

Full-Stack Web Development
with TypeScript 5

Craft modern full-stack projects with Bun, PostgreSQL, Svelte,
TypeScript, and OpenAI

Mykyta Chernenko

Full-Stack Web Development with TypeScript 5
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

The author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole aim of enhancing
the language and clarity within the book, thereby ensuring a smooth reading experience for readers.
It’s important to note that the content itself has been crafted by the author and edited by a professional
publishing team.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Bhavya Rao
Book Project Manager: Sonam Pandey
Senior Editor: Rashi Dubey
Technical Editor: K Bimala Singha
Copy Editor: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Vijay Kamble
DevRel Marketing Coordinator: Nivedita Pandey and Anamika Singh

First published: August 2024
Production reference: 1020724

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83588-558-1
www.packtpub.com

http://www.packtpub.com

To my parents, Iryna and Vadym Chernenko; my aunt, Oksana Pidvalna; and my grandparents, Vira
and Vasyl Pivdalni, for dedicating everything they could to help me reach where I am now, providing

motivation and believing in me. To my wife, Yuliia, for her constant support, encouragement, and
tremendous love throughout our life-long journey.

– Mykyta Chernenko

Foreword

In the ever-evolving landscape of web development, mastering the latest technologies and integrating
them seamlessly into full-stack projects is not just an advantage; it’s a necessity. Having worked alongside
Mykyta Chernenko in various capacities—from frontline coding at Quantum to collaborating on a
startup idea—I have witnessed firsthand his deep technical expertise and innovative approach to
problem-solving in the tech world.

Full-Stack Web Development with TypeScript 5 is Mykyta’s latest endeavor to empower full-stack
developers by sharing his wealth of knowledge. This book is a beacon for junior and mid-level software
engineers who are eager to dive deep into the intricacies of modern web development using an array
of cutting-edge tools including TypeScript, Bun, PostgreSQL, Svelte, and the pioneering OpenAI API.

What sets this book apart is not just its comprehensive coverage of both frontend and backend
technologies but its practical, project-based approach. Through Mykyta’s guidance, you will not only
learn the theoretical aspects of each technology but also aspects of how to apply some of them in real-
world scenarios, crafting robust and scalable web applications. The journey from understanding basic
concepts to integrating AI features is laid out with clarity and precision, ensuring that every reader
comes away with the ability to navigate and innovate within the tech industry.

As someone who has seen Mykyta’s meticulous approach to both writing and coding, I am confident
that this book will serve as a great resource for those looking to make advancements in their careers.
Whether it’s leveraging TypeScript’s capabilities to enhance application reliability or integrating AI
to create dynamic user experiences, readers will find Full-Stack Web Development with TypeScript
5 an invaluable guide to becoming well-rounded, forward-thinking developers capable of tackling
challenges for real business use cases.

Embark on this learning journey with Mykyta, and equip yourself with the knowledge to not just
participate in the future of tech but to shape it.

Artem Korchunov

Senior Software Engineer, Pillsorted

Contributors

About the author
Mykyta Chernenko has over seven years of experience in technology, mainly in full-stack development
with a focus on Python and TypeScript. He has also worked with Go, Kotlin, and Dart on various
projects. His technical contributions include working on the Azure integration for Nutanix’s cluster
discovery project and a key engineering role at Factmata, overseeing engineering and infrastructure.
Currently, he holds a position as a senior consultant at KodeWorks. In addition to his technical work,
Mykyta has mentored over 20 professionals, sharing his knowledge and experience. He is also the
author of The Rational Software Engineer and runs a blog with the same name on Hackernoon, where
he writes about his insights in the field.

A big thank you to my best friend, Artem, for working closely with me, offering valuable feedback, and
always being there both as a friend and a technical reviewer. I also want to express my gratitude to
everyone at Packt Publishing for their professionalism and for making the publishing process seamless
and positive. Your efforts have truly shaped this book.

About the reviewers
Kawtar Choubari is a software engineer specializing in JavaScript, TypeScript, React, and Next.js.
She has been featured at Next.js Conf (2023) and React Conf (2024) with other community members
and has spoken at major conferences, such as React Paris and Devoxx; she is passionate about sharing
knowledge and making complex topics accessible.

Also, Kawtar mentors students, guiding their tech careers, creates tech videos part-time, and shares
her conference insights in a vlog format on her YouTube channel (under her name). Dedicated to
educating, she conducts workshops and actively engages on social media platforms, sharing her
expertise and extending her impact with the tech community.

Kawtar’s work is encapsulated by these three words: engineering, educating, entertaining.

Artem Korchunov is a product software engineer at Pillsorted, UK, where he blends a strong team-
oriented approach with the ability to independently drive projects from inception to completion.
Known for his project management and technical expertise in Terraform, AWS, .NET, and Node.js,
Artem skillfully manages both the technical and business aspects of his work.

I am grateful to the team at Pillsorted for their support and the rich, collaborative experiences that
drive mutual growth and innovation.

Joao Rodrigues is a senior typescript engineer at Acrontum Portugal.

Preface� xiii

Part 1: Introduction to TypeScript

1
TypeScript Fundamentals� 3

Technical requirements� 4
Introduction to TypeScript
and its evolution� 5
Key differences between
TypeScript and JavaScript� 5

The advantages of using TypeScript
in modern web development� 6
Basic syntax of TypeScript� 7
Simple types� 7
Interfaces� 8

Summary� 9

2
TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces� 11

Technical requirements� 11
Advanced typing techniques� 12
Narrowing� 12
null types� 14
Function types� 15

Creating types from other types� 16
Utility types� 16
Union types� 17

Type intersections� 19

Interface and OOP features� 20
Interfaces� 20
OOP functionalities� 21

Generics� 23
Promises� 25
Summary� 26

Table of Contents

Table of Contentsviii

Part 2: Backend Development with Bun
and TypeScript

3
Configuring a Backend Environment with Bun and Hono� 29

Technical requirements� 30
Introducing Bun� 30
Introducing Hono� 31
Setting up the project� 32
Adding linting and formatting� 35

Adding middleware� 37
Handling environment variables� 39
Discussing the project structure� 40
Summary� 41

4
Building Backend Infrastructure with Bun, Hono, and TypeScript� 43

Technical requirements� 43
Implementing in-memory storage� 44
Defining the interfaces� 44
Creating database and API types� 46
In-memory implementation of the interfaces� 48

Implementing authentication
and authorization� 51
Developing the authentication middleware� 51

Defining our controllers� 54

Implementing chat controllers� 56
Implementing the endpoints� 56
Combining the endpoints� 59
Using the index file for calling the function� 61

Summary� 63

5
Improving Reliability – Testing and Validation� 65

Technical requirements� 65
Writing validation with Zod� 66
Adding validation to our
authentication endpoints� 66
Adding validation to our chat endpoints� 68

Developing tests with Bun� 70
Writing tests with Bun’s test runner� 71
Writing tests for our
authentication endpoints� 72
Writing test for our chat endpoints� 79

Summary� 85

Table of Contents ix

6
Advanced Backend Development – Security, Throttling, Caching,
and Logging� 87

Technical requirements� 88
Managing security aspects� 88
Adding request throttling� 90
Writing the middleware� 91
Implementing the middleware� 92
Including the middleware in the main app� 93

Managing the cache� 94

Writing the cache middleware� 94
Using the cache middleware in
our chat endpoints� 97

Using logging� 99
Creating our logger’s configuration� 99
Adding logger to our caching middleware� 100

Summary� 102

Part 3: Integrating PostgreSQL for
Data Management

7
PostgreSQL Basics, Storage, and Setup� 105

Technical requirements� 105
Setting up PostgreSQL in Docker� 106
What are Docker and Docker Compose?� 106
What is PostgreSQL?� 107
Creating a database as a Docker container� 109

Constructing the database schema� 111
Defining the database schema� 112
Creating the database schema� 114

Writing CRUD SQL operations� 115
Summary� 117

8
Interacting with PostgreSQL Using Libraries� 119

Technical requirements� 119
Integrating SQL implementation
in the codebase� 120
Writing a class� 120
Updating a user� 124
Incorporating SQL implementation
into the main function� 125

Replacing in-memory data storage
with a SQL-based solution� 126

Testing our SQL integrations
to ensure reliability� 128
Summary� 129

Table of Contentsx

9
Interacting with PostgreSQL Using Prisma ORM� 131

Technical requirements� 132
Introduction to ORMs
and Prisma� 132
Introducing Prisma – our ORM of choice� 133
Understanding Prisma Migrate� 133

Handling migrations
using Prisma� 134
Defining the database schema� 134

Applying the migration
to our database� 136

Interacting with the database
using Prisma� 137
Defining the Prisma Client class� 138
Integrating ORM into the main function� 140

Testing our ORM integration� 141
Summary� 143

Part 4: AI Integration with OpenAI API

10
Basics of Integrating External APIs with TypeScript and Hono� 147

Technical requirements� 147
Introduction to API integration
in TypeScript using fetch� 148

Handling errors and retries� 149
Validating API correctness� 152
Summary� 154

11
Setting Up and Configuring the OpenAI API for the Backend� 155

Technical requirements� 155
Introduction to LLMs and
their applications� 156
Setting up OpenAI
API integration� 158

Integrating the OpenAI
API into our backend� 159
Summary� 162

Table of Contents xi

Part 5: Frontend Development with Svelte

12
Introduction to Svelte for Frontend Development� 165

Technical requirements� 165
What is Svelte?� 165
History of Svelte� 166
Differentiation from other frameworks� 166

Learning Svelte fundamentals� 167
Component composition structure� 167
Introduction to .svelte file structure� 167

Reactivity� 169
Events� 170
Bindings� 172
Handling conditionals and iterating arrays� 173
Props� 174
Lifecycle� 175
Stores� 177

Summary� 178

13
Setting Up the Svelte Project� 179

Technical requirements� 179
Discussing Vite and SvelteKit� 179
Setting up the project� 180
Exploring the project structure� 180
Vite configuration file� 181
TypeScript configuration file� 181

Svelte configuration file� 184
Configuring package.json� 184
HTML entry point� 186
Main file� 187
Application title� 187

Summary� 188

14
Svelte Chat Application Development� 189

Technical requirements� 189
Writing routes for our application� 190
Handling authentication logic� 191
Defining the authentication store� 191
Implementing Login component� 194
Implementing Register component� 198

Developing chat logic� 201
Creating a parent component� 201
Implementing the Header component� 202
Creating the Chat component� 203

Introducing styling� 211
Writing application-wide styling� 211

Table of Contentsxii

Styling for our Login and
Register components� 213
Styling our header component� 216
Styling the chat container� 217
Styling for the chat list� 218

Styling our chat popup
creation component� 220
Styling for specific chats� 221

Summary� 223

15
Advanced Svelte Techniques� 225

Technical requirements� 225
Configuring formatting
and linting� 227
ESLint config file� 227
Prettier file� 229

Exploring a11y� 230
The importance of accessibility� 231
Accessibility rules and best
practices in Svelte� 231

Fixing accessibility issues in our project� 231

Setting up i18n� 233
Introducing testing� 236
Configuring the Vite file� 236
Exploring our setup file� 237
Writing a test for our component� 238

Further reading� 242
Summary� 242

Index� 243

Other Books You May Enjoy� 250

Preface

This book, Full-Stack Web Development with TypeScript 5, takes you on a journey into the robust and
versatile world of TypeScript and will enable you to develop modern web applications from the ground
up. With a focus on practical, real-world applications, this guide equips you with the necessary tools
and techniques to master full-stack development using cutting-edge technologies such as Bun for the
backend, Svelte for the frontend, PostgreSQL for database management, and the OpenAI API for AI
integration. Whether you’re looking to deepen your existing knowledge or venture into new aspects of
web development, this book provides step-by-step instructions and a project-based learning approach
that culminates in the creation of a full-featured chat application.

Who this book is for
This book is designed for junior to mid-level software engineers who have a basic understanding of
JavaScript and web development principles. It is especially beneficial for those looking to enhance their
skills in modern web development technologies and application design, focusing on both frontend
and backend development with TypeScript.

What this book covers
Chapter 1, TypeScript Fundamentals, introduces TypeScript, explaining its evolution from JavaScript
and highlighting its fundamental syntax. This chapter lays the foundations for understanding how
TypeScript enhances web development capabilities.

Chapter 2, TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces, explores advanced TypeScript
features such as static typing, generics, and object-oriented programming concepts, which provide
the tools we need to write more robust and maintainable code.

Chapter 3, Configuring a Backend Environment with Bun and Hono, guides you through setting up Bun
as a modern JavaScript runtime optimized for TypeScript, focusing on configuring the environment
to enhance backend development.

Chapter 4, Building Backend Infrastructure with Bun, Hono, and TypeScript, delves into creating a
secure and efficient backend using Bun, Hono, and TypeScript, covering topics such as authentication
systems, routing, and middleware integration.

Prefacexiv

Chapter 5, Improving Reliability – Testing and Validation, focuses on ensuring code quality and
reliability in backend development, introducing techniques for data validation and testing strategies
using Bun and TypeScript.

Chapter 6, Advanced Backend Development – Security, Throttling, Caching, and Logging, covers critical
backend aspects such as security measures, caching strategies, and best practices for debugging and
logging to build scalable applications.

Chapter 7, PostgreSQL Basics, Storage, and Setup, explores setting up a database using PostgreSQL
within a Docker container to ensure reliable data persistence for web applications, detailing installation,
schema construction, and CRUD operations.

Chapter 8, Interacting with PostgreSQL Using Libraries, advances our backend infrastructure by
incorporating SQL interactions directly into our server code using the pg library. This chapter
discusses efficient and secure data handling, connection strategies, and the importance of testing SQL
integrations to bolster application reliability.

Chapter 9, Interacting with PostgreSQL Using Prisma ORM, transitions from direct SQL handling to
using Object-Relational Mapping (ORM) for database interactions, focusing on using Prisma to
streamline CRUD operations and manage schema migrations. This chapter covers how ORM integration
can increase productivity, reduce errors, and make code clearer when working with PostgreSQL, as
well as efficient migration management and testing ORM interactions.

Chapter 10, Basics of Integrating External APIs with TypeScript and Hono, concludes our backend
setup by teaching how to integrate APIs using fetch for robust communications in TypeScript. This
chapter focuses on implementing reliable API calls, including error handling, retries, and response
validation, to ensure effective and resilient external service interactions.

Chapter 11, Setting Up and Configuring the OpenAI API for the Backend, details the process of integrating
the OpenAI API into a TypeScript-based backend, focusing on configuration, security, and practical
uses of AI models.

Chapter 12, Introduction to Svelte for Frontend Development, introduces Svelte, a modern framework for
building reactive user interfaces, and highlights its key features and benefits over traditional frameworks.

Chapter 13, Setting up the Svelte Project, guides you through setting up a development environment
for a Svelte-based application, exploring the configuration files and initial setup with tools such as
Vite and SvelteKit.

Chapter 14, Svelte Chat Application Development, walks through the development of a chat application
using Svelte, covering frontend aspects such as routing, state management, and UI design.

Chapter 15, Advanced Svelte Techniques, concludes the book with insights into maintaining and optimizing a
Svelte and TypeScript application, covering testing, linting, accessibility, and internationalization strategies.

Preface xv

To get the most out of this book
Before diving into this book, it is recommended that you have a solid foundation in JavaScript and basic
web development concepts. Familiarity with the essentials of both frontend and backend development
will help you understand and implement the advanced techniques covered in this guide. This book
assumes knowledge of web application structure and design patterns and aims to enhance your skills
through practical application and real-world examples.

Software/hardware covered in the book Operating system requirements

Bun 1.0 macOS or Linux

TypeScript 5.2 Windows, MacOS, or Linux

Hono 3.11 Windows, MacOS, or Linux

Svelte 4.2 Windows, MacOS, or Linux

Vite 5.0 Windows, MacOS, or Linux

Eslint 8.57 Windows, MacOS, or Linux

Svelte-routing 2.11 Windows, MacOS, or Linux

Prisma 5.7 Windows, MacOS, or Linux

Pg 8.11 Windows, MacOS, or Linux

Zod 3.22 Windows, MacOS, or Linux

Axios 1.6 Windows, MacOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

If you execute the code on Windows, be aware that Bun is in experimental mode and the instructions
provided in the terminal must be used in a bash-like environment.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5. If there’s
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “For
example, when [] is used in a numerical context, it is coerced to 0, and division of 4 to 0 results in
Infinity. “

A block of code is set as follows:

const numbers: Array<number> = [1, 2]
const bigNumbers: number[] = [300, 400]

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

export function createAuthApp(
  userResource: IDatabaseResource<DBUser, DBCreateUser>,
) {
  authApp.post(
    REGISTER_ROUTE,
    zValidator("json", registerSchema),
    async (c) => {
      const { email, password, name } = c.req.valid("json");
      ...

Any command-line input or output is written as follows:

$ npm install -g typescript

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Turn on Automatic ESlint config if
it was turned off.”

Tips or important notes
Appear like this.

Preface xvii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Full-Stack Web Development with TypeScript 5, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1835885594

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835885581

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835885581

Part 1:
Introduction to TypeScript

In this part, you will dive into the world of TypeScript, understanding its core principles and
advanced features. This section sets a strong foundation in TypeScript, highlighting its evolution from
JavaScript and demonstrating its power in enhancing code quality and maintainability for large-scale
applications. You’ll learn the basics as well as more complex concepts, such as generics and object-
oriented programming, that are essential for robust web development.

This part includes the following chapters:

•	 Chapter 1, TypeScript Fundamentals

•	 Chapter 2, TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces

1
TypeScript Fundamentals

Web development is constantly evolving, yet one constant remains: JavaScript as the primary language,
a status it’s likely to hold for the foreseeable future. Alongside JavaScript, an array of tools has surfaced,
each contributing to the more efficient creation of full-stack applications. This book is dedicated to
exploring these developments.

We’ll focus on full-stack development, combining TypeScript with a variety of cutting-edge technologies
needed to build complete applications through building a hands-on project. Our practical project involves
constructing a chat application, similar in essence to the functionality of ChatGPT. It will involve the
application of diverse frontend and backend technologies, along with database and API integrations.

This book is more than just a guide to coding an application from start to finish. It also aims to teach
you about effective development patterns, which are versatile enough to be applied across various
technologies of your choice. While it’s assumed that you come with a basic understanding of JavaScript
and fundamental web development concepts, every new topic and aspect introduced in the book will
be thoroughly explained, ensuring a deep and comprehensive understanding of each subject.

In this book, we’ll start by exploring TypeScript, now a key player in web development. Its main
advantage is the use of types, which significantly improves the development process. We’ll discuss
TypeScript’s history, compare it with JavaScript, and explore its strengths, particularly in enhancing
code quality and reducing errors. We’ll also delve into TypeScript’s core concepts, such as syntax, types,
interfaces, classes, and generics, providing a thorough understanding of how it works.

Then, we’ll shift our focus to backend development, choosing Bun as our main technology. As of
2023, Bun is one of the most promising backend runtimes and is notable for its seamless integration
with TypeScript. We’ll cover the essentials of Bun, including setting up the environment, handling
authentication, routing, middleware, data validation for requests, building REST APIs, using linters
for code quality, debugging, logging, code structure, and effective testing strategies.

TypeScript Fundamentals4

Next, we’ll dive into using databases, specifically PostgreSQL, one of the most popular SQL-based
databases with extensive features. We’ll discuss data storage and how to optimize it. A key focus will
be on using TypeScript as an interface for managing the data we store. We’ll start with basic create,
read, update, and delete operations, and then move on to using libraries and object-relational mappers
to interact with PostgreSQL from TypeScript. This section will also cover integrating PostgreSQL into
our backend infrastructure and optimizing its use.

Following that, we’ll tackle API integration, which is crucial for our chat application. We’ll be using the
OpenAI GPT API for chat completions. While integrating and configuring this API for our backend,
we’ll cover broader topics, such as writing external service integrations effectively, ensuring the
correctness of API responses, and incorporating API calls into our REST endpoints. Additionally, we’ll
discuss various scenarios where the OpenAI API and its models can be beneficial in web development.

The final section of this book focuses on frontend development using Svelte. Known for its simplicity,
speed, and beginner-friendliness, Svelte is a standout choice for building web interfaces. We’ll explore
reactivity patterns common in single-page application frameworks and apply them to build our chat
functionality using Svelte. This includes setting up the environment with TypeScript, understanding
Svelte’s core concepts and syntax, integrating the frontend with our REST API, and learning about
components, routing, state management, and styling. Additionally, we’ll delve into testing and debugging
Svelte code and discuss best practices for maintaining and extending the code base.

By the end of this book, you’ll gain more than just knowledge of the specific technologies covered.
You’ll develop a versatile mental framework for full-stack development. This framework will equip
you with valuable concepts and practices that are applicable across any technologies and languages
you will choose in web project development.

Let’s kick off our journey with TypeScript. In this chapter, we’ll dive into an introduction to TypeScript,
covering its history, how it stands out from JavaScript, and its advantages. We’ll also get acquainted
with TypeScript’s basic syntax, setting the stage for more advanced topics to follow. Here is the list of
topics we are going to cover:

•	 Introduction to TypeScript and its evolution

•	 Key differences between TypeScript and JavaScript

•	 The advantages of using TypeScript in modern web development

•	 Basic syntax of TypeScript

Technical requirements
In this chapter, there’s no need to install or run anything just yet. We’re going to focus on the basics
of TypeScript, so you can ease into it without any setup work.

Introduction to TypeScript and its evolution 5

All the code examples we discuss are available in this repository: https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/
main/Chapter01.

Introduction to TypeScript and its evolution
JavaScript’s journey to market was remarkably quick. Brendan Eich created its first version in just 10
days, aiming to make web pages interactive through a straightforward scripting language. Over time,
JavaScript gradually, then rapidly, became a dominant force in web development, while applications
grew increasingly complex.

Many developers critique JavaScript’s design as lacking elegance, often pointing out its seemingly
inconsistent language decisions. It’s true that JavaScript is notorious for its quirks. To illustrate this,
let’s look at two common examples:

•	 4 / []

•	 0 == ""

The first one evaluates to Infinity, while the second one becomes True. This happens because of
the type coercion that happens when this code is executed. Type coercion is the process of automatically
converting data types from one to another. For example, when [] is used in the numeric context,
it is coerced to 0, and division of 4 by 0 results in Infinity. In the second example, "" is first
converted to 0, and then both sides of the equation become equal. Let’s agree, this is pretty confusing.

Another big drawback people often point out is that JavaScript is weakly and dynamically typed.
To fix this, Microsoft rolled out TypeScript in 2012. Since then, there’s been a lot of changes in both
JavaScript and TypeScript. For example, now in JavaScript, you can sidestep the issue in the first
example by using the === comparison, which compares the values without type coercion. But the big
win of TypeScript is still its static typing, which would not allow such comparison in the first place as
a number cannot be equal to a string by a type definition, so the comparison doesn’t make sense
in type logic. This is far from all of the benefits strict typing provides to us. We will explore more of
its benefits further in this chapter and in the next one.

Let’s take a closer look at what sets TypeScript apart from JavaScript.

