SECOND EDITION

Git

Scott Chacon and Ben Straub

EVERYTHING YOU NEED TO
KNOW ABOUT GIT

Apress:



Pro Git

Scott Chacon, Ben Straub

Version 2.1.448, 2025-07-25



Table of Contents

License
Preface by Scott Chacon
Preface by Ben Straub
Dedications
Contributors
Introduction
Getting Started
About Version Control
A Short History of Git
What is Git?
The Command Line
Installing Git
First-Time Git Setup
Getting Help
Summary
Git Basics
Getting a Git Repository
Recording Changes to the Repository
Viewing the Commit History
Undoing Things
Working with Remotes
Tagging
Git Aliases
Summary
Git Branching
Branches in a Nutshell
Basic Branching and Merging
Branch Management
Branching Workflows
Remote Branches
Rebasing
Summary
Git on the Server
The Protocols
Getting Git on a Server
Generating Your SSH Public Key
Setting Up the Server
Git Daemon

o U1 B W DN

10
10
14
14
18
18
21
24
25
26
26
28
40
46
50
35
60
62
63
63
70
79
82
85
95
104
105
105
110
112
113
116



GItWED 119
GItLab . . 121
Third Party Hosted OptionsS. . ... ... 124
SUIMIMATY . . . oo 125
Distributed Git. .. ... ... 126
Distributed Workflows . . .. ... 126
Contributing to a Project . . ... ... e 129
Maintaining a Project . . ... ... 150
SUIMIMATY . . o oo 165
GItHUD . 166
Account Setup and Configuration . ............... ... 166
Contributing to a Project . . ... ... 171
Maintaining a Project . . ... ... 191
Managing an organization. .. .............. . e 205
Scripting GIitHuUb . . ... 208
SUIMIMATY . . . oo 217
GIt TO0IS .« . oo 218
Revision Selection .. ... ... .. e 218
Interactive Staging. . ... ... ... 226
Stashing and Cleaning . ......... ... .. e 230
Signing Your Work. . . ... 236
SearChing . . ... .. . . i 239
Rewriting HIStOTY. . . .. ... o e 243
Reset Demystified .. ... ... .. e 251
Advanced Merging. . ... ... ... 271
ReTere . 288
Debugging with Git . ... ... ... e 295
Submodules. . ... 298
Bundling. . .. ... 318
Replace . . . 322
Credential Storage . .. ... ... 330
SUIMIMATY . . . oo 335
Customizing Git. .. ... ... 336
Git Configuration . . ... ... e 336
GIt AttribuUtes. . . e 346
GIt HOOKS . . . 354
An Example Git-Enforced Policy . ...... ... 357
SUIMIMATY . . . oo 366
Git and Other SYStemMS. . ... ... 367



Migrating to Git 399

Summary 413
Git Internals 414
Plumbing and Porcelain 414
Git Objects 415
Git References 425
Packfiles 429
The Refspec 432
Transfer Protocols 435
Maintenance and Data Recovery 440
Environment Variables 447
Summary 452
Appendix A: Git in Other Environments 453
Graphical Interfaces 453
Git in Visual Studio 458
Git in Visual Studio Code 459
Git in Intelli] / PyCharm / WebStorm / PhpStorm / RubyMine 459
Git in Sublime Text 460
Git in Bash 460
Gitin Zsh 461
Git in PowerShell 463
Summary 465
Appendix B: Embedding Git in your Applications 466
Command-line Git 466
Libgit2 466
JGit 471
go-git 474
Dulwich 476
Appendix C: Git Commands 478
Setup and Config 478
Getting and Creating Projects 480
Basic Snapshotting 481
Branching and Merging 483
Sharing and Updating Projects 485
Inspection and Comparison 487
Debugging 488
Patching 489
Email 489
External Systems 491
Administration 491

Plumbing Commands 492






License

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-
sa/3.0 or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.


https://creativecommons.org/licenses/by-nc-sa/3.0
https://creativecommons.org/licenses/by-nc-sa/3.0

Preface by Scott Chacon

Welcome to the second edition of Pro Git. The first edition was published over four years ago now.
Since then a lot has changed and yet many important things have not. While most of the core
commands and concepts are still valid today as the Git core team is pretty fantastic at keeping
things backward compatible, there have been some significant additions and changes in the
community surrounding Git. The second edition of this book is meant to address those changes and
update the book so it can be more helpful to the new user.

When I wrote the first edition, Git was still a relatively difficult to use and barely adopted tool for
the harder core hacker. It was starting to gain steam in certain communities, but had not reached
anywhere near the ubiquity it has today. Since then, nearly every open source community has
adopted it. Git has made incredible progress on Windows, in the explosion of graphical user
interfaces to it for all platforms, in IDE support and in business use. The Pro Git of four years ago
knows about none of that. One of the main aims of this new edition is to touch on all of those new
frontiers in the Git community.

The Open Source community using Git has also exploded. When I originally sat down to write the
book nearly five years ago (it took me a while to get the first version out), I had just started working
at a very little known company developing a Git hosting website called GitHub. At the time of
publishing there were maybe a few thousand people using the site and just four of us working on it.
As I write this introduction, GitHub is announcing our 10 millionth hosted project, with nearly 5
million registered developer accounts and over 230 employees. Love it or hate it, GitHub has
heavily changed large swaths of the Open Source community in a way that was barely conceivable
when I sat down to write the first edition.

I wrote a small section in the original version of Pro Git about GitHub as an example of hosted Git
which I was never very comfortable with. I didn’t much like that I was writing what I felt was
essentially a community resource and also talking about my company in it. While I still don’t love
that conflict of interests, the importance of GitHub in the Git community is unavoidable. Instead of
an example of Git hosting, I have decided to turn that part of the book into more deeply describing
what GitHub is and how to effectively use it. If you are going to learn how to use Git then knowing
how to use GitHub will help you take part in a huge community, which is valuable no matter which
Git host you decide to use for your own code.

The other large change in the time since the last publishing has been the development and rise of
the HTTP protocol for Git network transactions. Most of the examples in the book have been
changed to HTTP from SSH because it’s so much simpler.

It’s been amazing to watch Git grow over the past few years from a relatively obscure version
control system to basically dominating commercial and open source version control. 'm happy that
Pro Git has done so well and has also been able to be one of the few technical books on the market
that is both quite successful and fully open source.

I hope you enjoy this updated edition of Pro Git.



Preface by Ben Straub

The first edition of this book is what got me hooked on Git. This was my introduction to a style of
making software that felt more natural than anything I had seen before. I had been a developer for
several years by then, but this was the right turn that sent me down a much more interesting path
than the one I was on.

Now, years later, I'm a contributor to a major Git implementation, I've worked for the largest Git
hosting company, and I’'ve traveled the world teaching people about Git. When Scott asked if I'd be
interested in working on the second edition, I didn’t even have to think.

It’s been a great pleasure and privilege to work on this book. I hope it helps you as much as it did
me.



Dedications

To my wife, Becky, without whom this adventure never would have begun. — Ben

This edition is dedicated to my girls. To my wife Jessica who has supported me for all of these years
and to my daughter Josephine, who will support me when I'm too old to know what’s going on. —

Scott



Contributors

Since this is an Open Source book, we have gotten several errata and content changes donated over
the years. Here are all the people who have contributed to the English version of Pro Git as an open
source project. Thank you everyone for helping make this a better book for everyone.

Contributors as of ece@b7f5:

Awk-

Adam Laflamme
Adrien Ollier
Akrom K

Alan D. Salewski
Alba Mendez

Aleh Suprunovich
Alex Povel
Alexander Bezzubov
Alexandre Garnier
Alfred Myers
Amanda Dillon
Andreas Bjernestad
Andrei Dascalu
Andrei Korshikov
Andrew Blommestyn
Andrew Kreimer
Andrew Layman
Andrew MacFie
Andrew Metcalf
Andrew Murphy
AndyGee
AnneTheAgile
Anthony Loiseau
Anton Trunov
Antonello Piemonte
Antonino Ingargiola
Ardavast Dayleryan
Artem Leshchev
Atul Varma

Bagas Sanjaya

Ben Sima

Benjamin Dopplinger
Billy Griffin

Bob Kline

Bohdan Pylypenko
Borek Bernard
Brett Cannon

Buzut

C Nquyen

Cadel Watson

Johannes Schindelin
John Lin

Jon Forrest

Jon Freed

Jonathan

Jordan Hayashi
Joris Valette

Josh Byster

Joshua Webb

Junjie Yuan
Junyeong Yim
Justin Clift

Jorn Auerbach
Kaartic Sivaraam
KatDwo

Katrin Leinweber
Kausar Mehmood
Keith Hill

Kenneth Kin Lum
Kenneth Lum

Klaus Frank
Kristijan "Fremen" Velkovski
Krzysztof Szumny
Kyrylo Yatsenko
Karoly Ozsvart
Lars Vogel

Laxman

Lazar95

Leonard Laszlo
Linus Heckemann
Logan Hasson
Louise Corrigan
Luc Morin

Lukas Ro1lin

Marat Radchenko
Marcin Sedtak-Jakubowski
Marie-Helene Burle
Marius Zilénas
Markus KARG

Marti Bolivar
Mashrur Mia (Sa'ad)

Sean Head

Sean Jacobs
Sebastian Krause
Sergey Kuznetsov
Severino Lorilla Jr
Shengbin Meng
Sherry Hietala
Shi Yan

Siarhei Bobryk
Siarhei Krukau
Skyper

Smaug123

Snehal Shekatkar
Solt Budavari
Song Li

Stephan van Maris
Steven Roddis
Stuart P. Bentley
SudarsanGP
Suhaib Mujahid
Susan Stevens
Sven Selberg
Thanix

Thomas Ackermann
Thomas Hartmann
Tiffany

Tom Schady

Tomas Fiers
Tomoki Aonuma
Trevor Jobling
Tvirus

Tyler Cipriani
Ud Yzr
UgmaDevelopment
Vadim Markovtsev
Vangelis Katsikaros
Vegar Vikan
Victor Ma

Vipul Kumar
Vitaly Kuznetsov
Volker Weillmann



Carlos Martin Nieto
Carlos Tafur
Chaitanya Gurrapu
Changwoo Park
Christian Decker
Christoph Bachhuber
Christoph Prokop
Christopher Wilson
CodingSpiderFox
Cory Donnelly
Cullen Rhodes
Cyril

Damien Tournoud
Dan Schmidt

Daniel Hollas
Daniel Knittl-Frank
Daniel Shahaf
Daniel Sturm
Daniele Tricoli
Daniil Larionov
Danny Lin

David Rogers
Davide Angelocola
Denis Savitskiy
Dexter

Dexter Morganov
DiamondeX

Dieter Ziller

Dino Karic

Dmitri Tikhonov
Dmitriy Smirnov
Doug Richardson
Duncan Dean

Dustin Frank

Ed Flanagan

Eden Hochbaum
Eduard Bardaji Puig
Eric Henziger
Explorare

Ezra Buehler
Fabien-jrt

Fady Nagh

Felix Nehrke

Filip Kucharczyk
Fornost461

Frank

Frederico Mazzone
Frej Drejhammar

Guthrie McAfee Armstrong

HairyFotr
Hamid Nazari

Masood Fallahpoor
Mathieu Dubreuilh
Matt Cooper

Matt Trzcinski
Matthew Miner
Matthieu Moy
Mavaddat Javid
Max Coplan
Michael MacAskill
Michael Sheaver
Michael Welch

Michiel van der Wulp

Miguel Bernabeu
Mike Charles
Mike Pennisi
Mike Thibodeau
Mikhail Menshikov
Mitsuru Kariya
Maximo Cuadros
Niels Widger
Niko Stotz

Nils ReuBe
Noelle Leigh
OliverSieweke
Olleg Samoylov
Osman Khwaja
Otto Kekdalainen
Owen

Pablo Schlapfer
Pascal Berger
Pascal Borreli
Patrice Krakow
Patrick Steinhardt
Pavel Janik
Pawet Krupinski
Pessimist

Peter Kokot

Petr Bodnar

Petr Janecek
Petr Kajzar

Phil Mitchell
Philippe Blain
Philippe Miossec
Pratik Nadagouda
Rafi

Raphael R

Ray Chen

Rex Kerr

Reza Ahmadi
Richard Hoyle
Ricky Senft

Volker-Weissmann
Wesley Gongalves
William Gathoye
William Turrell
Wlodek Bzyl
Xavier Bonaventura
Y. E

Yann Soubeyrand
Your Name

Yue Lin Ho
Yuhang Guo
Yunhai Luo
Yusuke SATO
agkhall
ajax333221
alex-koziell
allen joslin
andreas
applecuckoo
atalakam

axmbo

bermudi
bripmccann
brotherben
deltadd
devwebcl
dualsky
evanderiel
eyherabh
flip111
flyingzumwalt
franjozen
goekboet

grgbnc
haripetrov
i-give-up

iprok

jingsam
jliljekrantz
johnhar

leerg

maks

mmikeww
mosdalsvsocld
nicktime
noureddin
patrick9e
paveljanik
pedrorijo91
peterwwillis
petsuter



Hamidreza Mahdavipanah
Haruo Nakayama

Helmut K. C. Tessarek
Hemant Kumar Meena
Hidde de Vries
HonkingGoose

Howard

Ignacy

Igor

Ilker Cat

Jan Groenewald
Jannick Kremer
Jaswinder Singh
Jean-Noél Avila
Jeroen Qortwijn

Jim Hill

Jin Park

Joel Davies

Johannes Dewender

Rintze M. Zelle
Rob Blanco

Robert P. Goldman
Robert P. J. Day
Robert Theis
Rohan D'Souza
Roman Kosenko
Ronald Wampler
Rory

Ryan Cavicchioni
Ridiger Herrmann
SATO Yusuke

Sam Ford

Sam Joseph
Sanders Kleinfeld
Sarah Schneider
Saurav Sachidanand
Scott Bronson
Scott Jones

rahrah
rmzelle
root
sanders@oreilly.com
sharpiro
slavosi
spacewander
td2014
twekberg
uerdogan
ugultopu
unlversal
xJom

xtreak
yakirwin
z-hed
zwPapEr
(oooono

1l



Introduction

You’re about to spend several hours of your life reading about Git. Let’s take a minute to explain
what we have in store for you. Here is a quick summary of the ten chapters and three appendices of
this book.

In Chapter 1, we’re going to cover Version Control Systems (VCSs) and Git basics—no technical
stuff, just what Git is, why it came about in a land full of VCSs, what sets it apart, and why so many
people are using it. Then, we’ll explain how to download Git and set it up for the first time if you
don’t already have it on your system.

In Chapter 2, we will go over basic Git usage —how to use Git in the 80% of cases you’ll encounter
most often. After reading this chapter, you should be able to clone a repository, see what has
happened in the history of the project, modify files, and contribute changes. If the book
spontaneously combusts at this point, you should already be pretty useful wielding Git in the time it
takes you to go pick up another copy.

Chapter 3 is about the branching model in Git, often described as Git’s killer feature. Here you’ll
learn what truly sets Git apart from the pack. When you’re done, you may feel the need to spend a
quiet moment pondering how you lived before Git branching was part of your life.

Chapter 4 will cover Git on the server. This chapter is for those of you who want to set up Git inside
your organization or on your own personal server for collaboration. We will also explore various
hosted options if you prefer to let someone else handle that for you.

Chapter 5 will go over in full detail various distributed workflows and how to accomplish them
with Git. When you are done with this chapter, you should be able to work expertly with multiple
remote repositories, use Git over email and deftly juggle numerous remote branches and
contributed patches.

Chapter 6 covers the GitHub hosting service and tooling in depth. We cover signing up for and
managing an account, creating and using Git repositories, common workflows to contribute to
projects and to accept contributions to yours, GitHub’s programmatic interface and lots of little tips
to make your life easier in general.

Chapter 7 is about advanced Git commands. Here you will learn about topics like mastering the
scary 'reset' command, using binary search to identify bugs, editing history, revision selection in
detail, and a lot more. This chapter will round out your knowledge of Git so that you are truly a
master.

Chapter 8 is about configuring your custom Git environment. This includes setting up hook scripts
to enforce or encourage customized policies and using environment configuration settings so you
can work the way you want to. We will also cover building your own set of scripts to enforce a
custom committing policy.

Chapter 9 deals with Git and other VCSs. This includes using Git in a Subversion (SVN) world and
converting projects from other VCSs to Git. A lot of organizations still use SVN and are not about to
change, but by this point you’ll have learned the incredible power of Git—and this chapter shows
you how to cope if you still have to use a SVN server. We also cover how to import projects from



several different systems in case you do convince everyone to make the plunge.

Chapter 10 delves into the murky yet beautiful depths of Git internals. Now that you know all
about Git and can wield it with power and grace, you can move on to discuss how Git stores its
objects, what the object model is, details of packfiles, server protocols, and more. Throughout the
book, we will refer to sections of this chapter in case you feel like diving deep at that point; but if
you are like us and want to dive into the technical details, you may want to read Chapter 10 first.
We leave that up to you.

In Appendix A, we look at a number of examples of using Git in various specific environments. We
cover a number of different GUIs and IDE programming environments that you may want to use
Git in and what is available for you. If you’re interested in an overview of using Git in your shell,
your IDE, or your text editor, take a look here.

In Appendix B, we explore scripting and extending Git through tools like libgit2 and JGit. If you're
interested in writing complex and fast custom tools and need low-level Git access, this is where you
can see what that landscape looks like.

Finally, in Appendix C, we go through all the major Git commands one at a time and review where
in the book we covered them and what we did with them. If you want to know where in the book
we used any specific Git command you can look that up here.

Let’s get started.



Getting Started

This chapter will be about getting started with Git. We will begin by explaining some background
on version control tools, then move on to how to get Git running on your system and finally how to
get it set up to start working with. At the end of this chapter you should understand why Git is
around, why you should use it and you should be all set up to do so.

About Version Control

What is “version control”, and why should you care? Version control is a system that records
changes to a file or set of files over time so that you can recall specific versions later. For the
examples in this book, you will use software source code as the files being version controlled,
though in reality you can do this with nearly any type of file on a computer.

If you are a graphic or web designer and want to keep every version of an image or layout (which
you would most certainly want to), a Version Control System (VCS) is a very wise thing to use. It
allows you to revert selected files back to a previous state, revert the entire project back to a
previous state, compare changes over time, see who last modified something that might be causing
a problem, who introduced an issue and when, and more. Using a VCS also generally means that if
you screw things up or lose files, you can easily recover. In addition, you get all this for very little
overhead.

Local Version Control Systems

Many people’s version-control method of choice is to copy files into another directory (perhaps a
time-stamped directory, if they’re clever). This approach is very common because it is so simple, but
it is also incredibly error prone. It is easy to forget which directory you’re in and accidentally write
to the wrong file or copy over files you don’t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple database that
kept all the changes to files under revision control.

10



Checkout

File

Local

Computer

Version Database

Version 3
Version 2
Version 1

Figure 1. Local version control diagram

One of the most popular VCS tools was a system called RCS, which is still distributed with many
computers today. RCS works by keeping patch sets (that is, the differences between files) in a special
format on disk; it can then re-create what any file looked like at any point in time by adding up all

the patches.

Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with developers on
other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were
developed. These systems (such as CVS, Subversion, and Perforce) have a single server that contains
all the versioned files, and a number of clients that check out files from that central place. For many

years, this has been the standard for version control.

11


https://www.gnu.org/software/rcs/

shared
repository

developer developer developer

Figure 2. Centralized version control diagram

This setup offers many advantages, especially over local VCSs. For example, everyone knows to a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what, and it’s far easier to administer a CVCS than it is to deal with local databases
on every client.

However, this setup also has some serious downsides. The most obvious is the single point of failure
that the centralized server represents. If that server goes down for an hour, then during that hour
nobody can collaborate at all or save versioned changes to anything they’re working on. If the hard
disk the central database is on becomes corrupted, and proper backups haven’t been kept, you lose
absolutely everything —the entire history of the project except whatever single snapshots people
happen to have on their local machines. Local VCSs suffer from this same problem — whenever you
have the entire history of the project in a single place, you risk losing everything.

Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git, Mercurial
or Darcs), clients don’t just check out the latest snapshot of the files; rather, they fully mirror the
repository, including its full history. Thus, if any server dies, and these systems were collaborating
via that server, any of the client repositories can be copied back up to the server to restore it. Every
clone is really a full backup of all the data.

12



Server Computer

Version Database

Version 3
I
Version 2
I

Version 1

Computer A Computer B

Version Database < » | Version Database
Version 3 Version 3
I I
Version 2 Version 2
I I
Version 1 Version 1

Figure 3. Distributed version control diagram

Furthermore, many of these systems deal pretty well with having several remote repositories they
can work with, so you can collaborate with different groups of people in different ways
simultaneously within the same project. This allows you to set up several types of workflows that
aren’t possible in centralized systems, such as hierarchical models.

13



A Short History of Git

As with many great things in life, Git began with a bit of creative destruction and fiery controversy.

The Linux kernel is an open source software project of fairly large scope. During the early years of
the Linux kernel maintenance (1991-2002), changes to the software were passed around as patches
and archived files. In 2002, the Linux kernel project began using a proprietary DVCS called
BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel and the
commercial company that developed BitKeeper broke down, and the tool’s free-of-charge status
was revoked. This prompted the Linux development community (and in particular Linus Torvalds,
the creator of Linux) to develop their own tool based on some of the lessons they learned while
using BitKeeper. Some of the goals of the new system were as follows:

» Speed
» Simple design

» Strong support for non-linear development (thousands of parallel branches)

Fully distributed

Able to handle large projects like the Linux kernel efficiently (speed and data size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain these initial
qualities. It’s amazingly fast, it’s very efficient with large projects, and it has an incredible
branching system for non-linear development (see Git Branching).

What is Git?

So, what is Git in a nutshell? This is an important section to absorb, because if you understand what
Git is and the fundamentals of how it works, then using Git effectively will probably be much easier
for you. As you learn Git, try to clear your mind of the things you may know about other VCSs, such
as CVS, Subversion or Perforce — doing so will help you avoid subtle confusion when using the tool.
Even though Git’s user interface is fairly similar to these other VCSs, Git stores and thinks about
information in a very different way, and understanding these differences will help you avoid
becoming confused while using it.

Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as a list of file-based
changes. These other systems (CVS, Subversion, Perforce, and so on) think of the information they
store as a set of files and the changes made to each file over time (this is commonly described as
delta-based version control).

14



Checkins Over Time

File A —» A1 > A2
File B > A1 —» A2
File C —» A1 —> A2 > A3

Figure 4. Storing data as changes to a base version of each file

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a series of
snapshots of a miniature filesystem. With Git, every time you commit, or save the state of your
project, Git basically takes a picture of what all your files look like at that moment and stores a
reference to that snapshot. To be efficient, if files have not changed, Git doesn’t store the file again,
just a link to the previous identical file it has already stored. Git thinks about its data more like a
stream of snapshots.

Checkins Over Time

File A AT A2
| S B |
File B ‘ B [ B : B1 B2
- | . |
File C C1 c2 ‘ c2 : c3

Figure 5. Storing data as snapshots of the project over time

This is an important distinction between Git and nearly all other VCSs. It makes Git reconsider
almost every aspect of version control that most other systems copied from the previous
generation. This makes Git more like a mini filesystem with some incredibly powerful tools built on
top of it, rather than simply a VCS. We’ll explore some of the benefits you gain by thinking of your
data this way when we cover Git branching in Git Branching.

