhaps forgetting that T (truth- 

functional inference) is a rule of the usual standard systems, like Mates’, 

and that a million conditionals, so arranged that the consequent of each but 

the last is the antecedent of the next, together with the antecedent of the 

first, imply the consequent of the last by one single application of T. Thus 

after a million or so instances of UI, one grand application of T delivers the 

conclusion. 

Actually, the correct answer is less than 70, as we'll see in a moment. 

The fact that the answer most often given is far above the correct one 

is explained by a failure to notice a certain “explosiveness” of sentences 

with the form of the induction premiss which, when it is seen in action, 

makes the premiss appear to be the falsehood we are convinced it must 

and successors of stall numbers are small. The argument yielded by the procedure may 

be diagramiumed: 

Va( Sir» Sr’) 

S# 
(S# + S#’) 
S#' 

S#[n]. 

But what entitles us to suppose that we do have a procedure that works for any n? 
Mathematical induction, applied to a precise predicate, can be used to show that there 

is an argument (i.e. a sequence of sentences) of the form described. But why do we think 

that all subconclusions of the argument are true if its premisses are? Here again, we 

make appeal to induction with respect to a predicate compounded from the vague “is 
small,” an appeal that can be justified by an extension of the Aussonderungsschema, 

or, perhaps, we just take it for granted that we do have such an argument-generating 

procedure. 

2In what follows I have tried to adhere to Mates’ syntactical conventions; but I have 

used “Wz,” “dz,” “~,” and “A” instead of “(x),” “(4z),” “—,” and “8,” and also used 
“o," “'" QO” “1.” and “+” as operation symbols. Mates calies UI US, by the way.
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be. Just as learning of a hitherto unknown false consequence may make us 

change our opinion concerning the truth-value of a statement or coming to 

understand the proof of a surprising theorem may render the theorem less 

surprising, seeing that an evident falsehood, known to be a consequence of a 

statement, is a less remote consequence than we had suspected may change 
our minds about the obviousness of the falsity of the statement. The speed 

with which false consequences can be derived from the induction premiss is 
a remarkable feature of it, appreciation of which may enable us to regard 

the premiss as patently false and to dispel any sense we may have that we 

are compelled to consider it false. 

Here’s the short (Mates-style) derivation of S#[1000000] from S# and 
Va(Sa — Sx’): 

{1} (1) Va(Sx — Sa’) P 
{1} (2) (Sa — Sa’) 1 UI 

{1} (3) (Sa’ — Sa") 1 UI 
{1} (4) (Sa — Sa") 2,3T 
{1} (5) Va(Sx — Sz") 4UG 
{1} (6) (Sa” — Sa[4]) 5 UI 
{1} (7) (Sa — SafA}) 4,6T 
{1} (8) Va(Sx — Sz[4]) 7UG 
{1} (9) (Sa[4] + Sa[8]) 8 UI 
{1} (10) (Sa —> Sa[g}) 7,9T 
{1} (11) V2(Sx — Sz{8}) 10 UG 

{1} (57)  (Sa[262144] + Sa[524288}) 56 UI 
{1} (58) (Sa — Sa[524288}) 55, 57 T 
{1} (59)  VWax(S2 — Sx[524288]) 58 UG 
{1} (60)  (S#— S#[524288}) 59 UI 
{1} (61)  (S#[524288) — S#[786432]) 56 UI 
{1} (62)  (S#[786432] — S#[917504]) 53 UI 
{1} (63)  (S#[917504] + S#[983040}) 50 UI 
{1} (64)  (S#[983040] — S#[999424]) 44 UI 
{1} (65) (S#[999424] + S#[999936]) 29 UI 
{1} (66)  (S#[999936] —- $#[1000000]) 20 UI 
{2} (67) S# P 

{1,2} (68) | $#[1000000] 60 67 T 

There is a similar derivation of S#[1073741824] from S# and Vz(Szr — Sz’) 
that takes 95 lines in Mates’ system. In general, ifn < 2*, there is a 
derivation of S#[n] from S# and Vz(Sr — Sz’) in Mates’ system that
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contains < 4% +1 lines. And the compression is not much altered if T is 

so restricted that no application may contain more than two premisses; the 

bound 4k + 1 need not then be raised beyond 5k. 

We are thus not in the predicament of having to make an appeal to 

induction with respect to a vague predicate or to a new set-theoretical 

principle in order to justify rejecting the induction premiss. Paralleling the 

derivation in Mates’ system, we can construct a shortish (but admittedly 

tiresome) argument beginning: “Suppose that for every natural number n, 

if n is small, n +1 is small. Let n be an arbitrary number. If n is small, 

n+ 1 is small, and if n+ 1 is small, n+ 2 is small. Thus if n is small, n+2 
is small But n was arbitrary. So for every natural number n, if n is small, 

n+ 2 is small. Thus if + 2 is small, n+ 4 is small ...” and concluding 

“ _,.So for every natural number n, if n is small, n + 1073741824 is small. 

This is absurd, as 0 is small and 1073741824 is not.” 

A pair of related thoughts may occur to one in connection with this 

argument and its formalization in Mates’ system: the derivation cannot 

actually be written out, for its last line alone contains over a billion char- 

acters; one can of course describe that 95-line derivation with complete 

precision, but in doing so one will employ decimal (or perhaps binary) no- 
tation. Might there be some illicit use of induction somewhere in the offing, 
perhaps in the use of decimal notation to describe the derivation? Also, 

what about the use of arithmetical principles in the informal argument? 

We do make use of facts from arithmetic when we argue: “So if n is small, 

then 1 + 8192 is small; and if n + 8192 is sinall, (7 + 8192) + 8192 is 
small. So (since (7 + 8192) + 8192 = 7 + 16384) if 2 is small, 7 + 16384 is 

small. But 2 was arbitrary...” What about that appeal to the fact that 
(n 4+ 8192) +8192 = 10+ 163847 

In reply, we can and should admit that the informal argument does make 

tacit appeal to a small number (¢. 30) of arithmetical facts, of the sort 

indicated, But we can ignore skeptical doubts (if that’s what they are) 

about the truth of these facts. Our skeptic was supposed to accept all 

of mathematics, and we need not worry about convincing a nut, someone 

prepared to deny plain arithmetical facts, that the induction premiss is 

false. It remains the case that there is a shortish argument, which appeals 

to certain arithmetical truths (which can be established without appeal to 

principles governing vague predicates), that shows that if m+ 1 is small 

whenever 7 is, then n + 2°° is small whenever n is. Some conclusions are 
not as remote as they appear. 

But an interesting question about feasibility has arisen. (The classical 
discussion of feasibility in logic is (Parikh, 1971).) Although we cannot 
actually write down the derivation of $#[2°°] from S# and Vz(Sz2 > Sz’), 
could we not—perhaps by using binary or some other notation—express the
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proposition that 2°° is small by some other sentence of which we could act.u- 
ally produce a derivation from $# and Vz(Sz — Sz’ ) in Mates’ system? In 
fact, binary notation is almost perfectly suited to our purposes when viewed 
from a reverse Polish perspective: take the digits “0” and “1” to be post- 
posed unary function signs, denoting the functions n + 2n andn+ 2n+1 
respectively. Then the string that results when a “#” is attached immedi- 
ately to the left of an ordinary binary numeral is a term that denotes the 
number represented in binary by that numeral. For example, “1101” de- 
notes 13 in binary and “#1101” denotes (((0 x 2) +1) x 2+1) x 2) x2+1, 
which = 13, (The same style of parsing also works for the decimal sys- 
tem, of course. Take “0” to denote the function n ++ 10n+ 0, “1,” 

nt+ 10n+1, ..., and “9,” n++ 10n+9. Then, eg. “#1492” denotes 
((((O x 10) + 1) x 10+ 4) x 10+ 9) x 104+ 2 = 1492, “#30” denotes 
(0 x 1043) x 10+0= 30, and “#40” denotes 0 x 10+ 0 = 0.) 

Our question is then: can we not somehow derive 

S'#1000000000000000000000000000000 

from S# and Vz(Sx — Sz‘) in Mates’ system via a derivation that a 

sufficiently motivated human being could actually write down? 

In order for a “yes” answer even to be conceivable, we will obviously 

need to add to S# and Vx(Sz — Sz‘) some “bridge” principles or axioms 

involving # and ‘ on the one hand and 0 and 1 on the other. To be inter- 

esting, our bridge principles should be as weak as possible: we don’t want 

to take as an axiom the conditional with antecedent (S# A Vx(Sz — Sx')) 
and consequent the sentence above. We don’t want instances of induction. 

We want, in fact, only principles that could (reasonably) be called “mean- 

ing postulates” for our version of binary notation and which have as little 

mathematical content as seems compatible with their possibly implying the 
conclusion: we don’t want to assume the commutativity or associativity of 

addition, for example. 

There is an obvious, natural set of non-cheating principles to take: 

(14) Vex0 = 22+ 
(2) Vaearl=a2zr+' 
(3) Vac#t+=2 
(4) VaVyay’+ = cyt’ 

(We have postposed the addition sign + in order to insure unique read- 

ability. Had we not done so, +#/#0 would have been well-formed; but the 

denotation of this term is ambiguous as between 1 and 2.) We thus define 

the functions denoted by “O” and “1” in our “logicized” version of binary 

from the addition and successor functions in the obvious way; addition is 

then linked with successor and zero via the familiar recursion axioms.
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So our new question is: can we actually produce a derivation of the 

above sentence expressing the smallness of 23° from (1)-(4), (5) S#, and 
(6) V2(Sx — Sx’)? 

Believing that the notational compression effected by binary would prob- 

ably have to be compensated for by an increase in the size of proofs utilizing 

this notation, I was surprised to find out that there is a humanly producible 

derivation, one containing, according to my count, fewer than 3100 charac- 

ters (not counting the characters in the premiss-set designations, the line 

numbers, or the annotations). The derivation can be found by refining the 

one sketched below for n = 2°°. The thirty or so arithmetical principles to 

which we appealed in our informal argument from the induction premiss to 

the spanning conditional are, similarly, all feasibly derivable from “axioms.” 

Indeed, there is a single feasible derivation that contains all the principles 

as subconclusions. 

From our point of view, 2°° is a rather special number, as its binary 

numeral has a form that is extremely simple to describe: one 1 followed by 

thirty Os. Because of this simple form it might be suspected that the proof 

that 29° is small (from our bridge principles, the premiss that zero is small, 

and the induction premiss) is significantly smaller than any that could be 

provided for almost any other number in the vicinity of one billion. Let us 

conclude by looking at the question to what extent this is so. If n is the 

“canonical” term in our version of binary for some arbitrary number 7 in 

the vicinity of a billion is there always a derivation of Sn from (1)-(6) that 

we cod actually produce, if we had to? 
The answer, it turns out, is yes. In fact, ifn is a natural number whose 

binary nomeral is 6) ...b, (cach b, is either 0 or L, with b) = Lifa > 1), 

so that 2h | con < Dif > 1, mis our cunonical term fb, ody for nt, 
and f(j) = Gi + G4) + 28), then there is a derivation of Su from (1) (6) 
containing fewer than {(&) characters. 

Here is a sketch of the derivation. After the premisses (1)- (6) come proofs 

of Ve(S2 — Sr#-+) and VeVy ry# + + = ry + #4+. Letting C(z) be the 
formula 

Jw(w = z A (Sw A (V2(Sa > Srw+) A V2Vy(cyw + + = zy +.wt)))), 

we quickly infer C(#). (We use C(z) instead of its simpler and shorter 
equivalent 

Sz A (W2(Sz — Srz+) AVrVy(ryz + + = ry + zy+)) 

because C'(z) contains only one free occurrence of the variable z instead of 

four, making for shorter instances.) We then establish Vz(C(z) — C(z0)) 

and Vz(C(z) — C(z1)). (This is the crucial step of the proof. We cannot,
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apparently, prove either Vz(Sz 3 S2zz+) or 

V2((Sz AWz(Sa > Sx2z+)) + Szz + AVx(Sz > Sz2zz + +)). 

But since 

V2(VaVy xyz ++ = 2yt+2+ — VaVy cyzz +44 =2yt2z++4+) 

is a logical truth, we can prove Vz(C(z) — C(zz+)). This much of the 
derivation takes somewhat under 1700 characters. Next come & lines, grow- 

ing to 86 + 2k characters long, all obtained by UI from Vz(C(z) — C(z0)) 

and Vz(C(z) + C(z1)), of which the i#8(1 <i < &) is 

(C(#b, eae bi-1) —- C(#by aes bi)). 

C(#) is the antecedent of the first of these conditionals; C(n), the conse- 

quent of the k**. Thus these & conditionals, together with C(#), truth- 

functionally imply C(n). We conclude the derivation by inferring C(n) by 

T and then quickly deriving Sn from C(n). 
2° is greater than one trillion, and f(40) = 7072; thus it would be 

perfectly feasible if rather boring for someone to write down a derivation 

from (1)—(6) of Sn, where n is any number less than a trillion. However, the 
suspicion that in general Sn has a significantly smaller derivation if n is a 

power of 2 may well be correct: as we have seen, if n is an arbitrary number 

< 2k, then there is a derivation containing no more than c, k? characters. for 

some constant c,. If k? cannot be reduced to k-log(k), then the suspicion is 

correct, for when n = 2", by regarding Vz(C(z) — C(z0)) in the same light 

as Vir(S — Sz’) and employing the same compression technique used in 

the 68-line derivation of 5'#[1000000], we can obtain a derivation of Sn from 
(1) (6) containing no more than c2k - log(k) characters, for some constant 

e2. Further, the analogy between Vr(Sz — Sz’) and Vz(C(z) — C(z0)) 
enables us to see that for some constant cg, if n is a power 2* of 2, where k is 

itself a power of 2, then there is a derivation of Sn from (1)-(6) containing 

no more than c3k characters. 

It may be worth while to point out that on any reasonable understand- 

ing of carrying out, our “exponentially compressed” derivations cannot be 

carried out in the usual formulations of the tree (tableau) method, as for- 

mulated in e.g. (Jeffrey, 1981), (Snmillyan, 1968), or (Hodges, 1977). The 
method is of course complete, as are the standard methods of natural de- 

duction, but to call a (sound) method complete is merely to say that it can 

generate some demonstration of each valid statement; it is not to say that 

it can generate (a replica of) every demonstration that can be generated 
by any other sound method. 

In order for our compressed derivations to be replicated in a tree-style 

method, we must adjoin to a standard formulation of the method some
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such rule as the version of modus ponens that (Jeffrey, 1981) calls XM, for 

“excluded middle”: split any open branch in two and add any sentence to 

one of the two new branches and its negation to the other. Pictorially: 

9 9 

In the absence of XM or something like it, a derivation of S#{1000000] 
from S# and Vz(Sz — Sz’), i.e. a closed tree with S#, Va(Stz — Sz’), 
and =S#([1000000] at the top, would have to contain c. two million lines.? 
But with the aid of XM, we may immediately let y = Vz(Szx — Sa’), use 
Va(Sz — Sz’) to close the subtree beginning with -Vz(Sz — Sz”), then 
reapply XM with y = Vz(Sx — Sz’), use Vz(Sa — Sx”) to close the 
subtree beginning with 7Vr(Sic > Sa’), etc. We thus see once again that 
adjunction of uiodus ponens or XM permits the development. and subse- 

quent employment of information capable of sharply lessening the inferen- 

tial distance between certain prenisses and conclusions that follow from 

them. 

3Cf. Article 23 in this volume.
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Don’t Eliminate Cut 

The method of trees, as presented in e.g. Jeffrey’s Formal Logic: Its Scope 

and Limits! and Smullyan’s First-order Logic,? and standard systems of 

natural deduction, like the one given in Mates’s Elementary Logic,> are 

sound and complete methods of logic in the usual sense: they mark an 

inference as valid if and only if it is valid. There is, however, a significant 

difference between them in the manner in which they can demonstrate 

validity, a difference that sometimes results in a striking disparity in the 

efficiency or speed with which an inference can be shown to be valid. Al- 
though a tree that demonstrates the validity of an inference, i-e., a closed 

tree with the premisses and denial of the conclusion at its top, can be 

transformed into a natural deduction of the conclusion from the premisses 

that it requires approximately the same amount of time to write down, the 

couverse, as we shall see, is emphatically not the case. 

It is immediate from the presentation of a standard system of natural 

deduction such as Mates’s that if (4 — 8) and A are derivable in the 
systein, then so is 8. On the other hand, it cannot be seen without a 

considerable amount of work that if there are closed trees for both (A — B) 

and A, then there is also one for B. Thus modus ponens, or cut, is obviously 
a valid derived rule of standard natural deduction systems, but not obviously 

a valid derived rule of the method of trees. [t is well known, in a general 

way, that the elimination of cuts from derivations in a system in which cuts 

are always eliminable can greatly increase the length of derivations. But in 

view of the efficacy of the method of trees when applied to the usual sorts 

of examples and exercises found in logic texts, one might think that the 

danger of encountering a valid inference whose validity cannot feasibly be 

From The Journal of Philosophical Logic 13 (1984): 373-378. Reprinted with kind 

permission from Kluwer Academic Publishers. The contents of this paper were first 

presented at the 1983 AMS Special Session on Proof Theory. 

1 (Jeffrey, 1981). 
2(Smullyan, 1968). 
3(Mates, 1972). 
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demonstrated by the method of trees is rather remote. 

Not so. There is a simple inference that can be shown valid by means 

of a deduction in Mates’s system whose every symbol can be written down 

in one or two pages of normally sized type or handwriting, but for which 

the smallest closed tree contains more symbols than there are nanoseconds 

between Big Bangs. 