Key differences between TypeScript and JavaScript
TypeScript is a superset of JavaScript, meaning everything you can do in JavaScript, you can also
do in TypeScript. It works in all the same places as JavaScript – browsers, Node.js, Bun, and so on.
Before the code execution, TypeScript is first transpiled into JavaScript. So, what actually runs is plain
JavaScript. TypeScript exists only during development.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter01
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter01
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter01

TypeScript Fundamentals6

This means all your JavaScript knowledge is still valuable in TypeScript. But TypeScript adds a bunch
of cool stuff:

•	 Type annotations: TypeScript allows type annotations, where you can explicitly declare variable
types. JavaScript does not support this natively.

•	 Interfaces: TypeScript introduces interfaces, a way to define custom types and ensure objects
conform to specific structures. JavaScript lacks this feature.

•	 Access Modifiers: TypeScript supports access modifiers such as private, protected, and
public, for controlling access to class members. JavaScript does not have this feature built-in.

•	 Enums: TypeScript provides enums, a feature for defining a set of named constants. This is not
available in standard JavaScript.

•	 Namespaces and modules: TypeScript offers namespaces for grouping code and avoiding
global scope pollution, and it has robust support for ES6 modules. JavaScript primarily relies
on ES6 modules.

•	 Advanced types: TypeScript has advanced type features, such as generics, union types, and
tuple types, allowing more precise type definitions and manipulation. JavaScript does not have
these advanced type features.

•	 Tooling and compilation: TypeScript requires a compilation step to transpile TypeScript code
to JavaScript, which can be integrated into build processes. JavaScript can be run directly in
browsers and Node.js without this compilation step.

As we develop our chat application, we’ll dive deeper into these TypeScript features and put them
to practical use. But before that, let’s discuss the advantages and disadvantages of using TypeScript.

The advantages of using TypeScript in modern
web development
Using TypeScript comes with a few advantages, mostly of which come directly from using types:

•	 Type safety: TypeScript’s static typing helps catch errors at compile time, long before the code
is executed. This leads to fewer runtime errors and more robust, reliable code.

•	 Improved tooling: The static type system allows for better tooling support like auto-completion,
navigation, and refactoring tools, making the development process more efficient.

•	 Easier maintenance: For large code bases, TypeScript’s type system makes the code easier
to understand and maintain. Changes can be made with greater confidence, reducing the
likelihood of introducing bugs.

•	 Better documentation: The type annotations serve as a form of documentation, making it
easier for new developers to understand what the code is doing.

Basic syntax of TypeScript 7

At the same time, as with every technology, TypeScript is not all that shiny; there are disadvantages
as well:

•	 Learning curve: For developers familiar with JavaScript, learning TypeScript introduces an
additional layer of complexity due to its static typing and other advanced features.

•	 Compilation step: TypeScript code must be compiled to JavaScript before it can be executed.
This adds an extra step to the development process and can complicate build and deployment
pipelines. The configuration can become even more complex than plain JavaScript, and with
any additional step in the configuration, it is more likely to break.

•	 Potentially verbose: Type annotations and interfaces can make TypeScript code more verbose
than JavaScript. This can lead to longer, more complex code, which might be seen as a downside
for simple projects.

•	 Community and ecosystem adjustments: While TypeScript is widely adopted, some libraries
and third-party tools may still have better support for JavaScript. This means developers
might need to invest additional effort to find or create TypeScript type definitions for existing
JavaScript libraries.

•	 Integration with JavaScript infrastructure: Since TypeScript is converted to JavaScript for
runtime, the type information is lost during execution. This can make using third-party TypeScript
libraries a bit inconvenient. When exploring a function from a library, you often end up in the
*.d.ts files, which define only the type structure of the functions and not the definitions.

Overall, TypeScript isn’t flawless, but the type safety it offers leads to more reliable and error-free code.
This benefit is often more crucial for larger projects than the drawbacks TypeScript might present.
With the understanding you have now, you’re well prepared to move on to something more practical
– the basic syntax of TypeScript.

Basic syntax of TypeScript
Let’s start with two main aspects of TypeScript – simple types and interfaces.

Simple types

JavaScript has types, but they are implicit and not strictly enforced. In TypeScript, you’ll find most
types are explicit, and you’re required to declare them. Let’s declare one:

let messageText: string = "my first chat message"

The difference you can see with the ordinary JavaScript is : string. This part defines the time of
the variable that we are going to use. Here, we’ve clearly stated that messageText is a string. If we
try to assign a value of a different type, like a number, we’ll get an error:

messageText = 5

TypeScript Fundamentals8

This line will trigger an error since 5 is not a string.

Another benefit is when the compiler knows the variable is a string, your IDE will suggest actual
functions that exist on the string type, which is quite useful. Similarly, we can use other basic types
to annotate variables.

There are a few more basic types to know:

•	 Number and boolean: The first two, number and boolean, are also primitives, like the
string type.

•	 Array<T>: Array<T> is a generic type, a concept we’ll explore in Chapter 2, but it’s essentially
for declaring arrays with a specific type of elements. This can also be written using [].

Let’s declare two arrays of numbers to demonstrate:
const numbers: Array<number> = [1, 2]
const bigNumbers: number[] = [300, 400]

In this code block, we define two variables – numbers and bigNumbers. They define their
types differently, but essentially Array<number> and number[] mean the same – an array
of numbers.

•	 any: The last type, any, represents any type. Using any tells TypeScript to stop checking the
type. It’s useful for converting JavaScript to TypeScript, but it basically negates all the benefits
TypeScript offers.

I encourage you to experiment with these basic types in your IDE for a better grasp. We’ll also be
using them extensively as we build the app, so don’t worry if it doesn’t all click right away. Now, let’s
briefly touch on interfaces.

Interfaces

An interface in TypeScript defines the structure of an object, specifying what fields it should have
and the types of those fields. Let’s create a simple interface for a chat object and then define a few
instances of the Chat type. We will complete the code piece with a function called displayChat,
which accepts a parameter of type Chat and logs its details:

interface Chat {
    name: string;
    model: string;
}

const foodChat: Chat = { name: 'food recipes exploration', model:
'gpt-4' };
const typescriptChat: Chat = {name: 'typescript teacher', model: 'gpt-

Summary 9

3.5-turbo'};

function displayChat(chat: Chat) {
    console.log(`Chat: ${chat.name}, Model: ${chat.model}`);
}

First, we define an interface called Chat that contains two fields name and model of type string.
By doing so, we create our own type that we can use in variable type annotations as we did with basic
types in the beginning of the Simple types section. When we use it on a variable, it essentially means
that the object that we assign to the variable has to follow the structure of the interface.

Then, we define the two variables, foodChat and typescriptChat, both of which satisfy the
Chat interface. They hold different data, but both are of type Chat. The displayChat function
accepts any parameter that satisfies the Chat interface, meaning that it is an object with name and
model fields of the string type.

Interfaces also give an error if you try to access a property that doesn’t exist on the object. They can be
extended, have optional properties, and include function definitions. We’ll explore all these features
in the upcoming chapters.

Summary
In this chapter, we’ve covered a brief introduction to TypeScript – how it relates to JavaScript, its
advantages and disadvantages, its history, and some basic functionality. With this information in hand,
we’re ready to dive deeper into TypeScript. In the next chapter, we are going to cover more advanced
aspects of TypeScript: generics, unions, classes, and other useful functionality of its type system.

2
TypeScript Deep Dive –

Typing, Generics, Classes,
and Interfaces

We covered the very basics of TypeScript in Chapter 1. Now, let’s go further, and learn more advanced
features that are going to be essential to develop any real-world application using TypeScript. In this
chapter, we are going to build some foundational types that we are going to use in our backend and
frontend applications, and along the way, we will learn about the following concepts:

•	 Advanced typing techniques

•	 Creating types from other types

•	 Interface and object-oriented programming (OOP) features

•	 Generics

•	 Promises

We will start with advanced typing techniques, which will include narrowing, null types, and
function types.

Technical requirements
In this chapter, we will need to install TypeScript. I encourage you to experiment with the code we
present here and play around with your own examples to understand the mechanics of the techniques
I’m going to present, better.

You can install TypeScript globally by using this command in your terminal of choice:

$ npm install -g typescript

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces12

Now, you have the tsc command-line tool installed system-wide. Another thing that we need to do
when we create a project is to provide TypeScript configuration for the project. Let’s create a Chapter02
folder and create a tsconfig.json file inside of it. Put the following configuration into it:

tsconfig.json

{
  "compilerOptions": {
    "module": "es2022",
    "target": "es2017",
    "strictNullChecks": true
  },
  "includes": [
    "main.ts"
  ]
}

This configuration is a minimalistic configuration required to transpile our TypeScript to JavaScript
and it also requires strict checks for null values, which we mentioned in the previous chapter.

To transpile the code, you can write this command in the terminal inside the Chapter02 folder:

$ tsc -p tsconfig.json

We are going to put all the code mentioned in this chapter in the main.ts file.

The project code we discuss here is also available in this repository:

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
TypeScript-5/tree/main/Chapter02

Advanced typing techniques
We will start our chapter with more advanced typing techniques. We will explore key concepts, including
narrowing, null types, function types, and a suite of utility types such as Partial, Readonly,
Required, Pick, Record, and Omit. The first technique we are going to look at will be narrowing,
which is going to help limit what a type can be.

Narrowing

When we talk about narrowing, we refer to the process of moving from a less precise type to a more
precise type. For instance, a variable that initially has a type of any or unknown can be narrowed
down to more specific types such as string, number, or custom types.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter02
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter02

Advanced typing techniques 13

Let’s delve into a practical example to illustrate how narrowing works in a real-world scenario. In the following
code, we’ll discuss a narrowToNumber function and a getChatMessagesWithNarrowing
function, both of which utilize narrowing:

function narrowToNumber(value: unknown): number {
    if (typeof value !== 'number') {
        throw new Error('Value is not a number');
    }
    return value;
}

This function takes a parameter of type unknown and aims to ensure that this parameter is indeed
a number. The usage of typeof in the if statement is a classic example of type guarding, a form
of narrowing. If the value is not of type number, an error is thrown; otherwise, the function safely
returns the value, now assured to be a number. This is a classic example of runtime type checking
in TypeScript.

Let’s move to an example of how we can get messages on our backend. You don’t need to know a lot
of the specifics of the backend-related code happening in this example, but I will explain the gist and
the parts that are relevant:

async function getChatMessagesWithNarrowing(chatId: unknown, req: {
authorization: string }) {
    const authToken = req.authorization;
    const numberChatId = narrowToNumber(chatId);
    const messages = await chatService.getChatMessages(numberChatId,
authToken);

    if (messages !== null) {
        messages.map((message) => {
            console.log(`Message ID: ${message.id}, Feedback:
${message.feedback?.trim() ?? "no feedback"}`);
        });
        return {success: true, messages}
    } else {
        return {success: false, message: 'Chat not found or access
denied'}
    }
}

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces14

Here, chatId is passed to the function with an unknown type. However, in our scenario, chatId
is expected to be a number. This is where the narrowToNumber function becomes useful. By
applying it to chatId, we are narrowing the type from a broad unknown type to a more specific
type of number type. Further down in the code, we encounter the following instance of narrowing:

if (messages !== null) {
   ....
}

This line is a subtle but vital example of narrowing. Here, we check if messages is not null before
proceeding. This act effectively narrows the type of messages from possibly null or an array of
messages to definitively an array of messages. This ensures that the operations inside the if
block are safe and won’t result in a TypeError error due to attempting to access properties on null.

Now, let’s look into another type feature – null types – in the next section.

null types

In JavaScript and TypeScript, null is a primitive value that represents the intentional absence of any
object value. When TypeScript’s strict null checking is enabled (which is highly recommended),
variables must be explicitly typed to include null or undefined if they are intended to hold an
empty value. This contrasts with JavaScript, where variables can implicitly be null or undefined
without such strict type distinctions, often leading to unintended errors if not carefully managed. This
forces developers to consciously handle null cases, leading to more robust and error-resistant code.
We’ve seen it in action already in the previous section, but let’s look at it closer:

if (messages !== null) {
    // …
}

Here, the messages !== null null check is a direct application of handling null types. In
this context, messages is expected to be an array or null. The check ensures that the following
code only runs if messages is indeed an array and not null. This is a simple yet effective way to
guard against null-related errors.

Next, let’s examine another snippet here:

console.log(`Message ID: ${message.id}, Feedback: ${message.feedback?.
trim() ?? "no feedback"}`);

In this line, the use of the ? optional chaining operator and the ?? nullish coalescing operator provides
a powerful combination for dealing with null values, which helps to prevent runtime errors where
we would expect a value but got null. The expression message.feedback?.trim() expression
will only attempt to call trim() if feedback is not null or undefined, thus avoiding a potential

Advanced typing techniques 15

runtime error. If feedback is nullish (that is, null or undefined), the nullish coalescing operator
takes over, providing a "no feedback" fallback value.

null types in TypeScript are not just a feature of the language; they represent a mindset shift
toward safer, more predictable coding practices, as Uncaught TypeError: Cannot read
properties of null is an error that is very commonly met in JavaScript but is completely
gone from TypeScript.

Now, in the next section, let’s look at function types.

Function types

A function type allows you to specify the exact form a function should take: the types of its input
arguments and its return type. This feature is helpful when you pass functions around the code as
arguments or if you create a constant of a function type.

Let’s look at an example of how we can use a function type when we log the details of every message
in our code:

type MapCallback = (message: IMessage) => void;
const logMessage: MapCallback = (message) => {
    console.log(`Message ID: ${message.id}`);
};
messages.map((message: IMessage) => {
    logMessage(message);
});

Here, MapCallback is a function type definition. It tells TypeScript that any function with this type
should take one argument, message, which is of type IMessage, and it should return nothing
(void). This function type becomes a template for creating functions with this specific structure.

logMessage is a function that’s explicitly declared to be of type MapCallback. This means
logMessage must match the structure defined by MapCallback – it takes an IMessage object
as an argument and does not return anything. TypeScript will enforce this structure, ensuring that
logMessage is used correctly according to the defined function type.

Finally, logMessage is used within the map function. Each item in messages (assumed to be an
array of IMessage objects) is passed to logMessage, which adheres to the structure defined by
MapCallback. This ensures that the function is applied correctly to each message type and that
we can only pass an argument of type IMessage to the logMessage function.

With this, we are ready to move to the next topic, creating types from other types, which will help us
change existing types to get something new.

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces16

Creating types from other types
In this section, we are going to cover a few techniques to adapt one type to another, such as utility
types, union types, and intersection types. We will start by showing some useful utility functions
for this job in TypeScript.

Utility types

Utility types are a set of types provided by the language to transform existing types into new, modified
versions. They offer a convenient way to alter properties of a type, making them optional, read-only,
or excluding them, among other transformations. Let’s cover a few of them here:

•	 Pick<Type, Keys>: Pick constructs a new type by selecting a subset of properties from
an existing type. Pick is used when you need a type with only specific properties from a
parent type. This is useful for creating more focused and less bulky types. The following is an
example of using Pick:

 interface IUser {
   id: number;
   name: string;
   email: string;
}
type UserPreview = Pick<IUser, 'id' | 'name'>;
const userPreview: UserPreview = {id: '1', name: 'John'};

Here, UserPreview contains only id and name from IUser.

•	 Record<Keys, Type>: Record generates a type with a set of keys and assigns a uniform
type to these keys’ values. It is ideal for creating objects where keys have a common value type,
often used for mapping or lookup purposes. Here is an example of using Record:

type UserNamesById = Record<UserId, string>;
const userNamesById: UserNamesById = {'1': 'John', '2':
'Alice'};

UserNamesById is a dictionary object mapping UserId keys to string names.

•	 Partial<Type>: Partial turns all properties of a given type into optional properties.
Partial is useful in situations such as updating parts of an object, where you don’t need
to provide all properties. It provides flexibility in object creation. Here is how you would use
Partial in code:

type PartialIUser = Partial<IUser>;
const partialUser: PartialIUser = {id: '1'};

PartialIUser allows any combination of IUser properties, including incomplete objects,
because all the properties are optional.

Creating types from other types 17

•	 Required<Type>: Required transforms all optional properties of a type into required
ones. Required is the opposite of Partial. It enforces that all properties of the type must be
provided, ensuring complete object definitions. The following is an example of using Required:

type RequiredIUser = Required<PartialIUser>;
const requiredUser: RequiredIUser = {id: '1', name: 'John',
email: 'john@example.com'};

RequiredIUser mandates that all properties, even those optional in PartialIUser,
must be present.

•	 Omit<Type, Keys>: Omit creates a new type by omitting specified properties from an
existing type. Omit is useful for creating a type that excludes certain properties from another
type, which is particularly helpful in excluding sensitive or unnecessary properties. An example
of Omit is as follows:

type UserWithoutEmail = Omit<IUser, 'email'>;
const userWithoutEmail: UserWithoutEmail = {id: '2', name:
'Alice'};

UserWithoutEmail is a type similar to IUser but without the email property.

•	 Readonly<Type>: Readonly makes all properties of a type immutable post-creation.
Readonly is used to create types where object properties shouldn’t be changed after the object
is created, which is important for maintaining integrity in certain objects:

type ReadonlyIUser = Readonly<IUser>;
const user: ReadonlyIUser = {id: '1', name: 'John', email:
'john@example.com'};

ReadonlyIUser guarantees that once an IUser object is created, its properties cannot be
altered, as we cannot assign a new field to it afterward.

With this covered, let’s see how we can combine types together with union types, in the next section.

Union types

Union types, represented by a pipe sign (|), allow a variable to hold values that are a combination of
two or more types, offering flexibility in defining types that can accept multiple, specific types of values.
They’re essential in scenarios where a variable or function return type isn’t confined to a single type.

Let’s apply this concept to the provided examples and create a type for our IMessage interface:

type MessageType = "user" | "system";

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces18

Here, MessageType is a union type, meaning it can hold either a "user" or "system" value.
Now, let’s add it to our interface, as shown here:

interface IMessage {
    type: MessageType;
    // other properties
}

In the IMessage interface, the type property must be either "user" or "system", adhering to
the MessageType union. However, union types don’t have to be primitive values. Let’s now look
at how we can handle returning a union type from a function. The getChatFromDb function here
illustrates a common use case for union types in function return values:

type DbChatSuccessResponse = {
    success: true;
    data: IChat;
};

type DbChatErrorResponse = {
    success: false;
    error: string;
};

function getChatFromDb(chatId: string): DbChatSuccessResponse |
DbChatErrorResponse {
    const findChatById = (_: string) => ({} as IChat)
    const chat = findChatById(chatId);
    if (chat) {
        return {
            success: true,
            data: chat,
        };
    } else {
        return {
            success: false,
            error: "Chat not found in the database",
        };
    }
}

Creating types from other types 19

getChatFromDb can return either DbChatSuccessResponse, which represents a successful
operation, or DbChatErrorResponse, which has properties for a failed response. This approach
is useful for error handling and data fetching, where the outcome might differ significantly. Now, let’s
handle the union type result of the function with narrowing in the following code:

const dbResponse = getChatFromDb("chat123");
if (dbResponse.success === true) {
    console.log("Chat data:", dbResponse.data);
} else {
    console.error("Error:", dbResponse.error);
}

In this snippet, the response from getChatFromDb is either a success or an error object.
The if dbResponse.success === true check effectively distinguishes between these two
possible return types. If success is true, TypeScript understands that dbResponse conforms
to DbChatSuccessResponse and allows access to dbResponse.data. Otherwise, it treats
dbResponse as DbChatErrorResponse, exposing the error property.

Let’s next look at a resembling technique called type intersections.

Type intersections

Type intersection is a feature that creates a new type that includes all properties of combined types.
It’s symbolized by an ampersand (&) and is particularly useful for composing complex types from
simpler ones. In the following code, we are going to create a type for a database chat entity that must
also have an id value:

type IDBEntityWithId = {
    id: number;
};

type IChatEntity = {
    name: string;
};

type IChatEntityWithId = IDBEntityWithId & IChatEntity;

const chatEntity: IChatEntityWithId = {
    id: 1,
    name: "Typescript tuitor",
};

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces20

Here, chatEntity is declared with the IChatEntityWithId type, so it must include both id
from IDBEntityWithId and name from IChatEntity. This illustrates how intersection types
enforce the presence of all properties from combined types. We can also achieve similar functionality
by extending interfaces, which we are going to show in the following topic.

With this, we’ve covered the essential part of advanced typing techniques, and we are ready to talk
more about how to reuse and write extensible code with OOP and interfaces.

Interface and OOP features
Both OOP and interfaces serve a few very important purposes – they help to clearly define the structure
of objects passed around, reuse code, and write extensible functionality. We’ve looked at interfaces
before, but now, let’s talk about how we can extend their definitions.

Interfaces

Extending interfaces allows for the creation of new interfaces that inherit properties from existing
ones, thereby enhancing reusability and organization. Let’s draw on an example we used before, but
now using extending interfaces there:

interface IMessageWithType extends IMessage {
    type: MessageType;
}

const userMessage: IMessageWithType = {
    id: 10,
    chatId: 2,
    userId: 1,
    content: "Hello, world!",
    createdAt: new Date(),
    type: "user",
};

The IMessageWithType interface extends the IMessage interface, which means it includes all
properties from IMessage plus any additional properties defined in IMessageWithType. Here,
IMessageWithType adds the type property, of type MessageType, to the existing structure.
When creating a userMessage object of type IMessageWithType, it’s required to include all
properties from both IMessage and IMessageWithType.

Now, let’s look at OOP functionalities that exist in TypeScript.

Interface and OOP features 21

OOP functionalities

OOP is a programming paradigm that uses objects and classes to create models based on the real world.
TypeScript embraces core OOP principles, allowing developers to use polymorphism, abstraction,
inheritance, and encapsulation using native syntax. Let’s look at these functionalities in detail here:

•	 Polymorphism: This allows objects of subclasses to be treated as objects of a common
superclass. It’s about creating a structure where a function can utilize subclasses of the superclass
interchangeably. Polymorphism is primarily achieved through interfaces and abstract classes.
By defining a common interface or an abstract class, TypeScript allows different classes to
implement the same structure or methods, thus enabling functions to work with objects of
these different classes as if they were working with the base class.

•	 Abstraction: TypeScript uses abstract classes and interfaces to implement abstraction. These
constructs allow you to define a standard template or contract that other classes can implement,
encapsulating complex logic and exposing only the necessary parts.

•	 Inheritance: This is a mechanism where a new class extends (inherits from) an existing class,
allowing for the reuse of code and creating a hierarchical relationship between classes. In
TypeScript, inheritance is implemented using the extends keyword. A class can extend
another class, inheriting its properties and methods.

•	 Encapsulation: This involves bundling data and methods that operate on the data within one
unit, often a class, and restricting access to some of the object’s components, which ensures data
integrity. Encapsulation in TypeScript is achieved through access modifiers such as public,
private, and protected. These modifiers control the visibility and accessibility of class
members, ensuring that internal details of a class are hidden and only exposed through a defined
interface. Here is a description of access modifiers:

	� public: This is the default access level for class members. Members declared as public
can be accessed from anywhere, meaning there’s no restriction on access. This includes access
from within the class itself, from instances of the class, and from subclasses.

	� private: Members declared as private can only be accessed from within the class itself.
They are not accessible from instances of the class or from subclasses. This access level is used to
hide the internal state and functionality of the class from the outside, enforcing encapsulation.