Nearly Every Operation Is Local

Most operations in Git need only local files and resources to operate — generally no information is
needed from another computer on your network. If you’re used to a CVCS where most operations
have that network latency overhead, this aspect of Git will make you think that the gods of speed
have blessed Git with unworldly powers. Because you have the entire history of the project right
there on your local disk, most operations seem almost instantaneous.

15



For example, to browse the history of the project, Git doesn’t need to go out to the server to get the
history and display it for you — it simply reads it directly from your local database. This means you
see the project history almost instantly. If you want to see the changes introduced between the
current version of a file and the file a month ago, Git can look up the file a month ago and do a local
difference calculation, instead of having to either ask a remote server to do it or pull an older
version of the file from the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If you get on an
airplane or a train and want to do a little work, you can commit happily (to your local copy,
remember?) until you get to a network connection to upload. If you go home and can’t get your VPN
client working properly, you can still work. In many other systems, doing so is either impossible or
painful. In Perforce, for example, you can’t do much when you aren’t connected to the server; in
Subversion and CVS, you can edit files, but you can’t commit changes to your database (because
your database is offline). This may not seem like a huge deal, but you may be surprised what a big
difference it can make.

Git Has Integrity

Everything in Git is checksummed before it is stored and is then referred to by that checksum. This
means it’s impossible to change the contents of any file or directory without Git knowing about it.
This functionality is built into Git at the lowest levels and is integral to its philosophy. You can’t lose
information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-character
string composed of hexadecimal characters (0-9 and a-f) and calculated based on the contents of a
file or directory structure in Git. A SHA-1 hash looks something like this:

24b9dab5522529873a493b5218696cdbd3b00373

You will see these hash values all over the place in Git because it uses them so much. In fact, Git
stores everything in its database not by file name but by the hash value of its contents.

Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It is hard to get the
system to do anything that is not undoable or to make it erase data in any way. As with any VCS, you
can lose or mess up changes you haven’t committed yet, but after you commit a snapshot into Git, it
is very difficult to lose, especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger of severely
screwing things up. For a more in-depth look at how Git stores its data and how you can recover
data that seems lost, see Undoing Things.

The Three States

Pay attention now — here is the main thing to remember about Git if you want the rest of your
learning process to go smoothly. Git has three main states that your files can reside in: modified,
staged, and committed:

16



* Modified means that you have changed the file but have not committed it to your database yet.

» Staged means that you have marked a modified file in its current version to go into your next

commit snapshot.

* Committed means that the data is safely stored in your local database.

This leads us to the three main sections of a Git project: the working tree, the staging area, and the

Git directory.

Working
Directory

Staging
Area

Checkout

Figure 6. Working tree, staging area, and Git directory

.git directory
(Repository)

The working tree is a single checkout of one version of the project. These files are pulled out of the
compressed database in the Git directory and placed on disk for you to use or modify.

The staging area is a file, generally contained in your Git directory, that stores information about
what will go into your next commit. Its technical name in Git parlance is the “index”, but the phrase

“staging area” works just as well.

The Git directory is where Git stores the metadata and object database for your project. This is the
most important part of Git, and it is what is copied when you clone a repository from another

computer.

The basic Git workflow goes something like this:

1. You modify files in your working tree.

2. You selectively stage just those changes you want to be part of your next commit, which adds
only those changes to the staging area.

3. You do a commit, which takes the files as they are in the staging area and stores that snapshot
permanently to your Git directory.

If a particular version of a file is in the Git directory, it’s considered committed. If it has been

17



modified and was added to the staging area, it is staged. And if it was changed since it was checked
out but has not been staged, it is modified. In Git Basics, yow’ll learn more about these states and
how you can either take advantage of them or skip the staged part entirely.

The Command Line

There are a lot of different ways to use Git. There are the original command-line tools, and there
are many graphical user interfaces of varying capabilities. For this book, we will be using Git on the
command line. For one, the command line is the only place you can run all Git commands — most
of the GUIs implement only a partial subset of Git functionality for simplicity. If you know how to
run the command-line version, you can probably also figure out how to run the GUI version, while
the opposite is not necessarily true. Also, while your choice of graphical client is a matter of
personal taste, all users will have the command-line tools installed and available.

So we will expect you to know how to open Terminal in macOS or Command Prompt or PowerShell
in Windows. If you don’t know what we’re talking about here, you may need to stop and research
that quickly so that you can follow the rest of the examples and descriptions in this book.

Installing Git

Before you start using Git, you have to make it available on your computer. Even if it’s already
installed, it’s probably a good idea to update to the latest version. You can either install it as a
package or via another installer, or download the source code and compile it yourself.

This book was written using Git version 2. Since Git is quite excellent at preserving
o backwards compatibility, any recent version should work just fine. Though most of

the commands we use should work even in ancient versions of Git, some of them
might not or might act slightly differently.

Installing on Linux

If you want to install the basic Git tools on Linux via a binary installer, you can generally do so
through the package management tool that comes with your distribution. If you’re on Fedora (or
any closely-related RPM-based distribution, such as RHEL or CentOS), you can use dnf:

$ sudo dnf install git-all
If you're on a Debian-based distribution, such as Ubuntu, try apt:
$ sudo apt install git-all

For more options, there are instructions for installing on several different Unix distributions on the
Git website, at https://git-scm.com/download/linux.

18


https://git-scm.com/download/linux

Installing on macOS

There are several ways to install Git on macOS. The easiest is probably to install the Xcode
Command Line Tools. On Mavericks (10.9) or above you can do this simply by trying to run git from
the Terminal the very first time.

$ git --version

If you don’t have it installed already, it will prompt you to install it.

If you want a more up to date version, you can also install it via a binary installer. A macOS Git
installer is maintained and available for download at the Git website, at https://git-scm.com/
download/mac.

o Install Git 2.0.1

Welcome to the Git 2.0.1 Installer

@ Introduction

® Destination Sele You will be guided through the steps necessary to

install this software.
@ Installationsiy

@ Installati
I3

@ Summary

.I-illlLI'l'I'|1|.lI|||lI|II]II

lllllll\'l - s

|L|||1]"|'\-“|ll

o 1

4

Go Back Continue

Figure 7. Git macOS installer

Installing on Windows

There are also a few ways to install Git on Windows. The most official build is available for
download on the Git website. Just go to https://git-scm.com/download/win and the download will
start automatically. Note that this is a project called Git for Windows, which is separate from Git
itself; for more information on it, go to https://gitforwindows.org.

To get an automated installation you can use the Git Chocolatey package. Note that the Chocolatey
package is community maintained.

19


https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://git-scm.com/download/win
https://gitforwindows.org
https://community.chocolatey.org/packages/git

Installing from Source

Some people may instead find it useful to install Git from source, because you’ll get the most recent
version. The binary installers tend to be a bit behind, though as Git has matured in recent years,
this has made less of a difference.

If you do want to install Git from source, you need to have the following libraries that Git depends
on: autotools, curl, zlib, openssl, expat, and libiconv. For example, if you’re on a system that has dnf
(such as Fedora) or apt-get (such as a Debian-based system), you can use one of these commands to
install the minimal dependencies for compiling and installing the Git binaries:

$ sudo dnf install dh-autoreconf curl-devel expat-devel gettext-devel \
openssl-devel perl-devel zlib-devel

$ sudo apt-get install dh-autoreconf libcurl4-gnutls-dev libexpat1-dev \
gettext 1ibz-dev libssl-dev

In order to be able to add the documentation in various formats (doc, html, info), these additional
dependencies are required:

$ sudo dnf install asciidoc xmlto docbook2X
$ sudo apt-get install asciidoc xmlto docbook2x

o Users of RHEL and RHEL-derivatives like CentOS and Scientific Linux will have to
enable the EPEL repository to download the docbook2X package.

If you're using a Debian-based distribution (Debian/Ubuntu/Ubuntu-derivatives), you also need the
install-info package:

$ sudo apt-get install install-info

If you’re using a RPM-based distribution (Fedora/RHEL/RHEL-derivatives), you also need the getopt
package (which is already installed on a Debian-based distro):

$ sudo dnf install getopt
Additionally, if you’re using Fedora/RHEL/RHEL-derivatives, you need to do this:
$ sudo 1n -s /usr/bin/db2x_docbook2texi /usr/bin/docbook2x-texi

due to binary name differences.

When you have all the necessary dependencies, you can go ahead and grab the latest tagged release
tarball from several places. You can get it via the kernel.org site, at https://www.kernel.org/pub/
software/scm/git, or the mirror on the GitHub website, at https://github.com/git/git/tags. It’s

20


https://docs.fedoraproject.org/en-US/epel/#how_can_i_use_these_extra_packages
https://www.kernel.org/pub/software/scm/git
https://www.kernel.org/pub/software/scm/git
https://github.com/git/git/tags

generally a little clearer what the latest version is on the GitHub page, but the kernel.org page also
has release signatures if you want to verify your download.

Then, compile and install:

$ tar -zxf git-2.8.0.tar.gz

$ cd git-2.8.0

$ make configure

$ ./configure --prefix=/usr

$ make all doc info

$ sudo make install install-doc install-html install-info

After this is done, you can also get Git via Git itself for updates:

$ git clone https://git.kernel.org/pub/scm/git/git.git

First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize your Git
environment. You should have to do these things only once on any given computer; they’ll stick
around between upgrades. You can also change them at any time by running through the
commands again.

Git comes with a tool called git config that lets you get and set configuration variables that control
all aspects of how Git looks and operates. These variables can be stored in three different places:

1. [path]/etc/gitconfig file: Contains values applied to every user on the system and all their
repositories. If you pass the option --system to git config, it reads and writes from this file
specifically. Because this is a system configuration file, you would need administrative or
superuser privilege to make changes to it.

2. ~/.qgitconfig or ~/.config/git/config file: Values specific personally to you, the user. You can
make Git read and write to this file specifically by passing the --global option, and this affects
all of the repositories you work with on your system.

3. config file in the Git directory (that is, .git/config) of whatever repository you’re currently
using: Specific to that single repository. You can force Git to read from and write to this file with
the --local option, but that is in fact the default. Unsurprisingly, you need to be located
somewhere in a Git repository for this option to work properly.

Each level overrides values in the previous level, so values in .git/config trump those in
[path]/etc/gitconfig.

On Windows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Users\$USER for
most people). It also still looks for [path]/etc/gitconfig, although it’s relative to the MSys root,
which is wherever you decide to install Git on your Windows system when you run the installer. If
you are using version 2.x or later of Git for Windows, there is also a system-level config file at
C:\Documents and Settings\All Users\Application Data\Git\config on Windows XP, and in

21



C:\ProgramData\Git\config on Windows Vista and newer. This config file can only be changed by git
config -f <file>as an admin.

You can view all of your settings and where they are coming from using:

$ git config --1list --show-origin

Your Identity

The first thing you should do when you install Git is to set your user name and email address. This
is important because every Git commit uses this information, and it’s immutably baked into the
commits you start creating:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then Git will always
use that information for your user on that system. If you want to override this with a different
name or email address for specific projects, you can run the command without the --global option
when you’re in that project.

Many of the GUI tools will help you do this when you first run them.

Your Editor

Now that your identity is set up, you can configure the default text editor that will be used when Git
needs you to type in a message. If not configured, Git uses your system’s default editor.

If you want to use a different text editor, such as Emacs, you can do the following:
$ git config --global core.editor emacs

On a Windows system, if you want to use a different text editor, you must specify the full path to its
executable file. This can be different depending on how your editor is packaged.

In the case of Notepad++, a popular programming editor, you are likely to want to use the 32-bit
version, since at the time of writing the 64-bit version doesn’t support all plug-ins. If you are on a
32-bit Windows system, or you have a 64-bit editor on a 64-bit system, youw’ll type something like
this:

$ git config --global core.editor "'C:/Program Files/Notepad++/notepad++.exe’
-multilnst -notabbar -nosession -noPlugin”

Vim, Emacs and Notepad++ are popular text editors often used by developers on
o Unix-based systems like Linux and macOS or a Windows system. If you are using

22



another editor, or a 32-bit version, please find specific instructions for how to set
up your favorite editor with Git in git config core.editor commands.

You may find, if you don’t setup your editor like this, you get into a really
A confusing state when Git attempts to launch it. An example on a Windows system
may include a prematurely terminated Git operation during a Git initiated edit.

Your default branch name

By default Git will create a branch called master when you create a new repository with git init.
From Git version 2.28 onwards, you can set a different name for the initial branch.

To set main as the default branch name do:

$ git config --global init.defaultBranch main

Checking Your Settings

If you want to check your configuration settings, you can use the git config --1ist command to list
all the settings Git can find at that point:

$ git config --Tlist

user .name=John Doe
user.email=johndoe@example.com
color.status=auto
color.branch=auto
color.interactive=auto
color.diff=auto

You may see keys more than once, because Git reads the same key from different files
([path]/etc/gitconfig and ~/.gitconfig, for example). In this case, Git uses the last value for each
unique Kkey it sees.

You can also check what Git thinks a specific key’s value is by typing git config <key>:

$ git config user.name
John Doe

Since Git might read the same configuration variable value from more than one
file, it’s possible that you have an unexpected value for one of these values and
you don’t know why. In cases like that, you can query Git as to the origin for that

o value, and it will tell you which configuration file had the final say in setting that
value:

23



$ git config --show-origin rerere.autoUpdate
file:/home/johndoe/.gitconfig false

Getting Help

If you ever need help while using Git, there are three equivalent ways to get the comprehensive
manual page (manpage) help for any of the Git commands:

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

For example, you can get the manpage help for the git config command by running this:
$ git help config

These commands are nice because you can access them anywhere, even offline. If the manpages
and this book aren’t enough and you need in-person help, you can try the #qgit, #github, or #gitlab
channels on the Libera Chat IRC server, which can be found at https://libera.chat/. These channels
are regularly filled with hundreds of people who are all very knowledgeable about Git and are
often willing to help.

In addition, if you don’t need the full-blown manpage help, but just need a quick refresher on the
available options for a Git command, you can ask for the more concise “help” output with the -h
option, as in:

$ git add -h
usage: git add [<options>] [--] <pathspec>...

-n, --dry-run dry run

-v, --verbose be verbose

-1, --interactive interactive picking

-p, --patch select hunks interactively

-e, --edit edit current diff and apply

-f, --force allow adding otherwise ignored files

-u, --update update tracked files

--renormalize renormalize EOL of tracked files (implies -u)

-N, --intent-to-add record only the fact that the path will be added later

-A, --all add changes from all tracked and untracked files

--ignore-removal ignore paths removed in the working tree (same as --no
-all)

--refresh don't add, only refresh the index

--ignore-errors just skip files which cannot be added because of
errors

24


https://libera.chat/

--ignore-missing check if - even missing - files are ignored in dry run

--sparse allow updating entries outside of the sparse-checkout
cone

--chmod (+]-)x override the executable bit of the listed files

--pathspec-from-file <file> read pathspec from file

--pathspec-file-nul with --pathspec-from-file, pathspec elements are

separated with NUL character

Summary

You should have a basic understanding of what Git is and how it’s different from any centralized
version control systems you may have been using previously. You should also now have a working
version of Git on your system that’s set up with your personal identity. It’'s now time to learn some

Git basics.

25



Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers every basic
command you need to do the vast majority of the things you’ll eventually spend your time doing
with Git. By the end of the chapter, you should be able to configure and initialize a repository, begin
and stop tracking files, and stage and commit changes. We’ll also show you how to set up Git to
ignore certain files and file patterns, how to undo mistakes quickly and easily, how to browse the
history of your project and view changes between commits, and how to push and pull from remote
repositories.

Getting a Git Repository
You typically obtain a Git repository in one of two ways:

1. You can take a local directory that is currently not under version control, and turn it into a Git
repository, or

2. You can clone an existing Git repository from elsewhere.

In either case, you end up with a Git repository on your local machine, ready for work.

Initializing a Repository in an Existing Directory

If you have a project directory that is currently not under version control and you want to start
controlling it with Git, you first need to go to that project’s directory. If you’ve never done this, it
looks a little different depending on which system you’re running:

for Linux:

$ cd /home/user/my_project
for macOS:

$ cd /Users/user/my_project
for Windows:

$ cd C:/Users/user/my_project
and type:

$ git init

This creates a new subdirectory named .git that contains all of your necessary repository files—a
Git repository skeleton. At this point, nothing in your project is tracked yet. See Git Internals for

26



more information about exactly what files are contained in the .git directory you just created.

If you want to start version-controlling existing files (as opposed to an empty directory), you should
probably begin tracking those files and do an initial commit. You can accomplish that with a few
git add commands that specify the files you want to track, followed by a git commit:

$ git add *.c
$ git add LICENSE
$ git commit -m 'Initial project version'

We’ll go over what these commands do in just a minute. At this point, you have a Git repository
with tracked files and an initial commit.

Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you’d like to
contribute to—the command you need is git clone. If you’re familiar with other VCSs such as
Subversion, yowll notice that the command is "clone" and not "checkout". This is an important
distinction — instead of getting just a working copy, Git receives a full copy of nearly all data that
the server has. Every version of every file for the history of the project is pulled down by default
when you run git clone. In fact, if your server disk gets corrupted, you can often use nearly any of
the clones on any client to set the server back to the state it was in when it was cloned (you may
lose some server-side hooks and such, but all the versioned data would be there —see Getting Git
on a Server for more details).

You clone a repository with git clone <url>. For example, if you want to clone the Git linkable
library called 1ibgit2, you can do so like this:

$ git clone https://github.com/1ibgit2/1ibgit2

That creates a directory named 1ibgit2, initializes a .git directory inside it, pulls down all the data
for that repository, and checks out a working copy of the latest version. If you go into the new
libgit2 directory that was just created, you’ll see the project files in there, ready to be worked on or
used.

If you want to clone the repository into a directory named something other than 1ibgit2, you can
specify the new directory name as an additional argument:

$ git clone https://github.com/1ibgit2/1ibgit2 mylibgit

That command does the same thing as the previous one, but the target directory is called mylibgit.

Git has a number of different transfer protocols you can use. The previous example uses the
https:// protocol, but you may also see git:// or user@server:path/to/repo.git, which uses the SSH
transfer protocol. Getting Git on a Server will introduce all of the available options the server can
set up to access your Git repository and the pros and cons of each.

27



Recording Changes to the Repository

At this point, you should have a bona fide Git repository on your local machine, and a checkout or
working copy of all of its files in front of you. Typically, you’ll want to start making changes and
committing snapshots of those changes into your repository each time the project reaches a state
you want to record.

Remember that each file in your working directory can be in one of two states: tracked or
untracked. Tracked files are files that were in the last snapshot, as well as any newly staged files;
they can be unmodified, modified, or staged. In short, tracked files are files that Git knows about.

Untracked files are everything else — any files in your working directory that were not in your last
snapshot and are not in your staging area. When you first clone a repository, all of your files will be
tracked and unmodified because Git just checked them out and you haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since your last commit.
As you work, you selectively stage these modified files and then commit all those staged changes,
and the cycle repeats.

Untracked Unmodified Modified

Add the file

Edit the file

Stage the file
Remove the file

Figure 8. The lifecycle of the status of your files

Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status command. If you
run this command directly after a clone, you should see something like this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.
nothing to commit, working tree clean

This means you have a clean working directory; in other words, none of your tracked files are
modified. Git also doesn’t see any untracked files, or they would be listed here. Finally, the
command tells you which branch you’re on and informs you that it has not diverged from the same

28



branch on the server. For now, that branch is always master, which is the default; you won’t worry
about it here. Git Branching will go over branches and references in detail.

GitHub changed the default branch name from master to main in mid-2020, and
other Git hosts followed suit. So you may find that the default branch name in
some newly created repositories is main and not master. In addition, the default

o branch name can be changed (as you have seen in Your default branch name), so
you may see a different name for the default branch.

However, Git itself still uses master as the default, so we will use it throughout the
book.

Let’s say you add a new file to your project, a simple README file. If the file didn’t exist before, and
yourun git status, you see your untracked file like so:

$ echo 'My Project' > README
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Untracked files” heading
in your status output. Untracked basically means that Git sees a file you didn’t have in the previous
snapshot (commit), and which hasn’t yet been staged; Git won’t start including it in your commit
snapshots until you explicitly tell it to do so. It does this so you don’t accidentally begin including
generated binary files or other files that you did not mean to include. You do want to start including
README, so let’s start tracking the file.

Tracking New Files
In order to begin tracking a new file, you use the command git add. To begin tracking the README
file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now tracked and staged
to be committed:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.
Changes to be committed:

29



(use "git restore --staged <file>..." to unstage)

new file: README

You can tell that it’s staged because it’s under the “Changes to be committed” heading. If you
commit at this point, the version of the file at the time you ran git add is what will be in the
subsequent historical snapshot. You may recall that when you ran git init earlier, you then ran git
add <files>—that was to begin tracking files in your directory. The git add command takes a path
name for either a file or a directory; if it’s a directory, the command adds all the files in that
directory recursively.

Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file called
CONTRIBUTING.md and then run your git status command again, you get something that looks like
this:

$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:  CONTRIBUTING.md

The CONTRIBUTING.md file appears under a section named “Changes not staged for commit” — which
means that a file that is tracked has been modified in the working directory but not yet staged. To
stage it, you run the git add command. git add is a multipurpose command — you use it to begin
tracking new files, to stage files, and to do other things like marking merge-conflicted files as
resolved. It may be helpful to think of it more as “add precisely this content to the next commit”
rather than “add this file to the project”. Let’s run git add now to stage the CONTRIBUTING.md file, and
then run git status again:

$ git add CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README

30



modified:  CONTRIBUTING.md

Both files are staged and will go into your next commit. At this point, suppose you remember one
little change that you want to make in CONTRIBUTING.md before you commit it. You open it again and
make that change, and you’re ready to commit. However, let’s run git status one more time:

$ vim CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master"'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README
modified: CONTRIBUTING.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:  CONTRIBUTING.md

What the heck? Now CONTRIBUTING.md is listed as both staged and unstaged. How is that possible? It
turns out that Git stages a file exactly as it is when you run the git add command. If you commit
now, the version of CONTRIBUTING.md as it was when you last ran the git add command is how it will
go into the commit, not the version of the file as it looks in your working directory when you run
git commit. If you modify a file after you run git add, you have to run git add again to stage the
latest version of the file:

$ git add CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README
modified:  CONTRIBUTING.md

Short Status

While the git status output is pretty comprehensive, it’s also quite wordy. Git also has a short
status flag so you can see your changes in a more compact way. If you run git status -s or git
status --short you get a far more simplified output from the command:

$ git status -s
M README

31



MM Rakefile

A 1lib/git.rb

M 1ib/simplegit.rb
7?7 LICENSE.txt

New files that aren’t tracked have a 7?7 next to them, new files that have been added to the staging
area have an A, modified files have an M and so on. There are two columns to the output — the left-
hand column indicates the status of the staging area and the right-hand column indicates the status
of the working tree. So for example in that output, the README file is modified in the working
directory but not yet staged, while the 1ib/simplegit.rb file is modified and staged. The Rakefile
was modified, staged and then modified again, so there are changes to it that are both staged and
unstaged.

Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore. Here is an example .gitignore file:

$ cat .gitignore

*.[oa]

~

The first line tells Git to ignore any files ending in “.0” or “.a” — object and archive files that may be
the product of building your code. The second line tells Git to ignore all files whose names end with
a tilde (~), which is used by many text editors such as Emacs to mark temporary files. You may also
include a log, tmp, or pid directory; automatically generated documentation; and so on. Setting up a
.gitignore file for your new repository before you get going is generally a good idea so you don’t
accidentally commit files that you really don’t want in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

Blank lines or lines starting with # are ignored.

Standard glob patterns work, and will be applied recursively throughout the entire working
tree.

* You can start patterns with a forward slash (/) to avoid recursivity.

* You can end patterns with a forward slash (/) to specify a directory.

* You can negate a pattern by starting it with an exclamation point (!).
Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero or
more characters; [abc] matches any character inside the brackets (in this case a, b, or ¢); a question
mark (?) matches a single character; and brackets enclosing characters separated by a hyphen ([0-

9]) matches any character between them (in this case 0 through 9). You can also use two asterisks to
match nested directories; a/**/z would match a/z, a/b/z, a/b/c/z, and so on.

32



Here is another example .gitignore file:

# ignore all .a files
*.3

# but do track lib.a, even though you're ignoring .a files above
I1ib.a

# only ignore the TODO file in the current directory, not subdir/T0ODO
/T0D0

# ignore all files in any directory named build
build/

# ignore doc/notes.txt, but not doc/server/arch.txt
doc/*.txt

# ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**/*.pdf

GitHub maintains a fairly comprehensive list of good .gitignore file examples for
(2 . . . e .
O dozens of projects and languages at https://github.com/github/gitignore if you want
et a starting point for your project.

In the simple case, a repository might have a single .gitignore file in its root
directory, which applies recursively to the entire repository. However, it is also
possible to have additional .gitignore files in subdirectories. The rules in these

o nested .gitignore files apply only to the files under the directory where they are
located. The Linux kernel source repository has 206 .gitignore files.

It is beyond the scope of this book to get into the details of multiple .gitignore
files; see man gitignore for the details.

Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you— you want to know exactly what you changed, not
just which files were changed — you can use the git diff command. We’ll cover git diff in more
detail later, but you’ll probably use it most often to answer these two questions: What have you
changed but not yet staged? And what have you staged that you are about to commit? Although git
status answers those questions very generally by listing the file names, git diff shows you the
exact lines added and removed — the patch, as it were.

Let’s say you edit and stage the README file again and then edit the CONTRIBUTING.md file without
staging it. If you run your git status command, you once again see something like this:

$ git status
On branch master

33


https://github.com/github/gitignore

Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified:  README

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:  CONTRIBUTING.md

To see what you’ve changed but not yet staged, type git diff with no other arguments:

$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
Please include a nice description of your changes when you submit your PR;
if we have to read the whole diff to figure out why you're contributing
in the first place, you're less likely to get feedback and have your change
-merged 1in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

If you are starting to work on a particular area, feel free to submit a PR
that highlights your work in progress (and note in the PR title that it's

That command compares what is in your working directory with what is in your staging area. The
result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you can use git diff
--staged. This command compares your staged changes to your last commit:

$ git diff --staged

diff --qgit a/README b/README
new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README

@0 -9,0 +1 @@

+My Project

It’s important to note that git diff by itself doesn’t show all changes made since your last
commit —only changes that are still unstaged. If you’ve staged all of your changes, git diff will
give you no output.

34



For another example, if you stage the CONTRIBUTING.md file and then edit it, you can use git diff to
see the changes in the file that are staged and the changes that are unstaged. If our environment
looks like this:

$ git add CONTRIBUTING.md
$ echo '# test line' >> CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master’'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified:  CONTRIBUTING.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:  CONTRIBUTING.md

Now you can use git diff to see what is still unstaged:

$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 643e24f..87f08c8 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -119,3 +119,4 @@ at the
## Starter Projects

See our [projects
list](https://qithub.com/1ibgit2/1ibgit2/blob/development/PROJECTS.md).
+# test line

and git diff --cached to see what you’ve staged so far (--staged and --cached are synonyms):

$ git diff --cached
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- 3/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
Please include a nice description of your changes when you submit your PR;
if we have to read the whole diff to figure out why you're contributing
in the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

35



If you are starting to work on a particular area, feel free to submit a PR
that highlights your work in progress (and note in the PR title that it's

Git Diff in an External Tool

We will continue to use the git diff command in various ways throughout the rest
of the book. There is another way to look at these diffs if you prefer a graphical or

o external diff viewing program instead. If you run git difftool instead of git diff,
you can view any of these diffs in software like emerge, vimdiff and many more
(including commercial products). Run git difftool --tool-help to see what is
available on your system.

Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes. Remember
that anything that is still unstaged — any files you have created or modified that you haven’t run
git add on since you edited them —won’t go into this commit. They will stay as modified files on
your disk. In this case, let’s say that the last time you ran git status, you saw that everything was
staged, so you’re ready to commit your changes. The simplest way to commit is to type git commit:

$ git commit

Doing so launches your editor of choice.

This is set by your shell’s EDITOR environment variable —usually vim or emacs,
although you can configure it with whatever you want using the git config
--global core.editor command as you saw in Getting Started.

The editor displays the following text (this example is a Vim screen):

# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
# On branch master

# Your branch is up-to-date with 'origin/master’'.

#

# Changes to be committed:

# new file: README

# modified: CONTRIBUTING.md

#

~
~

~

".git/COMMIT_EDITMSG" 9L, 283C

You can see that the default commit message contains the latest output of the git status command
commented out and one empty line on top. You can remove these comments and type your commit

36



message, or you can leave them there to help you remember what you’re committing.

For an even more explicit reminder of what you’ve modified, you can pass the -v
option to git commit. Doing so also puts the diff of your change in the editor so you
can see exactly what changes you’re committing.

When you exit the editor, Git creates your commit with that commit message (with the comments
and diff stripped out).

Alternatively, you can type your commit message inline with the commit command by specifying it
after a -m flag, like this:

$ git commit -m "Story 182: fix benchmarks for speed"
[master 463dc4f] Story 182: fix benchmarks for speed
2 files changed, 2 insertions(+)

create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given you some output
about itself: which branch you committed to (master), what SHA-1 checksum the commit has
(463dc4f), how many files were changed, and statistics about lines added and removed in the
commit.

Remember that the commit records the snapshot you set up in your staging area. Anything you
didn’t stage is still sitting there modified; you can do another commit to add it to your history. Every
time you perform a commit, you’re recording a snapshot of your project that you can revert to or
compare to later.

Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them, the staging
area is sometimes a bit more complex than you need in your workflow. If you want to skip the
staging area, Git provides a simple shortcut. Adding the -a option to the git commit command makes
Git automatically stage every file that is already tracked before doing the commit, letting you skip
the git add part:

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:  CONTRIBUTING.md
no changes added to commit (use "git add" and/or "git commit -a")

$ git commit -a -m 'Add new benchmarks'
[master 83e38c7] Add new benchmarks

37



1 file changed, 5 insertions(+), @ deletions(-)

Notice how you don’t have to run git add on the CONTRIBUTING.md file in this case before you commit.
That’s because the -a flag includes all changed files. This is convenient, but be careful; sometimes
this flag will cause you to include unwanted changes.

Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accurately, remove it
from your staging area) and then commit. The git rm command does that, and also removes the file
from your working directory so you don’t see it as an untracked file the next time around.

If you simply remove the file from your working directory, it shows up under the “Changes not
staged for commit” (that is, unstaged) area of your git status output:

$ rm PROJECTS.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

deleted: PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")
Then, if you run git rm, it stages the file’s removal:

$ git rm PROJECTS.md
rm 'PROJECTS.md'
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

deleted: PROJECTS.md

The next time you commit, the file will be gone and no longer tracked. If you modified the file or
had already added it to the staging area, you must force the removal with the -f option. This is a
safety feature to prevent accidental removal of data that hasn’t yet been recorded in a snapshot and
that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree but remove it from
your staging area. In other words, you may want to keep the file on your hard drive but not have
Git track it anymore. This is particularly useful if you forgot to add something to your .gitignore

38



file and accidentally staged it, like a large log file or a bunch of .a compiled files. To do this, use the
--cached option:

$ git rm --cached README

You can pass files, directories, and file-glob patterns to the git rm command. That means you can do
things such as:

$ git rm log/\*.log

Note the backslash (\) in front of the *. This is necessary because Git does its own filename
expansion in addition to your shell’s filename expansion. This command removes all files that have
the .1log extension in the log/ directory. Or, you can do something like this:

$ git rm \*~

This command removes all files whose names end with a ~.

Moving Files

Unlike many other VCSs, Git doesn’t explicitly track file movement. If you rename a file in Git, no
metadata is stored in Git that tells it you renamed the file. However, Git is pretty smart about
figuring that out after the fact —we’ll deal with detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in Git, you can run
something like:

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status, you’ll see that Git
considers it a renamed file:

$ git mv README.md README
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

renamed: README.md -> README
However, this is equivalent to running something like this:

$ mv README.md README

39



$ git rm README.md
$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file that way or with
the mv command. The only real difference is that git mv is one command instead of three —it’s a
convenience function. More importantly, you can use any tool you like to rename a file, and address
the add/rm later, before you commit.

Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an existing commit
history, you’ll probably want to look back to see what has happened. The most basic and powerful
tool to do this is the git 1log command.

These examples use a very simple project called “simplegit”. To get the project, run:
$ git clone https://github.com/schacon/simplegit-progit

When you run git log in this project, you should get output that looks something like this:

$ git log

commit ca82abdff817ec66f44342007202690393763949
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Mon Mar 17 21:52:11 2008 -0700

Change version number

commit 085bb3bcb608e1e8451d4b2432f8ecbeb30be7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Sat Mar 15 16:40:33 2008 -0700

Remove unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Sat Mar 15 10:31:28 2008 -0700

Initial commit

By default, with no arguments, git log lists the commits made in that repository in reverse
chronological order; that is, the most recent commits show up first. As you can see, this command
lists each commit with its SHA-1 checksum, the author’s name and email, the date written, and the
commit message.

A huge number and variety of options to the git log command are available to show you exactly
what you’re looking for. Here, we’ll show you some of the most popular.

40



One of the more helpful options is -p or --patch, which shows the difference (the patch output)
introduced in each commit. You can also limit the number of log entries displayed, such as using -2
to show only the last two entries.

$ git log -p -2

commit ca82abdff817ec66f44342007202690393763949
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Mon Mar 17 21:52:11 2008 -0700

Change version number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require 'rake/gempackagetask’
spec = Gem::Specification.new do |s|

s.platform = Gem::Platform::RUBY
S.name = "simplegit"
- s.version = "0.1.0"
+ s.version = "0.1.1"
s.author = "Scott Chacon"
s.email = "schacon@gee-mail.com"
s.summary = "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbeb306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Sat Mar 15 16:40:33 2008 -0700

Remove unnecessary test

diff --git a/lib/simplegit.rb b/1lib/simplegit.rb
index alablae..47c6340 100644
--- a/lib/simplegit.rb
+++ b/1ib/simplegit.rb
@0 -18,8 +18,3 @@ class SimpleGit
end

end

-if $0 == __FILE__

- git = SimpleGit.new
- puts git.show

-end

This option displays the same information but with a diff directly following each entry. This is very
helpful for code review or to quickly browse what happened during a series of commits that a
collaborator has added. You can also use a series of summarizing options with git 1log. For
example, if you want to see some abbreviated stats for each commit, you can use the --stat option:

41



As you can see, the --stat option prints below each commit entry a list of modified files, how many
es were changed, and how many lines in those files were added and removed. It also puts a

fil

$ git log --stat

commit ca82abdff817ecb66144342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Mon Mar 17 21:52:11 2008 -0700

Change version number

Rakefile | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbeb306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Sat Mar 15 16:40:33 2008 -0700

Remove unnecessary test

lib/simplegit.rb | 5 -----
1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Sat Mar 15 10:31:28 2008 -0700

Initial commit

README | 6 ++t++t

Rakefile | 23 ++++++++HHHHHHHHHHHHH
lib/simplegit.rb | 25 +++++++++tt++++++tt+++++
3 files changed, 54 insertions(+)

summary of the information at the end.

Another really useful option is --pretty. This option changes the log output to formats other than
e default. A few prebuilt option values are available for you to use. The oneline value for this
option prints each commit on a single line, which is useful if you’re looking at a lot of commits. In
addition, the short, full, and fuller values show the output in roughly the same format but with

th

less or more information, respectively:

The most interesting option value is format, which allows you to specify your own log output
format. This is especially useful when you’re generating output for machine parsing — because you
ecify the format explicitly, you know it won’t change with updates to Git:

Sp

42

$ git log --pretty=oneline

ca82abdff817ec66f44342007202690393763949 Change version number
085bb3bcb608e1e8451d4b2432f8ecbeb306e7e7 Remove unnecessary test
a11bef06a3f659402fe7563abf99ad00de2209e6 Initial commit



n P]

$ git log --pretty=format:"%h - %an, %ar : %s

ca82abd - Scott Chacon, 6 years ago : Change version number
085bb3b - Scott Chacon, 6 years ago : Remove unnecessary test
al1bef@® - Scott Chacon, 6 years ago : Initial commit

Useful specifiers for git log --pretty=format lists some of the more useful specifiers that format
takes.

Table 1. Useful specifiers for git log --pretty=format

Specifier Description of Output

o

H Commit hash

o°
ju

Abbreviated commit hash

o°
_‘

Tree hash

o
—

Abbreviated tree hash

o
O

Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author email

%ad Author date (format respects the --date=option)
%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

You may be wondering what the difference is between author and committer. The author is the
person who originally wrote the work, whereas the committer is the person who last applied the
work. So, if you send in a patch to a project and one of the core members applies the patch, both of
you get credit—you as the author, and the core member as the committer. We’ll cover this
distinction a bit more in Distributed Git.

The oneline and format option values are particularly useful with another log option called --graph.
This option adds a nice little ASCII graph showing your branch and merge history:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 Ignore errors from SIGCHLD on trap

* 5e3eell Merge branch 'master' of https://github.com/dustin/grit.git
I\

| * 420eac9 Add method for getting the current branch

* | 30e367c Timeout code and tests

43



* | 5309431 Add timeout protection to grit

* | e1193f8 Support for heads with slashes in them
|/

* d6016bc Require time for xmlschema

* 11d191e Merge branch 'defunkt' into local

This type of output will become more interesting as we go through branching and merging in the
next chapter.

Those are only some simple output-formatting options to git log— there are many more. Common
options to git log lists the options we’ve covered so far, as well as some other common formatting
options that may be useful, along with how they change the output of the 1log command.

Table 2. Common options to git log

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the --stat command.
--name-only Show the list of files modified after the commit information.

--name-status Show the list of files affected with added/modified/deleted information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks ago”) instead of
using the full date format.

--graph Display an ASCII graph of the branch and merge history beside the log output.

--pretty Show commits in an alternate format. Option values include oneline, short,
full, fuller, and format (where you specify your own format).

--oneline Shorthand for --pretty=oneline --abbrev-commit used together.

Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting options; that is,
options that let you show only a subset of commits. You’ve seen one such option already — the -2
option, which displays only the last two commits. In fact, you can do -<n>, where n is any integer to
show the last n commits. In reality, you’re unlikely to use that often, because Git by default pipes all
output through a pager so you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful. For example, this
command gets the list of commits made in the last two weeks:

$ git log --since=2.weeks

This command works with lots of formats — you can specify a specific date like "2008-01-15", or a
relative date such as "2 years 1 day 3 minutes ago".

44



You can also filter the list to commits that match some search criteria. The --author option allows
you to filter on a specific author, and the --grep option lets you search for keywords in the commit
messages.

You can specify more than one instance of both the --author and --grep search
criteria, which will limit the commit output to commits that match any of the

o --author patterns and any of the --grep patterns; however, adding the --all-match
option further limits the output to just those commits that match all --grep
patterns.

Another really helpful filter is the -S option (colloquially referred to as Git’s “pickaxe” option),
which takes a string and shows only those commits that changed the number of occurrences of that
string. For instance, if you wanted to find the last commit that added or removed a reference to a
specific function, you could call:

$ git log -S function_name

The last really useful option to pass to git log as a filter is a path. If you specify a directory or file
name, you can limit the log output to commits that introduced a change to those files. This is always
the last option and is generally preceded by double dashes (--) to separate the paths from the
options:

$ git log -- path/to/file

In Options to limit the output of git log we’ll list these and a few other common options for your
reference.

Table 3. Options to limit the output of git log

Option Description

-<n> Show only the last n commits.

--since, --after Limit the commits to those made after the specified date.
--until, --before Limit the commits to those made before the specified date.
--author Only show commits in which the author entry matches the

specified string.

--committer Only show commits in which the committer entry matches the
specified string.

--grep Only show commits with a commit message containing the
string.

-5 Only show commits adding or removing code matching the
string.

For example, if you want to see which commits modifying test files in the Git source code history
were committed by Junio Hamano in the month of October 2008 and are not merge commits, you

45



can run something like this:

$ git log --pretty="%h - %s" --author="Junio C Hamano' --since="2008-10-01" \
--before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attributes are in use

acd3b9e - Enhance hold_lock_file_for_{update,append}() API

563754 - demonstrate breakage of detached checkout with symbolic link HEAD

d1a43f2 - reset --hard/read-tree --reset -u: remove unmerged new paths

51a94af - Fix "checkout --track -b newbranch" on detached HEAD

bdad11e - pull: allow "git pull origin $something:$current_branch" into an unborn

branch

Of the nearly 40,000 commits in the Git source code history, this command shows the 6 that match
those criteria.

Preventing the display of merge commits

Depending on the workflow used in your repository, it’s possible that a sizable
O percentage of the commits in your log history are just merge commits, which
v typically aren’t very informative. To prevent the display of merge commits
cluttering up your log history, simply add the 1og option --no-merges.

Undoing Things

At any stage, you may want to undo something. Here, we’ll review a few basic tools for undoing
changes that you’ve made. Be careful, because you can’t always undo some of these undos. This is
one of the few areas in Git where you may lose some work if you do it wrong.

One of the common undos takes place when you commit too early and possibly forget to add some
files, or you mess up your commit message. If you want to redo that commit, make the additional
changes you forgot, stage them, and commit again using the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve made no changes since
your last commit (for instance, you run this command immediately after your previous commit),
then your snapshot will look exactly the same, and all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of your previous
commit. You can edit the message the same as always, but it overwrites your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a file you wanted
to add to this commit, you can do something like this:

$ git commit -m 'Initial commit'
$ git add forgotten_file

46



$ git commit --amend

You end up with a single commit — the second commit replaces the results of the first.

It’s important to understand that when you’re amending your last commit, you’re
not so much fixing it as replacing it entirely with a new, improved commit that
pushes the old commit out of the way and puts the new commit in its place.
Effectively, it’s as if the previous commit never happened, and it won’t show up in
your repository history.

The obvious value to amending commits is to make minor improvements to your
last commit, without cluttering your repository history with commit messages of
the form, “Oops, forgot to add a file” or “Darn, fixing a typo in last commit”.

Only amend commits that are still local and have not been pushed somewhere.
Amending previously pushed commits and force pushing the branch will cause
problems for your collaborators. For more on what happens when you do this and
how to recover if you’re on the receiving end read The Perils of Rebasing.

Unstaging a Staged File

The next two sections demonstrate how to work with your staging area and working directory

changes. The nice part is that the command you use to determine the state of those two areas also
reminds you how to undo changes to them. For example, let’s say you’ve changed two files and
want to commit them as two separate changes, but you accidentally type git add * and stage them

both. How can you unstage one of the two? The git status command reminds you:

$ git add *

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

renamed: README.md -> README
modified:  CONTRIBUTING.md

Right below the “Changes to be committed” text, it says use git reset HEAD <file>::- to unstage. So,

let’s use that advice to unstage the CONTRIBUTING.md file:

$ git reset HEAD CONTRIBUTING.md
Unstaged changes after reset:
M CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

47



renamed: README.md -> README

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:  CONTRIBUTING.md

The command is a bit strange, but it works. The CONTRIBUTING.md file is modified but once again
unstaged.

It’s true that git reset can be a dangerous command, especially if you provide the
0 --hard flag. However, in the scenario described above, the file in your working
directory is not touched, so it’s relatively safe.

For now this magic invocation is all you need to know about the git reset command. We’ll go into
much more detail about what reset does and how to master it to do really interesting things in
Reset Demystified.

Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the CONTRIBUTING.md file? How can
you easily unmodify it —revert it back to what it looked like when you last committed (or initially
cloned, or however you got it into your working directory)? Luckily, git status tells you how to do
that, too. In the last example output, the unstaged area looks like this:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:  CONTRIBUTING.md
It tells you pretty explicitly how to discard the changes you’ve made. Let’s do what it says:

$ git checkout -- CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

renamed: README.md -> README

You can see that the changes have been reverted.
It’s important to understand that git checkout -- <file>is a dangerous command.

Any local changes you made to that file are gone — Git just replaced that file with
the last staged or committed version. Don’t ever use this command unless you

48



absolutely know that you don’t want those unsaved local changes.

If you would like to keep the changes you’ve made to that file but still need to get it out of the way
for now, we’ll go over stashing and branching in Git Branching; these are generally better ways to

go.

Remember, anything that is committed in Git can almost always be recovered. Even commits that
were on branches that were deleted or commits that were overwritten with an --amend commit can
be recovered (see Data Recovery for data recovery). However, anything you lose that was never
committed is likely never to be seen again.

Undoing things with git restore

Git version 2.23.0 introduced a new command: git restore. It’s basically an alternative to git reset
which we just covered. From Git version 2.23.0 onwards, Git will use git restore instead of git
reset for many undo operations.

Let’s retrace our steps, and undo things with git restore instead of git reset.

Unstaging a Staged File with git restore

The next two sections demonstrate how to work with your staging area and working directory
changes with git restore. The nice part is that the command you use to determine the state of those
two areas also reminds you how to undo changes to them. For example, let’s say you’ve changed
two files and want to commit them as two separate changes, but you accidentally type git add *
and stage them both. How can you unstage one of the two? The git status command reminds you:

$ git add *
$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified:  CONTRIBUTING.md
renamed: README.md -> README

Right below the “Changes to be committed” text, it says use git restore --staged <file>' to
unstage. So, let’s use that advice to unstage the CONTRIBUTING.md file:

$ git restore --staged CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
renamed: README.md -> README

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

49



modified:  CONTRIBUTING.md

The CONTRIBUTING.md file is modified but once again unstaged.

Unmodifying a Modified File with git restore

What if you realize that you don’t want to keep your changes to the CONTRIBUTING.md file? How can
you easily unmodify it — revert it back to what it looked like when you last committed (or initially
cloned, or however you got it into your working directory)? Luckily, git status tells you how to do
that, too. In the last example output, the unstaged area looks like this:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified:  CONTRIBUTING.md

It tells you pretty explicitly how to discard the changes you’ve made. Let’s do what it says:

$ git restore CONTRIBUTING.md
$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
renamed: README.md -> README

It’s important to understand that git restore <file>is a dangerous command. Any

o local changes you made to that file are gone — Git just replaced that file with the
last staged or committed version. Don’t ever use this command unless you
absolutely know that you don’t want those unsaved local changes.

Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your remote
repositories. Remote repositories are versions of your project that are hosted on the Internet or
network somewhere. You can have several of them, each of which generally is either read-only or
read/write for you. Collaborating with others involves managing these remote repositories and
pushing and pulling data to and from them when you need to share work. Managing remote
repositories includes knowing how to add remote repositories, remove remotes that are no longer
valid, manage various remote branches and define them as being tracked or not, and more. In this
section, we’ll cover some of these remote-management skills.

Remote repositories can be on your local machine.

It is entirely possible that you can be working with a “remote” repository that is, in
o fact, on the same host you are. The word “remote” does not necessarily imply that
the repository is somewhere else on the network or Internet, only that it is

50



elsewhere. Working with such a remote repository would still involve all the
standard pushing, pulling and fetching operations as with any other remote.

Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command. It lists the
shortnames of each remote handle you’ve specified. If you’ve cloned your repository, you should at
least see origin— that is the default name Git gives to the server you cloned from:

$ git clone https://github.com/schacon/ticgit

Cloning into 'ticgit'...

remote: Reusing existing pack: 1857, done.

remote: Total 1857 (delta @), reused @ (delta 0)

Receiving objects: 100% (1857/1857), 374.35 KiB | 268.00 KiB/s, done.
Resolving deltas: 100% (772/772), done.

Checking connectivity... done.

$ cd ticgit

$ git remote

origin

You can also specify -v, which shows you the URLs that Git has stored for the shortname to be used
when reading and writing to that remote:

$ git remote -v
origin https://qgithub.com/schacon/ticgit (fetch)
origin https://qgithub.com/schacon/ticgit (push)

If you have more than one remote, the command lists them all. For example, a repository with
multiple remotes for working with several collaborators might look something like this.

$ cd grit

$ git remote -v

bakkdoor https://github.com/bakkdoor/grit (fetch)
bakkdoor https://github.com/bakkdoor/grit (push)
cho45 https://qithub.com/cho45/grit (fetch)
cho45 https://qithub.com/cho45/grit (push)
defunkt https://github.com/defunkt/grit (fetch)
defunkt  https://qithub.com/defunkt/grit (push)
koke git://github.com/koke/grit.git (fetch)
koke git://qithub.com/koke/grit.qgit (push)
origin git@github.com:mojombo/grit.git (fetch)
origin git@github.com:mojombo/grit.qgit (push)

This means we can pull contributions from any of these users pretty easily. We may additionally
have permission to push to one or more of these, though we can’t tell that here.

Notice that these remotes use a variety of protocols; we’ll cover more about this in Getting Git on a

31



Server.

Adding Remote Repositories

We’ve mentioned and given some demonstrations of how the git clone command implicitly adds
the origin remote for you. Here’s how to add a new remote explicitly. To add a new remote Git
repository as a shortname you can reference easily, run git remote add <shortname> <url>:

$ git remote

origin

$ git remote add pb https://github.com/paulboone/ticgit
$ git remote -v

origin https://qgithub.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)

pb https://github.com/paulboone/ticgit (fetch)

pb https://github.com/paulboone/ticgit (push)

Now you can use the string pb on the command line instead of the whole URL. For example, if you
want to fetch all the information that Paul has but that you don’t yet have in your repository, you
canrun git fetch pb

$ git fetch pb

remote: Counting objects: 43, done.

remote: Compressing objects: 100% (36/36), done.
remote: Total 43 (delta 10), reused 31 (delta 5)
Unpacking objects: 100% (43/43), done.

From https://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

Paul’s master branch is now accessible locally as pb/master —you can merge it into one of your
branches, or you can check out a local branch at that point if you want to inspect it. We’ll go over
what branches are and how to use them in much more detail in Git Branching.

Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run:
$ git fetch <remote>

The command goes out to that remote project and pulls down all the data from that remote project
that you don’t have yet. After you do this, you should have references to all the branches from that
remote, which you can merge in or inspect at any time.

If you clone a repository, the command automatically adds that remote repository under the name
“origin”. So, git fetch origin fetches any new work that has been pushed to that server since you

32



cloned (or last fetched from) it. It’s important to note that the git fetch command only downloads
the data to your local repository —it doesn’t automatically merge it with any of your work or
modify what you’re currently working on. You have to merge it manually into your work when
you’re ready.

If your current branch is set up to track a remote branch (see the next section and Git Branching for
more information), you can use the git pull command to automatically fetch and then merge that
remote branch into your current branch. This may be an easier or more comfortable workflow for
you; and by default, the git clone command automatically sets up your local master branch to track
the remote master branch (or whatever the default branch is called) on the server you cloned from.
Running git pull generally fetches data from the server you originally cloned from and
automatically tries to merge it into the code you’re currently working on.

From Git version 2.27 onward, git pull will give a warning if the pull.rebase
variable is not set. Git will keep warning you until you set the variable.

o If you want the default behavior of Git (fast-forward if possible, else create a
merge commit): git config --global pull.rebase "false"

If you want to rebase when pulling: git config --global pull.rebase "true"

Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it upstream. The
command for this is simple: git push <remote> <branch>. If you want to push your master branch to
your origin server (again, cloning generally sets up both of those names for you automatically),
then you can run this to push any commits you’ve done back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write access and if
nobody has pushed in the meantime. If you and someone else clone at the same time and they push
upstream and then you push upstream, your push will rightly be rejected. You’ll have to fetch their
work first and incorporate it into yours before you’ll be allowed to push. See Git Branching for
more detailed information on how to push to remote servers.

Inspecting a Remote

If you want to see more information about a particular remote, you can use the git remote show
<remote> command. If you run this command with a particular shortname, such as origin, you get
something like this:

$ git remote show origin

* remote origin
Fetch URL: https://github.com/schacon/ticgit
Push URL: https://github.com/schacon/ticgit
HEAD branch: master

33



Remote branches:
master tracked
dev-branch tracked
Local branch configured for 'git pull':
master merges with remote master
Local ref configured for 'git push':
master pushes to master (up to date)

It lists the URL for the remote repository as well as the tracking branch information. The command
helpfully tells you that if you’re on the master branch and you run git pull, it will automatically
merge the remote’s master branch into the local one after it has been fetched. It also lists all the
remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more heavily, however,
you may see much more information from git remote show:

$ git remote show origin

* remote origin
URL: https://github.com/my-org/complex-project
Fetch URL: https://github.com/my-org/complex-project
Push URL: https://github.com/my-org/complex-project
HEAD branch: master
Remote branches:

master tracked

dev-branch tracked

markdown-strip tracked

issue-43 new (next fetch will store in remotes/origin)
issue-45 new (next fetch will store in remotes/origin)
refs/remotes/origin/issue-11 stale (use 'git remote prune' to remove)

Local branches configured for 'git pull':
dev-branch merges with remote dev-branch

master merges with remote master
Local refs configured for 'git push':

dev-branch pushes to dev-branch (up to
date)

markdown-strip pushes to markdown-strip (up to
date)

master pushes to master (up to
date)

This command shows which branch is automatically pushed to when you run git push while on
certain branches. It also shows you which remote branches on the server you don’t yet have, which
remote branches you have that have been removed from the server, and multiple local branches
that are able to merge automatically with their remote-tracking branch when you run git pull.

Renaming and Removing Remotes

You canrun git remote rename to change a remote’s shortname. For instance, if you want to rename
pb to paul, you can do so with git remote rename:

54



$ git remote rename pb paul
$ git remote

origin

paul

It’s worth mentioning that this changes all your remote-tracking branch names, too. What used to
be referenced at pb/master is now at paul/master.

If you want to remove a remote for some reason — you’ve moved the server or are no longer using
a particular mirror, or perhaps a contributor isn’t contributing anymore — you can either use git
remote remove or git remote rm:

$ git remote remove paul
$ git remote
origin

Once you delete the reference to a remote this way, all remote-tracking branches and configuration
settings associated with that remote are also deleted.

Tagging

Like most VCSs, Git has the ability to tag specific points in a repository’s history as being important.
Typically, people use this functionality to mark release points (v1.0, v2.0 and so on). In this section,
yow’ll learn how to list existing tags, how to create and delete tags, and what the different types of
tags are.

Listing Your Tags

Listing the existing tags in Git is straightforward. Just type git tag (with optional -1 or --1ist):

$ git tag
v1.0
v2.0

This command lists the tags in alphabetical order; the order in which they are displayed has no real
importance.

You can also search for tags that match a particular pattern. The Git source repo, for instance,
contains more than 500 tags. If you’re interested only in looking at the 1.8.5 series, you can run this:

$ git tag -1 "v1.8.5*"
v1.8.5

v1.8.5-rc@

v1.8.5-rc1

v1.8.5-rc2

v1.8.5-rc3

55



v1.8.5.1
v1.8.5.2
v1.8.5.3
v1.8.5.4
v1.8.5.5

Listing tag wildcards requires -1 or --1ist option

If you want just the entire list of tags, running the command git tag implicitly
assumes you want a listing and provides one; the use of -1 or --1ist in this case is
o optional.

If, however, you’re supplying a wildcard pattern to match tag names, the use of -1
or --list is mandatory.

Creating Tags
Git supports two types of tags: lightweight and annotated.

A lightweight tag is very much like a branch that doesn’t change —it’s just a pointer to a specific
commit.

Annotated tags, however, are stored as full objects in the Git database. They’re checksummed;
contain the tagger name, email, and date; have a tagging message; and can be signed and verified
with GNU Privacy Guard (GPG). It’s generally recommended that you create annotated tags so you
can have all this information; but if you want a temporary tag or for some reason don’t want to
keep the other information, lightweight tags are available too.

Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify -a when you run the tag
command:

$ git tag -a v1.4 -m "my version 1.4"
$ git tag

vo.1

v1.3

vl.4

The -m specifies a tagging message, which is stored with the tag. If you don’t specify a message for
an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git show command:
$ git show v1.4
tag v1.4

Tagger: Ben Straub <ben@straub.cc>
Date:  Sat May 3 20:19:12 2014 -0700

36



my version 1.4

commit ca82abdff817ecb66144342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Mon Mar 17 21:52:11 2008 -0700

Change version number

That shows the tagger information, the date the commit was tagged, and the annotation message
before showing the commit information.

Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit checksum stored
in a file—no other information is kept. To create a lightweight tag, don’t supply any of the -3, -s, or
-m options, just provide a tag name:

$ git tag v1.4-1w
$ git tag

vo.1

vl.3

vl.4

vl.4-1w

vl.5

This time, if you run git show on the tag, you don’t see the extra tag information. The command just
shows the commit:

$ git show v1.4-1w

commit ca82abdff817ec66f44342007202690393763949
Author: Scott Chacon <schacon@gee-mail.com>
Date:  Mon Mar 17 21:52:11 2008 -0700

Change version number

Tagging Later

You can also tag commits after you’ve moved past them. Suppose your commit history looks like
this:

$ git log --pretty=oneline
15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch 'experiment'
abb4c97498bd301d84096da251c98a07c7723e65 Create write support
0d52aa3ab4479697da7686c15f77a3d64d9165190 One more thing
6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch 'experiment'’
0b7434d86859cc7b8c3d5e1dddfedbbff742fcbc Add commit function

57



4682¢3261057305bdd616e23b64b0857d832627b Add todo file
166ae0c4d3f420721acbb115cc33848dfcc2121a Create write support
9fceb02d0ae598e95dc970b74767119372d61af8 Update rakefile
964f16d36dfccde844893cac5hb347e7b3d44abbe Commit the todo
8abcbc430f139c¢3d00faaeffd07798508422908a Update readme

Now, suppose you forgot to tag the project at v1.2, which was at the “Update rakefile” commit. You
can add it after the fact. To tag that commit, you specify the commit checksum (or part of it) at the
end of the command

$ git tag -a v1.2 9fceb0?
You can see that you’'ve tagged the commit:

$ git tag
v0.1

vl.2

v1.3

vl.4
vl.4-1w
vl.5

$ git show v1.2

tag v1.2

Tagger: Scott Chacon <schacon@gee-mail.com>
Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2

commit 9fceb02d0ae598e95dc970b74767119372d61af8
Author: Magnus Chacon <mchacon@gee-mail.com>
Date:  Sun Apr 27 20:43:35 2008 -0700

Update rakefile

Sharing Tags

By default, the git push command doesn’t transfer tags to remote servers. You will have to explicitly
push tags to a shared server after you have created them. This process is just like sharing remote
branches —you can run git push origin <tagname>.

$ git push origin v1.5

Counting objects: 14, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (12/12), done.

Writing objects: 100% (14/14), 2.05 KiB | @ bytes/s, done.
Total 14 (delta 3), reused @ (delta 0)

38



To git@github.com:schacon/simplegit.qgit
* [new tag] v1.5 -> v1.5

If you have a lot of tags that you want to push up at once, you can also use the --tags option to the
git push command. This will transfer all of your tags to the remote server that are not already
there.

$ git push origin --tags
Counting objects: 1, done.
Writing objects: 100% (1/1), 160 bytes | @ bytes/s, done.
Total 1 (delta @), reused @ (delta 0)
To git@github.com:schacon/simplegit.git
* [new taq] vl.4 -> v1.4
* [new tag] vl.4-Tw -> v1.4-1w

Now, when someone else clones or pulls from your repository, they will get all your tags as well.

git push pushes both types of tags
o git push <remote> --tags will push both lightweight and annotated tags. There is

currently no option to push only lightweight tags, but if you use git push <remote>
--follow-tags only annotated tags will be pushed to the remote.

Deleting Tags

To delete a tag on your local repository, you can use git tag -d <tagname>. For example, we could

remove our lightweight tag above as follows:

$ git tag -d v1.4-1w
Deleted tag 'v1.4-1w' (was e7d5add)

Note that this does not remove the tag from any remote servers. There are two common variations
for deleting a tag from a remote server.

The first variation is git push <remote> :refs/tags/<tagname>:

$ git push origin :refs/tags/v1.4-1w
To /git@github.com:schacon/simplegit.git
- [deleted] vl.4-1w

The way to interpret the above is to read it as the null value before the colon is being pushed to the
remote tag name, effectively deleting it.

The second (and more intuitive) way to delete a remote tag is with:

39



$ git push origin --delete <tagname>

Checking out Tags

If you want to view the versions of files a tag is pointing to, you can do a git checkout of that tag,
although this puts your repository in “detached HEAD” state, which has some ill side effects:

$ git checkout v2.0.0
Note: switching to 'v2.0.0'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c¢ <new-branch-name>
Or undo this operation with:
git switch -
Turn off this advice by setting config variable advice.detachedHead to false
HEAD is now at 99ada87... Merge pull request #89 from schacon/appendix-final
$ git checkout v2.0-beta-0.1
Previous HEAD position was 99ada87... Merge pull request #89 from schacon/appendix-

final
HEAD is now at df3f601... Add atlas.json and cover image

In “detached HEAD?” state, if you make changes and then create a commit, the tag will stay the same,
but your new commit won’t belong to any branch and will be unreachable, except by the exact
commit hash. Thus, if you need to make changes — say you’re fixing a bug on an older version, for
instance — you will generally want to create a branch:

$ git checkout -b version2 v2.0.0
Switched to a new branch 'version2'

If you do this and make a commit, your version2 branch will be slightly different than your v2.0.0
tag since it will move forward with your new changes, so do be careful.

Git Aliases

Before we move on to the next chapter, we want to introduce a feature that can make your Git

60



experience simpler, easier, and more familiar: aliases. For clarity’s sake, we won’t be using them
anywhere else in this book, but if you go on to use Git with any regularity, aliases are something
you should know about.

Git doesn’t automatically infer your command if you type it in partially. If you don’t want to type
the entire text of each of the Git commands, you can easily set up an alias for each command using
git config. Here are a couple of examples you may want to set up:

$ git config --global alias.co checkout
$ git config --global alias.br branch
$ git config --global alias.ci commit
$ git config --global alias.st status

This means that, for example, instead of typing git commit, you just need to type git ci. As you go
on using Git, you’ll probably use other commands frequently as well; don’t hesitate to create new
aliases.

This technique can also be very useful in creating commands that you think should exist. For
example, to correct the usability problem you encountered with unstaging a file, you can add your
own unstage alias to Git:

$ git config --global alias.unstage 'reset HEAD --'

This makes the following two commands equivalent:

$ git unstage fileA
$ git reset HEAD -- fileA

This seems a bit clearer. It’s also common to add a last command, like this:

$ git config --global alias.last 'log -1 HEAD'

This way, you can see the last commit easily:

$ git last
commit 66938dae3329c7aebe598c2246a8e6af90d04646
Author: Josh Goebel <dreamer3@example.com>
Date:  Tue Aug 26 19:48:51 2008 +0800

Test for current head

Signed-off-by: Scott Chacon <schacon@example.com>

As you can tell, Git simply replaces the new command with whatever you alias it for. However,
maybe you want to run an external command, rather than a Git subcommand. In that case, you

61



start the command with a ! character. This is useful if you write your own tools that work with a
Git repository. We can demonstrate by aliasing git visual to run gitk:

$ git config --global alias.visual '!gitk'

Summary

At this point, you can do all the basic local Git operations — creating or cloning a repository, making
changes, staging and committing those changes, and viewing the history of all the changes the
repository has been through. Next, we’ll cover Git’s killer feature: its branching model.

62



Git Branching

Nearly every VCS has some form of branching support. Branching means you diverge from the
main line of development and continue to do work without messing with that main line. In many
VCS tools, this is a somewhat expensive process, often requiring you to create a new copy of your
source code directory, which can take a long time for large projects.

Some people refer to Git’s branching model as its “killer feature,” and it certainly sets Git apart in
the VCS community. Why is it so special? The way Git branches is incredibly lightweight, making
branching operations nearly instantaneous, and switching back and forth between branches
generally just as fast. Unlike many other VCSs, Git encourages workflows that branch and merge
often, even multiple times in a day. Understanding and mastering this feature gives you a powerful
and unique tool and can entirely change the way that you develop.

Branches in a Nutshell

To really understand the way Git does branching, we need to take a step back and examine how Git
stores its data.

As you may remember from What is Git?, Git doesn’t store data as a series of changesets or
differences, but instead as a series of snapshots.

When you make a commit, Git stores a commit object that contains a pointer to the snapshot of the
content you staged. This object also contains the author’s name and email address, the message that
you typed, and pointers to the commit or commits that directly came before this commit (its parent
or parents): zero parents for the initial commit, one parent for a normal commit, and multiple
parents for a commit that results from a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and you stage them
all and commit. Staging the files computes a checksum for each one (the SHA-1 hash we mentioned
in What is Git?), stores that version of the file in the Git repository (Git refers to them as blobs), and
adds that checksum to the staging area:

$ git add README test.rb LICENSE
$ git commit -m 'Initial commit'

When you create the commit by running git commit, Git checksums each subdirectory (in this case,
just the root project directory) and stores them as a tree object in the Git repository. Git then creates
a commit object that has the metadata and a pointer to the root project tree so it can re-create that
snapshot when needed.

Your Git repository now contains five objects: three blobs (each representing the contents of one of
the three files), one tree that lists the contents of the directory and specifies which file names are
stored as which blobs, and one commit with the pointer to that root tree and all the commit
metadata.

63



== Testing library

This library is used to test
Ruby projects.

98ca9 92ec2 911e7
commit size G SiE blob size
tree 92ec2 blob 5b1d3 README
author Scott o The MIT License
) blob 911e7 LICENSE
committer Scott blob cbafa test.rb Copyright (c) 2008 Scott Chacon

The initial commit of my project Permission is hereby granted,

require 'logger’
require 'test/unit’

class Test::Unit::TestCase

Figure 9. A commit and its tree

If you make some changes and commit again, the next commit stores a pointer to the commit that
came immediately before it.

98ca9 34ac2 f30ab

commit size commit size commit size
tree 92ec2 tree 184ca tree 0de24
parent parent 98ca9 parent 34ac2
author Scott — author Scott — author Scott
committer Scott committer Scott committer Scott

The initial commit of my project Fixed bug #1328 - stack overflow add feature #32 - ability to add new
under certain conditions formats to the central interface
Snapshot A Snapshot B Snapshot C

Figure 10. Commits and their parents

A branch in Git is simply a lightweight movable pointer to one of these commits. The default branch
name in Git is master. As you start making commits, you’re given a master branch that points to the
last commit you made. Every time you commit, the master branch pointer moves forward
automatically.

The “master” branch in Git is not a special branch. It is exactly like any other

6 branch. The only reason nearly every repository has one is that the git init
command creates it by default and most people don’t bother to change it.

64



98ca9 4+“— 34ac? +— f30ab

Snapshot C

Snapshot A

Snapshot B

Figure 11. A branch and its commit history

Creating a New Branch

What happens when you create a new branch? Well, doing so creates a new pointer for you to
move around. Let’s say you want to create a new branch called testing. You do this with the git

branch command:

98ca9 4+— 34ac?2 f30ab

. m

How does Git know what branch you’re currently on? It keeps a special pointer called HEAD. Note
that this is a lot different than the concept of HEAD in other VCSs you may be used to, such as
Subversion or CVS. In Git, this is a pointer to the local branch you’re currently on. In this case,
you’re still on master. The git branch command only created a new branch — it didn’t switch to that

$ git branch testing

This creates a new pointer to the same commit you’re currently on.

Figure 12. Two branches pointing into the same series of commits



branch.

98ca9 ¢ —— 34ac2 ¢ —— f30ab

Figure 13. HEAD pointing to a branch

You can easily see this by running a simple git log command that shows you where the branch
pointers are pointing. This option is called --decorate.

$ git log --oneline --decorate

f30ab (HEAD -> master, testing) Add feature #32 - ability to add new formats to the
central interface

34ac2 Fix bug #1328 - stack overflow under certain conditions

98ca9 Initial commit

You can see the master and testing branches that are right there next to the f30ab commit.

Switching Branches

To switch to an existing branch, you run the git checkout command. Let’s switch to the new testing
branch:

$ git checkout testing

This moves HEAD to point to the testing branch.

66



@

98ca9 4— 34ac?2 f30ab

.
o

Figure 14. HEAD points to the current branch

What is the significance of that? Well, let’s do another commit:

$ vim test.rb
$ git commit -a -m 'Make a change'

98ca9 4+— 34ac? 4+— f30ab 4+— 87ab2

Figure 15. The HEAD branch moves forward when a commit is made

This is interesting, because now your testing branch has moved forward, but your master branch

still points to the commit you were on when you ran git checkout to switch branches. Let’s switch
back to the master branch:

$ git checkout master

e git log doesn’t show all the branches all the time

67



If you were to run git log right now, you might wonder where the "testing"
branch you just created went, as it would not appear in the output.

The branch hasn’t disappeared; Git just doesn’t know that you’re interested in that
branch and it is trying to show you what it thinks you’re interested in. In other
words, by default, git log will only show commit history below the branch you’ve
checked out.

To show commit history for the desired branch you have to explicitly specify it: git
log testing. To show all of the branches, add --all to your git log command.