In fact, let H, (“H” for “heap”) be the inference whose premisses are 

VaVyVz t+otyz=4+4 xyz 

Va dz = +22 

Li 
Va(Lz — £421) 

and whose conclusion is the sentence consisting of L, followed by 2” con- 

secutive occurrences of d, followed by 1. Thus, for example, the conclu- 

sion of H3 is: Ldddddddd1. We shall show that the shortest tree-method 

proof of the validity of H,, contains > 2?” characters and that the short- 

est natural deduction of the conclusion of H,, from the premisses contains 

< 16(2" + 8n + 21) characters. Thus the smallest closed tree for H7 con- 
tains > 2128 > 108 characters, but the smallest natural deduction for H7 
contains < 3280 characters, or, at 5 characters per word and 400 words per 

page, a bit more than a page and a half. 

The extent to which this result provides a reason for favoring natural 

deduction over trecs is an issue that we sliall discuss after we have proved 

our claim about H,. We first show that any closed tree for H, contains 

more than 2?” syinbols. 

Let. 7 be a tree with the premisses and denial of the conclusion of 77, 

at, its top. Define an interpretation J as follaws: The domain of 7 is the 
set of positive integers. J assigns one to f, the funetion a r+ Qu to d, 

the addition function to + (and an arbitrary n-ary function to any other 

n-place function sign). Thus the first two premisses of H, are true under 

I, 

Let den(s) be the denotation under J of the (closed) term s. We call a 
positive integer i instanced if for some term s, den(s) = 7 and the sentence 

(Ls — E+ s1) occurs in T. 
Finally, J specifies that L applies to a positive integer j iff all positive 

integers less than j are instanced. 

Thus the premiss £1 is (trivially) true under J. 
We now want to sce that every sentence (Lt — L + #1) that occurs in 

T is also true under I. Assume that (Lt -> L + #1) occurs in T. Let 
j = den(#). Suppose Lt true under J. Then all i <j are instanced. But 
since (Li —> L + t1) occurs in T, 7 is also instanced. Thus all i < 7 +1 are 
instanced. And since den(+t1) = j + 1, L + #1 is also true under J. Thus
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if (Li + E+ #1) occurs in T, it is true under J. 
Let u be the term in the denial of the conclusion and let k = den(u) = 22”. 

We want to show that if some j < k is not instanced, then T is open. It will 

then follow that if T is closed, for every 7 < k there is a term # such that 

den(t) = j and (Lt — L+#1) occurs in T. As it is clear that if den(s) = i, 
den(t) = j andi # j, then s ft and (Ls — L+ 1) # (Li + L +11), 
it will also follow that if T is closed, at least k — 1 sentences of the form 

(Zt — L +11) occur in T, and therefore T contains more than k symbols. 

Accordingly, suppose that some j < k is not instanced, but that T is 

closed. We shall obtain a contradiction. 

Since some j < k is not instanced, the denial —Lu of the conclusion is 

true under J, as are VaVyVz 4+ 2+ yz =++4 zyz, Vrdr = +22, and £1. 

And since T is closed, each of its branches contains some sentence and 

its denial. Now the only sentences that can occur in any branch of T 

are the premisses, the denial of the conclusion, and sentences of the forms 

VyV2 8"(y, z) = t"(y, 2), Vzs"(z) = ¢/(z), s = t, (Ls + Lt), Lt, and Lt, for 
the tree rules (i.e., the standard tree rules, which do not include the rule 

XM discussed below) do not lead out of this collection of sentences. Thus 

as T is closed, each of its branches must contain some sentence Li and its 

denial “Lt. 

This is impossible, however, for at every stage of the construction of T, 

there is at least one branch in which all sentences other than Va{La — 

£+21) are true under J. (Cf. the usual soundness proof for the method of 
trees.) This is certainly the case at the beginning of the construction of T 
(when there is only one branch, consisting of the premisses and denial of the 

conclusion), and, inductively, remains the case throughout the construction 

of T, since the only tree rules relevant to T are UI, equals for equals, and 
the rule for the undenied conditional, and these all preserve truth under 

I. (The statement that the rule for the undenied conditional, which is 

a branching rule, preserves truth under J means, of course, that if the 

premiss (A — B) of the rule is true under J, then either the left conclusion 

=A or the right conclusion B is true under I). The only problematical 

case in the induction step of the argument is that in which the sentence 

Va(Lz — E+ 21) is a premiss of a rule of inference. But if an identity s = t 

occurs in a branch, then the term s begins with + or d, as does the term 
#, aud thus neither s nor ¢ is the term 1. Therefore the only rule relevant 

to Va(Lz — E+ 21) is UI, which when applied to this sentence yields a 
conclusion (Lt + £+7%1). And as we saw earlier, any sentence of this form 
that occurs in T is automatically true under J. 

Therefore if T is closed, T contains more than 22” symbols. 

The other half of our task is to bound the number of symbols in the short- 

est deduction in Mates’s system of the conclusion of H, from its premisses.
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Let “d[n]” denote the sequence consisting of m occurrences of d. Then the 
conclusion of H,, may be written: Ld[2"]1. And let “M(y)” abbreviate the 
formula: (Ly AVa(L2 — L + axy)). Thus M(1) is the conjunction of the 
last two premisses. 

One deduction for H,, begins with a subdeduction from the premisses of 

the two sentences 

(M(a) + M(da)) 
Vy(M(y) + M(dy)) 

The cost so far is slightly more than 300 symbols. Then follow n trios of 

lines 

(M(d[2))}a) + M(d[2*Ja)) 
(M(a) > M(d[2‘Ja)) 
Vy(M(y) + M(d[2‘ly)) (1<i<n), 

costing in all 14-2" + 114n — 14 symbols. (M(1) — M(d[2"]1)) is then 
inferred by US (=UI), and the conclusion Ld[2"|1 then follows by T. The 
total number of symbols in this deduction, according to my count, is 16- 

2” + 114n + 329. If n = 7, this number is 3175. 

There are some annotative comments on the deduction that it may be 

helpful to make. The associativity of addition is needed to deliver Va( Lr — 
£+<ada) from Vx(La > £+ 2a); without it we could only obtain Va(La > 
L++.raa) (and not Vr(Le > E+ 27 + ac)). Apart. from this use of as- 
sociativity, the subdeduction that ends with the line (Af(a) > Af(da)) is 
a “self-proving” conditionalization on M(a). The first. line of the ith trio 
follows by US from the line Vy(AL(y) -> AL(d[2% Jy)) immediately above 

it. “The middle line follows by 7 from the first. line of the trio and the line 

(M(a) -+ M(d[2@~Ja)), which is two lines above the first line. Finally, 
the last line of the trio follows from UG from the middle line. 

It should be emphasized that the contrast we have drawn is between 

standard formulations of the method of trees and those of natural deduction. 

We have been supposing that the method of trees is so formulated that 

the version of cut appropriate to trees, which Jeffrey calls XM (excluded 

middle),4 and which allows one to split any open branch of a tree in two 

and append any sentence at ail to the bottom of one of the new branches 

and the negation of the sentence to the bottom of the other, is not one of 

the (underived) rules of the method. Were XM present, one could write 

down a closed tree for H,, containing approximately the same number of 

symbols as the natural deduction for H,, that we have just given. It is 

somewhat ironic that it is the failure of the usual formulations of the tree 

4(Jeffrey, 1981), pp. 34-35.
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method to permit a certain sort of branching that can be blamed for their 

inefficiency in treating inferences like H,. 

The most significant feature possessed by natural deduction but not the 

method of trees, a feature that can easily seem like a virtue, is not so much 

that natural deduction replicates ordinary reasoning rather more faithfully 

than the tree method, in which derivations are one and all given the un- 

natural shape of proofs by contradiction, quantifier stripping and cases, 

but that it permits the development and utilization within derivations of 

subsidiary conclusions, or, as they would be called in a more informal set- 

ting, lemmas. In criticizing a certain pair of systems, Feferman once wrote, 

“ ...nothing like sustained ordinary reasoning can be carried on in either 

logic.”5 Sustained ordinary reasoning cannot be carried on in a tree sys- 

tem unsupplemented by XM, where we are unable to appeal to previously 

established conclusions. This difficulty with the method of trees, if it is a 

difficulty, is one for which an obvious remedy exists: add XM. Then from 

closed trees 

aA and -=(A->B) 

A 

aN ‘\ 

for A and (A — B) one can use XM to obtain, immediately, a closed tree 

for B: 

aB 

A aA 

Of course, whether one should favor, adopt, or teach systems in which 

sustained ordinary reasoning, or rather, a highly idealized version of it, 

can or cannot be carried out are practical or normative questions on which 

other features of the systems may bear. The result about feasibility given 

above hardly decides these issues. 

5(Feferman, 1984).
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The Justification of 

Mathematical Induction 

There is an old (c. 1967) argument due to Dana Scott that is not as well 
known to philosophers and logicians as it ought to be. I shall come back to 

it later. 

The principle of mathematical induction asserts that every number be- 

longs to any class that contains zero and also contains the successor of any 

member. 

Can the principle of mathematical induction be proved? That is to say, 

is there a way to show that every number belongs to any class that, etc.? 

Like any other statement, the principle of mathematical induction can be 

derived from itself, in zero lines. This quick and casy derivation is uot a 

proof of mathematical tuduetion: it does not show that induction is trac. 

The least number principle asserts that. ifa.class contains a natural nam- 

ber whenever it, contains all lesser natural muanbers, then the class contains 
every natural number. Phe principle is so called because of its contraposi- 

tive, which asserts that if there is at least one number ina class, then there 

is a number in the class such that no lesser number is in the class. 

With the aid of two other principles we can derive the principle of mathe- 

matical induction from the least number principle. These two principles are 

that every natural number is either zero or the successor of some natural 

number and that every natural number is less than its successor. 

Conversely, with the aid of some other principles, we can derive the least 

number principle from mathematical induction. This time, the other prin- 

ciples are that no number is less than zero and that a number that is less 

From PSA, 2 (1984): 469-475. Copyright ©1985 Philosophy of Science Association. 

Reprinted by kind permission of The University of Chicago Press. 

This paper replaces my remarks on Professor Maddy’s paper; it was written while I 

was on a Fellowship fer Independent Study and Research from the National Endowment 

for the Humanities. I am grateful to Scott Weinstein for helpful comments. 

R70
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than n+ 1 is either equal to or less than n. 
The interderivability of mathematical induction and the least number 

principle from the four principles just mentioned is exceedingly well known, 
and the derivation of either from the other hardly counts as a proof of the 
derived form. What is of interest to us is the question whether induction, 
say in the form of the least number principle, might be proved from other 
principles that are noninductive in character and, if possible, appreciably 
more evident than either mathematical induction or the least number prin- 
ciple. Of course, we cannot hope to prove induction from no assumptions 
whatsoever. But it is at least conceivable that induction might be obtain- 
able in an interesting manner from some evident truths that do not look 
too much like induction principles. 

The prospect doesn’t look too bright. One well-explored avenue of in- 

vestigation is set-theoretical. One can prove induction in set theory from 
suitable definitions, including one of the natural numbers. This can be done 
in two ways, neither yielding a derivation of induction from evident, non- 
inductive truths. On both ways, the natural numbers are defined as the 
objects satisfying some condition or other, and induction is then proved to 

hold of those objects. But on the more common of the two ways, the con- 

dition satisfied by the objects for which induction is proved has a strongly 
inductive character (e.g., a natural number might be defined to be a mem- 
ber of all classes containing zero and closed under successor or defined to be 

a set, satisfying among other conditions, a “groundedness” condition assert- 
ing that any nonempty subset of the set contains a minimal member, that 
is, @ member no member of which is also a member.) When this sort of def- 

inition is given, the theory in which induction is proved can be quite weak 
and the principles from which induction is proved are not themselves induc- 
tive in character. But this procedure hardly counts as a proof of induction 
for the objects one was originally interested in, the natural numbers, for if 
at the outset one doubted whether the natura] numbers satisfied induction 
one will still doubt whether the natural numbers will be (isomorphic to) the 
objects satisfying the definition, precisely because of the inductive character 
of the definition. Of course, one can often establish the isomorphism by an 

appeal to—guess what—induction. Less commonly, the condition defining 
the natural numbers will not be inductive in character, but the proof of 

induction for the objects satisfying the definition will appeal to a principle. 
like the axiom of regularity, possessing the inductive character now inissing 
from the definition of natural number. Thus although one may no longer 

have to worry how one knows the natural numbers satisfy the definition, 
one wil] have to worry how one knows that the inductive principle to which 
appeal is made in the proof of induction is true. 

And not muchelse appears to be left. We might try to define the natural
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numbers as certain sorts of reals and then try to derive induction via the 

least upper bound principle—-but this is obviously uninteresting—or, we 

might follow the intuitionists in defining the natural numbers as certain 

sorts of proofs;! but the well-foundedness of proofs, from which on the 

intuitionist account induction is supposed to follow, seems no more apparent 

than does the fact that the natural numbers satisfy induction. 

Maybe all isn’t lost. In any event, the suggestion I want to make is that 

induction can be seen to hold because the structure consisting of the natural 

numbers under fess-than is embedded in a certain larger structure contain- 

ing other objects besides the numbers and endowed with other relations in 

addition to less-than. The least number principle can be derived from two 

principles which describe the numbers, the other objects, less-than, and the 

other relations; the principles do not, either separately or together, have 

the inductive character possessed by the Frege-Russell definition of the an- 

cestral, the notion of a grounded class, the notion of a well-ordering, the 

axiom of regularity, the least upper bound principle of analysis, or the no- 

tion of a (well-founded) proof; and the principles seem to be obvious truths 

about the numbers and other objects of which they treat. 

The other objects I have in mind are the sets Ill call the natural sets;? the 

other relations are membership (restricted to the natural sets) and a relation 
between natural sets and numbers I’ll call being formed at stage number? 

Hore is a (partial) description of the larger structure: Just as the natural 

numbers are the objects generated from zero by repeated application of 
the successor operation, so the natural sets are the sets that are formed at 

stages indexed by natural numbers by repeated application of the following 

operation: form at cach such stage all possible sets of natural sets formed 

at carlier stages, i.e., at stages indexed by lesser natural numbers. Thus 

at stage nuinber 0, only the null set @ is fonned; at stage number 1, only 

@ and {@}; at stage number 2, only @, {0}, {{O}}, and {@, {@}}; ete. Any 
natural set is formed repeatedly; indeed, it is fornied at every stage that is 

later than any one at which it is formed. For each natural set z there is 

a number m, such that x is formed at stage number m, each natural set 

formed at stage number m is a set whose members are all formed at earlier 
stages, and, to repeat, at stage number m, all possible sets of natural sets 

formed at earlier stages are formed. 

With the aid of a two-sorted language, L, containing set variables z, y, ..-, 

1Scott Weinstein called this possibility and the obvious objection to it to my attention. 
?The natural sets are often referred to as the hereditarily finite sets; but because I 

want to avoid assumptions concerning the term “finite” and also to stress the analogy 

with the natural numbers, I have chosen to call them the natural sets. 
3 Being formed at stage number is more commonly known as being of rank less than 

or equal to.
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number variables m,n,..., and three binary predicate letters €, <, and 
F, abbreviating “is in,” “is less than,” and “is formed at stage number,” 
respectively, and perhaps some other predicates or functions of natural 
numbers and sets, we can conveniently set out the principles concerning 
natural sets and numbers from which we shall derive the least number 
principle, as well as other principles of set theoretical interest. 

The first principle Pll call Spec: 

Spec Vmdz[zFm A Vy(y € x > [X(y) Adn(n< mA yFn)})] 

Spec is an axiom-schema: X(y) is a formula of Z not containing free 
x. Spec expresses the idea that for every m, all possible sets of previously 

formed sets are formed as sets at stage number m. The notion of a “pos- 

sible set” is expressed through the occurrence of a formula X(y), possibly 

containing additional free set and number variables, and the universality 

of “all” is captured (as well as is possible in a first-order language like L) 

by allowing X(y) to be any formula whatsoever of L. The other principle 

we'll need is that of the transitivity of less-than: 

Tra VnaVmVk(n <mAm<k—on<k). 

The discussion may have primed the reader to see the schema Spec as 

“covertly” inductive in character. But a reader who had been (mis-) in- 

formed that the least number principle would be derived not merely from 

Spec and Tra, but from some other principles as well, would not, I dare 

say, have been inclined to regard Spec and Tra as at all inductive in char- 

acter, but would rather have expected some “inductivity” to show up in 

the additional principles. In fact, it seems to me fair to say that Spec and 

Tra taken together are significantly less inductive in character than math- 

ematical induction, the least number principle, or any of the other axioms, 

principles, or definitions mentioned earlier. 

How evident is Spec? Recall that for any number m, every possible set of 

natural sets, each of which is formed at some stage number n, with n < m, 

is a natural set formed at stage m. For any formula X(y), the natural sets 

y that are formed at stages earlier than stage number m and that satisfy 
X(y) form a possible set of natural sets, and thus a set x of them all is 

formed at stage number m. Spec is therefore evident from what we have 

said about the natural sets, and it seems to me, rather more evident than 

the least number principle would be had one encountered it or the principle 

of mathematical induction for the first time already familiar with Spec (a 

rather remote possibility). 
The consistency of Spec and Tra is obvious: They are both true in the 

trivial structure M in which the only number is 0, the only set is 0, 0 ¢ 0,
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0 4 GO and OF 0. The axiom of extensionality and the sentences VmVn(m < 

nVm=nVn < m), VeimaFm and VzVmVy(24FmAy € z > In(n < 
mAyFn)) of L, which can also be “read off” the description we have given 
of the natural numbers and the natural sets, are also true in M. Another 

sentence of L which can also be so read off, but which is not true in M, is 

Vndmn < m. 