	� protected: Members declared as protected can be accessed from within the class and
also from subclasses. However, they are not accessible from instances of the class (unless
through methods defined within the class or subclass). This allows for a more controlled
form of accessibility, useful for cases where the subclass needs more intimate knowledge of
the superclass without exposing members to the general public.

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces22

Let’s look at the following example that combines these techniques. We will define an
AbstractDatabaseResource abstract class with common methods and an abstract method.
An InMemoryChatResource concrete class will extend this abstract class and provide specific
implementations for storing chat in memory:

abstract class AbstractDatabaseResource {

    constructor(protected resourceName: string) {
    }

    protected logResource(resource: { id: number }): void {
        console.log(`[${this.resourceName}] Resource logged:`,
resource);
    }

    abstract get(id: number): { id: number } | null

    abstract getAll(): { id: number }[]

    abstract addResource(resource: { id: number }): void;
}

const inMemoryChatResource = new InMemoryChatResource();

const chat1: IChat = {
    id: 1,
    ownerId: 2,
    messages: []
};

inMemoryChatResource.addResource(chat1);
const retrievedChat1 = inMemoryChatResource.get(1);

Let’s discuss various techniques we have used here:

•	 Abstraction: The AbstractDatabaseResource class provides external methods that are used
to manage database elements (methods such as get, getAll, and addResource), while it hides
the complexity of the specific implementation. Users of the AbstractDatabaseResource
class need only be concerned with the interface – what methods are available and what parameters
they accept – not how these methods are implemented. This separation of concerns (SoC)
makes the system easier to understand and use.

Generics 23

•	 Inheritance: InMemoryChatResource is a concrete class that extends
AbstractDatabaseResource. This means it inherits its properties and methods, but
also provides specific implementations for the abstract methods defined in the base class.

•	 Encapsulation: In InMemoryChatResource, the resources array is marked as private,
meaning it can’t be accessed directly from outside the class. This encapsulation ensures that
the internal representation of chat resources is hidden from external use. The logResource
method in the abstract class is marked as protected, allowing it to be accessed within the
class and its subclasses, but not outside.

•	 Polymorphism: While InMemoryChatResource has different implementations of the
methods (such as addResource and get), they can be used interchangeably in contexts
where an AbstractDatabaseResource class is expected. This is polymorphism, where
objects of different classes can be treated as objects of a common superclass.

•	 Instantiation and use: We create an instance of InMemoryChatResource and use it to add
and retrieve chat data. Despite the specific underlying implementation (in-memory array), the
code only relies on the use of shared abstract class structure definition to know the methods
and properties it can retrieve.

It is important to use interfaces and classes appropriately. As a rule of thumb, leverage interfaces for
defining contracts and shapes of data, ensuring consistency across implementations and facilitating
easy refactoring. Use classes to encapsulate data and behavior, taking advantage of inheritance and
polymorphism to promote code reuse and maintainability, while keeping class definitions focused and
avoiding overly complex inheritance hierarchies. Interfaces are good for defining the abstract structure
that you are going to operate on in a function parameter, and classes are great for encapsulating
complexity and provide only a simple and straightforward way to interact with the classes’ logic.

We can now work on the class code we introduced to cover two additional concepts: generics
and promises.

Generics
Generics in TypeScript are a tool for creating reusable components that can work with multiple types
rather than a single one. This allows for better component abstraction while maintaining type safety
as well. It also helps to write more flexible code that can adapt to different types. Let’s start with a
basic example given here:

function printValue<T>(value: T): void {
    console.log(value);
}

printValue<number>(123);
printValue<string>("Hello");

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces24

<T> is a generic type parameter that allows this function to accept any type of value. When you call
printValue<number>(123) and printValue<string>("Hello"), TypeScript treats
T as number and string, respectively. This demonstrates how generics provide flexibility without
losing the benefits of type checking.

We also can improve InMemoryChatResource, which we defined before. It works fine now, but
what if we also need an in-memory implementation of InMemoryUserResource for IUser in
addition to IChat? They basically have the same functionality; the only difference between them is
the type of resource they handle. Generics can be helpful here. To illustrate that, let’s define a generic
GenericsInMemoryResource class and create chat and user instances of it here:

class GenericsInMemoryResource<T extends { id: number }> extends
AbstractDatabaseResource {
    private resources: T[] = [];

    constructor(resourceName: string) {
        super(resourceName);
    }

    get(id: number): T | null {
        const resource = this.resources.find((item) => item.id ===
id);
        return resource ? {...resource} : null;
    }

    getAll(): T[] {
        return [...this.resources];
    }

    addResource(resource: T): void {
        this.resources.push(resource);
        this.logResource(resource);
    }
}

const userInMemoryResource = new
GenericsInMemoryResource<IUser>('user')
const chatInMemoryResource = new
GenericsInMemoryResource<IChat>('chat')

userInMemoryResource.addResource({id: 1, name: 'Admin', email: 'admin@
admin.com'});
chatInMemoryResource.addResource({id: 10, ownerId:
userInMemoryResource.get(1)!.id, messages: []});

Promises 25

The <T extends { id: number }> syntax means T can be any type, but it must have
an id property of type number. This ensures type safety while allowing for different resource
types. Unlike InMemoryChatResource, which was limited to handling IChat objects,
GenericsInMemoryResource can handle any type that meets the constraint. This eliminates
the need for separate classes for each resource type, such as chats or users.

Instances such as userInMemoryResource and chatInMemoryResource demonstrate
this using GenericsInMemoryResource with IUser and IChat types. Methods such as
addResource and get work with the generic type T, making them adaptable to the specific type
of resource being used.

The original InMemoryChatResource class is limited to handling chat data, while
GenericsInMemoryResource is more flexible and scalable, capable of handling various types
of resources. This leads to cleaner, more maintainable code, as you don’t need to create a new class
for each resource type.

Generics significantly reduce code duplication by enabling a single class to manage multiple data types.
This approach simplifies maintenance and enhances the adaptability of our code base.

Now, let’s briefly talk about how to handle promises with types.

Promises
In TypeScript, when you declare a promise, you can use generics to indicate the type of data the
promise will eventually return. This type indication ensures that the resolved value is consistent with
expectations and allows TypeScript to provide relevant type checking and autocompletion. Let’s declare
a fetchData function here that will imitate a network request with setTimeout and provide the
type for its return value using the Promise type:

function fetchData(): Promise<string> {
    return new Promise((resolve) => {
        setTimeout(() => resolve("Data Fetched"), 1000);
    });
}

fetchData is a function returning a Promise<string> instance. This means the promise, when
resolved, will return a string. Inside the promise, we simulate fetching data with setTimeout and
resolve it with a string value, adhering to the declared return type string. This explicit typing of
the promise’s resolved value ensures that any consumer of fetchData can expect a string.

With this, we have covered most aspects of TypeScript that we will need to build our chat application.

TypeScript Deep Dive – Typing, Generics, Classes, and Interfaces26

Summary
In this chapter, we’ve delved into advanced TypeScript features, gaining a deeper understanding of
concepts such as narrowing, null types, function types, and utility types, which are fundamental
for developing robust web applications. This knowledge equips us with the tools to write safer, more
predictable, and efficient code, reducing common JavaScript pitfalls. Moving forward, the next
chapter will mark the beginning of our hands-on journey, where we’ll start building our application
by configuring our backend runtime environment with Bun, laying the groundwork for our full stack
TypeScript project.

Part 2:
Backend Development with

Bun and TypeScript

This part focuses on backend development using Bun, a modern JavaScript runtime, and TypeScript.
You will learn how to set up the Bun environment and build a secure, scalable, and robust backend
infrastructure. This part covers everything from configuring your development environment to
implementing complex backend logic, including authentication, routing, and middleware, as well as
best practices for testing and validation.

This part includes the following chapters:

•	 Chapter 3, Configuring a Backend Environment with Bun and Hono

•	 Chapter 4, Building Backend Infrastructure with Bun, Hono, and TypeScript

•	 Chapter 5, Improving Reliability – Testing and Validation

•	 Chapter 6, Advanced Backend Development – Security, Throttling, Caching, and Logging

3
Configuring a Backend
Environment with Bun

and Hono

In this chapter, we will start with understanding what the Bun JavaScript runtime is and why it’s
becoming a popular JavaScript runtime among developers. We’ll then introduce a library for developing
backends called Hono, which provides a simple yet powerful way to build web applications. You’ll
set up your project, including installing Bun and Hono, learn about some useful code structures, and
configure essential tools such as middleware, environment files, Prettier, and ESLint.

By the end of this chapter, you’ll have a strong grasp of Bun’s environment and will be able to set up
your own backend projects. All of this is going to be essential for you to be able to develop functional
and complete backend applications and build the foundation for our chat app. You will also learn how
to improve the readability and configurability of our code and make it easier to develop.

In this chapter, we’re going to cover the following main topics:

•	 Introducing Bun

•	 Introducing Hono

•	 Setting up your project

•	 Adding linting and formatting

•	 Adding middleware

•	 Handling environment variables

•	 Discussing the project’s structure

Configuring a Backend Environment with Bun and Hono30

Technical requirements
First, we need to install Bun.

For Linux and MacOS, use the following command:

$ curl -fsSL https://bun.sh/install | bash

Bun has limited experimental support for Windows, so it’s recommended to use Windows Subsystem
for Linux (WSL), but you can still install it using the following command:

$ powershell -c "irm bun.sh/install.ps1|iex"

If you get a command not found error, you need to add the C:/Users/currentUser/.
bun folder and C:/Users/currentUser/.bun/bin to the Windows PATH system variable.

This is enough to get started, and we will install more libraries as we go. All the code examples we
discuss are available in the GitHub repository:

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
TypeScript-5/tree/main/Chapter03

Introducing Bun
Bun is a JavaScript runtime and is an alternative to Node.js and Deno. It’s rapidly gaining traction
due to its exceptional performance and ease of use. It has native support for TypeScript and a lot of
other benefits, including the following:

•	 High-performance runtime: Bun is built on the JavaScriptCore engine used in Safari, which
is known for its speed. This and other optimizations make Bun an incredibly fast runtime,
offering a performance boost, sometimes handling 5 or 10 times as much load as Node.js can.

•	 Built-in bundling and transpiling: Unlike traditional runtimes that require external tools for
these tasks, Bun comes with built-in capabilities for bundling and transpiling. So, you only
need Bun to interpret your code and transpile your code, so we don’t need configuring tools
such as webpack, esbuild, or rollup.

•	 TypeScript and JSX support: Bun provides first-class support for TypeScript and JSX out of
the box.

•	 Efficient package management: Bun’s package manager is designed to be faster and more
efficient than traditional package managers such as npm or yarn, and is from 2 to 10 times
quicker in different scenarios.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter03
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter03

Introducing Hono 31

•	 Node.js compatible: Bun is designed to be a drop-in replacement for Node.js. Bun natively
implements most of the essential Node.js and Web APIs. So, you can use packages developed
for Node.js in Bun and even replace Node.js with Bun in your existing project. It doesn’t work
in 100% of cases, but the compatibility is fairly high, and most projects will run as they are
without needing to change much.

•	 Useful built-in libraries and tools: Bun provides some important tooling that is needed to
write most real projects out of the box, such as test runners, environment variable handlers,
and password generators. This is going to save us quite some time because, otherwise, we would
need to introduce external libraries for these functions anyway.

If you also want to see more of the comparison between Node.js, Deno, and Bun, you can visit
https://bun.sh/ to see the charts that compare them.

Bun will be quite helpful in developing our backend chat application, thanks to its built-in infrastructure,
including even an HTTP server. However, for our backend needs, we require something more powerful
in functionality. That’s where the Hono library steps in, offering a minimalist and flexible approach
to web application development.

Introducing Hono
Hono is a modern, lightweight web framework designed for JavaScript and TypeScript developers.
It’s built to give you just what you need for web development without providing more features than
necessary and taking choices away from you.

Hono handles essential tasks such as routing, data validation, and middleware creation but doesn’t
enforce other things, such as database interactions, architectural patterns, or logging libraries. This
flexibility lets you choose the best tools and practices for your project where you need to, but also
provides a good number of tools to do the boring things.

The main features of Hono are as follows:

•	 TypeScript integration: Hono integrates smoothly with TypeScript, providing additional type
safety around your endpoints

•	 Routing: It provides straightforward route handling, which helps us to identify which endpoint
to call based on the URL

•	 Middlewares: Hono supports middleware that lets you add functionality before and after the
request handler executes

•	 Error handling: The library includes built-in error handling to streamline debugging and
provide meaningful errors to the caller

https://bun.sh/

Configuring a Backend Environment with Bun and Hono32

•	 JSON support: Hono has native support for JSON parsing and response formatting is a part
of Hono, so we can easily accept and return the most popular API format

•	 Query and parameter parsing: It automatically parses URL parameters and query strings

•	 Static file serving: Hono can serve static files, such as images, CSS, and JavaScript

•	 Customizable context: You can extend the request context with custom properties or methods

•	 Cookie handling: The framework provides functions for setting, getting, and deleting cookies,
which are often used for authentication purposes

•	 Headers manipulation: Hono simplifies the manipulation of HTTP request and response
headers, which is important for security

•	 Additional libraries: Hono complements its core functions with external libraries, mainly as
middleware, for functionalities such as CORS setup, request logging, and tracking endpoint
performance metrics

As we develop our app, we will get more familiar with Hono and Bun and what they can do, so let’s
set up our project and see them in action.

Setting up the project
Let’s begin by setting up the core part of our project. We’ll make this easier by using templates, which
help us quickly create the basic structure:

1.	 Start by running this command to create a Hono project from a template using Bun:

$ bun create hono chat_backend

2.	 When prompted, select the bun template and hit Enter. In a few seconds, you’ll have a minimal
setup ready. Next, navigate to the project folder, install the necessary dependencies, and
launch the local backend server with these commands:

$ cd chat_backend
$ bun install
$ bun run dev

3.	 After this, you can expect the following output in our terminal:

$ bun run --hot src/index.ts
Started server http://localhost:3000

Now, if you visit http://localhost:3000 in your browser, you should see the message Hello
Hono! displayed. Congratulations, you’ve just created your first Hono application! It’s pretty basic for
now, but we’ll be adding more to it shortly.

Setting up the project 33

Let’s take a look at the package.json file to understand its contents:

package.json

{
  "scripts": {
    "dev": "bun run --hot src/index.ts"
  },
  "dependencies": {
    "hono": "^3.12.2"
  },
  "devDependencies": {
    "@types/bun": "^1.0.0"
  }
}

In this file, we can see a scripts key, which defines what command we will be able to run. The
dev script is what Bun runs. It’s straightforward – it starts our project using the entry point src/
index.ts. A notable feature here is the --hot flag, which enables hot reloading. This means that
Bun automatically reloads files that have been changed without restarting the entire OS process. This
makes for a much faster and more pleasant development experience.

Regarding dependencies, we currently have one production dependency, hono, and one development
dependency, @types/bun. The @types/bun package is a TypeScript pattern that you’ll often
see. It provides type definitions that are specific to the Bun environment, such as the return types of
Bun’s functions.

Now, let’s check out the TypeScript configuration in tsconfig.json. We’ll remove JSX-related
configurations (as we do not use JSX in the backend) and add Bun types, leading to the following content:

tsconfig.json

{
  "compilerOptions": {
    "strict": true,
    "esModuleInterop": true,
    "types": ["bun-types"]
  }
}

Configuring a Backend Environment with Bun and Hono34

Let’s break down what each part of compilerOptions does:

•	 "esModuleInterop": true: This setting allows for the compatible use of CommonJS
modules in TypeScript, similar to ES6 modules. It simplifies importing CommonJS modules,
enabling syntax such as import fs from 'fs' instead of import * as fs from
'fs'.

•	 "strict": true: Activates all strict type-checking options in TypeScript. This leads to
the most thorough type checking, including strict null checks and no implicit any, among
others. It’s a way to ensure more comprehensive error checking during code compilation.

•	 "types": ["bun-types"]: Specifically includes the Bun type library for the compiler.
Usually, you might not need to specify types like this, but Bun, being a unique environment,
requires its types to be explicitly declared in this configuration.

Next, let’s discuss the bun.lockb file. This file is a lockfile utilized in Bun. Its main role is to maintain
consistency in your project’s dependencies by locking down specific versions of each package, along
with their transitive dependencies.

For instance, if your package.json indicates hono as "^3.12.2" (meaning any version from
3.12.2 up to, but not including, 4.0.0), bun.lockb might specifically lock it to "3.13.0". This
ensures that every developer working on the project is using the exact same version, preventing the
common issue of “it works on my computer.”

Notably, the bun.lockb file is in binary format, which Bun uses to reduce file size and optimize the
performance of its package management system.

Now, let’s take a look at the final important file, src/index.ts, which contains our server’s code:

src/index.ts

import { Hono } from 'hono'

const app = new Hono()

app.get('/', (c) => {
  return c.text('Hello Hono!')
})

export default app

Adding linting and formatting 35

Now, let’s break down what’s happening in this code:

•	 Importing Hono and server initialization: We start by importing the Hono library. After that,
we create a new instance of the Hono server with const app = new Hono().

•	 Route definition: The line app.get('/', is where we define a route. It instructs the Hono
app to handle HTTP GET requests at the root URL path '/'. When this URL is accessed,
the callback function (c) => { return c.text('Hello Hono!') } is executed.
This function utilizes the context object c provided by Hono to send a text response Hello
Hono! back to the client.

•	 Exporting the app: export default app allows the app instance to be imported and utilized
in other files, or it can be used to start the server. However, working with plain text responses isn’t
very common, so we’ll change our endpoint to return a JSON response instead. So, we’ll replace
return c.text('Hello Hono!') with return c.json({'message':'Hello
Hono!'}).

After making this change and reloading the page, your browser should display the following:

{
  "message": "Hello Hono!"
}

And here we are, with our first JSON-returning endpoint! Before moving forward with the development
of our application, it’s a good idea to integrate some tools that will simplify our workflow and enhance
our code’s quality. We will set up linting, formatting, and utility middleware, and we will also discuss
handling environment variables. Let’s begin with linting and formatting.

Adding linting and formatting
Linting is the process of scanning code to find errors or inconsistencies without actually running it. It’s
incredibly useful for catching unused variables, preventing console.log statements in production,
and even identifying logical errors such as infinite loops.

As with static typing, it’s all about making our code better and catching issues early. For this project,
we’ll use ESLint, the most common linter for JavaScript. We’ll keep things simple and stick to the
rules recommended by the Hono project.

First, let’s install eslint globally so that we can use it from the command line:

$ bun install –g eslint

Now let’s install the rules recommended by Hono:

$ bun install --dev @hono/eslint-config

Configuring a Backend Environment with Bun and Hono36

Now, we can create a file in the root of our project with eslint configs and put the following
configuration into it to include the recommended linting rules by Hono:

.eslintrc.cjs

module.exports = {
  extends: ["@hono/eslint-config"]
};

This sets you up with the basic eslint configuration. We can run our linter with the following command:

$ eslint --fix

It’s beneficial to integrate the linter with your IDE. This allows it to run automatically when you save
a file to make the developing experience even smoother.

Here’s how you can do it in WebStorm:

1.	 Open Settings.

2.	 Go to Languages & Frameworks | JavaScript | Code Quality Tools | ESlint.

3.	 Turn on Automatic ESlint config if it was turned off.

4.	 Check the mark on run eslint --fix on save.

To enable it in Visual Code, you can do the following:

1.	 Open Settings.

2.	 Type editor.codeActionsOnSave into the search bar at the top.

3.	 Choose Edit in settings.json to open the settings.json file in VSCode.

4.	 Insert these lines into your settings.json file:

"editor.codeActionsOnSave": { "source.fixAll.eslint": true},
"eslint.alwaysShowStatus": true

To see how it works in action, you can create a variable in src/index.ts that is not used. Now,
save the file and you will see a warning in our IDE that the variable is not used. Also, now you can
run eslint in your terminal and you are going to get a message similar to this:

 8:7  warning  'a' is assigned a value but never used  @typescript-
eslint/no-unused-vars
 ✖ 1 problem (0 errors, 1 warning)

Adding middleware 37

Now, let’s focus on formatting. Formatting ensures that our code has a consistent style, which is
incredibly valuable when multiple people are collaborating on a project. It’s interesting to note that
there are many effective code styles out there. The key isn’t which style you choose, but rather that
everyone sticks to the same style consistently. A formatting tool that automatically enforces a style is a
lifesaver, saving countless hours during code reviews and preventing disputes over code style. For our
project, we’ll integrate Prettier, a popular tool that automatically formats code to a predefined style.

It’s also very comfortable to integrate Prettier in eslint so that they run together and fix both
formatting and linting errors at the same time. This allows both tools to run together, fixing formatting
and linting errors simultaneously. First, we will need to install additional libraries to handle Prettier
as eslint plugins:

$ bun install --dev eslint-config-prettier eslint-plugin-prettier

And now you can expand our eslint configuration to look like this:

.eslintrc.cjs

module.exports = {
  extends: ["@hono/eslint-config", "plugin:prettier/recommended",
"prettier"],
  plugins: ["prettier"],
  rules: {
    "prettier/prettier": "error",
  }
};

This addition includes Prettier rules in the eslint configuration. We’ve set Prettier errors
to be treated as errors rather than warnings. This strict approach helps maintain the overall quality
of the project.

Now, try adding extra tabs or spaces to a variable in your code. When you save the file, you’ll notice
it automatically formats to the correct style, thanks to Prettier. Handy, right?

With linting and formatting set up, let’s move on to discussing additional middleware that can further
enhance our development experience.

Adding middleware
Middleware in Hono acts as interceptor functions that process the incoming HTTP request before
it reaches the final route handler. Middleware can also process responses before they are sent back
to the client. They can modify requests (e.g., parse the body, add headers) and responses (e.g., set
cookies, modify headers).

Configuring a Backend Environment with Bun and Hono38

Middleware executes in the order it is defined in the code. Each middleware function can decide
whether to pass a request to the next piece of middleware or to end the response cycle. It is commonly
used for logging, authentication, error handling, and data parsing.

We are going to implement our own middleware to handle authentication. However, for now, let’s
integrate some ready-made middleware provided by Hono. We’ll add one for basic request logging
and another to append performance metrics to responses.

Here’s how we modify the beginning of our index.ts file to include these:

src/index.ts

import { Hono } from 'hono'
import { logger } from "hono/logger";
import { timing } from "hono/timing";

const app = new Hono()
app.use("*", timing());
app.use("*", logger());

In this code, we import the logger and timing libraries and then add them to our app using the
app.use function with the path '*'. This path specification ensures the middleware is applied to
all incoming requests, though it can be adjusted to target specific endpoints.

Now, when you hit the endpoint, the logs will include additional lines such as this:

  <-- GET /
  --> GET / 200 4ms

These log entries provide details such as the accessed endpoint, the response status code, and the time
taken for the response. Additionally, if you check the response headers in your browser’s developer
console, you’ll notice a new 'Server-Timing' header attached. It carries similar information,
such as this:

total;dur=0.1;desc="Total Response Time"

This addition offers valuable insights into the performance of our requests.

Now, let’s discuss how to manage environment variables effectively.