98ca9 4+— 34ac2 4+— f30ab 4+— 87ab2

Figure 16. HEAD moves when you checkout

That command did two things. It moved the HEAD pointer back to point to the master branch, and it
reverted the files in your working directory back to the snapshot that master points to. This also
means the changes you make from this point forward will diverge from an older version of the
project. It essentially rewinds the work you’ve done in your testing branch so you can go in a
different direction.

Switching branches changes files in your working directory

It’s important to note that when you switch branches in Git, files in your working

o directory will change. If you switch to an older branch, your working directory
will be reverted to look like it did the last time you committed on that branch. If Git
cannot do it cleanly, it will not let you switch at all.

Let’s make a few changes and commit again:

$ vim test.rb
$ git commit -a -m 'Make other changes'

Now your project history has diverged (see Divergent history). You created and switched to a
branch, did some work on it, and then switched back to your main branch and did other work. Both
of those changes are isolated in separate branches: you can switch back and forth between the
branches and merge them together when you’re ready. And you did all that with simple branch,

68



checkout, and commit commands.

cZb9e

98ca% -’ 34ac? -’ f3eab

87ab2

Figure 17. Divergent history

You can also see this easily with the git log command. If you run git log --oneline --decorate
--graph --all it will print out the history of your commits, showing where your branch pointers are
and how your history has diverged.

$ git log --oneline --decorate --graph --all

* ¢2b%e (HEAD, master) Make other changes

| * 87ab2 (testing) Make a change

|/

* f30ab Add feature #32 - ability to add new formats to the central interface
* 34ac2 Fix bug #1328 - stack overflow under certain conditions

* 98ca9 Initial commit of my project

Because a branch in Git is actually a simple file that contains the 40 character SHA-1 checksum of
the commit it points to, branches are cheap to create and destroy. Creating a new branch is as quick
and simple as writing 41 bytes to a file (40 characters and a newline).

This is in sharp contrast to the way most older VCS tools branch, which involves copying all of the
project’s files into a second directory. This can take several seconds or even minutes, depending on
the size of the project, whereas in Git the process is always instantaneous. Also, because we’re
recording the parents when we commit, finding a proper merge base for merging is automatically
done for us and is generally very easy to do. These features help encourage developers to create
and use branches often.

Let’s see why you should do so.

69



Creating a new branch and switching to it at the same time

o It’s typical to create a new branch and want to switch to that new branch at the
same time—this can be done in one operation with git checkout -b
<newbranchname>.

From Git version 2.23 onwards you can use git switch instead of git checkout to:

» Switch to an existing branch: git switch testing-branch.

o * Create a new branch and switch to it: git switch -c¢ new-branch. The -c flag
stands for create, you can also use the full flag: --create.

* Return to your previously checked out branch: git switch -.

Basic Branching and Merging

Let’s go through a simple example of branching and merging with a workflow that you might use in
the real world. You’ll follow these steps:

1. Do some work on a website.
2. Create a branch for a new user story you’re working on.

3. Do some work in that branch.

At this stage, you’ll receive a call that another issue is critical and you need a hotfix. You’ll do the
following:

1. Switch to your production branch.
2. Create a branch to add the hotfix.
3. After it’s tested, merge the hotfix branch, and push to production.

4. Switch back to your original user story and continue working.

Basic Branching

First, let’s say you’re working on your project and have a couple of commits already on the master
branch.

Co <+— C1 +— C2

Figure 18. A simple commit history

70



You’ve decided that you’re going to work on issue #53 in whatever issue-tracking system your
company uses. To create a new branch and switch to it at the same time, you can run the git
checkout command with the -b switch:

$ git checkout -b iss53
Switched to a new branch "issb53"

This is shorthand for:

$ git branch iss53
$ git checkout iss53

Co +— C1

Figure 19. Creating a new branch pointer

You work on your website and do some commits. Doing so moves the iss53 branch forward,
because you have it checked out (that is, your HEAD is pointing to it):

$ vim index.html
$ git commit -a -m 'Create new footer [issue 53]

71



Co +— C1 4+— C2 <+— C3

Figure 20. The iss53 branch has moved forward with your work

Now you get the call that there is an issue with the website, and you need to fix it immediately. With
Git, you don’t have to deploy your fix along with the iss53 changes you’ve made, and you don’t
have to put a lot of effort into reverting those changes before you can work on applying your fix to
what is in production. All you have to do is switch back to your master branch.

However, before you do that, note that if your working directory or staging area has uncommitted
changes that conflict with the branch you’re checking out, Git won’t let you switch branches. It’s
best to have a clean working state when you switch branches. There are ways to get around this
(namely, stashing and commit amending) that we’ll cover later on, in Stashing and Cleaning. For
now, let’s assume you’ve committed all your changes, so you can switch back to your master branch:

$ git checkout master
Switched to branch 'master'

At this point, your project working directory is exactly the way it was before you started working
on issue #53, and you can concentrate on your hotfix. This is an important point to remember:
when you switch branches, Git resets your working directory to look like it did the last time you
committed on that branch. It adds, removes, and modifies files automatically to make sure your
working copy is what the branch looked like on your last commit to it.

Next, you have a hotfix to make. Let’s create a hotfix branch on which to work until it’s completed:

$ git checkout -b hotfix
Switched to a new branch "hotfix'
$ vim index.html
$ git commit -a -m 'Fix broken email address'
[hotfix 1fb7853] Fix broken email address
1 file changed, 2 insertions(+)

72



ce +— C1 4+— C2 4+“— Cc4

AN

C3

Figure 21. Hotfix branch based on master

You can run your tests, make sure the hotfix is what you want, and finally merge the hotfix branch
back into your master branch to deploy to production. You do this with the git merge command:

$ git checkout master
$ git merge hotfix
Updating f42c576..3a0874c
Fast-forward
index.html | 2 ++
1 file changed, 2 insertions(+)

You’ll notice the phrase “fast-forward” in that merge. Because the commit (4 pointed to by the
branch hotfix you merged in was directly ahead of the commit (2 you’re on, Git simply moves the
pointer forward. To phrase that another way, when you try to merge one commit with a commit
that can be reached by following the first commit’s history, Git simplifies things by moving the
pointer forward because there is no divergent work to merge together —this is called a “fast-
forward.”

Your change is now in the snapshot of the commit pointed to by the master branch, and you can
deploy the fix.

73



master

hotfix

Cce +— C1 +— C2 <+— C4

AN

C3

Figure 22. master is fast-forwarded to hotfix

After your super-important fix is deployed, you’re ready to switch back to the work you were doing
before you were interrupted. However, first you’ll delete the hotfix branch, because you no longer
need it—the master branch points at the same place. You can delete it with the -d option to git
branch:

$ git branch -d hotfix
Deleted branch hotfix (3a0874c).

Now you can switch back to your work-in-progress branch on issue #53 and continue working on it.

$ git checkout iss53

Switched to branch "iss53"

$ vim index.html

$ git conmit -a -m 'Finish the new footer [issue 53]'
[iss53 ad82d7a] Finish the new footer [issue 53]

1 file changed, 1 insertion(+)

74



ce <+— C1 <+— C2 +— C4

AN

C3 +— C5

Figure 23. Work continues on iss53

It’s worth noting here that the work you did in your hotfix branch is not contained in the files in
your iss53 branch. If you need to pull it in, you can merge your master branch into your iss53
branch by running git merge master, or you can wait to integrate those changes until you decide to
pull the iss53 branch back into master later.

Basic Merging

Suppose you’ve decided that your issue #53 work is complete and ready to be merged into your
master branch. In order to do that, yow’ll merge your iss53 branch into master, much like you
merged your hotfix branch earlier. All you have to do is check out the branch you wish to merge
into and then run the git merge command:

$ git checkout master

Switched to branch 'master’

$ git merge issh3

Merge made by the 'recursive' strategy.
index.html | 1+

1 file changed, 1 insertion(+)

This looks a bit different than the hotfix merge you did earlier. In this case, your development
history has diverged from some older point. Because the commit on the branch you’re on isn’t a
direct ancestor of the branch you’re merging in, Git has to do some work. In this case, Git does a
simple three-way merge, using the two snapshots pointed to by the branch tips and the common
ancestor of the two.

75



Common
Ancestor Snapshot to

Merge Into
L D T D
Snapshot to
Merge In
o+ (o)

Figure 24. Three snapshots used in a typical merge

Instead of just moving the branch pointer forward, Git creates a new snapshot that results from this
three-way merge and automatically creates a new commit that points to it. This is referred to as a
merge commit, and is special in that it has more than one parent.

ca +— c1 -+ c2 <+ c4

F 3

Cé

c3 +— C5

Figure 25. A merge commit

Now that your work is merged in, you have no further need for the iss53 branch. You can close the
issue in your issue-tracking system, and delete the branch:

$ git branch -d iss53

Basic Merge Conflicts

Occasionally, this process doesn’t go smoothly. If you changed the same part of the same file
differently in the two branches you’re merging, Git won’t be able to merge them cleanly. If your fix
for issue #53 modified the same part of a file as the hotfix branch, you’ll get a merge conflict that
looks something like this:

76



$ git merge issh3

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

Git hasn’t automatically created a new merge commit. It has paused the process while you resolve
the conflict. If you want to see which files are unmerged at any point after a merge conflict, you can
run git status:

$ git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged. Git adds standard
conflict-resolution markers to the files that have conflicts, so you can open them manually and
resolve those conflicts. Your file contains a section that looks something like this:

<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>

<div id="footer">

please contact us at support@github.com
</div>

>>>>>>> iss53:index.html

This means the version in HEAD (your master branch, because that was what you had checked out
when you ran your merge command) is the top part of that block (everything above the =======),
while the version in your iss53 branch looks like everything in the bottom part. In order to resolve
the conflict, you have to either choose one side or the other or merge the contents yourself. For
instance, you might resolve this conflict by replacing the entire block with this:

<div id="footer">
please contact us at email.support@github.com
</div>

This resolution has a little of each section, and the <<<<<<<, ======= and >>>>>>> lines have been
completely removed. After you’ve resolved each of these sections in each conflicted file, run git add

77



on each file to mark it as resolved. Staging the file marks it as resolved in Git.

If you want to use a graphical tool to resolve these issues, you can run git mergetool, which fires up
an appropriate visual merge tool and walks you through the conflicts:

$ git mergetool

This message is displayed because 'merge.tool' is not configured.

See 'git mergetool --tool-help' or 'git help config' for more details.

'git mergetool' will now attempt to use one of the following tools:

opendiff kdiff3 tkdiff xxdiff meld tortoisemerge gvimdiff diffuse diffmerge ecmerge
pdmerge araxis bc3 codecompare vimdiff emerge

Merging:

index.html

Normal merge conflict for 'index.html':
{local}: modified file
{remote}: modified file
Hit return to start merge resolution tool (opendiff):

If you want to use a merge tool other than the default (Git chose opendiff in this case because the
command was run on macOS), you can see all the supported tools listed at the top after “one of the
following tools.” Just type the name of the tool you’d rather use.

o If you need more advanced tools for resolving tricky merge conflicts, we cover
more on merging in Advanced Merging.

After you exit the merge tool, Git asks you if the merge was successful. If you tell the script that it
was, it stages the file to mark it as resolved for you. You can run git status again to verify that all
conflicts have been resolved:

$ git status

On branch master

A1l conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

Changes to be committed:

modified: index.html

If you're happy with that, and you verify that everything that had conflicts has been staged, you can
type git commit to finalize the merge commit. The commit message by default looks something like
this:

Merge branch 'iss53'

Conflicts:

78



index.html

It looks like you may be committing a merge.

If this is not correct, please remove the file
.git/MERGE_HEAD

and try again.

= FF O =

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master

A1l conflicts fixed but you are still merging.

Changes to be committed:
modified:  index.html

= o H = O o = R

If you think it would be helpful to others looking at this merge in the future, you can modify this
commit message with details about how you resolved the merge and explain why you did the
changes you made if these are not obvious.

Branch Management

Now that you’ve created, merged, and deleted some branches, let’s look at some branch-
management tools that will come in handy when you begin using branches all the time.

The git branch command does more than just create and delete branches. If you run it with no
arguments, you get a simple listing of your current branches:

$ git branch
iss53

* master
testing

Notice the * character that prefixes the master branch: it indicates the branch that you currently
have checked out (i.e., the branch that HEAD points to). This means that if you commit at this point,
the master branch will be moved forward with your new work. To see the last commit on each
branch, you can run git branch -v:

$ git branch -v
iss53  93b412c¢ Fix javascript issue
* master 7398805 Merge branch 'iss53'
testing 782fd34 Add scott to the author list in the readme

The useful --merged and --no-merged options can filter this list to branches that you have or have not
yet merged into the branch you’re currently on. To see which branches are already merged into the
branch you’re on, you can run git branch --merged:

79



$ git branch --merged
15553
* master

Because you already merged in iss53 earlier, you see it in your list. Branches on this list without the
*in front of them are generally fine to delete with git branch -d; you’ve already incorporated their
work into another branch, so you’re not going to lose anything.

To see all the branches that contain work you haven’t yet merged in, you can run git branch --no
-merged:

$ git branch --no-merged
testing

This shows your other branch. Because it contains work that isn’t merged in yet, trying to delete it
with git branch -d will fail:

$ git branch -d testing
error: The branch 'testing' is not fully merged.
If you are sure you want to delete it, run 'git branch -D testing'.

If you really do want to delete the branch and lose that work, you can force it with -D, as the helpful
message points out.

The options described above, --merged and --no-merged will, if not given a commit
or branch name as an argument, show you what is, respectively, merged or not
merged into your current branch.

You can always provide an additional argument to ask about the merge state with
respect to some other branch without checking that other branch out first, as in,
(’) what is not merged into the master branch?

$ git checkout testing

$ git branch --no-merged master
topicA
featureB

Changing a branch name
Do not rename branches that are still in use by other collaborators. Do not rename
o a branch like master/main/mainline without having read the section Changing the

master branch name.

Suppose you have a branch that is called bad-branch-name and you want to change it to corrected-

80



branch-name, while keeping all history. You also want to change the branch name on the remote
(GitHub, GitLab, other server). How do you do this?

Rename the branch locally with the git branch --move command:
$ git branch --move bad-branch-name corrected-branch-name

This replaces your bad-branch-name with corrected-branch-name, but this change is only local for
now. To let others see the corrected branch on the remote, push it:

$ git push --set-upstream origin corrected-branch-name
Now we’ll take a brief look at where we are now:

$ git branch --all

* corrected-branch-name
main
remotes/origin/bad-branch-name
remotes/origin/corrected-branch-name
remotes/origin/main

Notice that you're on the branch corrected-branch-name and it’s available on the remote. However,
the branch with the bad name is also still present there but you can delete it by executing the
following command:

$ git push origin --delete bad-branch-name

Now the bad branch name is fully replaced with the corrected branch name.

Changing the master branch name

Changing the name of a branch like master/main/mainline/default will break the
integrations, services, helper utilities and build/release scripts that your repository

A uses. Before you do this, make sure you consult with your collaborators. Also,
make sure you do a thorough search through your repo and update any references
to the old branch name in your code and scripts.

Rename your local master branch into main with the following command:
$ git branch --move master main

There’s no local master branch anymore, because it’s renamed to the main branch.

To let others see the new main branch, you need to push it to the remote. This makes the renamed

81



branch available on the remote.

$ git push --set-upstream origin main

Now we end up with the following state:

$ git branch --all

* main
remotes/origin/HEAD -> origin/master
remotes/origin/main
remotes/origin/master

Your local master branch is gone, as it’s replaced with the main branch. The main branch is present on
the remote. However, the old master branch is still present on the remote. Other collaborators will
continue to use the master branch as the base of their work, until you make some further changes.

Now you have a few more tasks in front of you to complete the transition:

* Any projects that depend on this one will need to update their code and/or configuration.

» Update any test-runner configuration files.

Adjust build and release scripts.

Redirect settings on your repo host for things like the repo’s default branch, merge rules, and
other things that match branch names.

Update references to the old branch in documentation.

Close or merge any pull requests that target the old branch.

After you’ve done all these tasks, and are certain the main branch performs just as the master
branch, you can delete the master branch:

$ git push origin --delete master

Branching Workflows

Now that you have the basics of branching and merging down, what can or should you do with
them? In this section, we’ll cover some common workflows that this lightweight branching makes
possible, so you can decide if you would like to incorporate them into your own development cycle.

Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another multiple times
over a long period is generally easy to do. This means you can have several branches that are
always open and that you use for different stages of your development cycle; you can merge
regularly from some of them into others.

82



Many Git developers have a workflow that embraces this approach, such as having only code that is
entirely stable in their master branch — possibly only code that has been or will be released. They
have another parallel branch named develop or next that they work from or use to test stability — it
isn’t necessarily always stable, but whenever it gets to a stable state, it can be merged into master.
It’s used to pull in topic branches (short-lived branches, like your earlier iss53 branch) when
they’re ready, to make sure they pass all the tests and don’t introduce bugs.

In reality, we’re talking about pointers moving up the line of commits you’re making. The stable
branches are farther down the line in your commit history, and the bleeding-edge branches are
farther up the history.

develop

C1 <+— Cc2 <+— C3 <+— C4 <+— C5 <+ C6 <+ c7

Figure 26. A linear view of progressive-stability branching

It’s generally easier to think about them as work silos, where sets of commits graduate to a more
stable silo when they’re fully tested.

master

Figure 27. A “silo” view of progressive-stability branching

You can keep doing this for several levels of stability. Some larger projects also have a proposed or pu
(proposed updates) branch that has integrated branches that may not be ready to go into the next or
master branch. The idea is that your branches are at various levels of stability; when they reach a
more stable level, they’re merged into the branch above them. Again, having multiple long-running
branches isn’t necessary, but it’s often helpful, especially when you’re dealing with very large or
complex projects.

Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-lived branch
that you create and use for a single particular feature or related work. This is something you’ve
likely never done with a VCS before because it’s generally too expensive to create and merge

83



branches. But in Git it’s common to create, work on, merge, and delete branches several times a day.

You saw this in the last section with the iss53 and hotfix branches you created. You did a few
commits on them and deleted them directly after merging them into your main branch. This
technique allows you to context-switch quickly and completely — because your work is separated
into silos where all the changes in that branch have to do with that topic, it’s easier to see what has
happened during code review and such. You can keep the changes there for minutes, days, or
months, and merge them in when they’re ready, regardless of the order in which they were created
or worked on.

Consider an example of doing some work (on master), branching off for an issue (iss91), working on
it for a bit, branching off the second branch to try another way of handling the same thing (
15s91v2), going back to your master branch and working there for a while, and then branching off
there to do some work that you’re not sure is a good idea (dumbidea branch). Your commit history
will look something like this:

C13 C11
I |
C12 Cé6 C8

\ i .

- » g
i :
:

Figure 28. Multiple topic branches

Now, let’s say you decide you like the second solution to your issue best (iss91v2); and you showed
the dumbidea branch to your coworkers, and it turns out to be genius. You can throw away the
original iss91 branch (losing commits (5 and (6) and merge in the other two. Your history then
looks like this:

84



master

C14

v v

1 :
| i
: :
.
v

Figure 29. History after merging dumbidea and iss91v2

We will go into more detail about the various possible workflows for your Git project in Distributed
Git, so before you decide which branching scheme your next project will use, be sure to read that
chapter.

It’s important to remember when you're doing all this that these branches are completely local.
When you’re branching and merging, everything is being done only in your Git repository — there
is no communication with the server.

Remote Branches

Remote references are references (pointers) in your remote repositories, including branches, tags,
and so on. You can get a full list of remote references explicitly with git ls-remote <remote>, or git
remote show <remote> for remote branches as well as more information. Nevertheless, a more
common way is to take advantage of remote-tracking branches.

85



Remote-tracking branches are references to the state of remote branches. They’re local references
that you can’t move; Git moves them for you whenever you do any network communication, to
make sure they accurately represent the state of the remote repository. Think of them as
bookmarks, to remind you where the branches in your remote repositories were the last time you
connected to them.

Remote-tracking branch names take the form <remote>/<branch>. For instance, if you wanted to see
what the master branch on your origin remote looked like as of the last time you communicated
with it, you would check the origin/master branch. If you were working on an issue with a partner
and they pushed up an iss53 branch, you might have your own local iss53 branch, but the branch
on the server would be represented by the remote-tracking branch origin/iss53.

This may be a bit confusing, so let’s look at an example. Let’s say you have a Git server on your
network at git.ourcompany.com. If you clone from this, Git’s clone command automatically names it
origin for you, pulls down all its data, creates a pointer to where its master branch is, and names it
origin/master locally. Git also gives you your own local master branch starting at the same place as
origin’s master branch, so you have something to work from.

“origin” is not special

Just like the branch name “master” does not have any special meaning in Git,
o neither does “origin”. While “master” is the default name for a starting branch

when you run git init which is the only reason it’s widely used, “origin” is the

default name for a remote when you run git clone. If you run git clone -o booyah

instead, then you will have booyah/master as your default remote branch.

86



git.ourcompany.com

0b743 <+ abb4c <+ 4265

git clone janedoe@git.ourcompany.com:project.git

My Computer

origin/master Remote branch

0b743 <+ abb4c <+ 4265

Local branch

Figure 30. Server and local repositories after cloning

If you do some work on your local master branch, and, in the meantime, someone else pushes to
git.ourcompany.com and updates its master branch, then your histories move forward differently.

Also, as long as you stay out of contact with your origin server, your origin/master pointer doesn’t
move.

87



git.ourcompany.com

0b743 <+ abb4c <+ 4265 <4— 31b8e <+ 190a3

Someone else pushes

My Computer

origin/master

0b743 <+ abb4c <+ 4265 <+ a38de <+ 893cf

Figure 31. Local and remote work can diverge

To synchronize your work with a given remote, you run a git fetch <remote> command (in our
case, git fetch origin). This command looks up which server “origin” is (in this case, it’s
git.ourcompany.com), fetches any data from it that you don’t yet have, and updates your local
database, moving your origin/master pointer to its new, more up-to-date position.

88



git.ourcompany.com

0b743 <+ abb4c <+ 4265 <4— 31b8e <+ 190a3

+ git fetch origin

My Computer

origin/master

0b743 <+ abb4c <+ 4265 <+ 31b8e <+ 190a3

AN

a38de <+— 893cf

Figure 32. git fetch updates your remote-tracking branches

To demonstrate having multiple remote servers and what remote branches for those remote
projects look like, let’s assume you have another internal Git server that is used only for
development by one of your sprint teams. This server is at git.team1.ourcompany.com. You can add it
as a new remote reference to the project you're currently working on by running the git remote
add command as we covered in Git Basics. Name this remote teamone, which will be your shortname
for that whole URL.

89



git.ourcompany.com git.teaml.ourcompany.com

<---- 4265 <+ 31b8e <+— 190a3 <---- 4265 <+— 31b8e

origin teamone

git remote add teamone git://git.teaml.ourcompany.com

My Computer

origin/master

0b743 <+ abb4c <+— 4265 <+— 31b8e <+ 196a3

AN

a38de <+— 893cf

Figure 33. Adding another server as a remote

Now, you can run git fetch teamone to fetch everything the remote teamone server has that you
don’t have yet. Because that server has a subset of the data your origin server has right now, Git

fetches no data but sets a remote-tracking branch called teamone/master to point to the commit that
teamone has as its master branch.