The time has come to derive induction. We proceed as in Shoenfield’s 

article in the Handbook of Mathematical Logic (Shoenfield, 1967). Call y a 

minimal member of xz if y € z and Vz-(z € Az € y), and say that y is 
grounded if every set containing y has a minimal member. Then if every 

member of y is grounded, then y itself is grounded. (Logic: Suppose y € zx. 

If for some z, z € xz and z € y, then z is grounded, and x has a minimal 

member. Otherwise, Vz-(z € z Az € y); but then y is a minimal member 

of z.) 

Definition aRm iff aFm AVy(y € a © yis grounded A dn(n < mAyFn)). 

Miscellaneous facts: 

1. By Spec, for every m, there is an a such that aRm. 

2. IfaRm, then since all members of a are grounded, a is grounded, 

3. Thus ifn < m, aRm, and bRn, then b is grounded by 2, bF'n, and 

bea. 

We'll derive a theorem-schema. from Spec and Tra that expresses the least 

number principle: sk P(A) > Sm(PQan) AVn(n < m ~> “P(n))). 
Suppose P(k). If for all immibers 7 such that j < k, ~P(j), then done. 

So suppose j < k and P(j). By Spec, for some z, Va(a € x ++ [Am(m < 
kAaRm A P(m)) Adn(n < kAGFn)\). Since aF'm if aRm, Vala € z+ 
Im(m < k AaRm A P(m))). Since j < k and P(j), x is nonempty by (1). 
By (2), all members of x are grounded. Thus z has a minimal member a, 
and for some m, m < k, aRm, and P(m). Now suppose n < m. By (1), 
for some b, bRn. By (3), b € a. By Tra, n < k. If P(n), then be 2, a 
contradiction as a and z are disjoint; thus ~P(n). 

We may remark that not only is the least number principle derivable from 
Spec and Tra, but the axioms of regularity, together with all the axioms 

of Zermelo Set Theory except infinity and choice are derivable from Spec, 
Tra, and the five sentences of L mentioned earlier, viz., the axiom of exten- 

sionality, VmVn(m <nVm =nVn < m), VzimaFm, VaVmVy(2FmAy € 
z— dn(n < mAyFn)), and Vnimn < m. To derive the axiom of infinity,



24, The Justification of Mathematical Induction 375 

it suffices to adjoin to these a suitable principle asserting the existence of 

a limit number such as dmn(ann < mAVni[n < m—> dk(n < kA k(m))). 
Historical note: In 1967 Dana Scott presented a paper‘ to the American 

Mathematical Society Summer Institute on Axiomatic Set Theory, in which 

he showed how the axiom-schema. of regularity could be derived in a certain 

elementary theory concerning sets and “partial universes,” as he called 

them. A partial universe, intuitively speaking, is the set of all sets of 

rank less than some one ordinal. Partial universes are special sorts of sets. 

and Scott used a two-sorted language with variables V,V’,... for partial 

universes and variables z, y,... for sets. (We omit mention of individuals.) 
The axioms of the theory are those of extensionality and Aussonderung, an 

axiom of “accumulation”: VWW'Va(x € V' oo WeEV'(zg@ EVVaeCV)), 
which states that the members of a partial universe are the members or 

subsets of earlier universes, and an axiom of “restriction”: VzdV x C V, 

stating that every set is a subset of some partial universe. Scott showed 

that it follows from these axioms alone that all instances of the regularity 

schema hold, as do all axioms of Zermelo set theory except infinity and 

choice, and that € well-orders the partial universes. The most striking 

mathematical argument in the paper was the utilization of the paradox of 

the class of grounded classes to demonstrate that € is well-founded, and it 
is this argument that we have adapted to deduce the least number principle 

from Spec and Tra. 

I once wrote an article® that contained an axiomatic theory of sets and 

stages, in which no assumption was made to the effect that stages are sets 

of certain sorts. Axioms of induction for sets and stages were explicitly 

taken as axioms of this theory. It was on reflecting on the presentation 

of Scott’s argument given in Shoenfield’s Handbook article® that I realized 
that the least number principle, whose formalized statement is identical to 
that of the well-foundeduess principle for stages, could be formally derived 

in the weak-looking theory of sets and stages whose axioms are Spec and 

Tra, 

“Subsequently published as (Scott, 1974). 
5Reprinted as Article 1 in this volume. ; ; 

6(Shoenfield, 1967). Shoenfield does not supply an axiomatic theory concerning the 

stages at which sets are formed, but infers the axioms of set theory from an informal 

account of sets and stages.
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A Curious Inference 

The inference is: 

I 

(1) Vafnl=s1 
(2) Va flszx = ssflx 

(3) VaVa fsnsz = fnf snz 

(4) Dl 
(5) Va(Dz — Dsz) 

(6) Dfssssissss1 

f is an inference in the first-order predicate calculus with identity and 

fimetion sigus. (¢ is a l-place, f a 2-place function sign.) J is small: it 

contains 60 symbols or so, fairly evenly distributed among its five premisses 

and conclusion, And [is logically valid; the Frege Russell definition of 
natural mmuber enables us to see that there is a derivation of (6) from (1) 

(5) in any standard axiomatic formulation of second-order logic, e.g. the 
oue given in Chapter 5 of Church’s Introduction to Mathematical Logic.' 

A sketch of a second-order derivation of (6) from (1)-(5) is given in the 
appendix, and it should be evident from the sketch that there is a derivation 

of (6) from (1)-(5) in any standard axiomatic system of second-order logic 

whose every symbol can easily be written down. 

But it is well beyond the bounds of physical possibility that any actual 

or conceivable creature or device should ever write down all the symbols of 

a complete derivation in a standard system of first-order logic of (6) from 
(1)-(5): there are far too many symbols in any such derivation for this to 

From The Journal of Philosophical Logic 16 (1987): 1-12. Reprinted with kind permission 

from Kluwer Academic Publishers. 

1 am grateful to Rohit Parikh, Scott Weinstein, and a referee for the JPL for helpful 

comments, 

1(Church, 1956). 
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be possible. Of course in every standard system of first-order logic there 

is (in the sense in which “there is” is used in and out of mathematics) 

a derivation of (6) from (1)~(5), for every standard system of first-order 
logic is complete. But as we shall see, no such derivation could possibly be 

written down in full detail, in this universe. 

For definiteness, we shall concentrate our attention on the system M of 

Mates’ book Elementary Logic.? It is because Mates’ book is a standard 
text and its system M is a perfectly standard system of natural deduction 

that we have chosen to focus on it. (The rules of Mf are: premiss intro- 

duction, conditionalization, truth-functional consequence, universal instan- 

tiation, universal generalization, the usual identity rules, and existential 

quantification (-Va-7y/da).) A result similar to the one we shall obtain 
for M can be gotten for any other standard formulation of first-order logic, 

e.g. the axiomatic system of first-order logic contained in Monk’s or Shoen- 

field’s Mathematical Logic,® or any of the systems found in Quine’s Methods 

of Lagic4 
What we shall show is that the number of symbols in any derivation of 

(6) from (1)—(5) in M is at least the value of an exponential stack 

22 (Qe) 

Qe ie. 9 2° 

containing 64K, or 65,536, “2”s in all. Do not confuse this number, which 

we shall call (4,4), with the number 2°**. The latter number is minuscule 
in comparison, not even containing as many as 20,000 (decimal) digits. (It is 
the value of a stack containing only 5 “2”s.) The so-called Skewes’ number, 
which is of interest in prime number theory and has been described as “the 

largest: number found iu science,” is 

194 

19'° 

Skewes’ number is readily seen to be less than the value of a stack of 7 “2”s. 
It is not hard to show that if “##” denotes Skewes’ number, then for some 

N < 10, (4,4) > the value of a stack of 64K — N “##"s. 

In the intended interpretation of J, the variables range over the positive 

integers. 1 denotes one and s denotes the successor function. There is no 

particular interpretation intended for D. f denotes an Ackermann-style 

function n,z ++ f(n,x) defined on the positive integers: f(1.r) = 2r: 

f(n,1) = 2% and f(n+1,24+ 1) = f(n,f(n+1,2)). Here are some of the 
early values of f: 

2(Mates, 1972). 

3(Monk, 1976), (Shoenfield, 1967). 
4(Quine, 1972).
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n 1 2 3 4 5 

Mn 

1 2 2 2 2 2 
2 4 4 4= 22 4 4 

5 , 2 64K 

3 6 8 16 = 2? 64K = 22 2? «9%5 
in all 

2 2 64K 

4 8 16 64K = 2? 22 ans 
in all 

5 10 320 f(5, 5) 
2? 

6 12 64 92? 
the value 

22 27 of a stack 

of x “2”s       
  

So f(n,2) = 4 (all n); f(2,2) = 27; f(3,r) = the value of an exponential 
stack containing x 2s; f(4,3) = f(3,4) = 64K; f(4,4) = the value of a 
stack containing 64K 2s. 

Thus by pursuing the obvious strategy of appending a definition of a 

well-known sort of fast-growing function to a formalization of the premisses 

of the paradox of heap and employing the function to construct a short 

conclusion to the paradox mentioning a very large number, we obtain an 
inference which we can sec to be valid by means of a simple argunient that 

cannot. be replicated in any standard system of first-order logic. | assume 

that (it is evident that) no formal derivation containing at least. {(4,4) 

symbols can count as replicating this argument, or indeed any argument. 

that we can comprehend. Indeed, a shorter and even more extravagant 

conelusion than (6) follows from (1) (5): Df fslsslssl : f(8,3) > f(5,5)- 
One night wonder whether there is any valid inference interestingly simpler 

than I whose shortest derivation in some standard system of first-order logic 

is significantly greater.5 In brief, J is a simple and natural example of a 

valid first-order inference the conclusion of which cannot feasibly be derived 
from the premisses in any standard system of first-order logic; but there is 
a short and simple argument that demonstrates the validity of I, which can 

be formalized in any standard system of second-order logic. 

Of course, it has been known since Gédel’s “On the length of proofs”® 

that the use of higher types can drastically reduce the minimum length 
of derivations in formal systems. In that paper, it will be recalled, Gédel 

5Of course, (1)-(5)/Df fslssiss1 is not simpler in an interesting way. 
6 (Godel, 1936).
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states (without proof) that for any recursive function y and any i, there are 

infinitely many arithmetical theorems F of both i* and (+1) order logic’ 

such that if & and / are the lengths of the shortest proofs of F in 7 and 

(i+1)* order logic, respectively, then & > (1). (The length of a proof is the 

number of formulae of which it consists.) And it was shown by Statman® 
that there is no function y provably recursive in second-order arithmetic 

such that whenever a first-order formula F is derivable in a certain stan- 

dard system of second-order logic with length < i, then F is derivable in 

a certain standard system of first-order logic with length < ¢(l). Note- 

worthy investigations of speedup have recently been carried out by Harvey 

Friedman. One of Friedman’s theorems is that a certain “finitization” of 

a combinatorial theorem due to J. Kruskal concerning embeddings of trees 

can be proved in ZFC in a few pages, but not in the system of second-order 

arithmetic called ATR (for Arithmetical Transfinite Recursion) in under 
f (3, 1000) pages.® 

But our aim is neither to prove a general speedup theorem nor to demon- 

strate the “practical incompleteness” of first-order logic; rather we are in- 

terested in showing that this incompleteness can be demonstrated by means 

of an inference like J that is rermarkably elementary.'° Indeed. J arises in 
quite a natural way: the first three premisses of J can be taken as defining 

a kind of function very well known to logicians and computer scientists; 

the last two premisses and conclusion can be used to formalize an ancient 

and completely familiar logical paradox involving large numbers. Without 

oxaggcration, it may be said that J or a close relative might well be the 

first tuference one would think of if one were trying to show first-order logic 

practically incomplete. 

Since Skolem’s discovery of non-standard models of arithmetic, it has 

been well known that there are simple and fundamental logical concepts, 

e.g., the ancestral, that cannot be expressed in the notation of first-order 

logic. It is also well known that there are notions of a logical character 

expressible in natural language that cannot be expressed in first-order no- 

tation. And it is increasingly well understood that it is neither necessary 

nor always possible to interpret second-order formalisms as applied first- 

order set theories in disguise. Thus although the existence of a simple 

7Comparison with Gédel’s earlier papers on incompleteness makes it reasonable to 

suppose that the systems 5; considered in “On the length of proofs” contain the Peano 

axioms for successor; “i'* order arithmetic” might thus be a more apt term for S, than 

“i4 order logic.” 
8(Statman, 1978). 
9(Nerode and Harington, 1984). 
10An analogy with miniature Universal Turing Machines was suggested to me by Rohit 

Parikh: miniature UTMs are of interest not in showing the halting problem unsolvable 

but in showing that unsolvability arises in such simple structures.
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first-order inference whose validity can be feasibly demonstrated in second- 

but not first-order logic cannot by itself be regarded as an overwhelming 

consideration for the view that first-order logic ought never to have been 

accorded canonical status as Logic, it is certainly one further consideration 

of some strength for this view. 

On the other hand, the fact that we so readily recognize the validity of 

I would seem to provide as strong a proof as could be asked for that no 

standard first-order logical system can be taken to be a satisfactory ideal- 

ization of the psychological mechanisms or processes, whatever they might 

be, whereby we recognize (first-order!) logical consequences. “Cognitive 

scientists” ought to be suspicious of the view that logic as it appears in 

logic texts adequately represents the whole of the science of valid inference. 

Tt may be remarked in passing that the second-order derivation of (6) 

from (1)-(5) given in the appendix has a certain foundational interest. If 
we interpret the variables in J as ranging over a set (species) containing the 

positive integers and possibly other objects, 1 as denoting one, s as denoting 

a one-place function whose restriction to the positive integers is the usual 

successor function, f as denoting an (unspecified) 2-place function, and 

D as denoting the set N of positive integers, then (4) and (5) are true. 
Consider the following argument, which shows that (6) is true (relative to 

the choice of the domain and the denotations of s and f) if (1)-(3) are. 

We first show by induction on n that for every nin N, for every 

vin N fng is in N. By (1), fll = 81 € N. Suppose that 

zee WN and that fle € N. Then by (2), fisw = ssfle e N. 

By induction on cr, for every 2 in N fir € N. Now suppose 

that 2 € N and that. for every ¢ in N fae €© N. By (1), 
fant « sl © N. Suppose that «7 é N and fane e N. By the 

ih, fafene e N. By (3), frasa = fafane € N. By induction 

on x for every in N, fsna € N. By induction on m, for every 

nin N, for every xin N, fnz € N. Since 5 € N, f55 € N, and 

(6) is true. 

This argument, a simple modification of the derivation of (6) from (1)-(5) 
given below, is evidently intuitionistically acceptable. But because of the 

presence of the unbounded universal quantifier “for every z in N” in the 
induction hypothesis, it cannot be regarded as finitistically acceptable.!4 

Thus the notions of intuitionist and finitist acceptability may readily be 
seen to diverge. 

The details of the proof that any derivation of (6) from (1)-(5) in M 
must contain at least f(4,4) symbols are tedious, but an outline of the 

(Tait, 1968) and (Tait, 1981).
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reasoning is easily given: We translate derivations in M into derivations in 

a modification of the system of Schwichtenberg’s article in the Handbook of 

Mathematical Logic,” a system for which the proof of a cut-elimination the- 

orem is readily available.13 Any cut-free derivation of (6) from (1)~-(5) must 
contain roughly (5,5) symbols, for in a cut-free system one has to take an 

instance of premiss (5) for every integer between 1 and f (5,5) to derive the 

conclusion. Because of the presence of the unanalyzed rule T (tautological 

inference) in M, translating a derivation in M into one in S may result 

in an exponential increase in the length of the derivation; and eliminating 

cuts from a derivation in S may increase its length super-exponentially, of 

the order of the value of a stack of “2”’s; but such increases are as nothing 
when compared with the difference between {(4,4) and f(5, 5). More of the 

details of the proof are contained in the appendix to the original version of 

this article. 

Appendix 

We present a sketch of a second-order derivation of (6) from (1)-(5) of 
which a complete formalization in any standard axiomatic formulation of 

second-order logic can easily be written out: 

By the comprehension principle of second-order logic, 

INV2(Nz 4 VX[X1 A Vy(Xy — Xsy) > Xz), 

and then for some N, 

FEV 2( Bz + NzA Dz). 

Lemma 1 N1; Vy(Ny > Nay); Nssssl; £1; Vy(Ey > Esy); Bs. 

Lemma 2 Yn(Nn — Vz(Nx — Efnz)). 

Proof. By comprehension, 3MVn(Mn « V2(Nz — Efnz)). We want 

Vn(Nn — Mn). Enough to show M1 and Vn(Mn — Msn), for then if 

Nn, Mn. 

M1: Want Va(Nx — Efiz). By comprehension, 4QVz(Qz + E fiz). 

Want Vz(Na — Qz). Enough to show Q1 and Vz(Qz > Qsz). 

Ql: Want E/f11. But f11 = s1 by (1) and Zs1 by Lemma 1. 

V2(Qzr —+ Qszx): Suppose Qr, i.e. Efig. By (2) flsz = ssfir: by 

Lemma 1 twice, Efisz. Thus Qsz and M1. 

Wn(Mn — Msn): Suppose Mn, i.e. Va(Nz — Efnz). 

ie. Vzr(Nax — Efsnz). By comprehension, 5PV2(Px — Efans). Want 

Va(Nax — Px). Enough to show Pl and Vz(Pz > Psr). 