Handling environment variables 39

Handling environment variables
Environment variables are a standard way of keeping secrets or platform-specific details outside of
the code base. They’re also handy for configuring various aspects of an application. Bun has a built-in
mechanism for handling environment variables, which can be accessed in your code through Bun.
env.VARIABLE_NAME. It even automatically reads from a .env file, so all we need to do is provide
this file.

Here’s how to set it up:

1.	 First, create a file named .env.

2.	 Inside the .env file, define a variable such as TEST=test value.

3.	 In our src/index.ts, add the line console.log(Bun.env.TEST). Remember,
environment variables aren’t hot-reloaded, so you’ll need to restart the server to see the changes
in your console. After restarting, you should see test value printed in the terminal.

Sometimes, you might need different environment files for various scenarios, such as local development
versus production. Or, you might have different sets of environment variables for different use cases,
so you end up with multiple .env files, while Bun will handle only .env for you. In such situations,
you can use a tool such as dotenv to load additional environment variables from multiple files.

Let’s illustrate it by logging another environment variable from .env.dev. Add console.
log(Bun.env.AI) to src/index.ts and add AI=chat in our .env.dev file. You will
see that the value is undefined. Let’s fix this by restarting our server and providing it with additional
environment variables files:

$ bunx dotenv –e .env -e .env.dev -- bun run dev

After restarting the project with this command, you should see both test value and chat in
your console.

With environment variables set up, we’re now ready to dive into discussing the project structure for
our application.

Important note
Do not add environment files to your Git repo because it is a security risk. Your environment
files must be put into .gitignore file, and should not be committed.

Configuring a Backend Environment with Bun and Hono40

Discussing the project structure
When structuring code for a project, it’s essential to have a clear separation of concerns. This means
organizing files and folders in a way that each component has a distinct responsibility, contributing to
overall project clarity and maintainability. For our relatively small project, we’ll opt for a simple structure.

Here’s the structure we’ll use and the rationale behind it:

•	 src/controllers: This folder will contain specific REST endpoint handlers. Each controller
deals with incoming requests and generates appropriate responses. By isolating endpoint logic
in controllers, we make it easier to update or extend API functionalities.

•	 src/middlewares: Here, we’ll store additional middleware functions for Hono. Middleware
is crucial for processing requests and responses, offering functionality such as authentication,
logging, or data parsing. Keeping them in a dedicated folder allows for easy reuse and management.

•	 src/models: This directory is designated for type definitions of the objects used in our code.
It ensures a centralized location for data structure definitions, enhancing code consistency and
reducing the likelihood of type-related errors.

•	 src/storage: A folder to manage code that interacts with various storage solutions, such
as in-memory databases, SQL databases, or ORMs. This separation ensures that changes in
storage logic don’t impact other parts of the application.

•	 src/constants.ts: This is a file to hold project-wide constants. By centralizing constants,
we ensure uniformity and prevent discrepancies that can arise from hardcoding values in
multiple locations.

•	 src/index.ts: This is the entry point of our application. This is where we tie together
various components of our application, setting up the server, middleware, routes, and any
initial configurations.

•	 tests: This is a dedicated folder for storing test files.

This structure is tailored for our chat backend application, ensuring each module has a clear role and
responsibility. It fosters an organized development environment, making it easier to navigate, maintain,
and scale our application as needed.

Summary 41

Summary
In this chapter, we explored the essentials of Bun, a rising star in the JavaScript runtime landscape,
and Hono, a framework known for its simplicity and effectiveness in web application development.

We walked through the practical steps of setting up a development environment tailored for Bun and
Hono. This included the installation process, establishing a coherent code structure, and integrating
essential tools such as logging and ESLint. The chapter also covered key topics such as project setup,
linting and formatting, middleware integration, managing environment variables, and discussing
effective project structure strategies.

In the next chapter, we’re going to implement the backend functionality for our chat app. Our backend
will use in-memory storage, and we’ll have the functionality from start to finish.

4
Building Backend

Infrastructure with Bun,
Hono, and TypeScript

Having covered the basic building blocks of Hono, Bun, and TypeScript required to build our backend
API server, we are now ready to actually implement all the backend functionality required for our
chat application.

In this chapter, we will work on building data models, storage, middleware, routes, authentication and
authorization mechanisms, and chat and message controllers. All of these things in the context of a chat
application provide us with the core knowledge required to build a real-world backend application.

Here are the main topics that we’ll explore in detail:

•	 Implementing in-memory storage

•	 Implementing authentication and authorization

•	 Implementing chat controllers

We’ll kick off by outlining the data models for our application and putting together an in-memory
storage solution.

Technical requirements
For this chapter, we won’t need to install any additional libraries. All the code examples we discuss
are available in the GitHub repository: https://github.com/PacktPublishing/Full-
Stack-Web-Development-with-TypeScript-5/tree/main/Chapter04/.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter04/
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter04/

Building Backend Infrastructure with Bun, Hono, and TypeScript44

Implementing in-memory storage
To develop a working application, we will need to store our data somewhere. In this section, we will
define the interfaces we are going to use for our storage and create an in-memory implementation
of our storage for users, chats, and messages. In-memory storage is a method of storing data directly
in the main memory (RAM) of a computer. Because data stored in memory is volatile, it’s lost when
the application stops.

Defining the interfaces

Let’s start this process by defining the data interfaces that we are going to use in our database classes.
In the following code, we will create the structure of all the objects that we are going to use when we
interact with the database:

src/models/db.ts

export type Email = `${string}@${string}.${string}`;

This line defines a custom type named Email. It uses template literal types to ensure that any string
matching this type must follow the conventional email format: a string, followed by an @ symbol,
another string, a dot (.), and finally, another string. This is a handy and powerful way to enforce a
basic structure for email addresses.

Next, we define the data interfaces:

export interface DBEntity {
  id: string;
  createdAt: Date;
  updatedAt: Date;
}

export interface DBUser extends DBEntity {
  name: string;
  email: Email;
  password: string;
}

export interface DBChat extends DBEntity {
  ownerId: DBUser["id"];
  name: string;
}

Implementing in-memory storage 45

Let’s break down the interfaces:

•	 DBEntity: This interface acts as a base for other database entity interfaces. It includes three
properties: id (a string that uniquely identifies the entity), createdAt (a Date object
representing when the entity was created), and updatedAt (a Date object representing
when the entity was last updated).

•	 DBUser: This interface extends DBEntity, meaning it inherits all properties of DBEntity
(id, createdAt, and updatedAt) and adds three more: name (the user’s name), email (the
user’s email address, which must match the Email type), and password (the user’s password).

•	 DBChat: This interface is similar to DBUser, in that it extends DBEntity. It represents a
chat entity with two additional properties: ownerId (a reference to the ID of the user who
owns this chat) and name (the name of the chat).

MessageType defines a union type named MessageType that can either be "system" or
"user". This is used to categorize the origin of the messages in the chat:

export type MessageType = "system" | "user";

DBMessage extends DBEntity and represents a message in a chat. It includes chatId (linking
the message to a chat), type (the category of the message, as defined by MessageType), and
message (the actual text of the message):

export interface DBMessage extends DBEntity {
  chatId: DBChat["id"];
  type: MessageType;
  message: string;
}

The following interfaces are used for creating the respective database types. They use TypeScript’s
Pick utility type to create types that only include a subset of properties from the original interfaces:

export type DBCreateUser = Pick<DBUser, "email" | "password" |
"name">;
export type DBCreateChat = Pick<DBChat, "name" | "ownerId">;
export type DBCreateMessage = Pick<DBMessage, "chatId" | "message" |
"type">;

For instance, DBCreateUser includes only email, password, and name from DBUser, focusing
on the properties needed when creating a new user, as others will be generated by the code.

The interfaces defined in this section are the interfaces we are going to use when we interact with the
database. However, when we operate on the API level, it’s good practice to introduce an additional
layer of types that we are going to receive and return from our endpoints. In a big application, database
types and API types can overlap only partially because both layers handle the same data but with
different details and structures suited to their specific roles in the application; for example, we can

Building Backend Infrastructure with Bun, Hono, and TypeScript46

create multiple database objects from one endpoint. In our app, however, they mostly overlap as we
have straightforward Create, Read, Edit, Delete (CRUD) endpoints. So, let’s create the API types,
which we are going to use as a form of input and output data from our endpoints.

Creating database and API types

All of the types we created are simple aliases to our database classes. The only class that is different
is APIUser, which omits password from its definition as it’s not something we want to expose
when we return a user:

src/models/api.ts

import type {
  DBChat,
  DBCreateChat,
  DBCreateMessage,
  DBCreateUser,
  DBMessage,
  DBUser,
} from "./db";

export type APICreateUser = DBCreateUser;
export type APIUser = Omit<DBUser, "password">;

export type APICreateChat = DBCreateChat;
export type APIChat = DBChat;

export type ApiCreateMessage = DBCreateMessage;
export type ApiMessage = DBMessage;

With this done, we can move on to implementing our in-memory storage. The storage class we are
going to implement will be an abstract class so it can be used as a storage for user information, chats,
and messages interchangeably. We will start with defining the IDatabaseResource interface,
which will represent an abstract way to store and operate data.

Then, we will pass the storage class interface around in the app instead of a concrete implement. It
will make it possible to easily replace the specific implementation with in-memory, SQL, or ORM
implementation without the need to change the types and our application. This shows the use of
abstraction, a practice we introduced in Chapter 2:

Implementing in-memory storage 47

src/storage/types.ts

export interface IDatabaseResource<T, S> {
  create(data: S): Promise<T>;
  update(id: string, data: Partial<S>): Promise<T | null>;
  get(id: string): Promise<T | null>;
  find(data: Partial<T>): Promise<T | null>;
  findAll(data: Partial<T>): Promise<T[]>;
  delete(id: string): Promise<T | null>;
}

Here is a definition for a CRUD implementation of a database resource with all the standard methods
for data manipulation. It is a generic interface with two generics, T and S, which are generic parameters
and placeholders for specific types. It’s an example of generics as we discussed in Chapter 2, and it will
add reusability and flexibility to our code:

•	 S represents a data type that contains all the fields required to create an entity

•	 T is the type with all the fields of a database entity

For example, in the create and update methods, we use S as our input type as we only need the
fields for creation. But in find, we retrieve an object with any fields from the whole resource. This is
because we may search the objects by fields such as id, which we don’t provide during the creation
or update of the object.

Let’s break the other parts of the class down by the idea behind each method:

•	 create(data: S): Promise<T>: This creates a new entity with input data of the S
type, returning a promise that resolves to the created entity of the T type. It uses a Promise
type because the method is going to be asynchronous, meaning that it returns Promise with
some types.

•	 update(id: string, data: Partial<S>): Promise<T | null>: This updates
an entity identified by id with the provided data. It returns a promise resolving to the updated
entity or null. The Partial type here makes it possible to send not the whole object for the
update but only some selected fields from the original type.

•	 get(id: string): Promise<T | null>: This retrieves an entity by its id, returning
a promise that resolves to the entity or null.

•	 find(data: Partial<T>): Promise<T | null>: This finds an entity matching
the partial data criteria, returning a promise that resolves to the entity or null.

Building Backend Infrastructure with Bun, Hono, and TypeScript48

•	 findAll(data: Partial<T>): Promise<T[]>: This finds all entities matching the
partial data criteria, returning a promise that resolves to an array of entities.

•	 delete(id: string): Promise<T | null>: This deletes an entity by its id,
returning a promise that resolves to the deleted entity or null.

You also see that we wrap our return types in the Promise type. This is the way to work with async
functions in TypeScript; if our function is asynchronous, its return type will always be Promise<T>.

In-memory implementation of the interfaces

Now, we can turn to the concrete in-memory implementation of the IDatabaseResource interface.

The T extends S & DBEntity generic type constraint means that T must be a type that extends
both S and DBEntity:

storage/inmemory.ts

import type { DBEntity } from "../models/db";
import type { IDatabaseResource } from "./types";

export class SimpleInMemoryResource<T extends S & DBEntity, S>
  implements IDatabaseResource<T, S>
{

So, our entity type must include all the fields from the basic DBEntity and the type used for its
creation. An example of T can be DBChat and an example of S can be DBCreateChat. Such a
structure will make sure that we use the correct types for the creation and retrieval of the data.

We use an array data of the Array<T> type to store entities in memory. This simulates a database table:

  data: Array<T> = [];

Here is the create method:

  async create(data: S): Promise<T> {
    const fullData = {
      ...data,
      id: this.data.length.toString(),
      createdAt: Date.now(),
      updatedAt: Date.now(),
    } as T;
    this.data.push(fullData);
    return fullData;
  }

Implementing in-memory storage 49

Let’s discuss what the create method does:

•	 It generates a unique id using the array’s length, ensuring that each entity has a distinct identifier.
The ID is generated as the size of the array, and this approach will result in the duplication
of the ID if we delete an object before adding a new one. It will do for now as in-memory
implementation is not used in production.

•	 It assigns createdAt and updatedAt using Date.now(), providing timestamps.

•	 It spreads data into fullData to include all necessary fields, casting it as the T type.

•	 It adds fullData to the data array, simulating data insertion.

Here is the delete method:

  async delete(id: string): Promise<T | null> {
    const entity = this.data.find((x) => x.id === id);
    if (entity) {
      this.data = [...this.data.filter((x) => x.id !== entity.id)];
      return entity;
    } else {
      return null;
    }
  }

The delete method locates an entity by id using Array.find – if found, it filters out the entity
from the data, effectively removing it. If not found, it returns the deleted entity or null.

Next, we have the get method:

  async get(id: string): Promise<T | null> {
    return this.data.find((x) => x.id === id) || null;
  }

The get method retrieves an entity by id using Array.find – it returns the entity or returns
null if the entity doesn’t exist.

Now, let’s finish up the methods in the class.

Here is the find method:

  async find(data: Partial<T>): Promise<T | null> {
    return (
      this.data.find((x) => {
        for (const key in data) {
          if (data[key] != x[key]) return false;
        }
        return true;

Building Backend Infrastructure with Bun, Hono, and TypeScript50

      }) || null
    );
  }

The find method searches for entities matching data (partial T type), and returns the first match
or null.

findAll returns an array of all matches. It uses a loop to compare each key in data with entities in
the data array:

  async findAll(data: Partial<T>): Promise<T[]> {
    const res = this.data.filter((x) => {
      for (const key in data) {
        if (data[key] != x[key]) return false;
      }
      return true;
    });
    return res;
  }

The update method retrieves the existing entity by id:

  async update(id: string, data: S): Promise<T | null> {
    const entity = await this.get(id);
    if (entity) {
      const newEntity = { ...entity, ...data, updatedAt: Date.now() };
      await this.delete(id);
      this.data.push(newEntity);
      return newEntity;
    } else {
      return null;
    }
  }
}

The update method merges the existing entity with new data and updates the updatedAt timestamp.
It deletes the old entity, pushes the updated entity into data, and returns the updated entity or null
if not found.

With this, we’ve finished the interface for our storage and an in-memory implementation we are going
to use in our app. Let’s now turn to implementing authentication and authorization.

Implementing authentication and authorization 51

Implementing authentication and authorization
Our app requires certain security measures: we need to block some endpoints from users who aren’t
logged in, and we also need to know who the user is and what permissions they have when they’re
using a controller. We’ll handle this by setting up JSON Web Token (JWT) authentication, based on
Hono’s JWT authentication module.

Here’s how our app will work:

•	 Users can access both login and register endpoints unauthenticated

•	 For any other endpoint, users must have a valid JWT token in the Authorization Headers

•	 When there is a valid token present, we will attach the user’s ID to the request context, so that
we can easily retrieve it in our controllers

To register, users must provide an email, password, and name. The email cannot be already associated
with another user. In line with best security practices, passwords will not be stored directly. Instead,
we’ll store only the hash of the password.

With this plan in mind, we’ll start by creating the authentication middleware.

Developing the authentication middleware

First off, we’ll set the secret for our JWT token in our .env file:

.env

JWT_SECRET=YOUR_SECRET_VALUE_32_CHARS_LONG

JWT_SECRET is used to encrypt and decrypt the signature of our JWT. We can now access JWT_
SECRET during code execution using either Bun or Hono’s built-in methods. We’ll use Hono’s method,
as it works across different environments besides Bun, such as Cloudflare Workers. With this done,
we can move forward with discussing and creating authentication middleware.

In Hono, middleware consists of functions that take a Context instance and the next function
as arguments. The next function, when called, hands over the control to the next middleware in
the chain or the route handler if it’s the last middleware. Middleware can perform actions before and
after calling next, allowing for both the preprocessing and post-processing of requests. With this
knowledge, we can write our middleware code. We will first discuss the constants that we will need
to declare and then we will continue with the middleware:

Building Backend Infrastructure with Bun, Hono, and TypeScript52

src/constants.ts

export const API_PREFIX = "/api/v1";

export type ContextVariables = { Variables: { userId: string } };

API_PREFIX will be used as the URL prefix for all our URLs. As you see, we add versions to our
endpoints so that we can maintain multiple versions at the same time in the future.

ContextVariables defines what kind of variables we will attach to our endpoint request object.
We will see it in action soon in the Defining our controllers section.

Now, we can proceed with our middleware implementation. We will define two middleware functions:
checkJWTAuth and attachUserId.

First, we import a few things:

src/middlewares/auth.ts

import type { Context } from "hono";
import { env } from "hono/adapter";
import { jwt } from "hono/jwt";
import { API_PREFIX } from "../constants";
import { AUTH_PREFIX, LOGIN_ROUTE, REGISTER_ROUTE } from "../
controllers/auth";

import type { APIUser } from "../models/api";

Here are the important terms seen in the preceding code block:

•	 Context: Imported from Hono, it represents the context of a single request or response cycle.

•	 env: A utility from hono/adapter to access environment variables.

•	 jwt: Middleware from hono/jwt for JWT authentication.

•	 AUTH_PREFIX: This is the prefix we are going to use for authentication routes. This and the
following prefixes are going to be defined in the ../controllers/auth file that we will
discuss later in this section.

•	 LOGIN_ROUTE and REGISTER_ROUTE: These are the specific route URLs for our login and
register endpoints, respectively.

Implementing authentication and authorization 53

Then, we implement the checkJWTAuth middleware. We use it to enforce JWT-based authentication
for all routes except the login and register routes:

export async function checkJWTAuth(
  c: Context,
  next: () => Promise<void>,
): Promise<Response | void> {
  if (
    c.req.path === API_PREFIX + AUTH_PREFIX + LOGIN_ROUTE ||
    c.req.path === API_PREFIX + AUTH_PREFIX + REGISTER_ROUTE
  ) {
    return await next();
  } else {
    const { JWT_SECRET } = env<{ JWT_SECRET: string }>(c);
    const jwtMiddleware = jwt({
      secret: JWT_SECRET,
    });
    return jwtMiddleware(c, next);
  }
}

checkJWTAuth first checks whether the current request’s path matches either the login or register route.
This is done by concatenating API_PREFIX, AUTH_PREFIX, and the specific route constants. If the
request is for login or register, it bypasses JWT validation (next() is called without any JWT check).

For all other routes, checkJWTAuth retrieves JWT_SECRET from the environment variables and
initializes the JWT middleware with this secret. The JWT middleware is then invoked with the current
Context and the next function. This middleware validates the JWT from the request, ensuring
secure access to protected routes.

attachUserId is a middleware function that we use to extract the user’s ID from the JWT payload
and attach it to the context:

export async function attachUserId(
  c: Context,
  next: () => Promise<void>,
): Promise<Response | void> {
  const payload = c.get("jwtPayload") as APIUser;
  if (payload) {
    const id = payload.id;
    c.set("userId", id);
  }
  await next();
}

Building Backend Infrastructure with Bun, Hono, and TypeScript54

attachUserId retrieves the JWT payload from the context, which was decoded by the JWT
middleware. If the payload is present (indicating a valid JWT), it extracts the user’s ID from this
payload. This ID is then attached to the context (c.set("userId", id)) for use in subsequent
middleware or route handlers.

Defining our controllers

Let’s proceed with defining our controllers with endpoints to log in and register.

In this piece of code, we will define the two routes that will accept and use the needed data for
registration and logging in:

src/controllers/auth.ts

import { Hono } from "hono";
import { env } from "hono/adapter";
import { sign } from "hono/jwt";
import type { ContextVariables } from "../constants";
import type { DBCreateUser, DBUser } from "../models/db";
import type { IDatabaseResource } from "../storage/types";

sign is the JWT signing function from Hono’s JWT utilities. This function is used to create a JWT.

This is the prefix for our application here:

export const AUTH_PREFIX = "/auth/";

We use ContextVariables, which we defined in the Developing the authentication middleware
section, to signal that we will attach userId to our requests; it will add correct types when we retrieve
userId for the compiler:

export const authApp = new Hono<ContextVariables>();

These are the prefixes for our authentication endpoint:

export const LOGIN_ROUTE = "login/";
export const REGISTER_ROUTE = "register/";

Here, we define a constant string that we are going to return from our endpoints in case of errors:

export const ERROR_USER_ALREADY_EXIST = "USER_ALREADY_EXIST";
export const ERROR_INVALID_CREDENTIALS = "INVALID_CREDENTIALS";

Implementing authentication and authorization 55

Here, we accept a userResource object that implements an IDatabaseResource interface
of the user type:

export function createAuthApp(
  userResource: IDatabaseResource<DBUser, DBCreateUser>,
) {

We pass DbUser and DbCreateUser as the specific types for the T and S types we use in
IDatabaseResource. This is where we will pass our in-memory storage implementation.

Now, let’s continue with implementing the authentication endpoints. Here, we have the
registration endpoint:

  authApp.post(REGISTER_ROUTE, async (c) => {
    const { email, password, name } = await c.req.json();
    if (await userResource.find({ email })) {
      return c.json({ error: ERROR_USER_ALREADY_EXIST }, 400);
    }
    const hashedPassword = await Bun.password.hash(password, {
      algorithm: "bcrypt",
    });
    await userResource.create({ name, email, password: hashedPassword
});
    return c.json({ success: true });
  });

First, we extract user data (email, password, and name) from the request body. Then, we check
whether a user with the given email already exists using userResource.find. If the user exists,
we return an error response. Otherwise, we hash the password using Bun.password.hash (a
very useful function from Bun with cutting-edge Argon2Id algorithms to hash our password, which
provides additional resistance from cracking the password using GPUs and special hardware), and
create a new user using userResource.create.

Next, we have the login endpoint:

  authApp.post(LOGIN_ROUTE, async (c) => {
    const { email, password } = await c.req.json();
    const fulluser = await userResource.find({ email });
    if (
      !fulluser ||
      !(await Bun.password.verify(password, fulluser.password))
    ) {
      return c.json({ error: ERROR_INVALID_CREDENTIALS }, 401);
    }

Building Backend Infrastructure with Bun, Hono, and TypeScript56

    const { JWT_SECRET } = env<{ JWT_SECRET: string }, typeof c>(c);
    const token = await sign({ ...fulluser, password: undefined },
JWT_SECRET);
    return c.json({ token });
  });
  return authApp;
}

First, we retrieve email and password from the request body. Then, we find the user by email. If not
found or if the password verification (using Bun.password.verify, which hashes the incoming
value and compares it with the existing hash) fails, we return an error response. If authentication is
successful, we generate a JWT token using sign, omitting the password from the token payload.
Finally, we send back a response with the JWT token.