90



git.ourcompany.com git.teaml.ourcompany.com

= -

<---- 4265 <+ 31b8e <+ 190a3 <---- 4265 <+ 31b8e

origin teamone

git fetch teamone

0b743 <4+ abb4c <+— 4265 <+— 31b8e <+— 190a3

AN

My Computer

a38de <+ 893cf

Figure 34. Remote-tracking branch for teamone/master

Pushing

When you want to share a branch with the world, you need to push it up to a remote to which you
have write access. Your local branches aren’t automatically synchronized to the remotes you write
to—you have to explicitly push the branches you want to share. That way, you can use private
branches for work you don’t want to share, and push up only the topic branches you want to
collaborate on.

If you have a branch named serverfix that you want to work on with others, you can push it up the
same way you pushed your first branch. Run git push <remote> <branch>:

$ git push origin serverfix
Counting objects: 24, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (24/24), 1.91 KiB | @ bytes/s, done.
Total 24 (delta 2), reused @ (delta 0)
To https://github.com/schacon/simplegit
* [new branch] serverfix -> serverfix

This is a bit of a shortcut. Git automatically expands the serverfix branchname out to
refs/heads/serverfix:refs/heads/serverfix, which means, “Take my serverfix local branch and
push it to update the remote’s serverfix branch.” We’ll go over the refs/heads/ part in detail in Git

91



Internals, but you can generally leave it off. You can also do git push origin serverfix:serverfix,
which does the same thing —it says, “Take my serverfix and make it the remote’s serverfix.” You
can use this format to push a local branch into a remote branch that is named differently. If you
didn’t want it to be called serverfix on the remote, you could instead run git push origin
serverfix:awesomebranch to push your local serverfix branch to the awesomebranch branch on the
remote project.

Don’t type your password every time

If you’re using an HTTPS URL to push over, the Git server will ask you for your
username and password for authentication. By default it will prompt you on the
terminal for this information so the server can tell if you’re allowed to push.

o If you don’t want to type it every single time you push, you can set up a “credential
cache”. The simplest is just to keep it in memory for a few minutes, which you can
easily set up by running git config --global credential.helper cache.

For more information on the various credential caching options available, see
Credential Storage.

The next time one of your collaborators fetches from the server, they will get a reference to where
the server’s version of serverfix is under the remote branch origin/serverfix:

$ git fetch origin

remote: Counting objects: 7, done.

remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 3 (delta 0)
Unpacking objects: 100% (3/3), done.

From https://github.com/schacon/simplegit

* [new branch] serverfix -> origin/serverfix

It’s important to note that when you do a fetch that brings down new remote-tracking branches,
you don’t automatically have local, editable copies of them. In other words, in this case, you don’t
have a new serverfix branch —you have only an origin/serverfix pointer that you can’t modify.

To merge this work into your current working branch, you can run git merge origin/serverfix. If
you want your own serverfix branch that you can work on, you can base it off your remote-
tracking branch:

$ git checkout -b serverfix origin/serverfix
Branch serverfix set up to track remote branch serverfix from origin.
Switched to a new branch 'serverfix'

This gives you a local branch that you can work on that starts where origin/serverfix is.

Tracking Branches

Checking out a local branch from a remote-tracking branch automatically creates what is called a

92



“tracking branch” (and the branch it tracks is called an “upstream branch”). Tracking branches are
local branches that have a direct relationship to a remote branch. If you’re on a tracking branch
and type git pull, Git automatically knows which server to fetch from and which branch to merge
in.

When you clone a repository, it generally automatically creates a master branch that tracks
origin/master. However, you can set up other tracking branches if you wish—ones that track
branches on other remotes, or don’t track the master branch. The simple case is the example you
just saw, running git checkout -b <branch> <remote>/<branch>. This is a common enough operation
that Git provides the --track shorthand:

$ git checkout --track origin/serverfix
Branch serverfix set up to track remote branch serverfix from origin.
Switched to a new branch 'serverfix'

In fact, this is so common that there’s even a shortcut for that shortcut. If the branch name you’re
trying to checkout (a) doesn’t exist and (b) exactly matches a name on only one remote, Git will
create a tracking branch for you:

$ git checkout serverfix
Branch serverfix set up to track remote branch serverfix from origin.
Switched to a new branch 'serverfix'

To set up a local branch with a different name than the remote branch, you can easily use the first
version with a different local branch name:

$ git checkout -b sf origin/serverfix
Branch sf set up to track remote branch serverfix from origin.
Switched to a new branch 'sf'

Now, your local branch sf will automatically pull from origin/serverfix.

If you already have a local branch and want to set it to a remote branch you just pulled down, or
want to change the upstream branch you’re tracking, you can use the -u or --set-upstream-to
option to git branch to explicitly set it at any time.

$ git branch -u origin/serverfix
Branch serverfix set up to track remote branch serverfix from origin.

Upstream shorthand

When you have a tracking branch set up, you can reference its upstream branch

o with the @{upstream} or @{u} shorthand. So if you’re on the master branch and it’s
tracking origin/master, you can say something like git merge @{u} instead of git
merge origin/master if you wish.

93



If you want to see what tracking branches you have set up, you can use the -vv option to git branch.
This will list out your local branches with more information including what each branch is tracking
and if your local branch is ahead, behind or both.

$ git branch -vv
iss53 7e424c3 [origin/iss53: ahead 2] Add forgotten brackets
master 1ae2a45 [origin/master] Deploy index fix

* serverfix f8674d9 [teamone/server-fix-good: ahead 3, behind 1] This should do it
testing 5ea463a Try something new

So here we can see that our iss53 branch is tracking origin/iss53 and is “ahead” by two, meaning
that we have two commits locally that are not pushed to the server. We can also see that our master
branch is tracking origin/master and is up to date. Next we can see that our serverfix branch is
tracking the server-fix-good branch on our teamone server and is ahead by three and behind by one,
meaning that there is one commit on the server we haven’t merged in yet and three commits
locally that we haven’t pushed. Finally we can see that our testing branch is not tracking any
remote branch.

It’s important to note that these numbers are only since the last time you fetched from each server.
This command does not reach out to the servers, it’s telling you about what it has cached from these
servers locally. If you want totally up to date ahead and behind numbers, you’ll need to fetch from
all your remotes right before running this. You could do that like this:

$ git fetch --all; git branch -vv

Pulling

While the git fetch command will fetch all the changes on the server that you don’t have yet, it will
not modify your working directory at all. It will simply get the data for you and let you merge it
yourself. However, there is a command called git pull which is essentially a git fetch immediately
followed by a git merge in most cases. If you have a tracking branch set up as demonstrated in the
last section, either by explicitly setting it or by having it created for you by the clone or checkout
commands, git pull will look up what server and branch your current branch is tracking, fetch
from that server and then try to merge in that remote branch.

Deleting Remote Branches

Suppose you’re done with a remote branch —say you and your collaborators are finished with a
feature and have merged it into your remote’s master branch (or whatever branch your stable
codeline is in). You can delete a remote branch using the --delete option to git push. If you want to
delete your serverfix branch from the server, you run the following:

$ git push origin --delete serverfix
To https://github.com/schacon/simplegit
- [deleted] serverfix

94



Basically all this does is to remove the pointer from the server. The Git server will generally keep
the data there for a while until a garbage collection runs, so if it was accidentally deleted, it’s often
easy to recover.

Rebasing

In Git, there are two main ways to integrate changes from one branch into another: the merge and
the rebase. In this section you’ll learn what rebasing is, how to do it, why it’s a pretty amazing tool,
and in what cases you won’t want to use it.

The Basic Rebase

If you go back to an earlier example from Basic Merging, you can see that you diverged your work
and made commits on two different branches.

experiment

ca

g

co +— C1 +— C2 +— C3

Figure 35. Simple divergent history

The easiest way to integrate the branches, as we’ve already covered, is the merge command. It
performs a three-way merge between the two latest branch snapshots ((3 and C4) and the most
recent common ancestor of the two ((2), creating a new snapshot (and commit).

95



experiment

c4
2 «— c3 «— C

Cce +“— C1 <4+— C

5

Figure 36. Merging to integrate diverged work history

However, there is another way: you can take the patch of the change that was introduced in (4 and
reapply it on top of (3. In Git, this is called rebasing. With the rebase command, you can take all the
changes that were committed on one branch and replay them on a different branch.

For this example, you would check out the experiment branch, and then rebase it onto the master
branch as follows:

$ git checkout experiment

$ git rebase master

First, rewinding head to replay your work on top of it...
Applying: added staged command

This operation works by going to the common ancestor of the two branches (the one you’re on and
the one you’re rebasing onto), getting the diff introduced by each commit of the branch you’re on,
saving those diffs to temporary files, resetting the current branch to the same commit as the branch
you are rebasing onto, and finally applying each change in turn.

c4 experiment

co +— C1 <4+— C2 <4+— C3 <+— c4'

Figure 37. Rebasing the change introduced in (4 onto (3

At this point, you can go back to the master branch and do a fast-forward merge.

$ git checkout master
$ git merge experiment

96



experiment

Co “— C1 <+— C2 +“— C3 +“— c4'

Figure 38. Fast-forwarding the master branch

Now, the snapshot pointed to by C4' is exactly the same as the one that was pointed to by (5 in the
merge example. There is no difference in the end product of the integration, but rebasing makes for
a cleaner history. If you examine the log of a rebased branch, it looks like a linear history: it
appears that all the work happened in series, even when it originally happened in parallel.

Often, youw’ll do this to make sure your commits apply cleanly on a remote branch — perhaps in a
project to which you’re trying to contribute but that you don’t maintain. In this case, you’d do your
work in a branch and then rebase your work onto origin/master when you were ready to submit
your patches to the main project. That way, the maintainer doesn’t have to do any integration
work —just a fast-forward or a clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s the last of the
rebased commits for a rebase or the final merge commit after a merge, is the same snapshot —it’s
only the history that is different. Rebasing replays changes from one line of work onto another in
the order they were introduced, whereas merging takes the endpoints and merges them together.

More Interesting Rebases

You can also have your rebase replay on something other than the rebase target branch. Take a
history like A history with a topic branch off another topic branch, for example. You branched a
topic branch (server) to add some server-side functionality to your project, and made a commit.
Then, you branched off that to make the client-side changes (client) and committed a few times.
Finally, you went back to your server branch and did a few more commits.

97



C1 +— C2 <+— C5 4“— C6

C3 4“— C4

C8

<+“— C10
<4+“— C9

Figure 39. A history with a topic branch off another topic branch

Suppose you decide that you want to merge your client-side changes into your mainline for a
release, but you want to hold off on the server-side changes until it’s tested further. You can take
the changes on client that aren’t on server ((8 and (9) and replay them on your master branch by
using the --onto option of git rebase:

$ git rebase --onto master server client

This basically says, “Take the client branch, figure out the patches since it diverged from the server
branch, and replay these patches in the client branch as if it was based directly off the master
branch instead.” It’s a bit complex, but the result is pretty cool.

C1 <+— C2 <+— C5 <+— Cé6 <+— c8' <+“— co’

<

C3 <+— C4 +— C1e

C8 c9

Figure 40. Rebasing a topic branch off another topic branch

Now you can fast-forward your master branch (see Fast-forwarding your master branch to include
the client branch changes):

98



$ git checkout master
$ git merge client

C1 <+— c2 <+— C5 <+“— Ccé +— c8' <+— c9'

AN

c3 +— C4 +— C10

Figure 41. Fast-forwarding your master branch to include the client branch changes

Let’s say you decide to pull in your server branch as well. You can rebase the server branch onto the
master branch without having to check it out first by running git rebase <basebranch>
<topicbranch>—which checks out the topic branch (in this case, server) for you and replays it onto
the base branch (master):

$ git rebase master server

This replays your server work on top of your master work, as shown in Rebasing your server branch

on top of your master branch.

c1 “— c2 <+ C5 - Cé <+ c8' <+ Cc9' <+ C3' +— c4' < cie’

Figure 42. Rebasing your server branch on top of your master branch

Then, you can fast-forward the base branch (master):

$ git checkout master
$ git merge server

You can remove the client and server branches because all the work is integrated and you don’t
need them anymore, leaving your history for this entire process looking like Final commit history:

$ git branch -d client
$ git branch -d server

99



=1

C1 +— c2 <+—— C5 <+ Cé +— cs8' +— co' < c3' +— c4' +— c1e’

Figure 43. Final commit history

The Perils of Rebasing
Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in a single line:

Do not rebase commits that exist outside your repository and that people may have based
work on.

If you follow that guideline, you’ll be fine. If you don’t, people will hate you, and you’ll be scorned
by friends and family.

When you rebase stuff, you’re abandoning existing commits and creating new ones that are similar
but different. If you push commits somewhere and others pull them down and base work on them,
and then you rewrite those commits with git rebase and push them up again, your collaborators
will have to re-merge their work and things will get messy when you try to pull their work back
into yours.

Let’s look at an example of how rebasing work that you’ve made public can cause problems.
Suppose you clone from a central server and then do some work off that. Your commit history looks
like this:

git.teaml.ourcompany.com

D .

My Computer

0
o o -

Figure 44. Clone a repository, and base some work on it

Now, someone else does more work that includes a merge, and pushes that work to the central
server. You fetch it and merge the new remote branch into your work, making your history look
something like this:

100



git.teaml.ourcompany.com

C5

Lo

C1 <+— c4 C6

My Computer

C5

e~

Cc2 <+— C3 <+— C7

Figure 45. Fetch more commits, and merge them into your work

Next, the person who pushed the merged work decides to go back and rebase their work instead;
they do a git push --force to overwrite the history on the server. You then fetch from that server,

bringing down the new commits.

git.teaml.ourcompany.com

C5 <+ c4'

g

C1 Cc4 C6

My Computer

4_ C4I
<_

C5

Coé

c1 ‘4{ c4
AN

Cc2 <+— C3 <+— Cc7

Figure 46. Someone pushes rebased commits, abandoning commits you’ve based your work on

101



Now you’re both in a pickle. If you do a git pull, you’ll create a merge commit which includes both
lines of history, and your repository will look like this:

git.teaml.ourcompany.com

C5 <+ c4'

g

C1 C4 C6

My Computer

€5 <+ c4' teamone/master
Cil <+ Cc4 <+— Cé
e e e e e

Figure 47. You merge in the same work again into a new merge commit

If you run a git log when your history looks like this, you’ll see two commits that have the same
author, date, and message, which will be confusing. Furthermore, if you push this history back up
to the server, you’ll reintroduce all those rebased commits to the central server, which can further
confuse people. It’s pretty safe to assume that the other developer doesn’t want (4 and (6 to be in
the history; that’s why they rebased in the first place.

Rebase When You Rebase

If you do find yourself in a situation like this, Git has some further magic that might help you out. If
someone on your team force pushes changes that overwrite work that you’ve based work on, your
challenge is to figure out what is yours and what they’ve rewritten.

It turns out that in addition to the commit SHA-1 checksum, Git also calculates a checksum that is
based just on the patch introduced with the commit. This is called a “patch-id”.

If you pull down work that was rewritten and rebase it on top of the new commits from your
partner, Git can often successfully figure out what is uniquely yours and apply them back on top of
the new branch.

For instance, in the previous scenario, if instead of doing a merge when we’re at Someone pushes
rebased commits, abandoning commits you’ve based your work on we run git rebase
teamone/master, Git will:

* Determine what work is unique to our branch (C2, (3, (4, C6, C7)

* Determine which are not merge commits (€2, C3, (4)

* Determine which have not been rewritten into the target branch (just (2 and (3, since (4 is the
same patch as (4")

102



* Apply those commits to the top of teamone/master

So instead of the result we see in You merge in the same work again into a new merge commit, we
would end up with something more like Rebase on top of force-pushed rebase work.

git.teaml.ourcompany.com

R

C1 Cc4 C6

My Computer

o o s o a o o «— o <+ [

Figure 48. Rebase on top of force-pushed rebase work

This only works if (4 and C4' that your partner made are almost exactly the same patch. Otherwise
the rebase won’t be able to tell that it’s a duplicate and will add another (4-like patch (which will
probably fail to apply cleanly, since the changes would already be at least somewhat there).

You can also simplify this by running a git pull --rebase instead of a normal git pull. Or you
could do it manually with a git fetch followed by a git rebase teamone/master in this case.

If you are using git pull and want to make --rebase the default, you can set the pull.rebase config
value with something like git config --global pull.rebase true.

If you only ever rebase commits that have never left your own computer, you’ll be just fine. If you
rebase commits that have been pushed, but that no one else has based commits from, you’ll also be
fine. If you rebase commits that have already been pushed publicly, and people may have based
work on those commits, then you may be in for some frustrating trouble, and the scorn of your
teammates.

If you or a partner does find it necessary at some point, make sure everyone knows to run git pull
--rebase to try to make the pain after it happens a little bit simpler.

Rebase vs. Merge

Now that you’ve seen rebasing and merging in action, you may be wondering which one is better.
Before we can answer this, let’s step back a bit and talk about what history means.

One point of view on this is that your repository’s commit history is a record of what actually
happened. It’s a historical document, valuable in its own right, and shouldn’t be tampered with.

103



From this angle, changing the commit history is almost blasphemous; you’re lying about what
actually transpired. So what if there was a messy series of merge commits? That’s how it happened,
and the repository should preserve that for posterity.

The opposing point of view is that the commit history is the story of how your project was made.
You wouldn’t publish the first draft of a book, so why show your messy work? When you're
working on a project, you may need a record of all your missteps and dead-end paths, but when it’s
time to show your work to the world, you may want to tell a more coherent story of how to get from
A to B. People in this camp use tools like rebase and filter-branch to rewrite their commits before
they’re merged into the mainline branch. They use tools like rebase and filter-branch, to tell the
story in the way that’s best for future readers.

Now, to the question of whether merging or rebasing is better: hopefully you’ll see that it’s not that
simple. Git is a powerful tool, and allows you to do many things to and with your history, but every
team and every project is different. Now that you know how both of these things work, it’s up to
you to decide which one is best for your particular situation.

You can get the best of both worlds: rebase local changes before pushing to clean up your work, but
never rebase anything that you’ve pushed somewhere.

Summary

We’ve covered basic branching and merging in Git. You should feel comfortable creating and
switching to new branches, switching between branches and merging local branches together. You
should also be able to share your branches by pushing them to a shared server, working with
others on shared branches and rebasing your branches before they are shared. Next, we’ll cover
what you’ll need to run your own Git repository-hosting server.

104



Git on the Server

At this point, you should be able to do most of the day-to-day tasks for which youw’ll be using Git.
However, in order to do any collaboration in Git, youw’ll need to have a remote Git repository.
Although you can technically push changes to and pull changes from individuals' repositories,
doing so is discouraged because you can fairly easily confuse what they’re working on if you’re not
careful. Furthermore, you want your collaborators to be able to access the repository even if your
computer is offline—having a more reliable common repository is often useful. Therefore, the
preferred method for collaborating with someone is to set up an intermediate repository that you
both have access to, and push to and pull from that.

Running a Git server is fairly straightforward. First, you choose which protocols you want your
server to support. The first section of this chapter will cover the available protocols and the pros
and cons of each. The next sections will explain some typical setups using those protocols and how
to get your server running with them. Last, we’ll go over a few hosted options, if you don’t mind
hosting your code on someone else’s server and don’t want to go through the hassle of setting up
and maintaining your own server.

If you have no interest in running your own server, you can skip to the last section of the chapter to
see some options for setting up a hosted account and then move on to the next chapter, where we
discuss the various ins and outs of working in a distributed source control environment.

A remote repository is generally a bare repository — a Git repository that has no working directory.
Because the repository is only used as a collaboration point, there is no reason to have a snapshot
checked out on disk; it’s just the Git data. In the simplest terms, a bare repository is the contents of
your project’s .git directory and nothing else.

The Protocols

Git can use four distinct protocols to transfer data: Local, HTTP, Secure Shell (SSH) and Git. Here
we’ll discuss what they are and in what basic circumstances you would want (or not want) to use
them.

Local Protocol

The most basic is the Local protocol, in which the remote repository is in another directory on the
same host. This is often used if everyone on your team has access to a shared filesystem such as an
NFS mount, or in the less likely case that everyone logs in to the same computer. The latter wouldn’t
be ideal, because all your code repository instances would reside on the same computer, making a
catastrophic loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from a local file-
based repository. To clone a repository like this, or to add one as a remote to an existing project, use
the path to the repository as the URL. For example, to clone a local repository, you can run
something like this:

$ git clone /srv/git/project.git

105


https://en.wikipedia.org/wiki/Network_File_System

Or you can do this:

$ git clone file:///srv/qgit/project.git

Git operates slightly differently if you explicitly specify file:// at the beginning of the URL. If you
just specify the path, Git tries to use hardlinks or directly copy the files it needs. If you specify
file://, Git fires up the processes that it normally uses to transfer data over a network, which is
generally much less efficient. The main reason to specify the file:// prefix is if you want a clean
copy of the repository with extraneous references or objects left out— generally after an import
from another VCS or something similar (see Git Internals for maintenance tasks). We’ll use the
normal path here because doing so is almost always faster.

To add a local repository to an existing Git project, you can run something like this:

$ git remote add local_proj /srv/git/project.git

Then, you can push to and pull from that remote via your new remote name local_proj as though
you were doing so over a network.

The Pros

The pros of file-based repositories are that they’re simple and they use existing file permissions and
network access. If you already have a shared filesystem to which your whole team has access,
setting up a repository is very easy. You stick the bare repository copy somewhere everyone has
shared access to and set the read/write permissions as you would for any other shared directory.
We’ll discuss how to export a bare repository copy for this purpose in Getting Git on a Server.

This is also a nice option for quickly grabbing work from someone else’s working repository. If you
and a co-worker are working on the same project and they want you to check something out,
running a command like git pull /home/john/project is often easier than them pushing to a remote
server and you subsequently fetching from it.

The Cons

The cons of this method are that shared access is generally more difficult to set up and reach from
multiple locations than basic network access. If you want to push from your laptop when you’re at
home, you have to mount the remote disk, which can be difficult and slow compared to network-
based access.

It’s important to mention that this isn’t necessarily the fastest option if you’re using a shared mount
of some kind. A local repository is fast only if you have fast access to the data. A repository on NFS
is often slower than the repository over SSH on the same server, allowing Git to run off local disks
on each system.

Finally, this protocol does not protect the repository against accidental damage. Every user has full
shell access to the “remote” directory, and there is nothing preventing them from changing or
removing internal Git files and corrupting the repository.

106



The HTTP Protocols

Git can communicate over HTTP using two different modes. Prior to Git 1.6.6, there was only one
way it could do this which was very simple and generally read-only. In version 1.6.6, a new, smarter
protocol was introduced that involved Git being able to intelligently negotiate data transfer in a
manner similar to how it does over SSH. In the last few years, this new HTTP protocol has become
very popular since it’s simpler for the user and smarter about how it communicates. The newer
version is often referred to as the Smart HTTP protocol and the older way as Dumb HTTP. We’ll
cover the newer Smart HTTP protocol first.

Smart HTTP

Smart HTTP operates very similarly to the SSH or Git protocols but runs over standard HTTPS ports
and can use various HTTP authentication mechanisms, meaning it’s often easier on the user than
something like SSH, since you can use things like username/password authentication rather than
having to set up SSH keys.