Jant Af sr. 

12(Schwichtenberg, 1977). ; ; 

13-The cut-elimination theorem for this system is due to (Tait, 1972).
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P1: Want Efsni. But fsnl = s1 by (1) and Esl by Lemma 1. 

Va(Px -+ Psx): Suppose Pr, ie. Efsna; thus Nfsnx. Want Efsnsz. 
Since Nfsnz and Mn, Efnfsnz. But by (3) fnfsnx = fsnsz; thus 

Efsnsz. By Lemma 1, Nssssl. By Lemma 2, Efsssslssss1. Thus 

Dfssss1ssss1, as desired. @
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A New Proof of the Gédel 

Incompleteness Theorem 

Many theorems have many proofs, After having given the fundamental 

theorem of algebra its first rigorous proof, Gauss gave it three more; a 

number of others have since been found. The Pythagorean theorem, older 

and easier than the FTA, has hundreds of proofs by now. Is there a great 

theorem with only one proof? 

In this note we shall give an easy new proof! of the Gédel incompleteness 

theorem in the form: There is no algorithm whose output contains all true 

statements of arithmetic and no false ones. Our proof is quite different 

in character from the usual ones and presupposes only a slight acquain- 

tance with formal mathematical logic. It is perfectly complete, except for 

a certain technical fact whose demonstration we will outline. 

Our proof exploits Berry’s parador. In a number of writings, Bertrand 

Russell attributed to G. G. Berry, a librarian at Oxford University, the 

paradox of the least integer not nameable in fewer than nineteen syllables. 

The paradox, of course, is that that integer bas just been named in eighteen 

syllables, Of Berry’s paradox, Russell once said, “It has the merit of not 
going outside finite numbers.” 

Before we begin, we must say a word about algorithms and “statements 

of arithmetic,” and about what “true” and “false” mean in the present 

context. Let’s begin with “statements of arithmetic.” 
The language of arithmetic contains signs + and x for addition and 

multiplication, a name 0 for zero, and a sign s for successor (phuis-one). It 

also contains the equals sign =, as well as the usual logical signs 7 (not). A 

Reprinted with kind permission of the American Mathematical Society from Notices of 

the American Mathematical Society 36 (1989): 388-390 and 676. 
1Saul Kripke has informed me that he noticed a proof somewhat similar to the present 

one in the early 1960s. 

2 (Russell, 1973), p. 210. 
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(and), V (or), — (if...then ...), + (...if and only if ...), V (for all), and 
3 (for some), and parentheses. The variables of the language of arithmetic 

are the expressions z, xz’, 2”, ..., built up from the symbols z and ’; they 
are assumed to have the natural numbers (0, 1, 2, ...) as their values. 

We’ll abbreviate variables by single letters: y, z, etc. 

We now understand sufficiently well what truth and falsity mean in the 

language of arithmetic; for example, Vriyz = sy is a false statement, 

because it’s not the case that every natural number z is the successor of a 

natural number y. (Zero is a counterexample: it is not the successor of a 

natural number.) On the other hand, Vzdy(z = (y + y) Vz = s(y+y)) is 
a true statement: for every natural number z there is a natural number y 

such that either z = 2y or z = 2y +1. We also see that many notions can 

be expressed in the language of arithmetic, e.g., less-than: z < y can be 

defined: 4z(sz+<2) = y (for some natural number z, the successor of z plus 

zx equals y). And you now see that VzVy[(ss0 x (z x z)) = (yxy) + z=0] 
is—well, test yourself, is it true or false? (Big hint: \/2 is irrational.) 

For our purposes, it’s not really necessary to be more formal than we 

have been about the syntax and semantics of the language of arithmetic. 

By an algorithm, we mean a computational (automatic, effective, me- 
chanical) procedure or routine of the usual sort, e.g., a program in a com- 

puter language like C, Basic, Lisp, ..., a Turing machine, register machine, 

Markov algorithm, ..., a formal system like Peano or Robinson Arithmetic, 

..., or whatever. We assume that an algorithm has an output, the set of 
things it “prints out” in the ceurse of computation. (Of course an algorithm 

might have a nai output.) If the algorithin is a formal system, then its 

output is just the set of statentents that are provable in the system. 
Although the language of arithmetic contains only the operation symbols 

4, 4, and x, it turns ont that many statements of mathematics can be 

reformulated as statements in the language of arithmetic, including such 

famous unproved propositions as Fermat’s last theorem, Goldbacli’s con- 

jecture, the Riemann hypothesis, and the widely held belief that P # NP. 

Thus if there were an algorithm that printed out all and only the true state- 
ments of arithmetic—as Gédel’s theorem tells us there is not—we would 
have a way of finding out whether each of these as yet unproved proposi- 

tions is true or not, and indeed a way of finding out whether or not any 

statement that can be formulated as a statement S of arithmetic is true: 
start the algorithm, and simply wait to see which of S and its negation 7S 

the algorithm prints out. (It must eventually print out exactly one of S 
and —S if it prints out all truths and no falsehoods, for, certainly, exactly 
one of S and —S is true.) But alas, there is no worry that the algorithm 
might take too long to come up with an answer to a question that interests 
us, for there is, as we shall now show, no algorithm to do the job, not even
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an infeasibly slow one. 

To show that there is no algorithm whose output contains all true state- 
ments of arithmetic and no false ones, we suppose that M is an algorithm 
whose output contains no false statements of arithmetic. We shall show 
how to find a true statement of arithmetic that is not in M’s output, which 
will prove the theorem. 

For any natural number n, we let [n] be the expression consisting of 0 
preceded by n successor symbols s. For example, [3] is sss0. Notice that 
the expression [n] stands for the number n. 
We need one further definition: we say that a formula F(x) names the 

(natural) number 7 if the following statement is in the output of M: 
Va(F(z) < x = [n]). (Observe that the definition of “names” contains 
a reference to the algorithm M.) Thus, for example, if Vz(z+z = ssss0 

x = ss0) is in the output of M, then the formula x + z = ssss0 names the 
number 2. 

No formula can name two different numbers. For if both of Vz(F(z) + 
£ = [n}) and Vz(F(z) < x = [p]) are true, then so are Vz(x = [n] + x = [p]) 
and [n] = [p], and the number n must equal the number p. Moreover, 
for each number i, there are only finitely many different formulas that 

contain 7 symbols. (Since there are 16 primitive symbols of the language of 

arithmetic, there are at. most 16’ formulas containing i symbols.) Thus for 
each i, there are only finitely many numbers named by formulas containing 
i symbols. For every m, then, only finitely many (indeed, < 16-1! + 
... + 16! + 16°) numbers are named by formulas containing fewer than m 

symbols; some number is not named by any formula containing fewer than 

m symbols; and therefore there is a least number not named by any fermula 

containing fewer than mm. symbols. 

Let G(r, 2) be a fornia of the language of arithmetic that says that z isa 

Wumber that is named by some formula containing z symbols. The technical 

fact mentioned above that we need is that whatever sort of algorithm Af 

may be, there is some such formula C(z, z). We sketch the construction of 

Cz, z) below, in Comment 3. 
Now let B(z,y) be the formula Jz(z < y AC(z, z)). B(x,y) says that x 

is named by some formula containing fewer than y symbols. 

Let A(z, y) be the formula 

AB(x,y) AVa(a < 2 — B(a,y)))- 

A(z, y) says that z is the least number not named by any formula containing 

fewer than y symbols. 
Let k be the number of symbols in A(z,y). k > 3. 

Finally, let F(x) be the formula Jy(y = ([10} x [k]) A A(z,y)). F(x) says 

that z is the least number not named by any formula containing fewer than
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10k symbols. 

How many symbols does F contain? Well, [10] contains 11 symbols, 
|k] contains k + 1, A(z,y) contains k, and there are 12 others (since y 
abbreviates 2’): so 2k + 24 in all. Since & > 3, 2k + 24 < 10k, and F(z) 
contains fewer than 10k symbols. 

We saw above that for every m, there is a least. number not named by 

any formula containing fewer than m symbols. Let n be the least such 

number for m = 10k. Then n is not named by F(z); im other words, 

Va(F(z) + £ = [n]) is not in the output of M. 
But Vz(F(z) < x = [n]) is a true statement, since n is the least num- 

ber not named by any formula containing fewer than 10k symbols! Thus 

we have found a true statement that is not in the output of M, namely, 

Va2(F(2) 2 = [n}). Q.E.D, 
Some comments about the proof: 

1. In our proof, symbols are the “syllables,” and just as “nineteen” con- 

tains 2< 19 syllables, so the term ([10] x {k]) contains k + 15 < 10k 
symbols. 

2. In his memoir of Kurt Gédel,? Georg Kreisel reports that Gédel at- 

tributed his success not so much to mathematical invention as to 
attention to philosophical distinctions. Gregory Chaitin once com- 

mented that one of his own incompleteness proofs resembled Berry's 

paradox rather than Epimenides’ paradox of the liar (“What T am 

now saying is not true”).4 Chaitin’s proofs make use of the uotion of 

the complesity of a natural muuber, ie., the minima number of in- 

structions i the machine table of any Turing machine that prints out 

that number, and of various information-theoretic notions. None of 

these notions are found in our proof, for which the renmarks of Kreisel 

and Chaitin, which the anthor read at more or less the same time, 
provided the impetus. 

3. Let us now sketch the construction of a formula C(z, z) that says 

that z is a number named by a formula containing z symbols. The 

main points are that algorithms like M can be regarded as operating 

on “expressions,” i.e., finite sequences of symbols; that, in a manner 

reminiscent of ASCII codes, symbols can be assigned code numbers 

(logicians often call these code numbers Gédel numbers); that certain 
tricks of number theory enable one to code expressions as numbers 

and operations on expressions as operations on the numbers that code 

3(Kreisel, 1980), p. 150. 

4Cf. (Davis, 1980), pp. 241-267, especially pp. 263-267, for an exposition of Chaitin’s 

preef of incompleteness. Chaitin’s ebservatien is found in (Chaitin, 1970).
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them; and that these numerical operations can all be defined in terms 

of addition, multiplication, and the notions of logic. Discussion of 

symbols, expressions (and finite sequences of expressions, etc.) can 

therefore be coded in the language of arithmetic as discussion of the 

natural numbers that code them. To construct a formula saying that 

n is named by some formula containing i symbols, one writes a for- 

mula saying that there is a sequence of operations of the algorithm 

M (which operates on expressions) that generates the expression con- 

sisting of V, x, (, the i symbols of some formula F(z) of the language 

of arithmetic, «+, 2, =, n consecutive successor symbols s, 0, and 

). Gédel numbering and tricks of number theory then allow all such 

talk of symbols, sequences, and the operations of M to be coded into 

formulas of arithmetic. 

4. Both our proof and the standard one make use of Gédel numbering. 

Moreover, the unprovable truths in our proof and in the standard 

one can both be seen as obtained by the substitution of a name for a 

number in a certain crucial formula. There is, however, an important 

distinction between the two proofs. In the usual proof, the number 

whose name is substituted is the code for the formula into which it 

is substituted; in ours it is the unique number of which the formula 

is true. In view of this distinction, it seems justified to say that our 

proof, unlike the usual one, does not. involve diagonalization. 

Appendix. A letter from George Boolos® 

Several readers of wy “New Proof of the Gédel Incompleteness Theorem,” 

have commented on its shortness, apparently supposing that the use it 

makes of Berry's paradox is responsible for that brevity. It would thus seem 

appropriate to remark that once syntax is arithmetized, an even briefer 

proof is at hand, essentially the one given by Gédel himself in the intro- 

duction to his famous “On Formally Undecidable Propositions ...”; 

Say the m applies to n if F([n]) is the output of M, where 
F(z) is the formula with Godel number m. Let A(x, y) express 
“applies to,” and let n be the Gédel number of —A(z,y). If n 

applies to n, the false statement —A({n], [n]) is the output of 
M, impossible; thus n does not apply to n and 7A({nj, [n}) is a 
truth not in the output of M. 

What is concealed in this argument is the large amount of work needed 
to construct a suitable formula A(z, y); proving the existence of the key 

5First published in Notices of the American Mathematical Society 36, 1989, p. 676.
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formula C(z,y) in the “New Proof” via Berry’s paradox requires at least 

as much effort. What strikes the author as of interest in the proof via 

Berry’s paradox is not its brevity but that it provides a different sori of 

reason for the incompleteness of algorithms.
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On “Seeing” the Truth of the 

Godel Sentence 

In his famous 1931 paper, Gddel showed that for any “sufficiently strong” 

formal theory T, a sentence S' in the language of T equivalent in T to its 

own T-unprovability cannot be proved in 7’, provided that T is consistent. 

(In the normal cases, 5 is equivalent in T to the sentence expressing the 

consistency of T.) Thus if T proves only true sentences, and is therefore 

consistent, then S' is not provable in T. 

Roger Penrose claims that although S is unprovable in 7, we can always 

see that 5 is true by means of the following argument:! If S$ is provable in 

T, then S is false, but that is impossible (pp. 107-8: “Our formal system 

should not be so badly constructed that it actually allows false propositions 

to be proved!"); thus S is unprovable and therefore true. 

There are certain interesting formal theories of which the set. of provable 

sentences can be seen to contain no falsehoods; for the sake of argument we 

may grant that Peano Arithmetic (PA), say, is one of these. We must then 

grant that the Godel sentence for PA, expressing its own PA-unprovability, 

is true and unprovable in PA. 

To concede that we can see the truth of the Gédel sentence for PA, in 

which only a fragment (albeit non-trivial) of actual mathematical reasoning 

can be carried out, is not to concede that we can see the truth of Gdédel 

sentences for more powerful theories such as ZF set theory, in which almost 

the whole of mathematics can be represented. I shall give some reasons 

for thinking that there is no sense of “see” in which we can see that ZF 

is consistent; thus we cannot see the truth of the Gddel sentence for ZF 
either, for that sentence is equivalent (in a much weaker theory than ZF) 

to the consistency sentence for ZF. 

From Behavioral and Brain Sciences 13 (1990): 655-656. Reprinted by kind permission 
of Cambridge University Press. 

(Penrose, 1989). 
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A true story: Once upon a time, distinguished set theorist J sent equally 

distinguished set theorist 4 what purported to be a proof that the theory 

ZFM (ZF+“a measurable cardinal exists”), of which M and many others 
were fond, is inconsistent. M sat down to work and found the error on p. 39 

or so of J’s manuscript. As he began to examine J’s “proof,” M might have 

been reasonably confident that he would find an error, but by no means 

did he then know that J’s “proof” was fallacious or see the consistency of 

ZFM. Do we know that some future hotshot will not do to ZF what M 

feared J had done to ZFM? 

I suggest that we do not know that we are not in the same situation 

vis-A-vis ZF that Frege was in with respect to naive set theory (or, more 

accurately, the system of his Basic Laws of Arithmetic) before receiving, in 

June 1902, the famous letter from Russell, showing the derivability in his 

system of Russell’s paradox. It is, I believe, a mistake to think that we can 

see that mathematics as a whole is consistent, a mistake possibly fostered 

by our ability to see the consistency of certain of its parts. 

The verb “should” in the sentence quoted above ought to give us pause. 

Of course our formal system skould not be so constructed as to have false 

theorems. What we may believe or hope to be the case, but cannot “see” to 

be so, is that the totality of mathematics is not badly constructed in that 
way. Are we really so certain that there isn’t some million-page derivation 

of “0=1” that will be discovered some two hundred years from now? Do 

we know that we are really better off than Frege in May 1902? 

To belabor the point: Penrose has said nothing that shows that. we can 

recognize the truth of the Gadel sentence for ZF or for any other reasonable 

approximation to whole of the mathematics that we ourselves use. What 
we can see the truth of is this conditional proposition: the Godel sentence 

for ZF is AZF-nnprovable (and therefore true) of ZF is consistent, We cannot 

see that the Gadel sentence is true preeiscly because we cannot see that ZF 

is consistent. We may hope or believe that it is, but we do not know it, 

and therefore cannot see it. 

Penrose does offer a kind of consideration not advanced in earlier discus- 

sions of Gédel’s theorem. He states that when a mathematician discovers a 

proof of some statement, other mathematicians easily and quickly convince 

one another of its truth. 

I don’t see that Penrose offers an argument for the conclusion that the 

ready acceptance of a newly proved proposition shows that. mathematicians 

see that it is true rather than that it follows from the rest of mathematics, 

that is, is true if the rest of accepted mathematics is. Penrose rightly 

emphasizes that we nust see that each step in an argument can be reduced 

to something simple and obvious. But such reduction may not be possible: 

Many regard impredicative comprehension axioms in analysis as neither
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simple nor obvious; and none of the axioms of set theory forces itself upon 

us the way “x +0 =<” does. 

“When we convince ourselves of the validity of Gédel’s theorem we not 

only ‘see’ it, but by so doing we reveal the very nonalgorithmic nature of 

the ‘seeing’ process itself” (p. 418). Since one of the hypotheses of Gédel’s 

theorem is the consistency of the theories under consideration, Penrose 

must here mean seeing the truth of the Gédel sentence; but I have argued 

that we cannot do this if the theory is a reasonable approximation to the 

whole of mathematics. 

The Mandelbrot set has been called the most complex object in all of 

mathematics, but mathematics itself, of course, outstrips the Mandelbrot 

set in complexity. Can we really “see” that “O=1” is not sitting at the 

bottom of some lengthy, intricate and ingenious proof perhaps involving 

concepts and arguments of a kind of which today we are completely un- 

aware?
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Quotational Ambiguity 

According to W. Quine, 

Whose views on quotation are fine, 

Boston names Boston, 

And Boston names Boston, 

But 9 doesn’t designate 9. 