With authentication in place, we can introduce other controllers and, finally, instantiate our server.

Implementing chat controllers
Now, we have come to the implementation of the main functionality for our application that we are
going to use to provide the core features of our app with the help of controllers.

For our app, we will need to support the following functionality:

•	 Create a new chat: Users can start a new chat on some topic in our app

•	 Get all chats: Users can see all the created chats in a list on the menu

•	 Get a specific chat: Users can enter a specific chat and the details

•	 List of chat messages: Users can retrieve all the messages in a chat

•	 Create a new message in a chat: Users can send new messages in a chat

Let’s implement all this functionality in our endpoints.

Implementing the endpoints

In this piece of code, we will create our chat app that is going to have endpoints for chat and message
creation as well as their retrieval:

src/controllers/chat.ts

import { Hono } from "hono";
import type { ContextVariables } from "../constants";
import type {
  DBChat,

Implementing chat controllers 57

  DBCreateChat,
  DBCreateMessage,
  DBMessage,
} from "../models/db";
import type { IDatabaseResource } from "../storage/types";

Here are the prefixes we are going to use in our URLs:

export const CHAT_PREFIX = "/chat/";
const CHAT_ROUTE = "";
const CHAT_MESSAGE_ROUTE = ":id/message/";

CHAT_PREFIX, CHAT_ROUTE, and CHAT_MESSAGE_MESSAGE and HTTP methods, such as
GET and POST, give us the REST style of our endpoints. Simply put, our URL should identify the
resource it works on, and HTTP methods must describe the action that is performed on the endpoint.
Let’s give the basic examples of the possible canonical routes for CRUD operations:

•	 GET /chat/: Get a list of chats

•	 POST /chat/: Create a chat

•	 GET /chat/:id: Get one chat

•	 POST or PUT /chat/:id: Update one chat

•	 DELETE /chat/:id: Delete one chat

Now, we can write a function to create our chat app:

export function createChatApp(
  chatResource: IDatabaseResource<DBChat, DBCreateChat>,
  messageResource: IDatabaseResource<DBMessage, DBCreateMessage>,
) {
  const chatApp = new Hono<ContextVariables>();

The REST endpoints function receives two resources: chatResource and messageResource.
These are two in-memory resources for chats and messages, respectively.

Now, let’s finish the implementation of the endpoints:

  chatApp.post(CHAT_ROUTE, async (c) => {
    const userId = c.get("userId");
    const { name } = await c.req.json();
    const data = await chatResource.create({ name, ownerId: userId });
    return c.json({ data });
  });

Building Backend Infrastructure with Bun, Hono, and TypeScript58

This endpoint allows users to create new chats. A user’s ID (userId) is retrieved from the context.
The chat’s name is obtained from the request’s JSON body. The chatResource.create method
is used to create a new chat, linking it to the user who created it.

The chatApp.get(CHAT_ROUTE, async (c) => {...}) endpoint lists all chats owned
by a user:

  chatApp.get(CHAT_ROUTE, async (c) => {
    const userId = c.get("userId");
    const data = await chatResource.findAll({ ownerId: userId });
    return c.json({ data });
  });

chatApp.get uses the user’s ID to find all chats associated with that user through chatResource.
findAll.

chatApp.get(CHAT_MESSAGE_ROUTE, async (c) => {...}) retrieves all messages
for a specific chat:

  chatApp.get(CHAT_MESSAGE_ROUTE, async (c) => {
    const { id: chatId } = c.req.param();
    const data = await messageResource.findAll({ chatId });
    return c.json({ data });
  });

chatApp.get uses the chat room’s ID (chatId), extracted from the request URL parameters,
which is defined as chatId in CHAT_MESSAGE_ROUTE, to find messages related to that chat room.

chatApp.post(CHAT_MESSAGE_ROUTE, async (c) => {...}) allows creating new
messages to a chat room:

  chatApp.post(CHAT_MESSAGE_ROUTE, async (c) => {
    const { id: chatId } = c.req.param();
    const { message } = await c.req.json();

    const userMessage: DBCreateMessage = { message, chatId, type:
"user" };
    await messageResource.create(userMessage);

    const responseMessage: DBCreateMessage = {
      message: "dummy response",
      chatId,
      type: "system",
    };

Implementing chat controllers 59

    const data = await messageResource.create(responseMessage);

    return c.json({ data });
  });
  return chatApp;
}

After a user message is posted, chatApp.post automatically inserts a dummy response. This is a
placeholder for our future GPT integration in Chapter 11.

Now, we can write code to glue together our chat and authentication endpoints.

Combining the endpoints

In this code, we will first import the required functions and middleware to construct our whole app,
and then we are going to introduce a function that creates our main app:

src/controllers/main.ts

import { Hono } from "hono";
import { showRoutes } from "hono/dev";
import { logger } from "hono/logger";
import { timing } from "hono/timing";
import type { ContextVariables } from "../constants";
import { API_PREFIX } from "../constants";
import { attachUserId, checkJWTAuth } from "../middlewares/auth";
import type {
  DBChat,
  DBCreateChat,
  DBCreateMessage,
  DBCreateUser,
  DBMessage,
  DBUser,
} from "../models/db";
import { SimpleInMemoryResource } from "../storage/in_memory";
import { AUTH_PREFIX, createAuthApp } from "./auth";
import { CHAT_PREFIX, createChatApp } from "./chat";

Here, we define the function that will create the main app, which is going to encompass our authentication
and chat apps:

export function createMainApp(
  authApp: Hono<ContextVariables>,

Building Backend Infrastructure with Bun, Hono, and TypeScript60

  chatApp: Hono<ContextVariables>,
) {

We pass API_PREFIX here, which is going to be applied before all endpoint URLs:

  const app = new Hono<ContextVariables>().basePath(API_PREFIX);

Here is middleware to add headers to our request that will record how much time was spent:

  app.use("*", timing());

Here is another middleware that logs incoming requests:

  app.use("*", logger());

These are our custom middleware for handling JWT authentication and attaching the user’s ID to
the context:

  app.use("*", checkJWTAuth);
  app.use("*", attachUserId);

checkJWTAuth and attachUserId are applied globally, ensuring that protected routes are
accessed only by authenticated users and that user-specific data is easily accessible in route handlers.

These lines mount authApp and chatApp (our sub-applications) on specific route prefixes:

  app.route(AUTH_PREFIX, authApp);
  app.route(CHAT_PREFIX, chatApp);

Here is a handy utility in development mode to display all available routes of the application. This can
help us understand the route structure and ensure correct configurations:

  showRoutes(app);

  return app;
}

The createInMemoryApp() function creates the main app with in-memory resources for users,
chats, and messages, which we will use to create the entry point of our application. It leverages
SimpleInMemoryResource to simulate database operations:

export function createInMemoryApp() {
  return createMainApp(
    createAuthApp(new SimpleInMemoryResource<DBUser, DBCreateUser>()),
    createChatApp(

Implementing chat controllers 61

      new SimpleInMemoryResource<DBChat, DBCreateChat>(),
      new SimpleInMemoryResource<DBMessage, DBCreateMessage>(),
    ),
  );
}

The only missing step is to call the function we defined earlier in this section in our index file. Let’s do it.

Using the index file for calling the function

Here, we simply utilize the function that we defined in the previous file, which is going to be the
entrypoint of our application:

src/index.ts

import { createInMemoryApp } from "./controllers/main";

const app = createInMemoryApp();

export default app;

Now, run the following:

$ bun run dev

You will see all the routes that we have defined:

POST  /api/v1/auth/register/
POST  /api/v1/auth/login/
POST  /api/v1/chat/
GET   /api/v1/chat/
GET   /api/v1/chat/:id/message/
POST  /api/v1/chat/:id/message/

As well as that, we can interact with our application using curl. First, we will register and log in with
a new user, then create and retrieve a chat for the user.

Important note
Be careful to put the closing slash to all our URLs, as our backend considers /register and
/register/ to be two separate URLs.

Building Backend Infrastructure with Bun, Hono, and TypeScript62

In the next command, we will use curl to access our endpoint with the JSON parameters required
to register a user:

$ curl -X POST http://localhost:3000/api/v1/auth/register/ -H
"Content-Type: application/json" -d "{\"email\": \"user@mail.com\",
\"password\": \"pass\", \"name\": \"Test\"}"

You will see the following as the response:

{"success":true}

So, we’ve successfully registered our user. Now, let’s log in:

$ curl -X POST http://localhost:3000/api/v1/auth/login/ -H "Content-
Type: application/json" -d "{\"email\": \"user@mail.com\",
\"password\": \"pass\"}"

You should see this response in the terminal:

{"token":"$JWT_TOKEN"}

Now, you need to copy the $JWT_TOKEN value that you got to the header in the next request:

$ curl -X POST http://localhost:3000/api/v1/chat/ -H "Content-Type:
application/json" -H "Authorization: Bearer $JWT_TOKEN" -d "{\"name\":
\"Chat1\"}"

You will get the newly created chat in response:

{"data":{"name":"Chat1","ownerId":"0","id":"0","createdAt":
1706359408285,"updatedAt":1706359408285}}

Now, let’s make our final API request and retrieve the list of all chats that belong to us:

curl -X GET http://localhost:3000/api/v1/chat/ -H "Authorization:
Bearer $JWT_TOKEN"

You will the array of all chats as the result:

{"data":[{"name":"Chat1","ownerId":"0","id":"0","createdAt":
1706359408285,"updatedAt":1706359408285}]}

So, now we have a fully working backend for our chat; congrats on this! I suggest you play more with
the endpoint to create different chats and messages and retrieve them so that you can see how it works.

There is a catch though. If we stop and start our application again, you will see that the data is gone
when you call the endpoints. Our users no longer exist and neither do chats. This is because we use
in-memory storage that only resides in our operating memory. To fix it, we will introduce persistent
storage in the following chapters.

Summary 63

Summary
In this chapter, we’ve implemented the backend part for our chat application and have gained an
understanding of the essentials of backend development, such as routing, controllers, middleware,
authentication, data models, and storage. This knowledge helps us to develop real-world robust and
maintainable backend applications with all the core parts.

The next chapter will add an additional layer of useful backend techniques, as we will focus on validating
the incoming data and on testing our application, techniques that help reduce the number of errors
during the development and increase the overall reliability of backend applications.

5
Improving Reliability –
Testing and Validation

In Chapter 4, we put together the endpoints we need for our chat app and got the basics of our backend
in place with Hono, Bun, and TypeScript. Now, it’s time to make sure everything runs correctly.

First up, we’ll use Zod, which helps us to check whether an object corresponds to the schema we
want it to be, to validate the data coming into our endpoints. This means checking that the data is
in the correct format and follows the rules we set. Then, we’ll get to grips with Bun’s testing module.
Learning how to use Bun’s testing module and Zod will give us the tools to make sure our app can be
as reliable as it needs to be, and help us catch any issues early.

In this chapter, we are going to cover the following topics:

•	 Writing validation with Zod

•	 Developing tests with Bun

We will start by explaining why we actually need validation, what Zod is, and how to integrate and
use it to validate incoming data in our endpoints.

Technical requirements
For this chapter, we will need to add the Zod library for validation. We can add it to our project by
running the following command in the terminal:

$ bun add zod @hono/zod-validator -d

All the code examples we discuss are available in the GitHub repository: https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/
main/Chapter05.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter05
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter05
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter05

Improving Reliability – Testing and Validation66

Writing validation with Zod
Validating incoming data to our endpoints is crucial for maintaining the integrity and security of
our applications. Proper validation acts as a first line of defense, filtering out malformed, corrupt,
or malicious data before it can interact with our systems. It ensures that the data aligns with our
expectations and requirements, safeguarding the application from unexpected behavior, crashes, or
security vulnerabilities.

By rigorously checking incoming data, we not only protect our backend processes and databases but
also provide a more reliable and user-friendly experience, especially in cases when our API is used
by third parties. Let’s turn now to how we can use it in our app.

So, how can we add it to our application? The library we will use is called Zod. Zod is a TypeScript-
first schema declaration and validation library that enables us to define the shape and constraints of
data in a clear, concise manner. It provides a powerful and flexible way to ensure that the data your
application handles is correctly structured and adheres to specified rules.

We will use it as a Hono validator, a form of middleware defined directly on the endpoint that helps
check the incoming data. @hono/zod-validator is Hono middleware that integrates Zod’s
validation capabilities into our Hono applications. It allows you to validate incoming request data
against predefined Zod schemas.

One additional pleasant aspect is that all this works seamlessly with our types, and when we retrieve
the data in our endpoint from the request body or query params it will be annotated with the type
we define in our Zod schema.

Let’s now add validation to our authentication endpoints, so we see how it works in action.

Adding validation to our authentication endpoints

We will first define the schema for the body of registration and login endpoints, and then we will
add the schema to the endpoint definition. Eventually, we can retrieve the data from the validated
dictionary, c.req.valid, appended to our request object. Most of the code is still the same; so I
will replace code that we used previously with

In the following segment of the code, we’re integrating Zod and Hono’s @hono/zod-validator
to validate incoming data for our authentication endpoints. First, we will add the import statements:

src/controllers/auth.ts

...
import { zValidator } from "@hono/zod-validator";
import { z } from "zod";

Writing validation with Zod 67

Here, we import the Zod library to validate schemas, and then we import zValidator, a middleware
for Hono that uses Zod for schema validation.

Next, we will define the schemas:

const registerSchema = z.object({
  email: z
    .string()
    .email()
    .transform((x) => x as Email),
  password: z.string().min(1),
  name: z.string().min(1),
});

const loginSchema = z.object({
  email: z
    .string()
    .email()
    .transform((x) => x as Email),
  password: z.string().min(1),
});

Let’s explain the preceding code block:

•	 const registerSchema = z.object({...}); and const loginSchema
= z.object({...});: These lines define the validation schemas for the registration and
login data using Zod. They ensure that the email is in a proper format and that the password
and name fields are strings with a minimum length of 1.

•	 .transform((x) => x as Email): This part casts the validated email string to the
Email type, ensuring type safety.

Now, we will use zValidator in Hono routes and get the validated data in our login endpoint:

export function createAuthApp(
  userResource: IDatabaseResource<DBUser, DBCreateUser>,
) {
  authApp.post(
    REGISTER_ROUTE,
    zValidator("json", registerSchema),
    async (c) => {
      const { email, password, name } = c.req.valid("json");
      ...

Improving Reliability – Testing and Validation68

In the preceding code block, we have the following:

•	 zValidator("json", registerSchema): This is used in the Hono route definition
for the registration endpoint. It tells Hono to validate the incoming JSON request body against
the registerSchema. If the validation fails, the request is automatically rejected and an
error response is sent.

•	 const { email, password, name } = c.req.valid("json");: After passing
through the zValidator, the request’s JSON body is validated. The .valid("json")
method extracts the validated data, ensuring that the email, password, and name variables
conform to the structure and constraints defined in the Zod schema.

Next, we will also add the validation to our login endpoint:

  authApp.post(LOGIN_ROUTE, zValidator("json", loginSchema), async (c)
=> {
    const { email, password } = c.req.valid("json");
    ...
  });
  return authApp;
}

zValidator("json", loginSchema) is used in the login route and validates the request
body against the loginSchema. Then, we retrieve email and password from the validated data.

In a similar way, let’s add validation to our chat endpoints.

Adding validation to our chat endpoints

Here, we will also add a validation layer to our chat endpoints. We will begin by adding the required
imports and defining the Zod schema for endpoint parameters and body:

src/controllers/chat.ts

...
import { zValidator } from "@hono/zod-validator";
import { z } from "zod";

const idSchema = z.object({
  id: z.string().min(1),
});

const chatSchema = z.object({
  name: z.string().min(1),

Writing validation with Zod 69

});

const messageSchema = z.object({
  message: z.string().min(1),
});

Here are the schemas shown in the preceding code block:

•	 idSchema validates that the id parameter exists and is a non-empty string. It’s used to validate
path parameters in routes where an id is required.

•	 chatSchema ensures that the chat name is a non-empty string. It’s used to validate the JSON
body of requests related to creating a chat.

•	 messageSchema is for validating the message content, ensuring that the message is a
non-empty string. It’s used in routes where a message is sent.

Now, we will add these schemas to our endpoints.

We will use chatSchema in our chat creation endpoint to validate that the passed body is correct:

...
  chatApp.post(CHAT_ROUTE, zValidator("json", chatSchema), async (c)
=> {
    const userId = c.get("userId");
    const { name } = c.req.valid("json");
    ...
  });

We can also use the validation for our query parameters:

 ...
  chatApp.get(CHAT_DETAIL_ROUTE, zValidator("param", idSchema), async
(c) => {
    const { id } = c.req.valid("param");
    ...
  });  chatApp.get(CHAT_MESSAGE_ROUTE, zValidator("param", idSchema),
async (c) => {
    const { id: chatId } = c.req.valid("param");
    ...
  });

In our chat and message GET endpoints, we need to validate that the query parameter id that we
pass is in the correct form. We also use the param key to retrieve the validated query parameter. We
can also combine validation of the query parameters and the body.

Improving Reliability – Testing and Validation70

In our message creation endpoint, as seen in the following code snippet, we utilize both the validation of
the body and the parameters, and we can later access them with the param and json key respectively:

  chatApp.post(
    CHAT_MESSAGE_ROUTE,
    zValidator("param", idSchema),
    zValidator("json", messageSchema),
    async (c) => {
      const { id: chatId } = c.req.valid("param");
      const { message } = c.req.valid("json");
...
    },
  );
  return chatApp;
}

Now, if we send the requests to the endpoint, but the data we pass doesn’t correspond to the schema
we defined, we will get a 400 error back with a description of which fields were incorrect. We will
see it more when we write the tests for the validation in our endpoints.

And now let’s talk about why we need tests, and what Bun’s tests bring to us, and then write a few to
cover our endpoints.

Developing tests with Bun
In web development, developing tests is not just a good practice; it’s a must for creating reliable and
robust applications. Tests act like a safety net, catching errors before they make it to production, where
they can be costly and damaging. They ensure that each part of your application works as expected
and continues to do so, even as you add new features or refactor old ones. Automating tests lets your
team concentrate on writing new code rather than correcting avoidable bugs. Furthermore, detailed
testing and extensive coverage improve team efficiency by promoting independence and creating trust
through the development of dependable code between teams.

In this book, we’ve taken the approach of developing the tests after the actual implementation, which
I think works better from an explanation perspective, but in the production project scenario, I often
prefer to write tests before the implementation. This practice, known as Test-Driven Development
(TDD), serves a few important purposes:

•	 It makes you think about the structure of your code before you begin to write it. This prevents you
from realizing that it is not going to work after you’ve written hundreds of lines of code already.

•	 It makes you write your code in a testable manner, which almost always results in more granular
code with clear segregation.

Developing tests with Bun 71

•	 TDD often works well for pair programming, as one person can write the tests while the other
one focuses on the implementation.

But no matter which approach you take, either TDD or writing the tests afterward, they both will help
you to produce fewer bugs and more maintainable code.

There are also different levels of testing that we should talk about, which form the cornerstone of
software quality assurance:

•	 Unit testing examines individual pieces of code, typically functions or methods, to ensure they
work correctly in isolation. Unit tests are small and typically easy to write.

•	 Integration testing goes a step further by testing how different parts of the application, such
as modules or services, interact with each other. Integration tests are a little bit bigger and run
more slowly than unit tests but typically produce more code coverage per test.

•	 End-to-end (E2E) testing evaluates the entire application’s flow from beginning to end, ensuring
the user experience is as designed. E2E tests are typically even harder to write, but they are the
only ones that can assure that the app actually works completely.

In this chapter, we chose to focus on integration testing as a good balance between how hard it is to
write a test and how much coverage we will get per test. This said, let’s actually see how we can write
code with Bun.

Writing tests with Bun’s test runner

Bun provides us with a test runner out of the box. The test runner aims to provide a zero-configuration
experience, integrate seamlessly with code, and be fast. Here are the main functionalities of the Bun test
runner and how it compares to the most popular option for testing in a JavaScript environment – Jest:

•	 Speed: Buns’ test runner is built for performance. It’s designed to run tests extremely quickly,
using the speed of the Bun runtime. Compared to Jest, which can be heavy and slow, especially
on larger projects, Bun’s test runner offers a more efficient and time-saving experience.

•	 Concurrency: It supports concurrent test execution out of the box. This means your tests can
run in parallel, significantly cutting down the total test execution time. Bun’s test runner is
optimized to make concurrency straightforward and efficient.

•	 Zero configuration: Bun test runner aims for a zero-configuration experience. You can get
started with writing and running your tests without the need for complex setup or configuration
files. Jest, on the other hand, often requires some configuration to get started, especially for
more complex projects.

•	 Bun APIs: The test runner is built to work seamlessly with other Bun APIs. This native integration
ensures that you can leverage the full power of Bun.

Improving Reliability – Testing and Validation72

•	 Isolated environments: Each test file runs in an isolated environment in the Bun test runner.
This isolation ensures that tests don’t inadvertently affect each other, leading to more reliable
and predictable test outcomes.

•	 Snapshot testing: Bun’s test runner supports snapshot testing. This feature allows you to capture
the expected state of your application and ensure that it doesn’t change unexpectedly over time.

•	 Watch mode: Bun’s test runner includes a watch mode that automatically reruns your tests
when it detects changes in your code.

•	 Native TypeScript support: Given Bun’s excellent support for TypeScript, its test runner
naturally handles TypeScript out of the box. This is a significant advantage over Jest, where
setting up TypeScript can be cumbersome and requires additional tools such as ts-jest.

•	 Built-in coverage: Bun’s test runner comes with built-in support for test coverage, allowing
you to track how much of your code is covered by tests.

Let’s see how the test runner works in action.

Writing tests for our authentication endpoints

First, we will begin with tests for our authentication endpoints to validate that they execute correctly.

Registration tests

In this test, we are first going to instantiate our server and then check if our login and registration
work with happy paths:

tests/auth.test.ts

import { beforeEach, describe, expect, test } from "bun:test";
import { createInMemoryApp } from "../src/controllers/main";

Here, we import a function to instantiate our in-memory application and utility functions from the
testing module.

describe is going to be used as a wrapper for all our test cases where we can provide an additional
description. Inside this wrapper, we are allowed to use additional hooks such as beforeEach and
functions such as test and expect. Let’s define the authentication tests:

describe("auth tests", () => {
  let app = createInMemoryApp();  beforeEach(async () => {
    app = createInMemoryApp();
  });

Developing tests with Bun 73

Here, we define our test suite, and we also instantiate our app. beforeEach is a helpful hook that
gets executed before every test that helps us to recreate the instance of our app after every test run. It
ensures that the data tests created are cleared after being executed. There are also similar hooks, such
as afterEach, which executes after every test, and beforeAll and afterAll, which execute
before and after the whole test suite, respectively.

Let’s now define our first test case:

  test("POST /register - normal case", async () => {
    const jsonBody = {
      email: "test@example.com",
      password: "password123",
      name: "Test User",
    };

    const response = await app.request("/api/v1/auth/register/", {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
      },
      body: JSON.stringify(jsonBody),
    });

    expect(response.status).toBe(200);
  });

test is a function that accepts a function to be executed during our test. In our test, we create the
data required for registering the user, and then we use the request method on our application to
make an endpoint call, which mimics a call we would get from the outside of our application.