It has probably become the most popular way to use Git now, since it can be set up to both serve
anonymously like the git:// protocol, and can also be pushed over with authentication and
encryption like the SSH protocol. Instead of having to set up different URLs for these things, you can
now use a single URL for both. If you try to push and the repository requires authentication (which
it normally should), the server can prompt for a username and password. The same goes for read
access.

In fact, for services like GitHub, the URL you use to view the repository online (for example,
https://github.com/schacon/simplegit) is the same URL you can use to clone and, if you have access,
push over.

Dumb HTTP

If the server does not respond with a Git HTTP smart service, the Git client will try to fall back to the
simpler Dumb HTTP protocol. The Dumb protocol expects the bare Git repository to be served like
normal files from the web server. The beauty of Dumb HTTP is the simplicity of setting it up.
Basically, all you have to do is put a bare Git repository under your HTTP document root and set up
a specific post-update hook, and you’re done (see Git Hooks). At that point, anyone who can access
the web server under which you put the repository can also clone your repository. To allow read
access to your repository over HTTP, do something like this:

$ cd /var/www/htdocs/

$ git clone --bare /path/to/git_project gitproject.git
$ cd gitproject.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

That’s all. The post-update hook that comes with Git by default runs the appropriate command (git
update-server-info) to make HTTP fetching and cloning work properly. This command is run when
you push to this repository (over SSH perhaps); then, other people can clone via something like:

107


https://github.com/schacon/simplegit

$ git clone https://example.com/gitproject.git

In this particular case, we’re using the /var/www/htdocs path that is common for Apache setups, but
you can use any static web server —just put the bare repository in its path. The Git data is served as
basic static files (see the Git Internals chapter for details about exactly how it’s served).

Generally you would either choose to run a read/write Smart HTTP server or simply have the files
accessible as read-only in the Dumb manner. It’s rare to run a mix of the two services.

The Pros

We’ll concentrate on the pros of the Smart version of the HTTP protocol.

The simplicity of having a single URL for all types of access and having the server prompt only
when authentication is needed makes things very easy for the end user. Being able to authenticate
with a username and password is also a big advantage over SSH, since users don’t have to generate
SSH keys locally and upload their public key to the server before being able to interact with it. For
less sophisticated users, or users on systems where SSH is less common, this is a major advantage in
usability. It is also a very fast and efficient protocol, similar to the SSH one.

You can also serve your repositories read-only over HTTPS, which means you can encrypt the
content transfer; or you can go so far as to make the clients use specific signed SSL certificates.

Another nice thing is that HTTP and HTTPS are such commonly used protocols that corporate
firewalls are often set up to allow traffic through their ports.

The Cons

Git over HTTPS can be a little more tricky to set up compared to SSH on some servers. Other than
that, there is very little advantage that other protocols have over Smart HTTP for serving Git
content.

If you’re using HTTP for authenticated pushing, providing your credentials is sometimes more
complicated than using keys over SSH. There are, however, several credential caching tools you can
use, including Keychain access on macOS and Credential Manager on Windows, to make this pretty
painless. Read Credential Storage to see how to set up secure HTTP password caching on your
system.

The SSH Protocol

A common transport protocol for Git when self-hosting is over SSH. This is because SSH access to
servers is already set up in most places —and if it isn’t, it’s easy to do. SSH is also an authenticated
network protocol and, because it’s ubiquitous, it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify an ssh:// URL like this:

$ git clone ssh://[user@]server/project.git

108



Or you can use the shorter scp-like syntax for the SSH protocol:

$ git clone [user@]server:project.git

In both cases above, if you don’t specify the optional username, Git assumes the user you’re
currently logged in as.

The Pros

The pros of using SSH are many. First, SSH is relatively easy to set up—SSH daemons are
commonplace, many network admins have experience with them, and many OS distributions are
set up with them or have tools to manage them. Next, access over SSH is secure — all data transfer
is encrypted and authenticated. Last, like the HTTPS, Git and Local protocols, SSH is efficient,
making the data as compact as possible before transferring it.

The Cons

The negative aspect of SSH is that it doesn’t support anonymous access to your Git repository. If
you’re using SSH, people must have SSH access to your machine, even in a read-only capacity,
which doesn’t make SSH conducive to open source projects for which people might simply want to
clone your repository to examine it. If you’re using it only within your corporate network, SSH may
be the only protocol you need to deal with. If you want to allow anonymous read-only access to
your projects and also want to use SSH, youwll have to set up SSH for you to push over but
something else for others to fetch from.

The Git Protocol

Finally, we have the Git protocol. This is a special daemon that comes packaged with Git; it listens
on a dedicated port (9418) that provides a service similar to the SSH protocol, but with absolutely
no authentication or cryptography. In order for a repository to be served over the Git protocol, you
must create a git-daemon-export-ok file —the daemon won’t serve a repository without that file in
it—but, other than that, there is no security. Either the Git repository is available for everyone to
clone, or it isn’t. This means that there is generally no pushing over this protocol. You can enable
push access but, given the lack of authentication, anyone on the internet who finds your project’s
URL could push to that project. Suffice it to say that this is rare.

The Pros

The Git protocol is often the fastest network transfer protocol available. If you’re serving a lot of
traffic for a public project or serving a very large project that doesn’t require user authentication
for read access, it’s likely that youw’ll want to set up a Git daemon to serve your project. It uses the
same data-transfer mechanism as the SSH protocol but without the encryption and authentication
overhead.

The Cons

Due to the lack of TLS or other cryptography, cloning over git:// might lead to an arbitrary code
execution vulnerability, and should therefore be avoided unless you know what you are doing.

109



» If you run git clone git://example.com/project.git, an attacker who controls e.g your router
can modify the repo you just cloned, inserting malicious code into it. If you then compile/run
the code you just cloned, you will execute the malicious code. Running git clone
http://example.com/project.git should be avoided for the same reason.

* Running git clone https://example.com/project.git does not suffer from the same problem
(unless the attacker can provide a TLS certificate for example.com). Running git clone
git@example.com:project.git only suffers from this problem if you accept a wrong SSH key
fingerprint.

It also has no authentication, i.e. anyone can clone the repo (although this is often exactly what you
want). It’s also probably the most difficult protocol to set up. It must run its own daemon, which
requires xinetd or systemd configuration or the like, which isn’t always a walk in the park. It also
requires firewall access to port 9418, which isn’t a standard port that corporate firewalls always
allow. Behind big corporate firewalls, this obscure port is commonly blocked.

Getting Git on a Server

Now we’ll cover setting up a Git service running these protocols on your own server.

Here we’ll be demonstrating the commands and steps needed to do basic,
simplified installations on a Linux-based server, though it’s also possible to run

o these services on macOS or Windows servers. Actually setting up a production
server within your infrastructure will certainly entail differences in security
measures or operating system tools, but hopefully this will give you the general
idea of what’s involved.

In order to initially set up any Git server, you have to export an existing repository into a new bare
repository—a repository that doesn’t contain a working directory. This is generally
straightforward to do. In order to clone your repository to create a new bare repository, you run the
clone command with the --bare option. By convention, bare repository directory names end with
the suffix .qgit, like so:

$ git clone --bare my_project my_project.git
Cloning into bare repository 'my_project.git'...
done.

You should now have a copy of the Git directory data in your my_project.git directory.

This is roughly equivalent to something like:
$ cp -Rf my_project/.git my_project.git

There are a couple of minor differences in the configuration file but, for your purpose, this is close
to the same thing. It takes the Git repository by itself, without a working directory, and creates a
directory specifically for it alone.

110


http://example.com/project.git
https://example.com/project.git
mailto:git@example.com

Putting the Bare Repository on a Server

Now that you have a bare copy of your repository, all you need to do is put it on a server and set up
your protocols. Let’s say you’ve set up a server called git.example.com to which you have SSH
access, and you want to store all your Git repositories under the /srv/git directory. Assuming that
/srv/git exists on that server, you can set up your new repository by copying your bare repository
over:

$ scp -r my_project.git user@git.example.com:/srv/git

At this point, other users who have SSH-based read access to the /srv/git directory on that server
can clone your repository by running:

$ git clone user@git.example.com:/srv/git/my_project.git

If a user SSHs into a server and has write access to the /srv/git/my_project.git directory, they will
also automatically have push access.

Git will automatically add group write permissions to a repository properly if you run the git init
command with the --shared option. Note that by running this command, you will not destroy any
commits, refs, etc. in the process.

$ ssh user@qgit.example.com
$ cd /srv/git/my_project.git
$ git init --bare --shared

You see how easy it is to take a Git repository, create a bare version, and place it on a server to
which you and your collaborators have SSH access. Now you’re ready to collaborate on the same
project.

It’s important to note that this is literally all you need to do to run a useful Git server to which
several people have access—just add SSH-able accounts on a server, and stick a bare repository
somewhere that all those users have read and write access to. You’re ready to go—nothing else
needed.

In the next few sections, you’ll see how to expand to more sophisticated setups. This discussion will
include not having to create user accounts for each user, adding public read access to repositories,
setting up web UlIs and more. However, keep in mind that to collaborate with a couple of people on
a private project, all you need is an SSH server and a bare repository.

Small Setups

If you're a small outfit or are just trying out Git in your organization and have only a few
developers, things can be simple for you. One of the most complicated aspects of setting up a Git
server is user management. If you want some repositories to be read-only for certain users and
read/write for others, access and permissions can be a bit more difficult to arrange.

111



SSH Access

If you have a server to which all your developers already have SSH access, it’s generally easiest to
set up your first repository there, because you have to do almost no work (as we covered in the last
section). If you want more complex access control type permissions on your repositories, you can
handle them with the normal filesystem permissions of your server’s operating system.

If you want to place your repositories on a server that doesn’t have accounts for everyone on your
team for whom you want to grant write access, then you must set up SSH access for them. We
assume that if you have a server with which to do this, you already have an SSH server installed,
and that’s how you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to set up accounts
for everybody, which is straightforward but can be cumbersome. You may not want to run adduser
(or the possible alternative useradd) and have to set temporary passwords for every new user.

A second method is to create a single 'git' user account on the machine, ask every user who is to
have write access to send you an SSH public key, and add that key to the ~/.ssh/authorized_keys file
of that new 'git' account. At that point, everyone will be able to access that machine via the 'git'
account. This doesn’t affect the commit data in any way —the SSH user you connect as doesn’t
affect the commits you’ve recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server or some other
centralized authentication source that you may already have set up. As long as each user can get
shell access on the machine, any SSH authentication mechanism you can think of should work.

Generating Your SSH Public Key

Many Git servers authenticate using SSH public keys. In order to provide a public key, each user in
your system must generate one if they don’t already have one. This process is similar across all
operating systems. First, you should check to make sure you don’t already have a key. By default, a
user’s SSH keys are stored in that user’s ~/.ssh directory. You can easily check to see if you have a
key already by going to that directory and listing the contents:

$ cd ~/.ssh

$ 1s

authorized_keys2 1id_dsa known_hosts
config id_dsa.pub

You’re looking for a pair of files named something like id_dsa or id_rsa and a matching file with a
.pub extension. The .pub file is your public key, and the other file is the corresponding private key. If
you don’t have these files (or you don’t even have a .ssh directory), you can create them by running
a program called ssh-keygen, which is provided with the SSH package on Linux/macOS systems and
comes with Git for Windows:

$ ssh-keygen -o
Generating public/private rsa key pair.
Enter file in which to save the key (/home/schacon/.ssh/id_rsa):

112



Created directory '/home/schacon/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/schacon/.ssh/id_rsa.

Your public key has been saved in /home/schacon/.ssh/id_rsa.pub.

The key fingerprint is:
d0:82:24:8e:d7:f1:bb:9b:33:53:96:93:49:da:9b:e3 schacon@emylaptop.local

First it confirms where you want to save the key (.ssh/id_rsa), and then it asks twice for a
passphrase, which you can leave empty if you don’t want to type a password when you use the key.
However, if you do use a password, make sure to add the -o option; it saves the private key in a
format that is more resistant to brute-force password cracking than is the default format. You can
also use the ssh-agent tool to prevent having to enter the password each time.

Now, each user that does this has to send their public key to you or whoever is administrating the
Git server (assuming you’re using an SSH server setup that requires public keys). All they have to
do is copy the contents of the .pub file and email it. The public keys look something like this:

$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIWAAAQEAk1OUpkDHr fHY17SbrmTIpNLTGKITjom/BWDSU
GP1+nafz1HDTYW7hdI4yZ5ew18IH4IW9jbhUFrviQzM7x1ELEVF4h91FX5QVkbPppSwg@cda3
Pbv7k0dJ/MTyB1WXFCR+HA03FXR1tBqxiX1nKhXpHAZsMciLq8V6RjsSNAQwdsdMFvS1VK/7XA
t3FaoJoAsncM1Q9x5+3VOWw68/eIFmb1zuUF1jQIKprrX88XypNDvjYNbybvw/Pb@rwert/En
mZ+AWAQZPnTPI89ZPmVMLuayrD2cE86Z/118b+gw3r3+1nKatmIkjn2s01d@1QraTlMqVSsbx
NrRFi9wrf+M7Q== schacon@mylaptop.local

For a more in-depth tutorial on creating an SSH key on multiple operating systems, see the GitHub
guide on SSH keys at https://docs.github.com/en/authentication/connecting-to-github-with-ssh/
generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent.

Setting Up the Server

Let’s walk through setting up SSH access on the server side. In this example, youwll use the
authorized_keys method for authenticating your users. We also assume you’re running a standard
Linux distribution like Ubuntu.

o A good deal of what is described here can be automated by using the ssh-copy-id
command, rather than manually copying and installing public keys.

First, you create a git user account and a .ssh directory for that user.

$ sudo adduser git

$ su git

$ cd

$ mkdir .ssh && chmod 700 .ssh

$ touch .ssh/authorized_keys && chmod 600 .ssh/authorized_keys

113


https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Next, you need to add some developer SSH public keys to the authorized_keys file for the git user.
Let’s assume you have some trusted public keys and have saved them to temporary files. Again, the
public keys look something like this:

$ cat /tmp/id_rsa.john.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCB@@7n/ww+ouN4gSLKssMxXnBOvfILGtAL
0jG6rs6hPBA9jIR/T17/x41hJABF3FR1rP6kYBRsWj2aThGwoHXLm9/5zytK6Ztg3RPKK+4k
Yjh6541NYsnEAZuXz0@j TTyAUfrtU3Z5E003C40x0j6HOr fIFTkKI9MAQLMdpGW1GYEIGSIEz
Sdfd8AcCIicTDWbgLAcU4UpkaX8KyGLlLwsNuuGztobF8m72ALC/nLF6ILtPofwFBlgc+myiv
07TCUSBALQ1gMVOFq1I2uPWQOkOWQAHUKEOmTjy2jctxSDBQ22@ymjaNsHT4kgtZg2AYYgPq
dAv81ggJICUvax2T9vab gsg-keypair

You just append them to the git user’s authorized_keys file in its . ssh directory:

$ cat /tmp/id_rsa.john.pub >> ~/.ssh/authorized_keys
$ cat /tmp/id_rsa.josie.pub >> ~/.ssh/authorized_keys
$ cat /tmp/id_rsa.jessica.pub >> ~/.ssh/authorized_keys

Now, you can set up an empty repository for them by running git init with the --bare option,
which initializes the repository without a working directory:

$ cd /srv/git

$ mkdir project.git

$ cd project.git

$ git init --bare

Initialized empty Git repository in /srv/git/project.git/

Then, John, Josie, or Jessica can push the first version of their project into that repository by adding
it as a remote and pushing up a branch. Note that someone must shell onto the machine and create
a bare repository every time you want to add a project. Let’s use gitserver as the hostname of the
server on which you’ve set up your git user and repository. If you’re running it internally, and you
set up DNS for gitserver to point to that server, then you can use the commands pretty much as is
(assuming that myproject is an existing project with files in it):

# on John's computer

$ cd myproject

$ git init

$ git add .

$ git commit -m 'Initial commit'

$ git remote add origin git@gitserver:/srv/git/project.git
$ git push origin master

At this point, the others can clone it down and push changes back up just as easily:

$ git clone git@gitserver:/srv/git/project.git

114



$ cd project

$ vim README

$ git commit -am 'Fix for README file'
$ git push origin master

With this method, you can quickly get a read/write Git server up and running for a handful of
developers.

You should note that currently all these users can also log into the server and get a shell as the git
user. If you want to restrict that, you will have to change the shell to something else in the
/etc/passwd file.

You can easily restrict the git user account to only Git-related activities with a limited shell tool
called git-shell that comes with Git. If you set this as the git user account’s login shell, then that
account can’t have normal shell access to your server. To use this, specify git-shell instead of bash
or csh for that account’s login shell. To do so, you must first add the full pathname of the git-shell
command to /etc/shells if it’s not already there:

$ cat /etc/shells # see if git-shell is already in there. If not...
$ which git-shell # make sure git-shell is installed on your system.
$ sudo -e /etc/shells # and add the path to git-shell from last command

Now you can edit the shell for a user using chsh <username> -s <shell>:

$ sudo chsh git -s $(which git-shell)

Now, the git user can still use the SSH connection to push and pull Git repositories but can’t shell
onto the machine. If you try, you’ll see a login rejection like this:

$ ssh git@gitserver

fatal: Interactive git shell is not enabled.

hint: ~/git-shell-commands should exist and have read and execute access.
Connection to gitserver closed.

At this point, users are still able to use SSH port forwarding to access any host the git server is able
to reach. If you want to prevent that, you can edit the authorized_keys file and prepend the
following options to each key you’d like to restrict:

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty

The result should look like this:

$ cat ~/.ssh/authorized_keys
no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty ssh-rsa
AAAAB3Nza(C1yc2EAAAADAQABAAABAQCBOO7n/ww+ouN4gSLKssMxXnBOvfILGt4LojGbrsbh

115



PBO9j9R/T17/x41hJAOF3FR1rPokYBRsWj2aThGwoHXLm9/5zytK6Ztg3RPKK+4kYjh6541N
YsnEAZuXz@jTTyAUfrtU3Z5E003C40x0j6HOr fIF1kKI9MAQLMdpGWTGYEIgS9EZSdfd8AcC
IicTDWbgLAcU4UpkaX8KyG1LwsNuuGztobF8m72ALC/nLF6ILtPofwFB1gc+myiv07TCUSBd
LQ1gMVOFq1I2uPWQOkOWQAHUKEOmTjy2jctxSDBQ220ymjaNsHT4kgtZg2AYYgPqdAv8gg]
ICUvax2T9vab gsg-keypair

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDEWENNMomTboYI+LJieaAY16qiXiH3wuvENhBG. ..

Now Git network commands will still work just fine but the users won’t be able to get a shell. As the
output states, you can also set up a directory in the git user’s home directory that customizes the
git-shell command a bit. For instance, you can restrict the Git commands that the server will
accept or you can customize the message that users see if they try to SSH in like that. Run git help
shell for more information on customizing the shell.

Git Daemon

Next we’ll set up a daemon serving repositories using the “Git” protocol. This is a common choice
for fast, unauthenticated access to your Git data. Remember that since this is not an authenticated
service, anything you serve over this protocol is public within its network.

If you’re running this on a server outside your firewall, it should be used only for projects that are
publicly visible to the world. If the server you’re running it on is inside your firewall, you might use
it for projects that a large number of people or computers (continuous integration or build servers)
have read-only access to, when you don’t want to have to add an SSH key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run this command in
a daemonized manner:

$ git daemon --reuseaddr --base-path=/srv/git/ /srv/git/

The --reuseaddr option allows the server to restart without waiting for old connections to time out,
while the --base-path option allows people to clone projects without specifying the entire path, and
the path at the end tells the Git daemon where to look for repositories to export. If you’re running a
firewall, you’ll also need to punch a hole in it at port 9418 on the box you’re setting this up on.

You can daemonize this process a number of ways, depending on the operating system you’re
running.

Since systemd is the most common init system among modern Linux distributions, you can use it for
that purpose. Simply place a file in /etc/systemd/system/git-daemon.service with these contents:

[Unit]
Description=Start Git Daemon

[Service]
ExecStart=/usr/bin/git daemon --reuseaddr --base-path=/srv/git/ /srv/git/

116



Restart=always
RestartSec=500ms

StandardQOutput=syslog
StandardError=syslog
Syslogldentifier=git-daemon

User=git
Group=qgit

[Install]
WantedBy=multi-user.target

You might have noticed that Git daemon is started here with git as both group and user. Modify it
to fit your needs and make sure the provided user exists on the system. Also, check that the Git
binary is indeed located at /usr/bin/git and change the path if necessary.

Finally, you’ll run systemctl enable git-daemon to automatically start the service on boot, and can
start and stop the service with, respectively, systemctl start git-daemon and systemctl stop git-
daemon.

On other systems, you may want to use xinetd, a script in your sysvinit system, or something
else —as long as you get that command daemonized and watched somehow.

Next, you have to tell Git which repositories to allow unauthenticated Git server-based access to.
You can do this in each repository by creating a file named git-daemon-export-ok.

$ cd /path/to/project.git
$ touch git-daemon-export-ok

The presence of that file tells Git that it’s OK to serve this project without authentication.

Smart HTTP

We now have authenticated access through SSH and unauthenticated access through git://, but
there is also a protocol that can do both at the same time. Setting up Smart HTTP is basically just
enabling a CGI script that is provided with Git called git-http-backend on the server. This CGI will
read the path and headers sent by a git fetch or git push to an HTTP URL and determine if the
client can communicate over HTTP (which is true for any client since version 1.6.6). If the CGI sees
that the client is smart, it will communicate smartly with it; otherwise it will fall back to the dumb
behavior (so it is backward compatible for reads with older clients).

Let’s walk through a very basic setup. We’ll set this up with Apache as the CGI server. If you don’t
have Apache setup, you can do so on a Linux box with something like this:

$ sudo apt-get install apache2 apache2-utils

117



$ a2enmod cgi alias env

This also enables the mod_cgi, mod_alias, and mod_env modules, which are all needed for this to work
properly.

You’ll also need to set the Unix user group of the /srv/git directories to www-data so your web server
can read- and write-access the repositories, because the Apache instance running the CGI script will
(by default) be running as that user:

$ chgrp -R www-data /srv/git

Next we need to add some things to the Apache configuration to run the git-http-backend as the
handler for anything coming into the /git path of your web server.

SetEnv GIT_PROJECT_ROOT /srv/git
SetEnv GIT_HTTP_EXPORT_ALL
ScriptAlias /git/ /usr/1lib/git-core/git-http-backend/

If you leave out GIT_HTTP_EXPORT_ALL environment variable, then Git will only serve to
unauthenticated clients the repositories with the git-daemon-export-ok file in them, just like the Git
daemon did.