Richard Cartwright used to assign to MIT graduate students in philosophy 

the exercise of supplying quotation marks to that underpunctuated limerick 

of his so that it says something correct and sensible. One solution is to put 

pairs of single quotes around the first and fourth occurrences of ‘Boston’ 

and a pair of quotes within quotes around the third. Another is to put 

the single quotes around the second and third occurrences and the quotes 

within quotes aronnd the first. One of the lessons of this paper is that 

neither of these solutions is entirely unexceptionable. 

It was Quine’s Mathematical Logic! that was respousible for my becoming 

a philosopher. T came upon a copy of it in the university bookstore during 

my freshman year; a year later the instructor in “Advanced Logic” counted 

iny having read it as satisfying the conrse’s prerequisite. If I was a bit 

murky on alphabetic variance and such laws as Math Logic’s +159: 

If wis not freein py, T(a)(eV Pp) = yV (aw, 

T thought I had a pretty good understanding of such arcana as the ancestral 

and quasi-quotation. I was, I was convinced, an ace on the ordinary kind 

First published in Paolo Leonardi and Marco Santambrogio, eds., On Quine, Cambridge: 

Cambridge University Press, 1995, pp. 283-296. Reprinted with kind permission of 
Cambridge University Press. 

I am grateful to David Auerbach, Martin Davis, W. D. Hart, James Higginbotham, 

David Kaplan, Michae] Kremer, Harold Levin, Ruth Marcus, Charles Parsons, W. V. 

Quine, Nathan Salmon and Géran Sundholm for helpful comments. Research for this 
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of quotation. 

Less than a decade later I was explaining 

‘yields a falsehood when appended to its own quotation’ 

yields a falsehood when appended to its own quotation. 

to unfortunates in introductory philosophy who were expecting the meaning 

of life. Eventually, though, I wound up teaching courses with titles like 

“Paradox and Infinity” or “Logic II,” for which the Good Stuff was more 

appropriate. 

In MIT’s “Paradox and Infinity” a few years ago, as I was going over 

“yields a falsehood ...,” an undergraduate suggested that what I had writ- 
ten on the board, something like: 

‘blue’ appended to the quotation of ‘red’ = ‘ ‘red’ blue’ 

was ambiguous, and that I needed two kinds of quotation marks, semantic 

and syntactic, to say what I wanted to say. 

“Groan,” I thought. “Another cockamamie undergraduate suggestion. 

No undergraduate has anything to teach me about quotation.” I couldn’t 

have been more wrong. 

The student’s name was Michael Ernst (‘Michael Ernst’?); he is now a 
graduate student in computer science at MIT. And this paper is about his 

observation. 

When I explained Ernst’s observation to Cartwright, he doubled over in 

surprise and uttered an oath. I wrote to Quine about it, who replied, “Dear 

George, Thanks for Erust’s paradox. 1 am delighted with it. But I find lam 

unable to cope with it, even when I have stopped langhing. Yours, Van.” 

Here’s the problem. Eepressions, or strings, are (or may be identified 
with) finite sequences of symbols. We'll use letters of the Greek alphabet 
as variables over expressions. 

Now where a and £ are any expressions at all, G appended to a is the 

expression obtained by first writing the symbols of a, in the order in which 

they occur in a, and then writing immediately after these the symbols of (, 

in the order in which they occur in 3. Thus, for example, ‘apple’ appended 

to ‘pine’ is the expression ‘pineapple’. The operation of appending is as- 

sociative: -y appended to (@ appended to a) is identical with (- appended 
to @) appended to a. Thus it does not matter how we add parentheses to 

such a “term” as: ‘VAKIA’ appended to ‘OSLO’ appended to ‘CZECH’. 
(‘OSLO’, it is well known, is in ‘CZECHOSLOVAKIA’.) 

So, it would seem, ‘b’ appended to ‘a’ is the two-symbol expression ‘ab’, 

consisting of the letters ‘a’ and ‘b’ in that order. 

The quotation of a is the expression that results when the expression a: 
is enclosed in a pair of quotation marks, i.e., the result of writing a left
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quote, then the symbols constituting a, and then a right quote. Thus the 

quotation of ‘Boston’ is ‘ ‘Boston’ ’. 

The quotation of a is supposed to be an expression whose denotation is 

a; e.g., the denotation of the eight-symbol expression ‘ ‘Boston’ ’ is the 

six-symbol expression ‘Boston’. 

And I hope you are all familiar with the calculation: 

‘appended to its own quotation’ appended to its own quotation 

= ‘appended to its own quotation’ appended to the quotation of ‘ap- 

pended to its own quotation’ 

= ‘appended to its own quotation’ appended to ‘ ‘appended to its own 

quotation’ ’ 

= ‘ ‘appended to its own quotation’ appended to its own quotation’. 

The calculation shows us that there is an expression, viz., ‘appended to its 

own quotation’ appended to its own quotation, which denotes itself. 

So far all is familiar. But now consider the nonsense string Kk: 

b’ appended to ‘a 

& consists of the second Ictter of the alphabet, a right quote, a space, the 

eight Ictters of a certain word, a space, the two letters of a certain other 
word, aspace, a left quote, and the first letter of the alphabet, in that order 

of course, 

‘There aren lot of things one might want to say about a. [t's il-formed, 

it’s a honsense string, it does uot contain the letter ‘ec’, it begins with the 

letter ‘b’, the number of letters in the English alphabet that alphabetically 

precede the first letter of « is one, ete. 

Consider now another string, A: 

ab 

4 too is not well formed, nor does it contain the letter ‘c’. Unlike «x, though, 

it begins with the letter ‘a’, and the number of letters of the English alpha- 

bet that alphabetically precede its first letter is zero. 

Let’s write: N(a) as short for: the number of letters of the English 
alphabet that alphabetically precede the first letter of the expression a. 

Then N(x) =1 and N(A) = 0. 
Now consider yp: 

‘b’ appended to ‘a’



28. Quotational Ambiguity 395 

pis the quotation of x; thus the denotation of y is k. 

But wait! What did we say earlier? y, note, consists of the quotation 

of ‘b’ followed by ‘ appended to ’ followed by the quotation of ‘a’. Just as 

‘apple’ appended to ‘pine’ is ‘pineapple’, ‘b’ appended to ‘a’ is surely ‘ab’. 

Thus yp, which begins with a left quote followed by a ‘b’ and which is the 

subject of the second clause of the previous sentence, denotes ‘ab’, and the 

denotation of p is 4, ie., ‘ab’. 

So 0 = N(A) = N(the denotation of u) = N(x) = 1. 
What has gone wrong? Obviously, the non-identical « and \ cannot both 

be the denotation of 4, and unless they are, our demonstration that 0 = 1 

fails. How did we conclude that they are identical? 
In the case of « we said: yu is the quotation of «; thus the denotation of 

pis K. We also said: yu ...denotes ‘ab’, and the denotation of yu is A. It 

would thus seem that the inferences: 

B is the quotation of a; so a is the denotation of (. 

and: 

B denotes a; so a is the denotation of £. 

are problematic, In any event, 4 is ambiguous, for on different parsings 

it denotes the different expressions x and 4. And that is Michael Ernst’s 

observation. 

Let’s treat the matters with which we have been dealing somewhat more 

formally. A theorem about quotation, appending, and denotation will en- 

site, 
Expressions, as we have said, are finite sequences of symbols, i.e., fune- 

tions from a finite initial segment of the sct of uatural numbers to a set 

of symbols, (Thus, e.g., ‘cat’ is a function whose domain is {0,1,2} aud 

whose value at 1 is ‘a’.) For any symbol s, [s] is the expression whose sole 

symbol is s. It is often important to distinguish between s and [s], but it 

will turn out that we can here safely identify the two. 

We define the length lh(a) of the expression a to be the least natural 
number not in the domain of a. Intuitively, lh(a) is the number of occur- 
rences of symbols in a. Thus lh(‘cat’) = 3, lh(‘cattle’) = 6 and lh(s), ice., 

Ih({s}), = 1. 
If a and # are expressions of lengths m and n respectively, a * 3 is the 

expression of length m-n whose first m symbols are those of a in the order 

in which they occur in a and whose last n symbols are those of @ in the 

order in which they occur in 3. (Thus * is associative.) We will sometimes 
omit asterisks if (we believe that) no confusion will result. 
Now assume that ZL is a language containing two symbols, / and r, and 

possibly others. Suppose that (1) for any expression a of L, {!]+*a*(r] denotes
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a. (Thus | and r work like left and right quotation marks.) Suppose further 

that there is an expression 0 of L such that (2) for any expressions a, G,-y, 6 

of L, if a denotes -y and 6 denotes 6, then a * J * GB denotes y « 6. (Thus, 

like, e.g., ‘followed by’, 3 “denotes concatenation.” Note that ‘appended 

to’ switches order, but ‘followed by’ does not.) 

Theorem Some expression of L denotes two different expressions of L. 

Proof. Let a = [lj * [l] * [r] « 0 * [l] * [r] * [r], 8 = [l] * [r] * o ® [lj * [r], 
and y = [I] * [r]. By (1), a denotes 8. By (1), [J] * (i] * [r] denotes [!] and 
[i] * [r] * [r] denotes [r]. Then by (2), a denotes 7. But 6 4-7. & 

An English version of a is: 

‘© * followed by ‘’ ’ 

which, as we see, ambiguously denotes the two-symbol expression consisting 

of the left and right quotes in that order and also denotes a longer expression 

containing oddly placed quotes, spaces, and certain letters of the English 

alphabet. 

I suppose that by now it is hard to resist the suggestion that our puzzles 

arise from the circumstance that when a left quote is followed by two or 

more right quotes, it may not be determined which of those right quotes 

its nate is. Quotation marks differ in this respect from parentheses: any 

sequence of left and right parentheses is well formed in at. most one way. (A 

left parenthesis and a right parenthesis to its right are mates if (recursively) 

no unmated parentheses lie between them; a string of pareutheses is well 
formed Hf every parenthesis in it has a mate.) Ina slogan: “Quotes don’t 

know their nates.” 

Nevertheless, we should look at the question whether the antbiguity arises 

from the phrase “appended to’. Would our problenis disappear if we weve to 

abolish ‘3 appended to a’ and to substitute for it ‘the result of appending # 

to a’ instead’ (Of course our English versions of the semantical paradoxes 

would thereby become rather more complex—but that is of small concern.) 

‘The result of appending 6 to a’ resembles function terms such as ‘f(x, y)’ in 
mathematics more closely than does ‘8 appended to a’; could this deviation 

from a syntax resembling that of formal languages be responsible for our 

difficulties? 

The suspicion that it’s not the use of ‘appended to’ that has made trouble 

is easily confirmed if we consider: 

the result of appending ‘c’ to the result of appending ‘b’ to ‘a’ 

Does this phrase denote the improbable: 

ac’ to the result of appending ‘b
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or does it denote the more likely: 

abc ? 

Would parentheses help? Suppose that instead of writing ‘a appended to 

8 we were always to write ‘app(a, 8)’ instead? But that really wouldn’t 

avail, We would still have: 

app(‘a’, ‘b’, ‘c’) 

to deal with, which may at first appear ill-formed, but need not be consid- 

ered so. However, if it is not taken as ill-formed, it must be regarded as 

ambiguous, for on one way of parsing it, it denotes: 

ca’, ‘b 

and on another, it denotes:? 

b’, ‘ca 

I want now to discuss some proposals for dealing with the difficulty that 

modify or enhance quotation, or replace it with other devices. Eventually 

I shall offer one that seems to be more or less satisfactory. But first the 

others. 

The first suggestion that conies to mind is to draw a link connecting a 

left quote with its right mate. We might do this by meaus of an arch, thus: 

ee 

‘a’ appended to ‘bh’ 

Or we mtight fenclose ina box | the material we wisl to quote, Another 
suggestion is that a pair of quotation marks should be regarded as a dis- 
continous, two-part, symbol, like the letter ‘11’ of the Cyrillic alphabet, or 

‘i’ with its dot. In a language in which a pair of quotation marks is a single 

symbol, it would be no more possible for an analogue of our nonsense string 

« to exist than for ‘ylophone:’ to be a word of English. 

These proposals have a common defect. Were we to adopt one of them, 

we could no longer regard expressions as finite sequences of symbols. Were 

we to introduce arches, boxes, or something similar into the language, or 

to regard pairs of quotation marks as single but discontinuous symbols, 

between whose two parts entire expressions could occur, we would violate a 

requirement of sequeniiality. expressions must be codable as functions from 

a finite initial segment of the natural numbers into the set of symbols of the 

language, i.e., as finite sequences of symbols. In any case we will see how 

  

2Michael Kremer pointed out to me that Anil Gupta made a similar observation in 
(Gupta, 1982), pp. 184-5.
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to link the expressions that will turn out to be our substitute for quotation 

marks without the use of arches, etc. 

We might dispense with quotation marks altogether, italicizing instead 

those expressions that are to be referred to. Italicization, of course, has an 

evident drawback: iterating it is, at best, difficult. What angle with the 

abscissa shall a capital “I” make after it has been italicized n times? 90/2” 

degrees? 

There is a less noticeable, but more important, difficulty: it would seem 

that an italicized symbol would have to be regarded as other than the 

roman version of that symbol, and a doubly italicized symbol as different 

from both the singly italicized and the roman versions. Were we to allow, 

then, that the m- and n-fold italicizations of any symbol of a language L 

are different symbols of LZ if m 4 n, then DL would have to be infinite. We 
desire a solution that does not require the number of symbols in LE to be 

infinite. We may call this requirement the finiteness requirement. 

Boldfacing obviously satisfies the finiteness requirement no better than 

italicization. 

We have several times displayed expressions, that is, surrounded them 

with white space, or written them after colons. Although we shall continue 

to do so when quotation might be impractical or confusing, it is clear that 

as a general device for quotation, displaying offers difficulties akin to those 

of italicization, boldfacing, and other ways of changing the style of type. 

If underlining is not to fall afoul of the requirements of sequentiality 

and finiteness, it would appear that, we to have to regard the result. of 

nuderlining an expression oa as the result. of repeatedly attaching a single 

symbol, say ‘?, after (or before) each of the coustituent symbols of a. ‘Thus 

if we wish to regard expressions as consisting of symbols in a linear order, 

we would seem to have to take the double underlining of ‘ent’ as the nine- 

character expression ‘¢_a_t_’. (‘_” contains two expressions; *’, one.) But 

then, of course, expressions like the three-character ‘_’ are ambiguous as 
between a non-underlined ‘_’, a ‘_’ whose first ‘’ is underlined, a ‘*_’ whose 

second ‘_’ is underlined, and a doubly underlined ‘’. 
In conversation, Ruth Marcus proposed the use of an infinite sequence of 

ever bigger quotation marks. The suggestion obviously violates the finite- 

ness requirement if each of the infinitely many quotation marks is to be 

a single symbol; but I confess that it was only after she made it that the 

finiteness requirement struck me as one that needed to be imposed, and our 

suggestion will actually turn out to be not so very different from Marcus’s. 

It seems extremely plausible that a language containing a fixed, finite 

number of pairs of quotation marks, e.g.: 

Pt O



28. Quotational Ambiguity 399 

would suffer from ambiguities of the sort we have noticed, but I have no 

rigorous proof. If we were to order the different pairs of marks and stipulate 

that no pair earlier in the ordering may surround either member of any later 

pair, then we would evidently violate another requirement, perhaps the 

most important one of all, that of universality: that for every expression 

a of the language, no matter how ill-formed, there should exist a (well- 

formed) expression of the language obtained by enclosing @ in a pair of 

quotation marks. The requirement of universality rules out such devices as 

Quine’s of spelling® as cures for our woes, for we wish to insist that the 

quotation of an expression a actually contain a as a subexpression. 

Three familiar features of the ordinary use of quotation marks may be 

remarked upon. 

1) The distinction between left and right quotation marks seems to be of 

little significance. As those of us who use crude fonts know, one can almost 

always get by with: ’ or: ” . In any case our original statement of Ernst’s 

problem mentioned left and right quotes, and abolishing the distinction 

would certainly not get us out of our jam. 

2) According to Collins’ Authors’ & Printers’ Dictionary,* 

quotations within quotations to have only single quotation 

marks within the double. “The more conspicuous mark to the 

more inclusive quotation” (Henry Bradley). Quotations within 
the single quotation, to be double-quoted. 

Presumably also, quotations within the double quotation within the single 

quotation, to he single-quoted, etc. Strict conformity to standard typo- 

graphical practice, which [ take Collins to be describing, is in any case 

impossible: if we wish to praise XN for his adherence to the rule in writing: 

He asked, “Why not?”, then we can’t write: 

Kudos to X, who wrote, “He asked, “Why not?”” 

but must, in accordance with Collins’ rule, write: 

Kudos to X, who wrote, “He asked, ‘Why not?’” 

But how then are we to criticize Y for violating the rule by writing: He 

asked, ‘Why not?’ , since we can’t justifiably write: 

Fie upon Y, who wrote, “He asked, ‘Why not?’” 

(for why are we praising X but blaming Y?) and can’t adhere to Collins 
and write either: 

3(Quine, 1960), p. 143. 
4(Collins, 1933), p. 314.
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Fie upon Y, who wrote, “He asked, “Why not?”” 

or: 

Fie upon Y, who wrote, ‘He asked, “Why not?”’ 

or: 

Fie upon Y, who wrote, ‘He asked, ‘Why not?” 