We provide the method to the function and also the Content-Type header, which tells the server
what our data is going to be.

Finally, we use the expect function, which makes sure that the status of the response is 200.
If the status is anything else, our test case will fail.

Let’s now check that our endpoint works as expected when we try to register when the user exists and
when we try to log in with a non-existent user.

Improving Reliability – Testing and Validation74

We will start by registering a user from inside our test case.

tests/auth.test.ts

...
  test("POST /register - user already exists", async () => {    await
app.request("/api/v1/auth/register/", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: "existing@example.com",
        password: "password123",
        name: "Existing User",
      }),
    });

And then, we will try to register the user again:

    const response = await app.request("/api/v1/auth/register/", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: "existing@example.com",
        password: "password123",
        name: "Existing User",
      }),
    });
    expect(response.status).toBe(400);
  });

Here, we can expect that the status to be returned is 400, because the data we provided is no longer correct.

Let’s move to the tests for our login endpoint.

Login tests

We will proceed with writing our tests with a case for our login endpoint. Let’s start with the test for
the successful case for login:

tests/auth.test.ts

...
  test("POST /login - success", async () => {
    const res1 = await app.request("/api/v1/chat/", { method: "GET"

Developing tests with Bun 75

});
    expect(res1.status).toBe(401);

Here, we check that when we try to access an endpoint that requires authentication without a correct
token, we get 401.

We create a user that we will use for our login later on:

    await app.request("/api/v1/auth/register/", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: "loginuser@example.com",
        password: "password123",
        name: "Login User",
      }),
    });

We call the login endpoint with the data we used during the registration. We expect that now the
login is successful, and we get 200:

    const loginResponse = await app.request("/api/v1/auth/login/", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: "loginuser@example.com",
        password: "password123",
      }),
    });
    expect(loginResponse.status).toBe(200);
    const token = (await loginResponse.json())["token"];
    expect(token).toBeTruthy();

Also, we retrieve the data of the response and deserialize it to JSON with a json() call to get the
token out of it. Finally, we check that the token evaluates to a truthy value.

Now, we can check that the chat endpoint has become accessible:

    const res2 = await app.request("/api/v1/chat/", {
      method: "GET",
      headers: { Authorization: `Bearer ${token}` },
    });
    expect(res2.status).toBe(200);
  });

Improving Reliability – Testing and Validation76

We provide an Authorization token and expect that the endpoint will let us in.

Let’s proceed with the test case for login when the user doesn’t exist:

...
  test("POST /login - non-existing user", async () => {
    const response = await app.request("/api/v1/auth/login/", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: "nonexisting@example.com",
        password: "password123",
      }),
    });
    expect(response.status).toBe(401);
  });
});

Here, we simply send credentials of non-existing users and rightfully expect that the login will not
let us in.

Let’s also add two test cases to check that Zod validation works correctly.

Validation tests

We will add tests to the same describe block that are going to check that our validation works as
expected. We will try to send bodies with incorrect structures to both endpoints to see that the request
doesn’t get through and that we get the correct error messages. We will start by trying to register with
an incorrect email structure and missing password and name fields:

  test("POST /register - incorrect body", async () => {
    const jsonBody = {
      email: "example",
    };

    const response = await app.request("/api/v1/auth/register/", {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
      },
      body: JSON.stringify(jsonBody),
    });

    expect(response.status).toBe(400);

Developing tests with Bun 77

We expect that the registration endpoint returns us 400 as we sent incorrect data, and this is what
the status code points to. We can also observe that Zod provides us with detailed error data with
specific errors:

    expect(await response.json()).toEqual({
      success: false,
      error: {
        issues: [
          {
            validation: "email",
            code: "invalid_string",
            message: "Invalid email",
            path: ["email"],
          },
          {
            code: "invalid_type",
            expected: "string",
            received: "undefined",
            path: ["password"],
            message: "Required",
          },
          {
            code: "invalid_type",
            expected: "string",
            received: "undefined",
            path: ["name"],
            message: "Required",
          },
        ],
        name: "ZodError",
      },
    });
  });

We will use the toEqual method for deep equality checks, rather than the toBe method, which
checks for strict equality (using ===). The toEqual method is more suitable for comparing objects,
as it evaluates the equality of their contents.

The next test case we are going to cover is the validation for our login endpoint. We will similarly send
incorrect data to the endpoint, and we will expect it to fail:

  test("POST /login - incorrect body", async () => {
    const response = await app.request("/api/v1/auth/login/", {
      method: "POST",

Improving Reliability – Testing and Validation78

      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: "wrong",
      }),
    });
    expect(response.status).toBe(400);

The email field is in the wrong format and password is missing, so we will get a status of 400.
We can look at the response to check that the specific errors are correct:

    expect(await response.json()).toEqual({
      success: false,
      error: {
        issues: [
          {
            validation: "email",
            code: "invalid_string",
            message: "Invalid email",
            path: ["email"],
          },
          {
            code: "invalid_type",
            expected: "string",
            received: "undefined",
            path: ["password"],
            message: "Required",
          },
        ],
        name: "ZodError",
      },
    });
  });

Now, you can run the tests with the following command:

$ bun test

You will be able to see that all the tests for authentication have run successfully.

We can now also write the tests that cover our chat endpoint.

Developing tests with Bun 79

Writing test for our chat endpoints

We also need to cover our chat and message endpoints, so this is what we are going to do now. You
will mostly recognize all the code written in the tests, so I will only explain the bits that are new. We
will start our file with the imports and the test setup:

tests/chat.test.ts

import { beforeEach, describe, expect, test } from "bun:test";
import { createInMemoryApp } from "../src/controllers/main";

describe("chat tests", () => {
  let app = createInMemoryApp();

  beforeEach(async () => {
    app = createInMemoryApp();
  });

Then, we are going to create a utility function, which we are going to use to create an authorization token:

  async function getToken(email = "test@test.com"): Promise<string> {
    await app.request("/api/v1/auth/register/", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: email,
        password: "password123",
        name: "Chat User",
      }),
    });    const loginResponse = await app.request("/api/v1/auth/
login/", {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        email: email,
        password: "password123",
      }),
    });
    const token = (await loginResponse.json()).token;
    return token!;
  }

Improving Reliability – Testing and Validation80

This test utilizes our register endpoint to first create a user and then our login endpoint to retrieve
the token.

Let’s proceed with the next utility function to create a chat:

  async function createChat(token: string) {
    const createChatResponse = await app.request("/api/v1/chat/", {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        Authorization: `Bearer ${token}`,
      },
      body: JSON.stringify({ name: "Test Chat" }),
    });
    const response = await createChatResponse.json();
    const chatId = response.data.id;
    return chatId;
  }
 ...

createChat is used to create a chat with the authorization token so that we can test whether the
messages are correct. It uses the chat creation endpoint to achieve it.

Let’s proceed with the test cases for our chats.

Chat tests

We will first check an easy scenario where a user can retrieve chats from the system. First, we will create
a user and a chat using our utility functions, and then we are going to retrieve all the chats for the user:

tests/chat.test.ts

...
  test("GET /chat/ - get user chats", async () => {
    const token = await getToken();
    const chatId = await createChat(token);
    const response = await app.request("/api/v1/chat/", {
      method: "GET",
      headers: { Authorization: `Bearer ${token}` },
    });
    expect(response.status).toBe(200);
    const responseData = await response.json();
    const data = responseData.data;
    expect(Array.isArray(data)).toBeTruthy();
    expect(data.length).toBe(1);

Developing tests with Bun 81

    expect(data[0].id).toBe(chatId);
  });

Here are the important parts of the preceding code block:

•	 First, we check that the response we get is 200.

•	 expect(Array.isArray(data)).toBeTruthy(); confirms that the retrieved data
is in an array format, as expected for multiple chats.

•	 expect(data.length).toBe(1); ensures that only one chat is returned for the user,
matching the test setup where a single chat was created.

•	 expect(data[0].id).toBe(chatId); verifies that the ID of the returned chat
matches the chatId of the chat created in the setup. This confirms that the correct chat is
being retrieved for the user.

Let’s now cover retrieving chat in a more complicated case. We will create multiple chats, and only
some of them will belong to our user. Then we are going to check that the user gets only relevant chats.

First, we create two different users and two different chats:

  test("GET /chat/ - get user chats when multiple chat and users are
available", async () => {
    const token = await getToken();
    const token2 = await getToken("email@email.com");
    const chatId = await createChat(token);
    const chatId2 = await createChat(token2);

Here, we can also test that we get different chats back depending on the token.

Now, we validate that we indeed get the relevant chats for every user:

    const response = await app.request("/api/v1/chat/", {
      method: "GET",
      headers: { Authorization: `Bearer ${token}` },
    });
    expect(response.status).toBe(200);
    const responseData = await response.json();
    const data = responseData.data;
    expect(Array.isArray(data)).toBeTruthy();
    expect(data.length).toBe(1);
    expect(data[0].id).toBe(chatId);

    const response2 = await app.request("/api/v1/chat/", {
      method: "GET",
      headers: { Authorization: `Bearer ${token2}` },

Improving Reliability – Testing and Validation82

    });
    expect(response.status).toBe(200);
    const responseData2 = await response2.json();
    const data2 = responseData2.data;
    expect(Array.isArray(data2)).toBeTruthy();
    expect(data2.length).toBe(1);
    expect(data2[0].id).toBe(chatId2);
  });

Let’s proceed with the test cases for our messages.

Messages tests

In this test, we will create and get some chat messages to validate that message creation and retrieval
work as expected.

Here, we have created a user, a chat, and a message that belongs to the chat:

tests/chat.test.ts

...
  test("POST, GET /chat/:id/message/ - create and get chat messages",
async () => {
    const token = await getToken();
    const chatId = await createChat(token);
    await app.request(`/api/v1/chat/${chatId}/message/`, {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        Authorization: `Bearer ${token}`,
      },
      body: JSON.stringify({ message: "Hello World" }),
    });

Now we can retrieve the messages for the chat:

    const response = await app.request(`/api/v1/chat/${chatId}/
message/`, {
      method: "GET",
      headers: { Authorization: `Bearer ${token}` },
    });

    expect(response.status).toBe(200);
    const messages = await response.json();
    expect(messages.data).toBeInstanceOf(Array);

Developing tests with Bun 83

    expect(messages.data.length).toBe(2);
    expect(messages.data[0].message).toBe("Hello World");
    expect(messages.data[1].message).toBe("dummy response");
  });

The test validates that we indeed get the message belonging to the chat from our chat retrieval
endpoint. As well as that, we see that we get an expected dummy message that mimics the response
of our AI assistant.

Now, we can test that the validation works for our chat and messages endpoints too.

Chats validation tests

We will send incorrect data to chat and message creation endpoints to see that the endpoint doesn’t
proceed with the creation in this case. Let’s start by sending the wrong data to the chat endpoint:

  test("POST /chat - incorrect body", async () => {
    const token = await getToken();
    const jsonBody = {
      name: "",
    };

    const response = await app.request("/api/v1/chat/", {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        Authorization: `Bearer ${token}`,
      },
      body: JSON.stringify(jsonBody),
    });

Here, we create a chat with a name that’s too short, so we expect that the test is going to fail. Now, we
can validate that it does indeed fail and see what we get in response:

    expect(response.status).toBe(400);
    expect(await response.json()).toEqual({
      success: false,
      error: {
        issues: [
          {
            code: "too_small",
            minimum: 1,
            type: "string",
            inclusive: true,

Improving Reliability – Testing and Validation84

            exact: false,
            message: "String must contain at least 1 character(s)",
            path: ["name"],
          },
        ],
        name: "ZodError",
      },
    });
  });

We check that the response errors are the ones we expect to see from Zod here.

Let’s proceed with the last test case for message validation:

test("POST /chat/:id/message - incorrect body", async () => {
    const token = await getToken();
    const response = await app.request(`/api/v1/chat/a/message/`, {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        Authorization: `Bearer ${token}`,
      },
      body: JSON.stringify({}),
    });

Here, we provide an incorrect chat ID in the URL and we send an empty body to the endpoint, so
we expect it to fail now.

Our test cases fail with 400, and Zod provides the intended response that our message field is required:

    expect(response.status).toBe(400);
    expect(await response.json()).toEqual({
      success: false,
      error: {
        issues: [
          {
            code: "invalid_type",
            expected: "string",
            received: "undefined",
            path: ["message"],
            message: "Required",
          },
        ],
        name: "ZodError",

Summary 85

      },
    });
  });
});

With all of this, we can run all our tests and see how much we have covered with the following command:

$ bun test --coverage

You will see a table that shows that we have covered more than 90% of our code lines, which means
that during our tests, 90% of our code lines were executed. This is a great accomplishment, and now
we can be much surer that our code has no bugs.

Summary
In this chapter, we’ve significantly reinforced the stability and reliability of our chat application’s
backend. By integrating Zod, we’ve introduced stringent validation rules, ensuring that data flowing
into our endpoints meets our precise specifications.

Then, we used Bun’s testing module, delving into writing comprehensive tests that scrutinize facets of
our application’s functionality. Together, Zod’s validation and Bun’s testing framework form a formidable
duo, safeguarding our application against unexpected behaviors and vulnerabilities.

As we progress, these tools will be invaluable in maintaining the quality and reliability of our backend,
ensuring that our application not only meets but exceeds the demands of real-world development. The
next steps will involve focusing on more advanced aspects of backend development such as logging,
security, caching, and debugging.

6
Advanced Backend

Development – Security,
Throttling, Caching,

and Logging

In the previous chapter, we focused on validation and testing, which significantly improved the
reliability of our server. With this, we have almost finished the development of our REST API, and
we can now focus on the more advanced aspects such as security, request throttling, caching, and
logging techniques. First, we will address potential security issues that our backend doesn’t protect
us from yet, and we will also add a layer of protection against DoS attacks with request throttling.
Then, we will focus on how to cache the response we produce and configure and use logging in our
application. With this in place, we will make sure that our application is secure, quick, and easy to debug.

In this chapter, we are going to cover the following topics:

•	 Managing security aspects

•	 Adding request throttling

•	 Managing cache

•	 Using logging

We will begin with the security aspects, focusing on what kind of attacks are possible in the context
of a REST API and what we need to do to protect our server against them.

Advanced Backend Development – Security, Throttling, Caching, and Logging88

Technical requirements
For this chapter, we will need to add the Pino library for our logging. We can add it to our project by
running the following command in the terminal:

$ bun add pino

All the code examples we will discuss are available in the GitHub repository: https://github.
com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/
tree/main/Chapter06.

Managing security aspects
So far, our app has a few security holes that we need to address before it can face real users. Making
sure that it’s not hackable and reducing the risk of potential vulnerabilities is essential for any web
service, so let’s focus first on which type of common and dangerous attacks can be executed against
our REST server and how we can protect against them:

•	 SQL injection: SQL injection is a type of attack where the attacker manipulates SQL queries by
injecting malicious SQL code through the REST endpoint input data. This can happen when user
input is directly used in constructing SQL queries without proper validation or escaping. An
attacker might exploit this vulnerability to access, modify, or delete data in a database, potentially
gaining unauthorized access to sensitive information or even taking control of the database. To
prevent SQL injection, we need to always use prepared statements and parameterized queries,
validate and sanitize all user inputs, and apply least privilege access controls to the database.

•	 XSS attack: An XSS attack occurs when an attacker injects malicious scripts into content that
is served to other users. These scripts execute within the context of the victim’s browser under
the trust level of the web application, allowing the attacker to steal cookies, session tokens, or
other sensitive information reflected in the web browser. XSS can be performed by including
malicious JavaScript in user-generated content that is not properly sanitized by the server or
the client before being presented to other users. Defending against XSS involves encoding and
escaping user input, implementing a Content Security Policy (CSP), and validating all input
data. A CSP is typically handled on the frontend by escaping the user-generated content before
putting it into the HTML, but it doesn’t hurt to additionally address it on the backend either.

•	 DoS attack: A DoS attack aims to make our server unavailable to its intended users by
overwhelming it with a flood of requests. This can be achieved through various means, such as
sending more requests than the server can handle or exploiting a vulnerability that causes the
server to crash. An attacker might send rapid, large, or complex requests to the API endpoints
to exhaust server resources. Protection measures include rate limiting, filtering traffic to identify
and block malicious patterns, and deploying DoS protection tools or services such as Cloudflare.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter06
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter06
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter06

Managing security aspects 89

•	 Unauthorized domain request: This security concern involves making requests to a REST
API from a domain that is not authorized by the API server’s Cross-Origin Resource Sharing
(CORS) policy. CORS is a mechanism that allows or restricts resources on a web server to
be requested from another domain. Without proper CORS settings, an attacker could make
unauthorized API calls from a malicious domain, potentially exposing sensitive information or
exploiting vulnerabilities. To mitigate this risk, we need to configure CORS policies to explicitly
allow only trusted domains to make requests and use other security measures, such as API keys
and OAuth tokens, for authentication and authorization.

•	 Man-in-the-middle attacks: In a man-in-the-middle attack, an attacker intercepts the
communication between a client and a server to eavesdrop on or alter the data being exchanged.
This could compromise the confidentiality and integrity of the data, allowing the attacker to
steal sensitive information or inject malicious content. HTTPS with TLS encryption is essential
for protecting against man-in-the-middle attacks by ensuring that data in transit is encrypted
and authenticated.

To summarize, to protect against these attacks, we will need to add HTTPS support, sanitize user
input, configure CORS, and add rate limiting. How the first one is handled depends on how we are
going to deploy our app, typically using the proxy web server or the load balancer that we are going
to put in front of our backend application, and the second one will be addressed when we integrate
with database data sources in the next chapter. Rate limiting is typically also implemented by the load
balancer, but we are going to implement it in this chapter for illustration purposes. We are also going
to configure CORS settings for our backend server. Let’s start with configuring CORS.

The CORS setup basically tells our server which request methods to accept, which domain to accept
them from, and for how long we should cache the CORS query for the caller. Let’s configure CORS
by using the built-in hono library – hono/cors. I will only list here the code that we need to add
to include CORS, indicating omitted code that is going to remain the same with

First, we are going to provide configuration for the CORS setup, and then we are going to add it as
middleware for our app:

src/controllers/main.ts

import { cors } from "hono/cors";
...
const corsOptions = {
  origin: [Bun.env.CORS_ORIGIN as string],
  allowMethods: ["GET", "POST", "PUT", "PATCH", "DELETE"],
  allowHeaders: ["Content-Type", "Authorization"],
  maxAge: 86400,
};
...
export function createMainApp(

Advanced Backend Development – Security, Throttling, Caching, and Logging90

  authApp: Hono<ContextVariables>,
  chatApp: Hono<ContextVariables>,
) {
...
  app.use("*", cors(corsOptions));s

...

}

Let’s discuss what is happening here. First, we import the cors library. Then, we configure corsOptions.
In corsOptions, these are the following configurations:

•	 origin: Restricts which domains are allowed to make requests to the server. For it to work, add
CORS_ORIGIN=http://localhost:5173 to your .env file. Therefore, only requests
originating from http://localhost:5173 are permitted.

•	 allowMethods: Lists the HTTP methods that are allowed when accessing the resource. In
this case, the server accepts the GET, POST, PUT, PATCH, and DELETE methods from the
allowed origin.

•	 allowHeaders: Specifies the headers that can be included in the requests made to the server.
Content-Type and Authorization are explicitly allowed, facilitating the use of content
types such as JSON and authorization mechanisms such as tokens or basic authentication.

•	 maxAge: Indicates how long (in seconds) the results of a preflight request can be cached. Here,
it is set to 86400 seconds, or 24 hours, meaning the browser can cache the preflight response
for a day before needing to send another preflight request for subsequent requests.

Lastly, we add the cors function with our configuration as middleware to our main hono
app. We can only send requests to our server from localhost:5173, which is supposed to
be our frontend local development URL and which we will need to change to the real domain
URL in production. We also allow the common HTTP methods and the headers that we are
using to proceed to our endpoint handler.

Now, we will discuss request throttling.

Adding request throttling
Request throttling or rate limiting is a technique that helps us against DoS attacks. It essentially
counts the number of requests per user and doesn’t allow the user to perform too many requests in a
given time frame. Typically, we would also identify the IP of the caller to protect our non-authorized
endpoints, but as we cannot get such a low-level detail of the connection in hono, we will focus on how
to implement middleware that will do request throttling of the authorized endpoints based on userId.

Adding request throttling 91

Writing the middleware

Let’s write middleware in which we will count how many requests a user has made in the last 15
minutes and throw a 429 status code, which means a user has made more than 100 requests:

src/middlewares/rateLimiting.ts

import type { Context } from "hono";
import type { ContextVariables } from "../constants";

const requestCounts = new Map<string, { count: number; resetTime:
number }>();

const MAX_REQUESTS = 100; // Max requests per window per client
const WINDOW_SIZE_MS = 15 * 60 * 1000; // 15 minutes in milliseconds
export const rateLimitMiddleware = async (
  c: Context<ContextVariables>,
  next: Function,
) => {
  const userId = c.get("userId");
  if (!userId) {
    await next();
    return;
  }
  const now = Date.now();
  let requestData = requestCounts.get(userId);
...

Let’s discuss what is happening here, line by line:

•	 const requestCounts = new Map<string, { count: number; resetTime:
number }>();: Initializes a map to keep track of request counts and reset times for each
user, indexed by userId

•	 const MAX_REQUESTS = 100;: Defines the maximum number of requests a user is
allowed to make within the specified window, WINDOW_SIZE_MS

•	 const WINDOW_SIZE_MS = 15 * 60 * 1000;: Sets the duration of the rate-limiting
window to 15 minutes, converted to milliseconds

•	 export const rateLimitMiddleware = async (c:
Context<ContextVariables>, next: Function) => { ... };: Defines
the asynchronous middleware function, rateLimitMiddleware, which takes Hono’s
context object and a next function to proceed to the next middleware

Advanced Backend Development – Security, Throttling, Caching, and Logging92

•	 const userId = c.get("userId");: Attempts to retrieve the userId from the
context, which is expected to be set by previous middleware in the request handling pipeline

•	 if (!userId) { await next(); return; }: If no userId is found, the middleware
immediately proceeds to the next middleware without applying rate limiting

•	 let requestData = requestCounts.get(userId);: Retrieves the current request
data for the user from the requestCounts map

Implementing the middleware

Let’s proceed with the implementation:

src/middlewares/rateLimiting.ts

...
  if (!requestData) {
    requestData = { count: 1, resetTime: now + WINDOW_SIZE_MS };
    requestCounts.set(userId, requestData);
  } else {
    if (requestData.resetTime < now) {
      requestData.count = 1;
      requestData.resetTime = now + WINDOW_SIZE_MS;
    } else {
      requestData.count += 1;
    }
  }

  if (requestData.count > MAX_REQUESTS) {
    return c.text("Rate limit exceeded. Try again later.", 429);
  } else {
    requestCounts.set(userId, requestData);
    await next();
  }
};

Let’s discuss what we see here:

•	 if (!requestData) { requestData = { count: 1, resetTime: now +
WINDOW_SIZE_MS }; requestCounts.set(userId, requestData); }: If
there’s no existing data for the user, this initializes it with a count of 1 and sets the reset time
to 15 minutes from the current time.