Finally you’ll want to tell Apache to allow requests to git-http-backend and make writes be
authenticated somehow, possibly with an Auth block like this:

<Files "git-http-backend">

AuthType Basic

AuthName "Git Access"

AuthUserFile /srv/git/.htpasswd

Require expr !(%{QUERY_STRING} -strmatch '*service=git-receive-pack*' ||
%{REQUEST_URI} =~ m#/git-receive-pack$#)

Require valid-user
</Files>

That will require you to create a .htpasswd file containing the passwords of all the valid users. Here
is an example of adding a “schacon” user to the file:

$ htpasswd -c /srv/git/.htpasswd schacon

There are tons of ways to have Apache authenticate users, you’ll have to choose and implement one
of them. This is just the simplest example we could come up with. You’ll also almost certainly want
to set this up over SSL so all this data is encrypted.

We don’t want to go too far down the rabbit hole of Apache configuration specifics, since you could
well be using a different server or have different authentication needs. The idea is that Git comes

118



with a CGI called git-http-backend that when invoked will do all the negotiation to send and receive
data over HTTP. It does not implement any authentication itself, but that can easily be controlled at
the layer of the web server that invokes it. You can do this with nearly any CGI-capable web server,
so go with the one that you know best.

GitWeb

Now that you have basic read/write and read-only access to your project, you may want to set up a
simple web-based visualizer. Git comes with a CGI script called GitWeb that is sometimes used for
this.

For more information on configuring authentication in Apache, check out the
Apache docs here: https://httpd.apache.org/docs/current/howto/auth.html.

projects / ,git / summary

summary | ghorlog | log | commit | commitdifi | tree commit

35 git I

: T search: -]

description  Unnamed repository; edit this file 'description’ to name the repository,

AT Ben Strauk
last changas Wed, 11 Jun 2014 12:20:23 -0700 (21:20 +0200)
shortlog

20140611 Carlos Martin...
2014-06-11 Vicent Marti
20140610 Carles Martin...
20140610 Vicen! Mavti
2014-06-10 Carlos Martin...
20140609 Carlos Martin...
20140609 Carlos Marntin...
2014-06-08 Carlos Martin...
20140608 Cavlos Mavtin...
20140608 Carlos Martin...
2014-06-08 Vicent Marti
20140608 Vicen! Martf
20140607 Phillp Kolley
2014-06-07 Phillp Kelley
2014-06-07 Philip Kelley
AN4-06-07 Philip Kalley

tags

Jweeks ago  v0.21.0-re1
7 months ago  v0.20.0
12 months ago v0.18.0
14 months ago v0.18.0
2 yaars ago w070
2 yoars ago w0160
2 years ago vi.15.0
2 yoars ago vi.14.0
3 years ago  v0.13.0
3 years age w20
3 vaars a0 w110

remote: update doCUMBNANION dreopmes  orgnEAD | orgidevelopman: |
Merge pull request #2417 from libgitemn/revwal k-array-fix
revwalk: more sensible array NANAIING  crgecm oy o |

Merge pull request #2416 from libgit2'emnitreebuilder...
pathspec: use C guards in header

treabuilder: insart sorted

remote: fix rename docs

Merge branch ‘cmn/soversion’ into development

Bump version to 0.21.0

Change SOVERSION at API breaks

Merge pull request #2407 from libgitZcmn/remote-rename... 21041

Merge pull request #2400 from phikelley/wind2_thread_fizes
React 1o review fesdback

Win32: Fix object::cache: threadmania test on x64

Merge pull request #2408 from phkelley'win32 test fizes
Win32: Fix diff:nworkdir:submodules test #2361

| ot | ghoniog | g
| e | e | B
| o | horion ' kg
| gt | ghortieg ! kg
¥ goeeii | gheriieg | g
1ag | gomel | ghonieg T g
| o | abenties | ka
| somes | ghedieg | by
| gomii | gheriieg | g
| ot | ghoriog | g
| some | ahenkg | kg

libgit2 v0.16.0

ot | ool | e | AfEwhn
S | T | {reg | praghet
o | pomeigl! | jree | srapshol
e | g | e | Sraeshgl
AT | Eaererl! | it | kP
o | ool | {re | gt
o | G | {ree | prapshel
YT | COrmPIcHT | jre | SNEDEhOl
TRV | CICHIT | L | TSRO
ot | ormemeit! | e | ACEN
o | et | {reg | aragmhet
cpmmit | gormesitc? | jros | srapshol
Qv | poenechl | oy | grapshol
GROEE | oei] | ey | AORCRNS
ot | orrrteil! | e | argbed
i | pomtcl] | jres | srapshol

Figure 49. The GitWeb web-based user interface

If you want to check out what GitWeb would look like for your project, Git comes with a command
to fire up a temporary instance if you have a lightweight web server on your system like 1ighttpd or
webrick. On Linux machines, lighttpd is often installed, so you may be able to get it to run by typing
git instaweb in your project directory. If you’re running macOS, Leopard comes preinstalled with
Ruby, so webrick may be your best bet. To start instaweb with a non-lighttpd handler, you can run it
with the --httpd option.

$ git instaweb --httpd=webrick
[2009-02-21 10:02:21] INFO WEBrick 1.3.1

119


https://httpd.apache.org/docs/current/howto/auth.html

[2009-02-21 10:02:21] INFO ruby 1.8.6 (2008-03-03) [universal-darwin9.0]

That starts up an HTTPD server on port 1234 and then automatically starts a web browser that
opens on that page. It’s pretty easy on your part. When you’re done and want to shut down the
server, you can run the same command with the --stop option:

$ git instaweb --httpd=webrick --stop

If you want to run the web interface on a server all the time for your team or for an open source
project you’re hosting, yow’ll need to set up the CGI script to be served by your normal web server.
Some Linux distributions have a gitweb package that you may be able to install via apt or dnf, so
you may want to try that first. We’ll walk through installing GitWeb manually very quickly. First,
you need to get the Git source code, which GitWeb comes with, and generate the custom CGI script:

$ git clone https://git.kernel.org/pub/scm/git/git.qit
$ cd git/
$ make GITWEB_PROJECTROOT="/srv/git" prefix=/usr gitweb
SUBDIR gitweb
SUBDIR ../
make[2]: ‘GIT-VERSION-FILE' is up to date.
GEN gitweb.cgi
GEN static/gitweb.js
$ sudo cp -Rf gitweb /var/www/

Notice that you have to tell the command where to find your Git repositories with the
GITWEB_PROJECTROOT variable. Now, you need to make Apache use CGI for that script, for which you
can add a VirtualHost:

<VirtualHost *:80>
ServerName gitserver
DocumentRoot /var/www/gitweb
<Directory /var/www/gitweb>
Options +ExecCGI +FollowSymLinks +SymLinksIfOwnerMatch
AllowOverride All
order allow,deny
Allow from all
AddHandler cgi-script cgi
DirectoryIndex gitweb.cgi
</Directory>
</VirtualHost>

Again, GitWeb can be served with any CGI or Perl capable web server; if you prefer to use
something else, it shouldn’t be difficult to set up. At this point, you should be able to visit
http://gitserver/ to view your repositories online.

120


http://gitserver/

GitLab

GitWeb is pretty simplistic though. If you’re looking for a modern, fully featured Git server, there
are several open source solutions out there that you can install instead. As GitLab is one of the
popular ones, we’ll cover installing and using it as an example. This is harder than the GitWeb
option and will require more maintenance, but it is a fully featured option.

Installation

GitLab is a database-backed web application, so its installation is more involved than some other
Git servers. Fortunately, this process is well-documented and supported. GitLab strongly
recommends installing GitLab on your server via the official Omnibus GitLab package.

The other installation options are:

GitLab Helm chart, for use with Kubernetes.

Dockerized GitLab packages for use with Docker.
* From the source files.

* Cloud providers such as AWS, Google Cloud Platform, Azure, OpenShift and Digital Ocean.

For more information read the GitLab Community Edition (CE) readme.

Administration

GitLab’s administration interface is accessed over the web. Simply point your browser to the
hostname or IP address where GitLab is installed, and log in as the root user. The password will
depend on your installation type but by default, Omnibus GitLab automatically generates a
password for and stores it to /etc/gitlab/initial_root_password for at least 24 hours. Follow the
documentation for more details. After you’ve logged in, click the “Admin area” icon in the menu at
the top right.

E | Y Fry
e C Ned
Admin Area
v

Figure 50. The “Admin area” item in the GitLab menu

Users

Everybody using your GitLab server must have a user account. User accounts are quite simple, they
mainly contain personal information attached to login data. Each user account has a namespace,
which is a logical grouping of projects that belong to that user. If the user jane had a project named
project, that project’s URL would be http://server/jane/project.

121


https://gitlab.com/gitlab-org/gitlab-foss/-/blob/master/README.md
http://server/jane/project

= admin Area y ! P e

Owverview Monsioring  Messages  System Hooks Applications  Abups Reporis 2 -
w ojec Us C P B !
Active 28 Admins 1 FA Enabled o 2FA Disabled 26 External ‘@ Blacked 0
_‘.."--_ Administrator [[EREY 1's you! B
% admin@example.com =
Betsy Rutherford 1|
% 'r:-s{ -zl:w-r -ﬂ . Edit & -
markin@ecneriangworth.oiz
"".'.'i. Brenden Hayes Edit o -
w28 laney_dubugquedcormier biz =
5’3’1 Cassandra Kilback = e
th?  caterna@becr.com
A0
__:::h Cathryn Letfler DM Edit o -
MES  desmond@crocks.ca
__‘E Cocil Modhurst Edit -
ey winnilsed@glover.co.uk -
Dr. Joany Fisher
Edit o -
milan@huels.us a
Fe,  Jazmin Sipes
- T e eI Edt  © -
et julieLiurner@leannon.co.uk

Figure 51. The GitLab user administration screen

You can remove a user account in two ways: “Blocking” a user prevents them from logging into the
GitLab instance, but all of the data under that user’s namespace will be preserved, and commits
signed with that user’s email address will still link back to their profile.

“Destroying” a user, on the other hand, completely removes them from the database and filesystem.
All projects and data in their namespace is removed, and any groups they own will also be
removed. This is obviously a much more permanent and destructive action, and you will rarely
need it.

Groups

A GitLab group is a collection of projects, along with data about how users can access those
projects. Each group has a project namespace (the same way that users do), so if the group training
has a project materials, its URL would be http://server/training/materials.

122


http://server/training/materials

= Gitlab.org v b '..

Group  Aclivily Labels Milestones [Ssues B850

\ 4

@gitlab-org e

Open seurce sollwarne 1o collaberate on code

Loave group & Global -

Al Projects Shared Project Filter by nama Last updated

GitLab Develagmant Kit a
Get started with GitLab Rails dewelopment

kubernetes-gitlab-dema
Idea 1o Production GitLab Deme running on Kubernotes

omnibus-gitlab @
This project creates full-stack plattorm-specific downloadable packages for GitLab,
GitLab Enterprise Edition
I
GitLab Enterprise Edition
a gitlab-shell @
S5H accoss and repositony management app for GitLab

9 g::l.nnr::ll-:?:;\lfl-runnor 5 @
Figure 52. The GitLab group administration screen

Each group is associated with a number of users, each of which has a level of permissions for the
group’s projects and the group itself. These range from “Guest” (issues and chat only) to “Owner”
(full control of the group, its members, and its projects). The types of permissions are too numerous
to list here, but GitLab has a helpful link on the administration screen.

Projects

A GitLab project roughly corresponds to a single Git repository. Every project belongs to a single
namespace, either a user or a group. If the project belongs to a user, the owner of the project has
direct control over who has access to the project; if the project belongs to a group, the group’s user-
level permissions will take effect.

Every project has a visibility level, which controls who has read access to that project’s pages and
repository. If a project is Private, the project’s owner must explicitly grant access to specific users.
An Internal project is visible to any logged-in user, and a Public project is visible to anyone. Note
that this controls both git fetch access as well as access to the web UI for that project.

Hooks

GitLab includes support for hooks, both at a project or system level. For either of these, the GitLab
server will perform an HTTP POST with some descriptive JSON whenever relevant events occur.
This is a great way to connect your Git repositories and GitLab instance to the rest of your
development automation, such as CI servers, chat rooms, or deployment tools.

Basic Usage

The first thing you’ll want to do with GitLab is create a new project. You can do this by clicking on
the “+” icon on the toolbar. You’ll be asked for the project’s name, which namespace it should
belong to, and what its visibility level should be. Most of what you specify here isn’t permanent,
and can be changed later through the settings interface. Click “Create Project”, and you’re done.

123



Once the project exists, you’ll probably want to connect it with a local Git repository. Each project is
accessible over HTTPS or SSH, either of which can be used to configure a Git remote. The URLs are
visible at the top of the project’s home page. For an existing local repository, this command will
create a remote named gitlab to the hosted location:

$ git remote add gitlab https://server/namespace/project.git
If you don’t have a local copy of the repository, you can simply do this:
$ git clone https://server/namespace/project.git

The web UI provides access to several useful views of the repository itself. Each project’s home page
shows recent activity, and links along the top will lead you to views of the project’s files and commit
log.

Working Together

The simplest way of working together on a GitLab project is by giving each user direct push access
to the Git repository. You can add a user to a project by going to the “Members” section of that
project’s settings, and associating the new user with an access level (the different access levels are
discussed a bit in Groups). By giving a user an access level of “Developer” or above, that user can
push commits and branches directly to the repository.

Another, more decoupled way of collaboration is by using merge requests. This feature enables any
user that can see a project to contribute to it in a controlled way. Users with direct access can
simply create a branch, push commits to it, and open a merge request from their branch back into
master or any other branch. Users who don’t have push permissions for a repository can “fork” it to
create their own copy, push commits to their copy, and open a merge request from their fork back
to the main project. This model allows the owner to be in full control of what goes into the
repository and when, while allowing contributions from untrusted users.

Merge requests and issues are the main units of long-lived discussion in GitLab. Each merge
request allows a line-by-line discussion of the proposed change (which supports a lightweight kind
of code review), as well as a general overall discussion thread. Both can be assigned to users, or
organized into milestones.

This section is focused mainly on the Git-related features of GitLab, but as a mature project, it
provides many other features to help your team work together, such as project wikis and system
maintenance tools. One benefit to GitLab is that, once the server is set up and running, you’ll rarely
need to tweak a configuration file or access the server via SSH; most administration and general
usage can be done through the in-browser interface.

Third Party Hosted Options

If you don’t want to go through all of the work involved in setting up your own Git server, you have
several options for hosting your Git projects on an external dedicated hosting site. Doing so offers a

124



number of advantages: a hosting site is generally quick to set up and easy to start projects on, and
no server maintenance or monitoring is involved. Even if you set up and run your own server
internally, you may still want to use a public hosting site for your open source code —it’s generally
easier for the open source community to find and help you with.

These days, you have a huge number of hosting options to choose from, each with different
advantages and disadvantages. To see an up-to-date list, check out the GitHosting page on the main
Git wiki at https://archive.kernel.org/oldwiki/git.wiki.kernel.org/index.php/GitHosting.html.

We’ll cover using GitHub in detail in GitHub, as it is the largest Git host out there and you may need
to interact with projects hosted on it in any case, but there are dozens more to choose from should
you not want to set up your own Git server.

Summary

You have several options to get a remote Git repository up and running so that you can collaborate
with others or share your work.

Running your own server gives you a lot of control and allows you to run the server within your
own firewall, but such a server generally requires a fair amount of your time to set up and
maintain. If you place your data on a hosted server, it’s easy to set up and maintain; however, you
have to be able to keep your code on someone else’s servers, and some organizations don’t allow
that.

It should be fairly straightforward to determine which solution or combination of solutions is
appropriate for you and your organization.

125


https://archive.kernel.org/oldwiki/git.wiki.kernel.org/index.php/GitHosting.html

Distributed Git

Now that you have a remote Git repository set up as a focal point for all the developers to share
their code, and you’re familiar with basic Git commands in a local workflow, you’ll look at how to
utilize some of the distributed workflows that Git affords you.

In this chapter, you’ll see how to work with Git in a distributed environment as a contributor and
an integrator. That is, yow’ll learn how to contribute code successfully to a project and make it as
easy on you and the project maintainer as possible, and also how to maintain a project successfully
with a number of developers contributing.

Distributed Workflows

In contrast with Centralized Version Control Systems (CVCSs), the distributed nature of Git allows
you to be far more flexible in how developers collaborate on projects. In centralized systems, every
developer is a node working more or less equally with a central hub. In Git, however, every
developer is potentially both a node and a hub; that is, every developer can both contribute code to
other repositories and maintain a public repository on which others can base their work and which
they can contribute to. This presents a vast range of workflow possibilities for your project and/or
your team, so we’ll cover a few common paradigms that take advantage of this flexibility. We’ll go
over the strengths and possible weaknesses of each design; you can choose a single one to use, or
you can mix and match features from each.

Centralized Workflow

In centralized systems, there is generally a single collaboration model — the centralized workflow.
One central hub, or repository, can accept code, and everyone synchronizes their work with it. A
number of developers are nodes — consumers of that hub — and synchronize with that centralized
location.

shared
repository

developer deve loper developer

Figure 53. Centralized workflow

This means that if two developers clone from the hub and both make changes, the first developer to
push their changes back up can do so with no problems. The second developer must merge in the

126



first one’s work before pushing changes up, so as not to overwrite the first developer’s changes.
This concept is as true in Git as it is in Subversion (or any CVCS), and this model works perfectly
well in Git.

If you are already comfortable with a centralized workflow in your company or team, you can
easily continue using that workflow with Git. Simply set up a single repository, and give everyone
on your team push access; Git won’t let users overwrite each other.

Say John and Jessica both start working at the same time. John finishes his change and pushes it to
the server. Then Jessica tries to push her changes, but the server rejects them. She is told that she’s
trying to push non-fast-forward changes and that she won’t be able to do so until she fetches and
merges. This workflow is attractive to a lot of people because it’s a paradigm that many are familiar
and comfortable with.

This is also not limited to small teams. With Git’s branching model, it’s possible for hundreds of
developers to successfully work on a single project through dozens of branches simultaneously.

Integration-Manager Workflow

Because Git allows you to have multiple remote repositories, it’s possible to have a workflow where
each developer has write access to their own public repository and read access to everyone else’s.
This scenario often includes a canonical repository that represents the “official” project. To
contribute to that project, you create your own public clone of the project and push your changes to
it. Then, you can send a request to the maintainer of the main project to pull in your changes. The
maintainer can then add your repository as a remote, test your changes locally, merge them into
their branch, and push back to their repository. The process works as follows (see Integration-
manager workflow):

. The project maintainer pushes to their public repository.
. A contributor clones that repository and makes changes.

. The contributor pushes to their own public copy.

1

2

3

4. The contributor sends the maintainer an email asking them to pull changes.

5. The maintainer adds the contributor’s repository as a remote and merges locally.
6

. The maintainer pushes merged changes to the main repository.

developer developer

blessed

repository public public

integration developer developer
manager private private

Figure 54. Integration-manager workflow

127



This is a very common workflow with hub-based tools like GitHub or GitLab, where it’s easy to fork
a project and push your changes into your fork for everyone to see. One of the main advantages of
this approach is that you can continue to work, and the maintainer of the main repository can pull
in your changes at any time. Contributors don’t have to wait for the project to incorporate their
changes — each party can work at their own pace.

Dictator and Lieutenants Workflow

This is a variant of a multiple-repository workflow. It’s generally used by huge projects with
hundreds of collaborators; one famous example is the Linux kernel. Various integration managers
are in charge of certain parts of the repository; they’re called lieutenants. All the lieutenants have
one integration manager known as the benevolent dictator. The benevolent dictator pushes from
their directory to a reference repository from which all the collaborators need to pull. The process
works like this (see Benevolent dictator workflow):

1. Regular developers work on their topic branch and rebase their work on top of master. The
master branch is that of the reference repository to which the dictator pushes.

2. Lieutenants merge the developers' topic branches into their master branch.

3. The dictator merges the lieutenants' master branches into the dictator’s master branch.

4. Finally, the dictator pushes that master branch to the reference repository so the other
developers can rebase on it.

blessed
repository

dictator

lieutenant lieutenant

developer developer developer
public public public

Figure 55. Benevolent dictator workflow

This kind of workflow isn’t common, but can be useful in very big projects, or in highly hierarchical
environments. It allows the project leader (the dictator) to delegate much of the work and collect
large subsets of code at multiple points before integrating them.

Patterns for Managing Source Code Branches

o Martin Fowler has made a guide "Patterns for Managing Source Code Branches".

128



This guide covers all the common Git workflows, and explains how/when to use
them. There’s also a section comparing high and low integration frequencies.

https://martinfowler.com/articles/branching-patterns.html

Workflows Summary

These are some commonly used workflows that are possible with a distributed system like Git, but
you can see that many variations are possible to suit your particular real-world workflow. Now that
you can (hopefully) determine which workflow combination may work for you, we’ll cover some
more specific examples of how to accomplish the main roles that make up the different flows. In
the next section, you’ll learn about a few common patterns for contributing to a project.

Contributing to a Project

The main difficulty with describing how to contribute to a project are the numerous variations on
how to do that. Because Git is very flexible, people can and do work together in many ways, and it’s
problematic to describe how you should contribute — every project is a bit different. Some of the
variables involved are active contributor count, chosen workflow, your commit access, and possibly
the external contribution method.

The first variable is active contributor count—how many users are actively contributing code to
this project, and how often? In many instances, you’ll have two or three developers with a few
commits a day, or possibly less for somewhat dormant projects. For larger companies or projects,
the number of developers could be in the thousands, with hundreds or thousands of commits
coming in each day. This is important because with more and more developers, you run into more
issues with making sure your code applies cleanly or can be easily merged. Changes you submit
may be rendered obsolete or severely broken by work that is merged in while you were working or
while your changes were waiting to be approved or applied. How can you keep your code
consistently up to date and your commits valid?

The next variable is the workflow in use for the project. Is it centralized, with each developer
having equal write access to the main codeline? Does the project have a maintainer or integration
manager who checks all the patches? Are all the patches peer-reviewed and approved? Are you
involved in that process? Is a lieutenant system in place, and do you have to submit your work to
them first?

The next variable is your commit access. The workflow required in order to contribute to a project
is much different if you have write access to the project than if you don’t. If you don’t have write
access, how does the project prefer to accept contributed work? Does it even have a policy? How
much work are you contributing at a time? How often do you contribute?

All these questions can affect how you contribute effectively to a project and what workflows are
preferred or available to you. We’ll cover aspects of each of these in a series of use cases, moving
from simple to more complex; you should be able to construct the specific workflows you need in
practice from these examples.

129


https://martinfowler.com/articles/branching-patterns.html

Commit Guidelines

Before we start looking at the specific use cases, here’s a quick note about commit messages.
Having a good guideline for creating commits and sticking to it makes working with Git and
collaborating with others a lot easier. The Git project provides a document that lays out a number
of good tips for creating commits from which to submit patches — you can read it in the Git source
code in the Documentation/SubmittingPatches file.

First, your submissions should not contain any whitespace errors. Git provides an easy way to
check for this—before you commit, run git diff --check, which identifies possible whitespace
errors and lists them for you.

800 bash "
lib/simplegit.rb:5: trailing whitespace.

lib/simplegit.rb:7: trailing whitespace.
lib/simplegit.rb:26: trailing whitespace.

(END)

Figure 56. Output of git diff --check

If you run that command before committing, you can tell if you’re about to commit whitespace
issues that may annoy other developers.

Next, try to make each commit a logically separate changeset. If you can, try to make your changes
digestible — don’t code for a whole weekend on five different issues and th