One possibly unfortunate feature of standard usage is that quoting a quoted 

expression changes it: double quotes become single and single double, as 

each new pair of outermost double quotes is added. 

3) It is commonly thought that the primary function of quotation marks 

is to produce an expression that refers to another expression, namely the 

one inside the quotation marks. Perhaps so, but “shudder” quotes, here 

illustrated, the custom of enclosing titles of works in quotation marks,® and 

the (substandard) use of quotation for emphasis suggest a weaker view: the 

primary function of quotation marks is to indicate to the reader that quoted 

expressions are to be treated in some special manner that is inferable from 

context (it is to be hoped), but is otherwise unspecified.® 

We come now to our own proposal, according to which to quote an expres- 

sion is to enclose it in a certain pair of syntactically complex expressious, 

called the g-marks of that expression; the rest of the proposal is a rule 

for parsing a given expression a to determine which g-narks occurring as 

subexpressions of @ are the mates of which others. 

Let 7 and ? be two new symbols. {7} is the expression consisting of j 

consecutive occurrences of 4s In( {i }) =. 

A q-mark is an expression (j}°, where j = 0. ‘Thus the q-marks are °, ’°, 
Ho 8 ote, 

# is the uull expression; lh(#) = 0. 
For any expression a, m(a), @’s g-mark, is the shortest q-inark that is 

not a subexpression of a. Thus, for example, m(#) = m(’) = m(s) = ° 
(s any symbol other than °), m(°) = ,m/('°) = "°,m("") = "°,m(°’) = 
0 m(°°) = 10 m(") =? 

The (revised) quotation of a, r(a), is defined to be m(a)*a*m/(a). The 
first part of our proposal, then, is to revise the notion of quotation so that 

the quotation of any expression a is r(a). (In an environmentalist spirit, 
we might wish to recycle the left and right quotes as‘ and °.) It is clear 

5Exercise. Punctuate: Janacek wrote a quartet called the Kreutzer Sonata. 
®Some years ago an article appeared in The New Yorker (I would dearly love the 

reference) lamenting the overuse of shudder quotes and proposing the introduction of 
different kinds of quotation marks to indicate different authorial attitudes: raised circles 
for (wide-eyed) surprise, etc. Gabriel Segal has observed that the carat or circumflex, 
found on computer keyboards, resembles an eyebrow: skeptics may take note.
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that our new sort of quotation respects the requirements of sequentiality, 

finiteness, and universality. 

To complete our proposal we have to specify a procedure for parsing an 

expression a containing (zero or more) g-marks. It is simply this: Scan a 

from left to right, looking for an occurrence of °. If one is found, locate, by 

backtracking, the longest g-mark (occurrence) that ends with that occur- 

rence of °. Then continue scanning to the right, looking for another q-mark 

of the same length. If and when one is found, the two q-marks are mates.” 

(The subexpression of o consisting of the two g-marks and the expression 3 

lying between them, which may contain other (shorter) g-marks, may end 

in a string of occurrences of ’, or may be null, may be taken to denote , if 

desired.) Now apply the procedure to the subexpression of a lying to the 

right of the right gmark and repeat in like manner until the end of a is 

reached. Of course there is no guarantee that a will in any sense be well 

formed; indeed, after a g-mark has been found, nothing at all ensures that 

scanning the remainder of a will turn up a mate for it. 

We conjecture that the new kind of quotation will avoid the difficulties 

to which the old is subject, and will offer some evidence for this conjecture. 

We shall need to observe that if we define (a, @) as the expression r(a)+*(, 
then the ordered pair theorem holds for the operation a, 8 +> (a, f). 

Ordered Pair Theorem [f (a, 3) = (7,6) thena =7 and G =6. 

Proof. Suppose that (a, 8) = (7,6), ie, that {7}°af{7}°B = {R}oy{k}°O, 
where {j}° and {*}° are the shortest g-marks that are not subexpressions 
of a and 7, respectively. Since the expressions {7}°a{j}°R and {k}°y{k}°5 
are identical, j = & and thas a{ 7} = 7{7}°d. 
Now let ¢ = ef 7}? and 9 = y{ 7} 1 = lh(a), and m = lh(7). Observe 

that Cl + fj) = °C +i) = / for alli <j, and n(m +i) = ‘ for alli < j. 
Suppose (for reduetio) that 1 << m. (See Figure 28.) Then 1+j < m+ j, and 

CL +9) # (mt 4) for alli <j. Since ¢=17,1+3< m,andsol+i<m 
for alli < j. Since € = 9, n(l+ Jj) = ° and 7(! +i) = ’ for all i <j, and 
thus {j}° is a subexpression of 7. But since j = k, {k}° is a subexpression 
of +, which contradicts the definition of k. 

Similarly, not: m < l. Thus lh(a) = | =m = lh(y), and since ¢ = 7,0 = 

Y {7}°8 = {7}°5, and @ = 6." m 

7Qur scanning procedure will thus correctly parse the expression °s’°, which might be 

taken to be an ill-formed quotation of s, as the (well-formed) quotation of the (ill-formed) 
expression 3’. 

®The validity of the ordered pair theorem depends upon the paired senses of the 

definition of ordered pair and of g-mark. Were we to reverse that of the latter, so that 

the g-marks became °, °’, °’’, etc., but leave the wording of the definitions of m and r, 
and ordered pair unchanged, the theorem would fail, as the expression °/°°y, + arbitrary, 
shows.
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j instances of ” 

C a "fe B 
  

  

  

        
  

j instances of ’ 

Figure 28.1: Since ¢ = 7, if a is shorter than , then the displayed occur- 

rence of ° in ¢ lies in y, and ”...’° is a subexpression of -y, impossible. 

Corollary If r(a)=r(8), then a= GB. 

Proof. If r(a) = r(8), then (a, #) = r(a) *# =r(a) =7(6) =7(8)*#= 
(8, #), whence by the ordered pair theorem, a = (. 

The ordered pair theorem does not hold for the obvious analogue of 

ordinary quotation: Let | and r be symbols, q(@) = [i] * a * [r|, and 
(a, 8) = q(x) * 8. Then, when @ and 6 are any symbols, and av = a, 4 = 

lrlbr,y = art, = lbr, (ea, 8) = q(a) * 8 = lariribr = q(y) * 6 = (7,4), but 

ao #7 (and (7 7 6). Even more simply, let a = 2,4 = r,y7 = lr,d = #; then 

(a) * fF. q(y) #8 & Urr, 
We now show that ambiguities like the ones we have been noticing arise 

if a device like (ordinary) quotation is added in the natural way to logical 

languages of a familiar sort, but that they can be proved not to arise if we 

similarly adjoin our new sort of quotation. 

The logical languages we have in mind are (first-order) languages written 

in Polish notation. There are no parentheses in these languages, each op- 

erator is written to the left of its operands, and every symbol has a degree: 

The degree of an n-place predicate or function sign is n, that of a variable or 

individual constant is 0, and that of the existential quantifier 4, the arrow 
—, and the equals sign = is 2. The rules of term and formula composition 

are the expected ones, e.g.: If g and w are formulas, so is + yw. Follow- 

ing Shoenfield,® we call an expression that is either a term or a formula a 

designator. 

Now, let L be such a language containing at least one function or predicate 

9(Shoenfield, 1967), esp. pp. 14-16.
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symbol f of degree 2. (= will do.) Let J and r be symbols not in L. (i need 
not be distinct from r.) The natural way to extend L by using / and r as 

the left and right quote is to say: Let the symbols of Lpag be those of L 

together with / and r; where a is any expression at all of Lyeq (including 

expressions containing / and r), the expression [!] *a* [r] is a term of Loag ; 
the remaining rules of term and formula composition are as they are in L. 

Lad, so defined, is bad. It lacks unique readability, which requires that 

no designator of Laq can be parsed in more than one way. More precisely, 

Lag lacks unique readability if there is some designator o such that for some 

symbol s of degree n, and two distinct n-tuples (o1,...,0,) and (7),-..-,7) 

of designators, o = so, ...0,, = $T1...T, (or there are different expressions 

a, such that [I] * a « [r] = [l] * 6 « [r|—but that is obviously not the 
case), And there are many such designators in Dyeqg. For let a and 6 be any 

symbols of Lja¢ and consider the expression flarirlbr, i.e., [f] * [f] * [a] « 
[r] * [2] * [r] * {2] * [b] * [r]. Since @ is an expression (of Lgaa) (recall that we 
identify a symbol with the expression of length one whose sole value is that 

symbol), lar is a term; since rib is an expression, lribr is also a term; and 

therefore since f is a symbol of degree 2, flarirlbr is a designator. But arl 

is also an expression and therefore /arir is a term, and 0 is an expression 

and ibr is a term. Thus flarirlbr has the two distinct parsings: 

f lar tribr 

and: 

f lartr tbr, 

ie., there are terms a, /7,-y,4, viz, dar, drlér, larly, lor, such that f *a* 7 = 

fey«ed oven though a 4 7 (and @ A 6); thus Ly.¢ lacks uniqne readability. 

If L contains the equals sign, interpreted as usual, and [{f] «cv [7] is taken 

as denoting @ in Lgag, then there are even expressions of Lyag true on one 

Parsing and false on another, e.g. = darirlarir. 
It is unique readability, in some clear but as yet undefined sense of the 

term, that expression 4 shows natural languages containing the usual sort 

of quotation to lack. Expressions « and yu also show that we would violate 

universality if we were stipulate that every left quotation mark is to be 

mated by the nearest right quotation mark to its right. 

Let us now show that if we extend L to a language Lgeog by similarly 

adding to L our new kind of quotation, then Lgoog enjoys unique readability. 

Thus let ’ and ° be two symbols not in L. (’ and ° do not have any 
degree.) 

We now take the symbols of Lgooa to be those of L together with ’ and °. 
Where a is any expression at all of Lgooa (including expressions containing 
’ and °), the expression r(a), defined as above, is a term of Lgoog; the
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remaining rules of term and formula composition are as they are in L. 

For Lgood to enjoy unique readability, each designator of Lgooq must be a 

designator in exactly one way, that is, that if r(a) = r(f), then a = 8, 
and if s is a symbol of degree n,01,...,0,,71,--.,Tn are designators, 0 isa 

designator, and 0 = so, ...0n = 87, ...7, then o; = 7; for alli, 1<i<n. 

Theorem Logooa enjoys unique readability. 

Proof. Let o be a designator. o either begins with ' or ° or begins with a 

symbol of some degree. If the former, then o = r(a) for some expression a; 

but then if also o = r(f8),a = £3, by the corollary to the ordered pair theo- 

rem. Thus we may assume that o begins with a symbol s of degree n and 

that for some designators 01,...,0n,0 = 801 .-.On. To prove the theorem, 

it suffices to suppose that o = s7,...7,, with each 7; a designator, and show 

that o; = 7; for all 7,1 <i<n. Since o = s0,...0n = 8T1..-Tp,»O1+--On 

(i.e. 01 #...* On) = T1...T- We conclude the proof by showing that, 

more generally, if for all i, 1 < i < m, o; is a designator, for all i, 

1 <i <n, 7% is a designator, and o,...0, = 71.--7™m, then m = n 

and for all 1 < ¢ < m,o; = 7;. We proceed by induction on the length of 

Oj..-Om- 

Case 1. o, begins with ° or’. Then 7, begins with the same symbol and 

for some expressions @ and y , 0; = r(@) and 7, = r(7). By the ordered 
pair theorem, a, = 71, and a2... = T2...T,. Since 02... is shorter 

than a1 ...¢m, by the induction hypothesis, a — 1 =n — 1, whence m = n, 

aud for all 2 <i < am, a, = 7,. Thus for all 1 <7 < an, 0, = 7). 

Case 2. ‘The first symbol s of a, is of degree d. Then the first. symbol of 

7, is also s, and for some designators 1) 0.065 Ty Pls. s Pd OL = SM... Te 

and 7 spre. pa Thus sap... Mag Om Ny PadT2 00+ Tay tnd 

Tye MUG Q..6 Om = Py... pdT2...T. Since my ...7yo2...0), is shorter 

than 0) ...0jn, by the induction hypothesis, d-+1 — 1 = d+n—1, whence 

m = n, and for all i,1 < i < d, m, = p;, and thus o, = sm... = 

Spi.-- Pa = 7, and for all i,2<i<m,o,;=7;. © 

Returning now to our own language, we want to examine what happens 

to the expressions involved in Ernst’s paradox on our proposal. « becomes: 

b° appended to °a, 

A remains: 

ab , 

and 4 becomes either: 

‘°b° appended to °a’°
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or: 

°b° appended to °a°. 

In the former case 4 denotes «; in the latter, A. In neither case is the 

denotation of » ambiguous. 

And what of analogues of °app(‘a’,‘b’,‘c’)°? Well, according to our scan- 

ning procedure, ‘"app(°a°, °°, °c°)° és ill-formed, as it contains three 
operands, instead of the required two. 

i app(°a®, rope ° ce ye 

and 

° opfo ecole 
’ ) 

Ho app (’° a , 

however, are both well-formed, denoting the oddities '°b°, °ca’° and ’°ca°, 

°Y°, respectively. 
It would be a pity if our new kind of quotation prevented us from imitating 

the calculation involving °‘appended to its own quotation’ appended to its 

own quotation® which shows there to be an expression that denotes itself. 

But it does not. For, taking °quotation® to mean our new sort of quotation, 

we have that 

°appended to its own quotation® appended to its own quotation 

= °appended to its own quotation® appended to the quotation of °appen- 

ded to its own quotation® 

= appended to its own quotation? appended to °° appended to its own 

quotation” 

= '°°appended to its own quotation® appended to its own quotation’, 

As usual, the last expression both denotes and is identical with the first, 

and we have found an expression of the desired kind. 

We conclude with the refrain: 

According to W. Quine, 
Whose views on quotation are fine, 

°Boston® names Boston, 

And '°°Boston®” names °Boston®, 
But 9 doesn’t designate 9.
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The Hardest Logical Puzzle 

Ever 

Some years ago, the logician and puzzle-master Raymond Smullyan devised 

a logical puzzle that has no challengers I know of for the title of Hardest 

Logical Puzzle Ever. [ll set out the puzzle here, give the solution, and then 

briefly discuss one of its more interesting aspects. 

The puzzle: Three gods A,B, and C are called, in some order, True, 

False, and Random. True always speaks truly, False always speaks falsely, 

but whether Random speaks truly or falsely is a completely random matter. 

Your task is to determine the identities of A, B, and C by asking three yes- 
uo questions; cach question must be put to exactly one god. The gods 

widerstand English, but will answer all questions in their own language, in 

which the words for “yes” and “no” are “da” and “ja,” iu some order. You 

do not know which word means which! 

Before | present the somewhat lengthy solution, let me give answers to 

certain qnestions abont the puzzle that occasionally arise: 

@ [It could be that some god gets asked more than one question (and 

hence that some god is not asked any question at all). 

# What the second question is, and to which god it is put, may depend 

on the answer to the first question. (And of course similarly for the 
third question.) 

# Whether Random speaks truly or not should be thought of as de- 

pending on the flip of a coin hidden in his brain: if the coin comes 

Repreinted by kind permission of the editor from The Harvard Review of Philosophy 

6 (1996): 62-65. An Italian version of this article, translated by Massimo Piattelli- 
Palmarini, appeared in La Repubblica on 16 April 1992 under the title “L’indovinello pit 

difficile del mondo.” 

!The extra twist of your not knowing which the gods’ words for “yes” and “no” are 
is due to the computer scientist John McCarthy. 
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down heads, he speaks truly; if tails, falsely. 

® Random will answer “da” or “ja” when asked any yes-no question. 

The Solution: Before solving The Hardest Logic Puzzle ever, we will set 

out and solve three related, but much easier puzzles. We shall then combine 

the ideas of their solutions to solve the Hardest, Puzzle. The last two puzzles 

are of a type that may be quite familiar to the reader, but the first: one is 

not well known (in fact the author made it up while thinking about the 

Hardest Puzzle). 
Puzale 1: Noting their locations, I place two aces and a jack face down 

on a table, in a row; you do not see which card is placed where. Your 

problem is to point to one of the three cards and then ask me a single 

yes-no question, from the answer to which you can, with certainty, identify 

one of the three cards as an ace. If you have pointed to one of the aces, I 

will answer your question truthfully. However, if you have pointed to the 

jack, I will answer your question yes or no, completely at random. 

Puzzle 2: Suppose that, somehow, you have learned that you are speaking 

not to Random but to True or False—you don’t know which—and that 

whichever god you’re talking to has condescended to answer you in English. 

For some reason, you need to know whether Dushanbe is in Kirghizia or 

not. What one yes-no question can you ask the god from the answer to 

which you can determine whether or not Dushanbe is in Kirghizia? 

Puzzle 3: You are now quite definitely talking to True, but he refuses to 

answer you in English and will only say “da” or “ja.” What one yes-no 

question can you ask True to determine whether or not Dushanbe is in 

Kirghizia? 

Here's one solution to Puzzle 1: Point. to the middle card, and ask “Is the 

left card an ace?” If T answer “yes,” choose the left card; if I answer “no,” 

choose the right card. Whether the middle card is an ace or not, you are 
certain to find an ace by choosing the left card if you hear me say “yes” and 

choosing the right card if you hear “no.” The reason is that if the middle 

card is an ace, my answer is truthful, and so the left card is an ace if I say 

“yes,” and the right card is an ace if I say “no.” But if the middle card is 
the jack, then both of the other cards are aces, and so again the left card is 

an ace if I say “yes” (so is the right card but that is now irrelevant), and 
the right card is an ace if I say “no” (as is the left card, again irrelevantly). 