Adding request throttling 93

•	 if (requestData.resetTime < now) { requestData.count = 1;
requestData.resetTime = now + WINDOW_SIZE_MS; } else {
requestData.count += 1; }: Checks whether the current time is past the reset
time. If so, it resets the count and the reset time. If not, it increments the request count.

•	 if (requestData.count > MAX_REQUESTS) { return c.text("Rate
limit exceeded. Try again later.", 429); }: If the user has exceeded the
maximum number of allowed requests, this returns a 429 status code (Too Many Requests)
and a message indicating that the rate limit has been exceeded.

•	 else { requestCounts.set(userId, requestData); await next(); }:
If the rate limit has not been exceeded, this updates the user’s data in the requestCounts
map and calls next() to proceed to the next middleware.

Including the middleware in the main app

Now, we can include rateLimitMiddleware in the main app as middleware in a similar way we
included our cors. I will only show the changes in the file; everything else is the same:

src/controllers/main.ts

import { rateLimitMiddleware } from "../middlewares/rateLimiting";
...
export function createMainApp(
  authApp: Hono<ContextVariables>,
  chatApp: Hono<ContextVariables>,
) {
...
  app.use("*", attachUserId);
  app.use("*", rateLimitMiddleware);
...

}

Here, we simply add the newly created middleware to our main app.

Now, our backend has a proper configuration to protect us against requests from unauthorized domains
and DoS attacks, and we are ready to discuss how we can manage cache in our app.

Advanced Backend Development – Security, Throttling, Caching, and Logging94

Managing the cache
Cache is essential to speed up our endpoints, as most of the user requests are going to return the
same data on the GET endpoints. Cache is typically used to avoid load-intensive code pieces from
executing again.

In this part, we are going to implement caching middleware that can be used from inside our endpoints
to add and remove elements from the cache. One trick with caching is cache invalidation, which is a
topic on its own, as when we create a new chat, for example, the cache value to get all chats is no longer
valid, so we need to remove it. So, we are going to add middleware that provides this functionality, as
well as associate cache values with userId.

Writing the cache middleware

Here, we will define middleware that will cache the results of the calculations of the endpoint calls,
which we can reuse again:

src/middlewares/cacheMiddleware.ts

import type { Context } from "hono";
import type { ContextVariables } from "../constants";

interface CacheEntry {
  body: any;
  expiration: number;
}

The interface defines the structure for cache entries, including the cached body and expiration timestamp.

The following code lines initialize an in-memory cache to store the responses, keyed by a combination
of the request path and userId:

export const cacheMiddleware = () => {
  const cache = new Map<string, CacheEntry>();

In the next lines, we will define our middleware function:

  return async (c: Context<ContextVariables>, next: () =>
Promise<void>) => {
    const userId = c.get("userId");
    const path = c.req.path;
    const cacheKey = `${path}:${userId}`;

Managing the cache 95

In the preceding code block, we have the following lines:

•	 const userId = c.get("userId");: Retrieves userId from the context

•	 const path = c.req.path;: Extracts the request path from the context’s request object,
which will identify which endpoint we are using

•	 const cacheKey = ${path}:${userId};: Constructs a unique cache key using
the request path and userId, ensuring cache entries are unique per user and request path

The following code snippet attaches a cache object to the context with methods to cache responses, clear
the cache for the current path and user, and clear the cache for any specified path and the current user:

    c.set("cache", {
      cache: (body: object, expiration: number = 3600) => {
        const expireAt = Date.now() + expiration * 1000;
        const entry = { body, expiration: expireAt };
        cache.set(cacheKey, entry);
      },

The following method is used to delete the cached data for the default key:

      clear: () => {
        cache.delete(cacheKey);
      },

Here, we delete cached data for a passed key:

      clearPath: (path: string) => {
        const fullKey = `${path}:${userId}`;
        cache.delete(fullKey);
      },

    });

In the next lines, we retrieve the cache when needed:

    if (c.req.method.toUpperCase() === "GET") {
      const cacheEntry = cache.get(cacheKey);
      if (cacheEntry) {
        if (cacheEntry.expiration > Date.now()) {
          return c.json(cacheEntry.body);
        }
      }
    }

Advanced Backend Development – Security, Throttling, Caching, and Logging96

    await next();
  };
};

Let’s discuss these code lines:

•	 if (c.req.method.toUpperCase() === "GET") { ... }: Checks whether
the request method is GET before attempting to retrieve data from the cache, implying that
only GET requests are considered for caching.

•	 const cacheEntry = cache.get(cacheKey);: Attempts to retrieve a cache entry
using the constructed cache key.

•	 if (cacheEntry && cacheEntry.expiration > Date.now()) { return
c.json(cacheEntry.body); }: If a valid cache entry is found (i.e., it hasn’t expired),
this returns the cached response immediately without proceeding to subsequent middleware
or handlers.

•	 await next();: If no valid cache entry is found, or the request is not a GET request, control
is passed to the next middleware or handler in the chain, potentially to fetch fresh data and
handle the request.

As we are adding a new variable to our context, we also need to change our ContextVariables
to adapt to the change by providing a new cache key, which is going to define the interface of the
function we will use from our endpoints:

src/constants.ts

export const API_PREFIX = "/api/v1";

export type ContextVariables = {
  Variables: {
    userId: string;
    cache: {
      cache: (body: object, expiration?: number) => void;
      clear: () => void;
      clearPath: (path: string) => void;
    };
  };
};

Here, we provide a new cache key that exposes the methods we defined in the Writing the cache
middleware section.

Managing the cache 97

Using the cache middleware in our chat endpoints

Now, let’s see how we can use cache implementation in our chat endpoints to cache the results of getting
all the lists, allowing us to simply return the cache when we are asked to again. We will also invalidate
this cache when we create a new chat. We will also implement similar logic for chat messages. You’ve
seen most of the code already, so I’m going to explain only the code bits relevant to caching. We will
utilize our cache object attached by the middleware in our endpoints to set and retrieve the cache
data we return. We will cache the responses of the GET endpoints and clear the cache of the POST
endpoints. I am going to highlight the usage of the cache we introduced:

src/controllers/chat.ts

...
export function createChatApp(
  chatResource: IDatabaseResource<DBChat, DBCreateChat>,
  messageResource: IDatabaseResource<DBMessage, DBCreateMessage>,
) {
  const chatApp = new Hono<ContextVariables>();

  chatApp.post(CHAT_ROUTE, zValidator("json", chatSchema), async (c)
=> {
    const userId = c.get("userId");
    const { name } = c.req.valid;
    const data = await chatResource.create({ name, ownerId: userId });
    c.get("cache").clearPath(c.req.path);
    return c.json({ data });
  });

We clear the cache to get all the chats when we create a new one.

Here, we cache the result of retrieving all the chats:

  chatApp.get(CHAT_ROUTE, async (c) => {
    const userId = c.get("userId");
    const data = await chatResource.findAll({ ownerId: userId });
    const res = { data };
    c.get("cache").cache(res);
    return c.json({ data });
  });

Advanced Backend Development – Security, Throttling, Caching, and Logging98

Next, we cache the result of the individual chat retrieval:

  chatApp.get(CHAT_DETAIL_ROUTE, zValidator("param", idSchema), async
(c) => {
    const { id } = c.req.valid("param");
    const userId = c.get("userId");
    const data = await chatResource.find({ id, ownerId: userId });
    const res = { data };
    c.get("cache").cache(res);
    return c.json({ data });
  });

Then, we set the cached data for all the messages after retrieval:

  chatApp.get(CHAT_MESSAGE_ROUTE, zValidator("param", idSchema), async
(c) => {
    const { id: chatId } = c.req.valid("param");
    const data = await messageResource.findAll({ chatId });
    const res = { data };
    c.get("cache").cache(res);
    return c.json(res);
  });

And finally, we clear the cache for our chat messages when we create two new ones:

  chatApp.post(
    CHAT_MESSAGE_ROUTE,
    zValidator("param", idSchema),
    zValidator("json", messageSchema),
    async (c) => {
      const { id: chatId } = c.req.valid("param");
      const { message } = c.req.valid("json");

      const userMessage: DBCreateMessage = { message, chatId, type:
"assistant" };
      await messageResource.create(userMessage);

      const responseMessage: DBCreateMessage = {
        message: "dummy response",
        chatId,
        type: "user",
      };

Using logging 99

      const data = await messageResource.create(responseMessage);
      const res = { data };
      c.get("cache").clearPath(c.req.path);
      return c.json(res);
    },
  );
  return chatApp;
}

Now, our requests are GET requests that are cached for 15 minutes, and we don’t need to put the load
on our data sources to retrieve the data again if it doesn’t change. We also ensure that when the data
is obsolete, the cache is invalidated.

Let’s now turn to logging, how to configure it, and how we can use it on the example of our two newly
created middlewares.

Using logging
Logging is an essential technique that helps us to reconstruct what happened on our backend and
also know the other important events that happened. It’s very useful when we actually debug our
code to understand what went wrong, and it’s helpful in trying to get more context. In our case, we
will use the pino logger, which provides useful functionality out of the box and also allows a decent
level of configuration.

Let’s first create a general configuration for our logger so that we can use it from other parts of
our application.

Creating our logger’s configuration

We will initialize a main logger with a logging level and then export it:

src/loggers.ts

import pino from "pino";

const mainLogger = pino({
  level: Bun.env.LOG_LEVEL || "info",
  timestamp: pino.stdTimeFunctions.isoTime,
});

export default mainLogger;

Advanced Backend Development – Security, Throttling, Caching, and Logging100

Here, we instantiate a main logger, where we specify which level of logging to track and also whether
to include a timestamp to the logs in the ISO format. If you want a different level of logging, you can
expand the .env file with a LOG_LEVEL variable and set the variable to debug if you want to see
more fine-grained logging.

Now, we can utilize this logger in other parts of our system, and when we execute the app, we will see
it output to standard output.

Adding logger to our caching middleware

Let’s add logging to our caching middleware so that we can observe what is happening there. I’m
going to explain the logging-relevant lines, as other things are just going to remain unchanged. First,
we are going to create a child logger of our main logger, and then we are going to write a log line with
it when we set and retrieve the cache:

src/middlewares/cacheMiddlewares.ts

First, we import the main logger we created in the Creating our logger’s configuration section:

import mainLogger from "../logger";

Next, we create a child logger of the main logger. The child logger adds a new property name to every
new log statement, which is going to identify the logs that relate to the cache:

const logger = mainLogger.child({ name: "cacheMiddleware" });

Next, we will see the untouched logic of our cache middleware until the first log line:

export const cacheMiddleware = () => {
  const cache = new Map<string, CacheEntry>();

  return async (c: Context<ContextVariables>, next: () =>
Promise<void>) => {
    const userId = c.get("userId");
    const path = c.req.path;
    const cacheKey = `${path}:${userId}`;

    c.set("cache", {
      cache: (body: object, expiration: number = 3600) => {
        const expireAt = Date.now() + expiration * 1000;
        const entry = { body, expiration: expireAt };

Until the next line in the following code block, everything is untouched, and now, we will add a log
statement that sets a new cache key.

Using logging 101

When we clear cache, we will log this action as well:

        logger.info(
          `Setting cache key: ${cacheKey}, to${JSON.
stringify(entry)}`,
        );
        cache.set(cacheKey, entry);
      },
      clear: () => {
        logger.info(`Clearing cache key: ${cacheKey}`);

When we clear the specific path, we will log that as well:

        cache.delete(cacheKey);
      },
      clearPath: (path: string) => {
        const fullKey = `${path}:${userId}`;
        logger.info(`Clearing cache key: ${fullKey}`);

We log information when we encounter a cache entry:

        cache.delete(fullKey);
      },
    });

    if (c.req.method.toUpperCase() === "GET") {
      const cacheEntry = cache.get(cacheKey);
      if (cacheEntry) {
        logger.debug(
          `Found cache entry: ${cacheKey}, to${JSON.
stringify(cacheEntry)}`,
        );

We also log that we actually use the cache so that we know we didn’t execute the endpoint:

        if (cacheEntry.expiration > Date.now()) {
          logger.debug(
            `return from key: ${cacheKey}, body: ${JSON.stringify(
              cacheEntry.body,
            )}`,
          );

Advanced Backend Development – Security, Throttling, Caching, and Logging102

We also add a log statement when our cache entry expires:

          return c.json(cacheEntry.body);
        } else {
          logger.debug(
            `Cache entry expired cache key: ${cacheKey}, expiration:
${cacheEntry?.expiration}`,
          );

Logging is essential, as it is going to be one of the tools that will help us to fix issues and see what happens
in our system. With this, we are ready to focus on our data storage in more detail in the next chapter.

Summary
In this chapter, we significantly improved the security, speed, and trackability of our service. By
integrating a CORS setup and request throttling, we made sure that our app is secure and can face
real users, while caching helps us execute our app promptly and use as few resources as possible. In
addition, we learned how to make it easier to debug our application with the use of logging.

In the next chapter, we will move on to improve our data storage, and we will also deal with the issue
of our data disappearing every time we reload our backend application, with the use of an actual
PostgreSQL database.

Part 3:
Integrating PostgreSQL for

Data Management

In this part, you will learn how to effectively integrate and manage databases using PostgreSQL
with TypeScript. It includes setting up PostgreSQL, using libraries to interact with the database, and
utilizing Object-Relational Mappings (ORMs) for efficient data management. This part is crucial
for understanding how to handle data in a robust and scalable manner, essential for any full-stack
development project.

This part includes the following chapters:

•	 Chapter 7, PostgreSQL Basics, Storage, and Setup

•	 Chapter 8, Interacting with PostgreSQL Using Libraries

•	 Chapter 9, Interacting with PostgreSQL Using Prisma ORM

7
PostgreSQL Basics, Storage,

and Setup

After mastering the advanced aspects of backend development, we’re ready to shift our focus to a
key element of any dynamic application: persistent storage. This transition moves us into database
management, leveraging PostgreSQL and Docker for reliable data storage and access.

In this chapter, we’ll dive into the implementation of persistent storage essential for web development,
ensuring data persistence across server restarts. Our learning path includes discussing Docker’s role
in creating and managing containerized applications, detailing steps to deploy PostgreSQL within
a Docker container, designing a schema for our chat application, and interacting with the database
through Create, Read, Update, and Delete (CRUD) operations.

Understanding persistent storage is fundamental for real-world applications, ensuring data such as
messages and user details remain accessible and intact. By the end of this chapter, you’ll possess both
theoretical knowledge and practical experience in creating a database for a chat application using
PostgreSQL. We are going to cover the following topics:

•	 Setting up PostgreSQL in Docker

•	 Constructing the database schema

•	 Writing CRUD Structured Query Language (SQL) operations

First, we will install Docker, and then we will create a container for our PostgreSQL instance using
Docker. Let’s start with the installation.

Technical requirements
To proceed with this chapter, we will need to install Docker on our system. The simplest option to get
it for Mac, Linux, and Windows is to install Docker Desktop, which is going to provide us with the
required Docker Engine and Docker Compose.

PostgreSQL Basics, Storage, and Setup106

Important note
Be careful with the Docker Desktop license as it’s paid for commercial use.

You can install Docker Desktop by following the official guide from Docker based on your
platform: https://docs.docker.com/desktop/.

Alternatively, if you are on Linux, you can install Docker Engine and Docker Compose easily without
Docker Desktop by following these links:

https://docs.docker.com/engine/install/

https://docs.docker.com/compose/install/

All the code we are going to discuss in this chapter is available at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/
main/Chapter07.

Setting up PostgreSQL in Docker
Now that we have Docker installed on our system, we can set up a PostgreSQL instance using Docker
on our computer, but before we do it, let’s discuss what Docker is and what it is useful for in the context
of web development.

What are Docker and Docker Compose?

Docker is a platform that allows you to package your application and its dependencies into a container,
which can be easily shipped and run in any environment and any operating system in a similar
manner. Think of it like this: imagine your application is a delicate piece of furniture that needs to be
transported from one place to another. Docker acts as the perfect shipping container for your furniture.
It carefully wraps up your application and all its dependencies, making sure everything is securely
packaged together. No matter where the shipping container ends up, whether it’s a different room, a
different house, or even a different country, you can be confident that when you open the container,
your furniture will be intact and ready to use.

Docker ensures that your application can be seamlessly moved and deployed across different environments
without worrying about compatibility issues or missing pieces. This makes the setup easier to develop
in a team that runs different operating systems as well, and it simplifies the deployment as a lot of
infrastructure platforms support running a Docker container.

Docker containers are streamlined, self-sufficient packages capable of running applications by
including all necessary components such as code, runtime environment, system tools, libraries, and
settings. This ensures that your application will run the same way, regardless of where it’s deployed,
solving the classic it works on my machine problem.

https://docs.docker.com/desktop/
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter07
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter07
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter07

Setting up PostgreSQL in Docker 107

Docker Compose, meanwhile, is a utility for orchestrating applications that use multiple Docker
containers. It allows you to use a YAML file to set up and link your application’s services, networks,
and storage, simplifying the process of managing complex container setups. Once the configuration
is done, you can create and start all the services from your configuration with a single command. It
simplifies the development process by allowing us to define a complex stack of services (such as web
servers, databases, cache services, and so on) that make up an application in a straightforward and
declarative manner.

In web development, Docker and Docker Compose are incredibly useful for several reasons:

•	 Consistency: Docker ensures that your application runs in the same environment during
development, testing, and production. This consistency reduces bugs and improves quality.

•	 Microservices architecture: Docker is ideal for microservices architecture, where different
parts of an app are developed and deployed independently. It allows each microservice to be
containerized with its dependencies.

•	 Isolation: Containers are isolated from each other and the host system. This isolation
enhances security and allows you to run multiple containers on the same host without
dependencies conflicting.

•	 Scalability: With Docker, you can easily scale up or down by simply starting more or fewer
containers without affecting the application.

•	 Database management: Docker can be used to run database services in containers. This approach
simplifies database setup, backups, replication, and scaling. It also ensures that developers
are working with the same database configuration, reducing environment discrepancies and
allowing us to scrap and recreate the database easily.

Now that we understand better what Docker and Docker Compose are, let’s talk about our choice of
PostgreSQL as a database.

What is PostgreSQL?

PostgreSQL, often simply called Postgres, is an advanced, open source relational database management
system (RDBMS) prized for its reliability, flexibility, and adherence to technical standards. It’s built
to manage various tasks, from running on individual computers to powering data warehouses or web
services that support numerous simultaneous users.

Here are the main benefits of PostgreSQL:

•	 Advanced features: PostgreSQL includes a wide array of advanced features out of the box,
such as complex queries, window functions, foreign data wrappers, and support for storing
and querying JSON and XML data. These features enable us to handle complex data workloads
and patterns directly within the database.

PostgreSQL Basics, Storage, and Setup108

•	 Extensibility: One of PostgreSQL’s standout features is its extensibility. We can define our own
data types, triggers, and custom functions.

•	 Standards compliance: PostgreSQL has a strong emphasis on SQL standards compliance.
This adherence ensures that applications built on PostgreSQL can be easily ported to other
SQL-compliant databases, providing greater flexibility and future-proofing for businesses.

•	 Performance and reliability: PostgreSQL offers sophisticated optimization features for complex
queries, robust transaction management, and fault tolerance through features such as point-
in-time recovery, tablespaces, and replication. PostgreSQL can handle large volumes of data
with high concurrency, making it suitable for enterprise-level applications.

•	 Strong community and support: PostgreSQL has a vibrant, active community, contributing
to its continuous development and support. This community provides a wealth of resources,
including extensive documentation, third-party tools, and active forums for troubleshooting
and advice.

•	 Cost-effectiveness: Being open-source, PostgreSQL is free to use. This makes it an attractive option
for start-ups and companies looking to reduce their operational costs without compromising
on the quality and capabilities of their database management system (DBMS).

Here is how PostgreSQL compares to other database solutions:

•	 MySQL/MariaDB: PostgreSQL is frequently compared to MySQL or its fork, MariaDB, which
are also popular open source RDBMSs. While MySQL is renowned for its speed and reliability
in read-heavy scenarios, PostgreSQL shines with its advanced features such as complex queries
and support for multiple concurrent transactions (through multi-version concurrency
control, or MVCC). PostgreSQL’s extensibility and standards compliance, including full ACID
compliance for transactions, make it a preferred choice for complex and mission-critical
applications. MVCC and ACID are more advanced database concepts, but if you haven’t heard
of them, I recommend reading up on them when you feel more comfortable with databases.

•	 SQLite: SQLite is a lightweight, file-based database. It’s designed for simplicity and minimal setup,
making it ideal for embedded applications and small projects. PostgreSQL, in contrast, offers
more robustness and scalability, supporting large datasets and concurrent users more effectively.

•	 NoSQL databases: NoSQL databases such as MongoDB or Cassandra offer schema flexibility
and scalability, particularly for unstructured data. PostgreSQL, while primarily a relational
database, also incorporates JSON support and other NoSQL features, allowing for both structured
and unstructured data management in a single system. This hybrid approach, combined with
its reliability and ACID compliance, makes PostgreSQL a versatile choice for a wide range
of applications.

In general, PostgreSQL is slowly but steadily becoming a de facto standard for web development and
new applications due to all the features, speed, and flexibility it provides.

Setting up PostgreSQL in Docker 109

We are now ready to use Docker to create our PostgreSQL server.

Creating a database as a Docker container

To create our PostgreSQL server in Docker, we will use Docker Compose with Compose files. We
will define our PostgreSQL service by using an official PostgreSQL Docker image, which serves as
the preset with all commands required to create a PostgreSQL in a new sandbox container. Then, we
will make the database accessible from our local host.

First, we are going to define which base image we are going to use, then pass environment variables
and set up how to access our database from the outside:

docker_compose_test.yml

version: '3.8'
services:
  postgres:
    image: postgres:latest
    restart: always
    environment:
      POSTGRES_DB: test
      POSTGRES_USER: test
      POSTGRES_PASSWORD: test
    ports:
      - "5434:5432"
    volumes:
      - data/postgres_test:/var/lib/postgresql/data

Let’s discuss what every line does in the preceding docker_compose_test.yml file:

•	 version: Specifies the version of the Docker Compose file syntax. 3.8 is one of the latest
versions supporting most Docker features.

•	 services: Defines the containers that make up your application. Here, it’s defining a single
service named postgres.

•	 image: Specifies the Docker image to use for the container. postgres:latest pulls the
latest official PostgreSQL image from Docker Hub.

•	 restart: Configures the restart policy for the container. always means the container will
restart automatically if it stops.

•	 environment: Sets environment variables in the container. This configuration specifies the
default database (POSTGRES_DB), user (POSTGRES_USER), and password (POSTGRES_
PASSWORD) for PostgreSQL, which we will need to connect to the database.

PostgreSQL Basics, Storage, and Setup110

•	 ports: Maps ports from the container to the host machine. By default, the network of the Docker
container has nothing to do with our local networking; it has its own dedicated network, so we
need a way to get in, which is what ports are for. 5434:5432 maps the default PostgreSQL
port inside the container (5432) to port 5434 on the host, allowing access to the database
on localhost:5434 from our computer.