To solve Puzzles 2 and 3, we shall use iff. 
Logicians have introduced the useful abbreviation, “iff,” short for “if, 

and only if.” The way “iff” works in Logic is this: when yon insert “iff” 

between two statements that are either both true or both false, you get a 

statement that is true; but if you insert it between one true and one false 

statement, you get a false statement. Thus, for example, “The moon is
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made of Gorgonzola iff Rome is in Russia” is true, because “The moon is 

made of Gorgonzola” and “Rome is in Russia” are both false. But “The 

moon is made of Gorgonzola iff Rome is in Italy” and “The moon lacks air 

iff Rome is in Russia” are false. However, “The moon lacks air iff Rome 

is in Italy” is true. (“Iff” has nothing to do with causes, explanations, or 

laws of nature.) 
To solve Puzzle 2, ask the god, not the simple question “Is Dushanbe in 

Kirghizia?” , but the more complex question “Are you True iff Dushanbe is 

in Kirghizia?” Then (in the absence of any geographical information) there 

are four possibilities: 

1. The god is True and D. is in K.: then you get the answer “yes.” 

2. The god is True and D. is not in K.: this time you get “no.” 

3. The god is False and D. is in K.: you get the answer “yes,” because 

only one statement is true, so the correct answer is “no,” and the god, 

who is False, falsely says “yes.” 

4. The god is False and D. is not in K.: in this final case you get the 

answer “no,” because both statements are false, the correct answer is 

“yes,” and the god False falsely says “no.” 

So you get a yes answer to that complex question if D. is in K. and a no 

answer if it is not, no matter to which of True and False you are speaking. 

By noting the answer to the complex question you can find out. whether D. 

is in K. or not. 

‘The point. to notice is that iF you ask either True or False “Are you ‘True 

UN?" and receive your answer in English, then you get the answer “yes” 

if X is truce and “no” if X is false, regardless of which of (he two you are 

speaking to. 

The solution to Puzzle 3 is quite similar: Ask True, not “Is Dushanbe in 

Kirghizia?” but “Does ‘da’ mean yes iff D. is in K.?” There are agaiu four 

possibilities: 

1. “Da” means yes and D. is in K.: then True says “da.” 

2. “Da” means yes and D. is not in K.: then True says “ja” (meaning 

no). 

3. “Da” means no and D. isin K.: then True says “da” (meaning no). 

4. “Da” means no and D. is not in K.: then both statements are false, 

the statement “ ‘Da’ means yes iff D. is in K.” is true, the correct 

answer (in English) to our question is “yes,” and therefore True says 
abs ” 
ja
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Thus you get the answer “da” if D. is in K. and the answer “ja” if not, 

regardless of which of “da” and “ja” means yes and which means no. The 

point this time is that if you ask True “Does ‘da’ mean yes iff Y?”, then 

you get the answer “da” if Y is true and you get the answer “ja” if Y is 

false, regardless of which means which. 

Combining the two points, we see that if you ask one of True and False 

(who we again suppose only answer “da” and “ja”), the very complex ques- 

tion “Does ‘da’ mean yes iff, you are True iff X?” then you will get the 

answer “da” if X is true and get the answer “ja” if X is false, regardless of 

whether you are addressing the god True or the god False, and regardless 

of the meanings of “da” and “ja.” 

We can now solve The Hardest Logic Puzzle Ever. 

Your first move is to find a god who you can be certain is not Random, 

and hence is either True or False. 

To do so, turn to A and ask Question 1: Does “da” mean yes iff, you 

are True iff B is Random? If A is True or False and you get the answer 

“da,” then, as we have seen, B is Random, and therefore C is either true 

or false; but if A is True or False and you get the answer “ja,” then B is 

not Random, therefore B is either True or False. 

But what if A is Random? 

If A is Random, then neither B nor C' is Random! 
So if A is Random and you get the answer “da,” C' is not Random (neither 

is B, but that’s irrelevant), and therefore C' is either True or False; and if 

A is Random and you get the answer “ja,” B is not random (neither is C, 

irrelevantly), and therefore B is either True or False. 

Thus, ro matter whether A is True, False. or Random, if you get. the 

answer “da” to Question 1, C is either True or False, aud if you get the 

answer “ja,” 2 is either True or False! 
Now turn to whichever of B and C you have just discovered is either 

True or False--let us suppose that it is B; if it is C’, just interchange the 

names B and C in what follows—and ask Question 2: Does “da” mean yes 

iff Rome is in Italy? True will answer “da,” and False will answer “ja.” 

Thus, with two questions, you have either identified B as True or identified 

B as False. 
For our third and last question, turn again to B, whom you have now 

either identified as True or identified as False, and ask Question 3: Does 

“da” mean yes iff A is Random? 

Suppose B is True. Then if you get the answer “da,” then A is Random, 

and therefore A is Random, B is True, C is False, and you are done; but 

if you get the answer “ja,” then A is not Random, so A is False, B is true, 

C is Random, and you are again done. 

Suppose B is False. Then if you get the answer “da,” then since B speaks



410 III. Various Logical Studies and Lighter Papers 

falsely, A is not Random, and therefore A is True, B is False, C' is Random, 

and you are done; but if we get “ja,” then A is Random, and thus B is False, 

and C is True, and you are again done. FINIS. 

Well, I wasn’t speaking falsely or at random when IJ said that the puzzle 

was hard, was I? 

A brief remark about the significance of the Hardest Puzzle: 

There is a law of logic called “the law of excluded middle,” according to 

which either X is true or not-X is true, for any statement X at all. (“The 

law of non-contradiction” asserts that statements X and not-X aren’t both 

true.) Mathematicians and philosophers have occasionally attacked the idea 

that excluded middle is a logically valid law. We can’t hope to settle the 

debate here, but can observe that our solution to Puzzle 1 made essential 

use of excluded middle, exactly when we said “Whether the middle card is 

an ace or not...” It is clear from The Hardest Logic Puzzle Ever, and 

even more plainly from Puzzle 1, that our ability to reason about alternative 

possibilities, even in everyday life, would be almost completely paralyzed 

were we to be denied the use of the law of excluded middle. 

By the way, Dushanbe is in Tajikistan, not Kirghizia.
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Godel’s Second Incompleteness 

Theorem Explained in Words 

of One Syllable 

First of all, when I say “proved,” what I will mean is “proved with the aid 

of the whole of math.” Now then: two plus two is four, as you well know. 

And, of course, it can be proved that two plus two is four (proved, that 

is, with the aid of the whole of math, as I said, though in the case of two 

plus two, of course we do not need the whole of math to prove that it is 

four). And, as may not be quite so clear, it can be proved that it can be 

proved that two plus two is four, as well. And it can be proved that it can 

be proved that it can be proved that two plus two is four. And so on. In 

fact, if a claim can be proved, then it can be proved that the claim can be 

proved, And that too can be proved. 

Now: two plus two is not five. And it can be proved that two plus two is 

hot. five, And it can be proved that it can be proved that two plus two is 
not five, and so on. 

Thus: it can be proved that two plus two is not five. Can it be proved 
as well that two plus two is five? It would be a real blow to math, to say 

the least, if it could. If it could be proved that two plus two is five, then 

it could be proved that five is not five, and then there would be no claim 

that could not be proved, and math would be a lot of bunk. 
So, we now want to ask, can it be proved that it can’t be proved that two 

plus two is five? Here’s the shock: no, it can’t. Or to hedge a bit: éf it can 

be proved that it can’t be proved that two plus two is five, then it can be 

Proved as well that two plus two is five, and math is a lot of bunk. In fact, 

if math is not a lot of bunk, then no claim of the form “claim X can’t be 

proved” can be proved. 

From Mind 103 (1994): 1-3. Reprinted by kind permission of Oxford University Press. 
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So, if math is not a lot of bunk, then, though it can’t be proved that two 

plus two is five, it can’t be proved that it can’t be proved that two plus two 

is five. 

By the way, in case you’d like to know: yes, it can be proved that if it 

can be proved that it can’t be proved that two plus two is five, then it can 

be proved that two plus two is five. 

“I wish he would explain his explanation” 

Tf, as we shall assume, the whole of mathematics can be formalized as a 

formal theory of the usual sort (no small assumption), then there is a for- 

mula Proof(z, y) of the language (of that theory) obtainable from a suitable 

description of the theory (“as” a formal theory) that meets the following 

three conditions: 

(i) iff p, then + Op, 

(ii) + (O(p— 4) > (Op— O49), and 
(iti) - (Gp — OOp) 

for all sentences p,q of the language. We have written: Op to abbreviate: 

dzProof(z,"p"), where "p' is a standard representation in the language for 

the sentence p. ("p™ might be the numeral for the Gadel number of p.) “F” 
is a preposed verb phrase (of our language) meaning “is provable in thie 

theory.” “Proof(z,y)” is a noun phrase (of our language) denoting a for- 

mula (of the theory’s language) whose construction parallels any standard 

definition of “...is a proof of _ in the theory.” Thus, for any sentence p of 

the language, Op ix another sentence of the language that. may be regarded 

as saying that p is provable in the theory.! 

Conditions (i), (ii), and (ili) are called the Hilbert) Bernays Lob deriv- 

ability conditions; they are satisfied by all reasonable formal theories ju 

which a certain small amount of arithinetic can be proved. 

Since the theory is standard, all tautologies in its language are prov- 

able in the theory, and all logical consequences in its language of provable 

statements are provable. 
It follows that for all sentences p,q, 

(iv) if + (pq), then + (Op — Og). 

For: if (p > q), then by (i) F O(p — q); but by (ii), F (A(p > 4) > 
(Cp —+ Og)) , and then F (Op — Og) by modus ponens. 

is the zero-place truth-functional connective that is always evaluated 

as false. Of course is a contradiction. We shall need to observe later 

'For an extended account of the application of modal logic to the concept of provability 
in formal theories, see (Boolos, 1993b).
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that (-g — (q — )) is a tautology. If 1 is not one of the primitive 
symbols of the language, it may be defined as any refutable sentence, e.g., 

one expressing that two plus two is five. 

With the aid of _L, there is an easy way to say that the theory is consistent: 

1, ie, L is not provable in the theory. The sentence of the language 

stating that the theory is consistent can thus be taken to be —OL, which 

is identical with ~22Proof(z," 17). 
We may prove Gédel’s second incompleteness theorem, which states that 

if the theory is consistent, then the sentence of the language stating that the 

theory is consistent is not provable in the theory, as well as the theorem 

that the second incompleteness theorem is provable in the theory (‘the 

formalized second incompleteness theorem” ), as follows. 

Via the technique of diagonalization, introduced by Gédel in “On formally 

undecidable propositions ...,”* a sentence p can be found that is equivalent 

in the theory to the statement that p is unprovable in the theory, i.e. a 

senterce such that 

1 Fp#-Op 

2. E-p-—+-7Op truth-functionally from 1 
3. -Op-+O-Op by (iv) from 2 
4. t-Op-+OOp by (iii) 
5. /7AOp— (Up— 1) a tautology 
6. -O-Op-—O(Op— 1) by (iv) from § 
7 EO(Op— 1) 

(OOp + OL) by (ii) 

& FoOpo+Ol truth-functionally from 3, 6, 7, and 4 

9 FADL+p truth-functionally from 8 and 1 
10. FO) -» Op hy (iv) from 9 
Tl, ok WOOL 3 AD-0L truth-functionally from 8 and 10. 

(We have omitted outermost parentheses in (1) through (11).) 

Thus if -0L, then both F =0-01, by (11), and F O70, by (i), 

whence | 1, by the propositional calculus. So if lf 1, then If n0L. 

2(Gédel, 1931).
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Fundamental Theorems of Provability Logic 

C. I. Lewis launched modern modal logic when he added to classical senten- 

tial logic a two place connective p-3q intended to represent “the conclusion 

that q is logically deducible from the premiss that p.” This was later an- 

alyzed as O(p -+ g) or > o(pA-q), where Op represents necessity in the 
specific sense of “it is a logical theorem that p” or “it is logically provable 

that p” and op represents possibility in the specific sense of “it is not log- 

ically disprovable that p” or “it is logically consistent that p.” Agreement 

was not achieved as to what are the right laws for box O and diamond ¢, 
and systems of modal logic proliferated. In formulating modal systems, as 

primitive connectives may be taken the false 1, the conditional —, and 

necessity O. Then negation =p = p — 1, possibility op = 70-—p, and so 

on may be taken as defined. All modal systems include all axioms and 

rules of classical logic, so that only their distinctively modal axioms and 

rules need to be mentioned. Writing | for provability in the system, the 

minimal system K has the following rule AO of necessitation and axiom Al 
of distribution: 

AQ) If k A, then +- GA 
Al + O(p—q) 7 (Op — Og) 

A normal modal logic is any having both this rule and axiom, the better- 

known ones being obtained simply by adding one or a few additional modal 

axioms to K. Well-known ones include K4, obtained by adding A2 below; 

and S4, obtained by adding both A2 and A3 below: 

A2 -FOp—OOp 

A3 FOp—p 

Perhaps the plurality candidate for the correct logic when the box is read 

as “it is logically provable that” would be S4. The heuristic justification 

for AO is the thought that if it something can be logically proved, then 

exhibiting a logical proof of it should suffice as a logical proof that it can 

be logically proved. As for Al, the thought is that if a conditional and its 

antecedent can both be logically proved, logically proving first the one and 

415
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then the other, and then inferring the consequent from the conditional and 

antecedent, should suffice as a logical proof of the consequent. As for A2, 

the thought is much the same as for AO. As for A3, the thought is that 

any axioms from which a proof begins are true, and the rules of inference 

involved in a derivation preserve truth, so that anything that is provable is 

true, and in particular, if it is provable that p, then it is true that p, and it 

is true that p if and only if p. 

Gédel himself raised the question which of the many modal logics is the 

correct one if we read the box as arithmetical provability or provability in 

PA!. To state his question more precisely, recall the notation from the 

discussion of his work in the Introduction to Part III: "a" is the code 

numeral of a and 7(2z) is the provability predicate. An assignment * of 

closed formulas of the language of PA! to the sentence letters p,q,r,... of 

modal logic can be extended to all modal formulas recursively, as follows: 

tea 

(A — B)* = A* — B* 
(G.A)* = a("A*) 

Call such an assignment an arithmetic realization. Call a modal formula 

A apodictic or always-provable for PA! if A* is provable in PA! for any 
arithmetic realization +, and veracious or always-true if A* is true for any 

arithmetic realization +. Gddel’s question amounts to this: Which of the 

many modal logics is the one whose theorems are precisely the apodictic 

formulas? One may ask the same question for veracious formulas. Godel 

himself noted that the correct logic would have the rule AO and the axioms 
Al and A2. That. is because the provability predicate has the corresponding 

properties. Writing | for provability in PA', for all a and {J we have: 

BO If} a, then b a(la) 

Blo oF a(S er 9 7) - (9(F ee)  a(" 739) 
B2 Fxr(hat) 3 r(r(Caty) 

The proofs of BO-B2 are more formal versions of the heuristic arguments 

given above for AQ-A2. But nothing like the heuristic argument for A3, 

which turned on the notion of truth, for which there is no predicate in 
the language of PA?, goes through. In fact the correct modal logic would 

not have the axiom A3, since the provability predicate does not have the 

corresponding property B3, which would be F x("a") — @ 

M. H. Léb in the 1950s established a curious additional property of the 
provability predicate. Gddel had considered a closed formula + that says 

of itself that is not provable, in the sense that y «+ -2("y") is provable, 
and he showed that such a ¥ is in fact unprovable. Leon Henkin considered 

a closed formula ( that says of itself that it is provable, in the sense that 

8 ++ x(" 8") is provable, and he asked whether such a @ is in fact provable.
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L6b answered this question in the affirmative, and indeed showed that for 

any closed formula @, even without the assumption that a — z("a") is 

provable, just the assumption that x(a") — @ is provable already implies 

that a is provable. Moreover, this italicized statement is itself provable, 

which is to say that we have: 

B4 - x(hr(6a?) 3 a@) = x(a?) 

This is something of a brain-twister when considered in isolation from 

its origin in Henkin’s question. Note that Gddel’s second incomplete- 

ness theorem is an immediate consequence of B4. For we may express 

the inconsistency of PA! by m("17) and hence the consistency of PA! by 

aa(TL7) = x(" 17) — L, and then B4 with a = 1 says that the consis- 
tency of PA! is provable in PA! only if PA! is inconsistent. In proving 
B4, Lob used the arithmetic fixed-point theorem, according to which for 

any formula o(x) in the language of PA! there is a closed formula + in the 

language of PA! such that y + o("y") is provable. (The Gédel sentence 
and the Henkin sentences are the instances where o(x) is -7(x) and where 
o(z) is x(z).) Let us give the name GL to the modal logic extending K4 
by adding the following axiom A4, the counterpart to B4: 

A4 | O(Op— p)— Op 

Then LGb’s result gives the following arithmetic soundness theorem: Every 

theorem of GL is apodictic for PA. (Actually, as was shown independently 

by Dick de Jongh and Saul Kripke and Giovanni Sambin, axiom A2 becomes 

redundant given axiom A4.) 
Kripke introduced a model theory for nodal logic, as follows. A frame 

consists of a set W, and a dyadic relation #2 on W. The frame is called finite 

if the set W is finite, reflexive or synunectrie or transitive if the relation 2 is 

reflexive or symmetric or transitive, and so on. Heuristically, W is thought 

of as the set of possible states of the world, and Ray is thought of as 

meaning that y is possible relative to z—whatever that means. A frame 

model consists of these together with a valuation or relation V between 

elements of W and sentence letters. Heuristically, Vxp is thought of as 

meaning that p is true at x. The notion w | A of A being true at world w 
is then defined for compound A by recursion. The recursion clauses read: 

w 1 
wEA-— Bififw EA, thenw- B 
w — OA iff for all w’ such that wRw’,w' E A 

Given a class I of frames, a sentence is valid for I if it comes out true at ev- 

ery world in every model whose frame belongs to Pr. Various modal systems 

can be characterized as having as theorems precisely the sentences valid for 

this, that, or the other class of frames, determined by this, that, or the other



A18 Afterword 

condition on the relation R. The minimal system K is characterized by the 

class of arbitrary frames, with no special condition on R. The system K4 is 

characterized by the class of transitive frames; the system $4 by the class 

of transitive and reflexive frames. In all these results, there is a pendant 

to the effect that the system has the finite model property. In each case, 

where the logic has been mentioned as being characterized by some class T° 

of frames, it is equally characterized by the class 9 of finite members of I. 

This property implies that the system is decidable: There is a “mechanical” 

procedure for determining, given any modal formula, whether or not it is 

a theorem of the system, namely, the procedure of just searching through 

proofs and finite models simultaneously, until one either finds a proof or 

a finite counter-model. (In some cases these decidability results had been 

obtained earlier using other methods by J. C. C. McKinsey.) 

Krister Segerberg gave a model-theoretic characterization of GL. It can be 

made to seem more intuitive by considering an alternative temporal reading 

of the box as “it has always been the case that” and of the diamond as “it 

has sometime been the case that.” On such a reading, one doesn’t want 

the axiom A2, which is equivalent to -(=p A —¢-p), since something may 

now fail for the first time, having previously never failed. And one may, 

depending on one’s conception of the structure of time, want additional 

axioms not usually considered on the original reading of the box. Consider 

for instance axiom A4 above, which is equivalent to o-p — o(>pA-7¢ 7p). 
This says that if something has sometime failed, then it has sometime 

failed for the first time. One may want this if one conceives of time as so 

structured that there is no infinite sequence of earlier and carlier times. On 

the alternative reading of the box, in a model Af = (W, I?, V) the set. W 
would be thought of as the set of present of past stages of the world, and the 

relation Ray would be thought of as meaning that y is past relative to in 

other words, that ais later than y. Segerberg’s result is that the system GL 

is characterized by the class of transitive and converse-well-founded frames. 

(According to the author, this result. had actually been obtained by Kripke 

and communicated privately to him, but not published.) What does this 

last condition mean? It means that there is no infinite sequence of elements 

21, 22,23,... of W such that each stands to the next in the converse of the 

relation R. And what does that mean? It means that if R means “later,” 

so that its converse means “earlier,” then there is no infinite sequence of 

earlier and earlier elements of W. Again the proof gives the finite model 

property. Note that converse-well-foundedness of R implies irreflexivity 

of R, the non-existence of x such that Rrx. For finite transitive frames, 
converse-well-foundedness simply reduces to irreflexivity. 

De Jongh and Sambin highlighted the correspondence between GL and 

arithmetic provability by establishing a modal fixed-point theorem, a kind
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of parallel to the arithmetic fixed-point theorem. The statement of the 

full theorem is complicated, and best approached in stages. Let S(p) be a 

formula in which every occurrence of the sentence letter p is in the scope 

of a modality O. First, suppose there are no other sentence letters in 

S(p). It can be proved that there is a formula G' not involving p such 
that + G «+ S(G). For example, for S(p) = 7Up, this would be a formula 
asserting its own unprovability, as in G6del’s first incompleteness theorem. 

Further, the formula G can be taken to imvolve no other sentences letters 

either. In the example, it turns out it can be taken to be =OL, the formula 

asserting consistency, as in Gédel’s second incompleteness theorem. Yet 

further, the formula G is unique in the sense that if G’ is any other such 

formula, then + G + G". In the example, any formula asserting its own 

unprovability is equivalent to the formula asserting consistency—a new link 

between the two incompleteness theorems. Finally, S(p) can be allowed to 

contain other sentence letters besides p after all (which of course will have 
to be allowed in G). The conclusion of the full final result may be stated 
as follows: There is a formula H not involving p or any sentence letter 

not in S(p) such that | (p + S(p)) + (p — H). For the history of this 
result, including the work of Claudio Bernardi and Craig Smorynski on 

preliminary partial results, see the joint paper (Boolos and Sambin, 1991). 

Robert Solovay completed the picture by proving the arithmetical com- 

pleteness theorem: Every apodictic modal formula A is a theorem of GL. 

Or equivalently, if A is not a theorem of GL, then A is not apodictic for 

PA!. Note that to say that A is not a theorem of GL is equivalent to 

saying, that there is a counter-model to A, meaning a finite, transitive, ir- 

reflexive model Af = (W.R,V) in which A comes out false at some z in 
W. To say that A is not apodictic for PA! is the same as saying that there 

is a counter-realization for A, an arithmetic realization * such that A” is 

not provable in PA!. Solovay showed how to construct a counter-realization 

given any counter-model. Besides thus answering Gédel’s original question, 

he clarified the relationship between the class of apodictic and the class of 

veracious closed formulas, in such a way as to derive the decidability of 

the latter from the previous established decidability of the former. In one 

direction the relationship is clear: @ is apodictic or always-provable if and 

only if Oa is veracious or always-true. In the other direction, given a, let 

Q@g be the conjunction of all formulas 08 — @ with @ a subformula of a. 

Then @ is veracious if and only if ag — @ is apodictic. 

Further Topics in Provability Logic 

None of the author’s articles on provability logic has been included in the 

present volume, partly because of the more technical character of these 

articles, mainly because of the availability of the author’s book The Logic
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of Provability. Throughout the book new proofs, some due to the author 

and some to others, are given for many of the results reported, whether the 

author’s or others’. The early chapters of the book are mainly devoted to 

detailed exposition of the results just outlined. The late chapters of the 

book are mainly devoted to detailed exposition of work of Solovay and of 

the “ex-Soviet school” (Sergei Artemov, Giorgie Dzhaparidze, Konstantin 

Ignatiev, Valery Vardanyan, et al.), much of this work having previously 

been unpublished or published only in Russian. The author’s own research 

results are found especially in the middle chapters. The book supersedes, 

either by directly including their results or by including more general ones 

that subsume them, the author’s earlier book, The Unprovability of Consis- 

tency, and the bulk of his research papers, and supersedes as well his various 

abstracts (Boolos, 1975a) and (Boolos, 1987c), reviews (Boolos, 1981b) and 
(Boolos, 1988b), and popularization (Boolos, 1984b). (One research paper 

noted below is not cannibalized in the book; and the co-authored exposition 

(Boolos and Sambin, 1991) contains historical information still not avail- 

able elsewhere in print.) The author’s work is briefly summarized under 

seven heads in the paragraphs that follow. 

Special classes of formulas in GL. Chapter 7 of the book begins with the 

author’s oldest contribution to the subject, a normal form theorem, ac- 

cording to which any letterless formula is provably equivalent. in GL to a 

truth-funectional componnd of fonnulas from among the sequence L,GL, 

OOL, GOGOL, and so on. (This uormal form theorem was subsequeutly 

but independently found by Johann van Benthem and by Roberto Magari.) 

Note that for A letterless, A* is the same for all arithmetic realizations + 
Since (1)* PCGlb)e ~ rh 13), and seoon, are all untrue and unprev- 

able, the normal form theorem gives decidahbility for the classes of apodictic 

and veracious letterless formulas (independently of and historically prior 

to Solovay’s theorems). This auswered an item from a list of questions 

Harvey Friedman circulated as a challenge to logicians in the early 1970s. 

(Friedman’s problem was independently solved by Bernardi and Franco 

Montagna.) The decidability result can be extended to give decidability 
(still independently of Solovay’s theorems) for formulas of the kind whose 

existence is guaranteed by the basic modal fixed-point theorem, and indeed 

the proof of the result can be adapted to give a proof of that theorem. The 

middle of Chapter 7 presents further results of the author on other special 

classes of formulas, notably on the relationship between reflection princi- 
ples or formulas of the form OG — @ and iterated consistency assertions 

or formulas of the form ~O1,-00.1, 0001, and so on. Solovay showed 

that normal forms do not exist even for formulas with just a single sentence 
letter p, and the author’s (simplified) proof is given at the end of Chapter 7.
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(The exposition in Chapter 7 generally supersedes articles (Boolos, 1976), 

(Boolos, 1977), (Boolos, 1979a), and (Boolos, 1982b).) 

Global properties of GL. One of the key properties of classical logic is stated 

in the Craig interpolation theorem: If A — C is valid, then there is a B all 

of whose non-logical symbols occur both in A and in C such that A > B is 

valid and B — C is valid. The author established that this result holds for 

GL also, and as expounded in Chapter 8, it yields an alternative proof of 

the generalized modal fixed-point theorem. Another alternative proof of the 

generalized modal fixed-point theorem due to the author is also expounded 

in the same chapter. (The proof of the interpolation theorem in Chapter 8 

follows Smorynski, who obtained that: result independently.) Another of the 

key properties of classical logic is decidability, which as already stated holds 

also for GL in consequence of the finite model property. The author shows 

in Chapter 10 that there is a decision procedure more practically feasible 

in examples of interest. For the tree method, familiar from textbooks for 
classical logic, can be adapted to GL. 

Modal systems related to GL. Léb’s work was in response to a question of 

Leon Henkin. The Gédel sentence, which asserts its own unprovability, is 

indeed unprovable. What, Henkin asked, of the similar sentence that asserts 

its own provability? Lob showed it is indeed provable, While L6b’s work 

essentially established the proof-theoretic counterpart of the modal axiom 

A4 above, to auswer Henkin's question it would have sufficed to establish 

the counterpart of the following weaker axiom A4— 

Ad~ + O(Up  p) > Up 

The anther conjectured that, in contrast to the system GL obtained by 
adding A-l to K, the system GH obtained by adding A47 does not yield 

axiom A2 above as a theorem. This conjecture was proved by Magari 

(whose proof was subsequently simplified by Max Creswell). Since the 

author and Sambin together proved that A2 is valid for the class of frames 
for which A4~ is valid, it follows that there is no class of frames such that 

all and only the formulas that are theorems of GH are valid in that class. 

(The exposition in the book presents a proof by Lon Berk that A4 and A4~ 

are valid in exactly the same class of frames.) GH is an incomplete logic, 

and improving on previous examples of such logics, one whose characteristic 

axiom A47 involves only a single sentence letter, and nesting of boxes only 

to depth two. This material is expounded in Chapter 11 (which exposition 

generally supersedes article (Boolos and Sambin, 1985)). 

Modal systems related to GL and alternate notions of realization. Since 

there is no truth-predicate in the language of PA!, one cannot literally say 

in that language that a given closed formula a@ is both provable and true.
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But one can come close, by saying a("a') Aa. Suppose we modify the 

notion of realization by amending the recursion clause for the box to read 

as follows: 

(DA)* = (7 A*7) A At 

The question then arises whether there are modal systems whose theorems 

are precisely the apodictic and precisely the veracious formulas for this al- 

ternate notion of realization, and that thus correspond to GL and GLS for 

the original notion of realization. In fact, one and the same system corre- 

sponds both to GL and to GLS, a system known as Grz for Grzegorczyk. 

It is obtained by adding to K the following axiom: 

A5 -FO(O(pa Dp) > p) +p 

(It was shown by W. J. Blok and K. E. Pledger that A2 and A3 are then 
derivable as theorems. It was shown by Segerberg that Grz is characterized 

by reflexive, transitive, and converse-weakly-well-founded frames, or equiv- 

alently by finite reflexive, transitive, and anti-symmetric frames.) Chapter 

12 expounds the author’s results both about the correspondence with GL 

(independently obtained by Rob Goldblatt and apparently also by Smoryn- 

ski) and with GLS. (The exposition in Chapter 12 generally supersedes the 
articles (Boolos, 1980b), (Boolos, 1980c), and (Boolos, 1980d). Also due to 
the author, and independently to Arnon Avron, is the Craig interpolation 

theorem for Grz.) 

Alternate notions of realization. The author is one of several who showed 
that Solovay’s theorem holds uniformly, meaning that there js a singte 

arithmetic realization « such that for any A that is not apodictic, A* is 

not provable in PA!. ‘This rest is exponnded just. after Solovay’s theo- 

rem at the end of Chapter 9 (which exposition generally supersedes article 

(Boolos, 1982a)). Other variations on Solovay’s theorem involve alteruate 

interpretations of the box and diamond, for which some background is re- 

quired. There is a hierarchy of complexity among formulas of the language 

of PA!. The hierarchy begins with some very simple formulas called the 
limited formulas a(21,..-,2n) Closed formulas of this class can be verified 

or falsified by computation, and if true can be proved in PA!, essentially 

just by exhibiting their computational verification. The £9 and M$ are 

just the limited formulas, while the °,, and II°,, formulas are those of 
forms 4y @(71,...,rn,y) and Vya(21,...,2n,y) with a being T1® and with 

a being ©9, respectively. A set of natural numbers is called £2 or II® if 
there is a E92 or (1° formula o(x) or x(x) such that the set in question is 
the set of natural numbers of which that formula is true; and a set is called 
A? if it is both £9 and 11. The A® sets are also known as the recursive
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sets, and the D9 sets as the recursively enumerable sets. The consistency 

of a formula 8 with PA!, meaning the consistency of the theory PA! + £, 

is equivalent to the assertion that in PA! + @ all the limited closed formu- 

las that are provable are true. By analogy, one can define n-consistency 

to mean that all ©° closed formulas that are provable are true, and w- 
consistency to mean n-consistency for all n. The dual notion to that of 6 

being w-consistent (the notion of G being such that —@ is not w-consistent) 

amounts to @ being provable in PA! by one application of the w-rule, the 

infinitary rule that permits Vza(x) to be inferred from a(0), a(§0), a(§§0), 

and so on. Provability by unlimited applications of this rule is called w- 

provability, but for PA! this notion simply reduces to that of truth, every 

true closed formula being w-provable. For theories with richer languages, 

beginning with PA?, w-provability does not just reduce to truth. Articles 

(Boolos, 1985a) and (Boolos, 1980a) adapt Solovay’s proof to show that 

GL still characterizes the apodictic formulas if the notion of realization is 

modified to take 1-consistency or w-consistency and the dual thereof as the 

interpretation of the diamond and the box. Solovay himself showed that GL 

still characterizes the apodictic formulas taking w-provability and its dual 

as the box and diamond, provided one considers not arithmetic realizations 

but analytic realizations, involving formulas of the language of PA?. 

Bimodal logic. Dzhaparidze developed a bimodal logic GLB with two styles 

of box aud diamond, and considered arithmetic realizations with one style 

of diamond interpreted by ordinary consistency, and the other style inter- 

preted by w-consistency, and showed that GLB yields as theorems all and 

only the apodictic formulas. (Ignatiev simplified the original very compli- 

cated proofs.) Finally, the author showed the techniques of Solovay and 

Iguatiey could be combined to prove that GLB yields as theorems all and 

only the apodictic formulas when the two boxes are interpreted as ordinary 

provability and w-provability, and analytic rather than arithmetic realiza- 

tions are considered. The exposition of this material on alternate notions 

of realization and on bimodal logic, with related results, occupies Chapters 

14-16 (the latter part of which largely supersedes article (Boolos, 1993a)). 

Predicate provability logic. Quine observed that while we have a rigorously 

defined notion of what it is for a closed formula a to be provable, we have 

no rigorously defined notion of what it is for an open formula f(x) to be 

provable of a thing, and concluded such combinations of modalities and 

quantifiers as Jz OU are meaningless if the box is read as “it is provable 

that ...” One might hope to make sense of the notion of 6(x) being prov- 

able of a thing by defining this to hold just in case G(£) is provable for 

some term ¢ denoting the thing, but this doesn’t work unless some reason 

can be given for privileging one particular such term ¢ over all others, since
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A(t) may turn out to be provable for some ¢ and not others. The author 

points out that in arithmetic (in apparent contrast with analysis and set. 

theory) it does seem reasonable to privilege certain terms for the things we 

are concerned with. Namely, the things we are concerned with are the nat- 

ural numbers, and it seems reasonable to privilege the standard numerals 

0, §0, §§0, and so on, as terms for them. And indeed that is what is done 

in predicate provability logic. That one does not get a system of modal 

logic characterizing the apodictic formulas just by adjoining the appara- 

tus of quantification theory to GL was established by Montagna in 1984. 

Ultimately, it has turned out that there is no system of modal logic that 

characterizes the apodictic formulas at the predicate level. The reason is 

that the set of (code numbers of) theorems of any system will be a D? 
set, since the provability predicate (x) can be written as a ©? formula, 

but the set of (code numbers of) apodictic formulas is not £9, by a theo- 
tem of Vardanyan, who gave an exact characterization of the complexity of 

this set. Joint work of Vann McGee and the author, extending results of 

Artemov, gave an exact characterization (cited in the book as a result of 

the author, McGee, and Vardanyan) of the complexity of the set of (code 

numbers of) veracious formulas, which is even farther from being 9. The 
set of (code numbers of) true formulas is not £9 or II? for any n, since the 
truth-predicate cannot be written as a formula of the language, and the 

set of (code numbers of) veracious formulas is even more complicated than 
that. The exposition of this material occupies Chapter 17 (which generally 

supersedes article (Boolos and McGee, 1987)).
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