•	 volumes: Persists data generated by and used by Docker containers. Here, postgres_data_
test:/var/lib/postgresql/data maps a named volume (postgres_data_test)
to the data directory inside the container, ensuring that database data persists across container
restarts by the given path.

We are going to use the database created by docker_compose_test.yml for testing so that we
can safely create and delete data in this database without the risk of messing up with our main database.

Here is the Docker Compose setup for our main development database:

docker_compose.yml

version: '3.8'
services:
  postgres:
    image: postgres:latest
    restart: always
    environment:
      POSTGRES_DB: db
      POSTGRES_USER: user
      POSTGRES_PASSWORD: pass
    ports:
      - "5433:5432"
    volumes:
      - ./data/postgres:/var/lib/postgresql/data

The content of the docker_compose.yml file is almost the same as in our test docker-compose
file, but it exposes a different port – 5433 – so it’s accessible at http://localhost:5433, uses
different credentials, and stores its volume data at a slightly different path in our filesystem.

Now, we can run our PostgreSQL service in a container through this command:

$ docker-compose -f docker_compose_test.yml up

Constructing the database schema 111

Important note
If you get a ... is not shared from the host and is not known to docker
error in Docker Desktop on Mac, you need to add the path of your project to the File Sharing
config. You can do it by adding the project path to Docker Desktop >> Preferences
>> Resources >> File Sharing.

You should be able to see that the database image is pulled and then that it is being briefly set up,
which will conclude with the following similar message in your terminal:

postgres_1  | 2024-02-18 16:47:36.724 UTC [1] LOG:  database system is
ready to accept connections

Now, our database is accessible at localhost:5434 and is ready to be interacted with.

Next, it is time to define the schema of our database.

Constructing the database schema
A database structure, or schema, is a blueprint that defines how data is organized in a database. It
includes tables, columns within those tables, and the types of data that can be stored in the columns.
The schema also defines relationships between tables and can include constraints to enforce data
integrity, indexes to improve query performance, and other database-specific features such as triggers
or stored procedures.

The main components of a database schema are as follows:

•	 Tables: Tables are collections of related data organized into rows and columns. Tables represent
entities within the system, such as users or chats.

•	 Columns: Column attributes or fields of a table hold the data. Each column has a specific
data type.

•	 Data types: Data types specify the kind of data that can be stored in a column, such as integers,
text, dates, or Booleans.

•	 Primary keys: Primary keys are unique identifiers for table rows, ensuring that each record
can be uniquely identified.

•	 Foreign keys: Foreign keys establish relationships between tables, linking rows of one table
to rows of another.

•	 Indexes: Indexes boost the speed of fetching data from a database table but require more write
operations and disk space to keep the index structure updated.

•	 Constraints: Constraints are rules applied to table columns to enforce data integrity, such as
NOT NULL, UNIQUE, CHECK, or foreign key constraints.

PostgreSQL Basics, Storage, and Setup112

Let’s show the schema of our database for handling chat applications and discuss it.

Defining the database schema

We will define tables for users, chats, and messages, and relationships between the tables. We will specify
the fields for every table, their names, types, and constraints. Then, we will define the relationships
between the tables using foreign keys.

The CREATE TABLE command is used to create a new table in the database. Each CREATE TABLE
statement defines the structure of the table by specifying its columns, their data types, and any
constraints on those columns:

sql/schema.sql

CREATE TABLE "user"
(

Now, let’s specify the columns.

SERIAL is a PostgreSQL data type used for auto-incrementing integer columns. It’s commonly used
for primary keys:

    id          SERIAL PRIMARY KEY,

Each new row inserted into the table without a specified value for this column will automatically get
a unique integer value.

The PRIMARY KEY constraint uniquely identifies each row in a table. The SERIAL column is often
used as a primary key.

Next, each column in the table is defined by its name followed by its data type and possibly one or
more constraints, as follows:

    "createdAt" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP NOT NULL,
    "updatedAt" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP NOT NULL,
    name        VARCHAR(500)                           NOT NULL,
    email       VARCHAR(200)                           NOT NULL,
    password    VARCHAR(500)                           NOT NULL
);

Here are the constraints we see in the preceding code block:

•	 TIMESTAMP(3): This data type stores a date and time, with precision up to milliseconds
(hence (3)). It’s used for columns that record times, such as createdAt and updatedAt,
which serve as indicators when the row was added to the database and changed the last time,
respectively. These two fields are very useful for debugging purposes.

Constructing the database schema 113

•	 VARCHAR(n): A variable character string type that can store up to n characters. For example,
VARCHAR(500) can store strings up to 500 characters long.

•	 NOT NULL: This constraint ensures that a column cannot have a NULL value, meaning each
row must have a value for this column.

•	 DEFAULT: This keyword is followed by a value or function that the column will use if no value
is specified during an insert. For example, CURRENT_TIMESTAMP automatically stores the
current date and time.

Now, we will create an index:

CREATE UNIQUE INDEX "user_email_key"
    ON "user" (email);

The CREATE UNIQUE INDEX command creates a unique index on the specified column(s) of
a table. A unique index ensures that two rows cannot have the same value in these columns. For
example, the email column in the user table cannot have duplicate values, enforcing unique email
addresses for each user.

Next, we can define a chat table:

CREATE TABLE "chat"
(
    id          SERIAL PRIMARY KEY,
    "createdAt" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP NOT NULL,
    "updatedAt" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP NOT NULL,
    "ownerId"   INT                                    NOT NULL
REFERENCES "user"
        ON UPDATE CASCADE ON DELETE CASCADE,
    name        VARCHAR(1000)                          NOT NULL
);

We can see the following in the preceding code block:

•	 INT: Stands for integer, a numeric data type that can store whole numbers.

•	 REFERENCES: This sets up a foreign key relationship between two tables. It ensures that the
value in this column must exist as a value in the referenced primary key of another table. For
example, ownerId in the chat table references id in the user table.

•	 Foreign key constraints with actions: The REFERENCES keyword not only establishes a
relationship between two tables but also supports defining actions upon updates or deletions:

	� ON UPDATE CASCADE: If the referenced entity is updated, the change is cascaded to the
referring entity. For example, if a user’s id property changes (which is rare and generally
not recommended), all related chat records, which means their ownerId property that has
the value of the user’s id property, will be updated accordingly.

PostgreSQL Basics, Storage, and Setup114

	� ON DELETE CASCADE: If the referenced entity is deleted, all referring entities will also
be deleted. For example, deleting a chat will delete all related message records.

Now, we will define a message table:

CREATE TABLE "message"
(
    id          SERIAL PRIMARY KEY,
    "createdAt" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP NOT NULL,
    "updatedAt" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP NOT NULL,
    "chatId"    INT                                    NOT NULL
REFERENCES "chat"
        ON UPDATE CASCADE ON DELETE CASCADE,
    type        VARCHAR(100)                           NOT NULL,
    message     TEXT                                   NOT NULL
);

The TEXT data type is used for long text strings. There’s no limit to the length of text it can store.

Now that we know the schema, we can create it in the database.

Creating the database schema

First, we will need to connect to our database using the psql tool, which is a terminal-based frontend
to PostgreSQL. To do that, we will need to identify the ID of our Docker PostgreSQL container by
running the following command in a new terminal window:

$ docker ps

Important note
Be sure to not turn off the postgres container we started before.

You will see an output similar to this:

CONTAINER ID   IMAGE                               COMMAND
                  CREATED          STATUS                          
PORTS  NAMES
40ddbde6ae09   postgres:latest                     "docker-
entrypoint.s…"   15 minutes ago   Up 15
minutes                   0.0.0.0:5434->5432/
tcp                           chat_backend_2_postgres_1

Writing CRUD SQL operations 115

The first value you see is the container ID; in my case, it is 40ddbde6ae09. Now, we can put the
container ID in the following command to connect to psql in our Docker container:

$ docker exec -it 40ddbde6ae09 psql -U test test

Let’s discuss what we see here:

•	 docker exec: Executes a command in a running container.

•	 -it: Combines the -i and -t flags. -i keeps STDIN (standard input) open even if not
attached, and -t allocates a pseudo-TTY (teletype, which simulates a terminal), making the
terminal interactive.

•	 40ddbde6ae09: The container ID or name where the command is to be executed.

•	 psql : The command to be run inside the container, which is the PostgreSQL
command-line interface.

•	 -U test: Specifies the username (test) to connect to the PostgreSQL server.

•	 test: The name of the database to connect to.

You will see that you entered the psql shell by seeing this line:

test=#

Now, you need to pass the SQL schema we discussed earlier in this section and press Enter. You should
see the following output:

CREATE TABLE
CREATE INDEX
CREATE TABLE
CREATE TABLE

With these commands, we have managed to create our database and the schema of the tables that
we will need for our chat application. Now, let’s talk about how we can add and retrieve data from
our database.

Writing CRUD SQL operations
Interacting with PostgreSQL involves using SQL, which is the standard language for relational database
management and manipulation. It allows us to perform various operations on the data stored within
our database, structured around the fundamental concepts of CRUD.

PostgreSQL Basics, Storage, and Setup116

Let’s discuss the most command SQL command types and their purposes:

•	 Data definition language: Commands that define the database structure. Examples include
CREATE, ALTER, and DROP, which can be used to create, modify, and delete database objects
such as tables and indexes.

•	 Data manipulation language: Commands that handle data manipulation within the tables.
These include INSERT (Create), SELECT (Read), UPDATE (Update), and DELETE (Delete).

•	 Data control language: Commands that deal with rights, permissions, and other controls of
the database system. Examples are GRANT and REVOKE.

•	 Transaction control language: Commands that manage transactions in the database, such as
COMMIT and ROLLBACK.

Now, let’s play around from inside our psql tool with our database – we will create a new user,
associate a chat and message with the user, then retrieve messages and chats, and finally update and
remove the user:

1.	 Inserting a new user:

INSERT INTO "user" (name, email, password)
VALUES ('Jane Doe', 'jane.doe@example.com', 'securePassword');

This statement adds a new row to the user table with values for the name, email, and
password columns. Each value corresponds to the column specified in the INSERT INTO
clause. This operation creates a new user record in the database.

2.	 Starting a new chat:

INSERT INTO "chat" ("ownerId", name)
VALUES (1, 'LLM fun');

Here, we insert a new row into the chat table. The ownerId column is set to 1, assuming
this is the ID of Jane Doe from the previous insert. The chat is named LLM fun.

3.	 Creating a new message in the chat:

INSERT INTO "message" ("chatId", type, message)
VALUES (1, 'text', 'Welcome to my tech corner!');

This command inserts a new message into the message table. chatId is set to 1, linking this
message to the previously created chat. The type column specifies the message format (in this
case, 'text'), and the message column contains the actual message content.

4.	 Retrieving all users:

SELECT * FROM "user";

Summary 117

This query fetches all columns (*) for every row in the user table, showing a complete list
of users.

5.	 Retrieving all messages from a specific chat:

SELECT message FROM "message" WHERE "chatId" = 1;

This SELECT statement retrieves all messages belonging to the chat with chatId equal to 1.
It filters rows using the WHERE clause to match the given condition.

6.	 Updating a user’s email:

UPDATE "user" SET email = 'new.jane.doe@example.com' WHERE id =
1;

This command updates the email column of the user with id = 1. The SET clause specifies
the new value for the column to be updated, and the WHERE clause ensures that only the record
for the specified user ID is updated.

7.	 Removing a chat:

DELETE FROM "chat" WHERE id = 1;

The DELETE FROM statement removes rows from the chat table where the condition in the
WHERE clause (id = 1) is met. This deletes the chat.

Important note
The DELETE FROM operation will cascade and delete any related messages due to the foreign
key constraint with ON DELETE CASCADE.

Summary
In this chapter, we started a critical journey into persistent storage, focusing on the integration of
PostgreSQL within Docker for our chat application. We covered the essentials of Docker, how to set
up PostgreSQL as a Docker container, the creation of a comprehensive database schema, and the
fundamentals of CRUD operations. This step is crucial for implementing the dynamic functionalities
of our chat application, enabling real-time data processing and manipulation, and further enhancing
our backend development skills for building sophisticated, data-driven web applications.

The following two chapters will take us deeper into the practical aspects of application development
by teaching us how to interact with our PostgreSQL database using SQL directly from our application.
We will use raw SQL queries to interact with our database in Chapter 8 and object-relational mapping
(ORM) in Chapter 9.

8
Interacting with PostgreSQL

Using Libraries

In the previous chapter, we established a foundation for persistent storage by setting up PostgreSQL
within Docker, enabling us to perform basic SQL queries. This setup is crucial for storing data
persistently across server sessions, directly impacting our application’s reliability and functionality.

Now, we’ll take a step forward by integrating SQL operations into our server. This chapter will focus on
utilizing the pg library to interact with our PostgreSQL database from within our server code. You’ll
learn how to seamlessly connect your backend server with the database, perform data operations,
and ensure that your data handling is both efficient and secure.

The following is what we’ll cover in this chapter:

•	 Integrating SQL implementation in the codebase

•	 Testing our SQL integrations to ensure reliability

This knowledge bridges the gap between your application and its data layer, enabling you to build
dynamic, data-driven features with confidence. By the end of this chapter, you’ll be equipped to handle
data manipulation directly from your backend, enhancing your application’s overall performance
and capabilities.

Technical requirements
We need to install pg. We can do this with the following command:

$ bun add pg@^8.11.3

We also need to install pg types as a dev dependency so that the library provides types for
our TypeScript:

$ bun add @types/pg@^8.10.9 -d

Interacting with PostgreSQL Using Libraries120

All the code we are going to discuss in this chapter is available at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/
main/Chapter08.

Integrating SQL implementation in the codebase
In Chapter 4, we created an interface for our database interactions and integrated it throughout
our codebase. To switch to the new SQL implementation, we need to create implementations of the
IDatabaseResource interface for users, chats, and messages. Starting with users, we’ll write
a class that conforms to IDatabaseResource<DBUser, DBCreateUser> to handle user
management in our database.

Writing a class

In the following code block, we define UserSQLResource to handle our users using SQL. We will
implement the IDatabaseResource interface, which contains quite a few methods, so we will
explain each function after the other:

src/storage/sql.ts

import type { Pool } from "pg";
import type {
  DBChat,
  DBCreateChat,
  DBCreateMessage,
  DBCreateUser,
  DBMessage,
  DBUser,
} from "../models/db";
import type { IDatabaseResource } from "./types";

export class UserSQLResource
  implements IDatabaseResource<DBUser, DBCreateUser>
{
  pool: Pool;

  constructor(pool: Pool) {
    this.pool = pool;
  }

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter08
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter08
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter08

Integrating SQL implementation in the codebase 121

Here are the initialization and constructor as seen in the preceding code block:

•	 pool: Pool;: Declares a class property named pool of type Pool from the pg library.
This Pool object is used to manage connections to the PostgreSQL database. Pool helps us
to reuse the connection established to the database.

•	 constructor(pool: Pool) { this.pool = pool; }: The constructor takes a
Pool object as an argument and assigns it to the class’s pool property. This Pool instance
is then used for executing SQL queries.

Let’s implement the create method now:

  async create(data: DBCreateUser): Promise<DBUser> {
    const query =
      'INSERT INTO "user" (name, email, password) VALUES ($1, $2, $3)
RETURNING *';
    const values = [data.name, data.email, data.password];
    const result = await this.pool.query(query, values);
    return result.rows[0] as DBUser;
  }

Here are the details of the preceding code lines:

•	 Placeholder parameters: $1, $2, $3 are parameter placeholders used in the SQL queries.
These are replaced by the values provided in the values array when the query is executed.
This approach helps prevent SQL injection attacks by separating the query structure from the
data it operates on, so that no malicious values can be inserted from the user input.

•	 Query execution: await this.pool.query(query, values) executes the SQL
query through the PostgreSQL connection pool. This asynchronous operation waits for the
query to complete and returns the result. Running I/O operations can be expensive – by making
them asynchronous, we ensure that our code can make use of idle time, allowing the CPU to
do other tasks while waiting for the I/O operation to finish. This helps optimize the use of our
computer’s resources.

•	 Processing the result: result.rows[0] as DBUser accesses the first row of the result
set and casts it to the DBUser type. This is used when expecting a single record in response
(common in create, delete, and get operations).

•	 The create method: The 'INSERT INTO "user" (name, email, password)
VALUES ($1, $2, $3) RETURNING *'; line is a SQL command that inserts a new
record into the "user" table with values for the name, email, and password. The method
returns a Promise that resolves with the result of the query, which is the created user.

Interacting with PostgreSQL Using Libraries122

Now let’s turn to the delete method:

  async delete(id: string): Promise<DBUser | null> {
    const query = 'DELETE FROM "user" WHERE id = $1 RETURNING *';
    const values = [id];
    const result = await this.pool.query(query, values);
    return result.rowCount ?? 0 > 0 ? (result.rows[0] as DBUser) :
null;
  }

The 'DELETE FROM "user" WHERE id = $1 RETURNING *'; SQL query deletes a
record from the "user" table where the id value matches the provided value. The RETURNING *
part returns the deleted row(s), allowing the method to provide feedback about the operation’s result.

result.rowCount ?? 0 > 0 checks whether any rows were affected (or returned) by the query.
This is useful for operations such as delete, where the existence of affected rows indicates success.

Now let’s write the get method:

  async get(id: string): Promise<DBUser | null> {
    const query = 'SELECT * FROM "user" WHERE id = $1';
    const values = [id];
    const result = await this.pool.query(query, values);
    return result.rowCount ?? 0 > 0 ? (result.rows[0] as DBUser) :
null;
  }

The 'SELECT * FROM "user" WHERE id = $1' SQL query selects all columns from the
"user" table for the row(s) where the id value matches the provided value. This retrieves the user’s
details based on the provided id.

Let’s define the find and findAll functions, which are going to use the same findByFields
private function with a param for returning one or multiple results:

async find(data: Partial<DBUser>): Promise<DBUser | null> {
    return this.findByFields(data, false);
  }

  async findAll(data: Partial<DBUser>): Promise<DBUser[]> {
    return this.findByFields(data, true);
  }

Now let’s define the findByFields function, which is going to iterate the fields in the passed data
and create a search query based on that:

  private async findByFields<T extends (DBUser | null) | DBUser[]>(

Integrating SQL implementation in the codebase 123

The generic type <T> method is a generic function that returns a promise of type T, which can be
either a single DBUser object, null, or an array of DBUser objects. The return type is determined
by the all parameter.

Let’s continue with defining the parameters for the method:

    data: Partial<DBUser>,
    all: boolean = false,
  ): Promise<T> {
    const fields: string[] = [];
    const values: unknown[] = [];

    Object.keys(data).forEach((key, index) => {
      fields.push(`"${key}" = $${index + 1}`);
      values.push(data[key as keyof DBUser]);
    });

    const whereClause =
      fields.length > 0 ? `WHERE ${fields.join(" AND ")}` : "";
    const query = `SELECT *
                       FROM \"user\" ${whereClause}`;

Here’s what is happening in the preceding code block:

•	 A dynamically constructed SQL query: The method constructs a WHERE clause dynamically
based on the keys and values of the data parameter, which is a partial representation of
DBUser. This allows for flexible queries based on the provided fields.

•	 A parameterized query with safe placeholder values: Similar to previous methods, it uses
parameter placeholders ($1, $2, etc.) to prevent SQL injection. The placeholders are replaced
by the corresponding values in the values array.

Here is the conditional return based on the all parameter:

const result = await this.pool.query(query, values);
    return all
      ? (result.rows as T)
      : result.rowCount ?? 0 > 0
        ? (result.rows[0] as T)
        : (null as T);
  }

Interacting with PostgreSQL Using Libraries124

If all is true, the method returns all matching rows as DBUser[]. If false, it returns the first matching
row as DBUser or null if no match is found.

Next, let’s cover the last method to update a user.

Updating a user

Now, we will define a function to update the user:

async update(id: string, data: Partial<DBUser>): Promise<DBUser |
null> {
    const fields: string[] = [];
    const values = [];

    Object.keys(data).forEach((key, index) => {
      fields.push(`"${key}" = $${index + 1}`);
      values.push(data[key as keyof DBUser]);
    });

    values.push(id); // Push the id as the last parameter
    const setClause = fields.join(", ");
    const query = `UPDATE \"user\"
                       SET ${setClause}
                       WHERE id = $${fields.length + 1} RETURNING *`;

    const result = await this.pool.query(query, values);
    return result.rowCount ?? 0 > 0 ? (result.rows[0] as DBUser) :
null;
  }
}

Let’s discuss what the update function does:

•	 Updates user records: This method updates user records in the database based on the provided
id and partial user data (data). It constructs a dynamic SET clause to update only the
specified fields.

•	 Dynamic SET clause construction: Similar to findByFields, update constructs the SET
clause dynamically based on the keys and values in the data object. Each field to be updated is
added to the fields array with its corresponding placeholder for value substitution.

•	 Appending id to values: The id of the record to be updated is appended to the end of the
values array. This id is used in the WHERE clause to identify the record to be updated.

•	 Returning the updated record: The RETURNING * part of the SQL query ensures that the
updated record is returned by the query.

Integrating SQL implementation in the codebase 125

With this, we have written a working class that uses SQL to interact with our user tables. We also need
to write similar classes to interact with chats and messages. They are very similar, so I’m not going
to explain the code here, but you can go through the code for all the classes and copy it from here:

https://github.com/PacktPublishing/Hands-On-Full-Stack-Web-Development-
with-TypeScript-5/blob/main/Chapter08/chat_backend/src/storage/sql.ts

If the class implementations look repetitive to you – they are. They indeed reuse a lot of similar SQL
queries and code logic. We are going to solve this problem in the next chapter with the use of ORM
and a single class to interact with the database.

Now, we can integrate our SQL implementation into our main function.

Incorporating SQL implementation into the main function

Add the import lines after all the other imports and add the new function to the end of the file:

src/controllers/main.ts

...
import { Pool } from "pg";
import {ChatSQLResource, MessageSQLResource, UserSQLResource} from
"../storage/sql";

...
export function createSQLApp() {
  const pool = new Pool({
    connectionString: Bun.env.DATABASE_URL,
  });
  return createMainApp(
    createAuthApp(new UserSQLResource(pool)),
    createChatApp(new ChatSQLResource(pool), new
MessageSQLResource(pool)),
  );
}

The preceding code initiates a database connection pool from an environment variable, then sets up
auth and chat apps with the database pool we have established.

Now, instead of creating our app with in-memory storage, we can swap it for the SQL implementation.

https://github.com/PacktPublishing/Hands-On-Full-Stack-Web-Development-with-TypeScript-5/blob/main/Chapter08/chat_backend/src/storage/sql.ts
https://github.com/PacktPublishing/Hands-On-Full-Stack-Web-Development-with-TypeScript-5/blob/main/Chapter08/chat_backend/src/storage/sql.ts

Interacting with PostgreSQL Using Libraries126

Replacing in-memory data storage with a SQL-based solution

Let’s now change our entrypoint file to use a SQL-based app:

src/index.ts

import { createSQLApp } from "./controllers/main";
const app = createSQLApp();
export default app;

To get our database up and running, we simply need to start the Docker container and ensure the
DATABASE_URL is correctly set in our environment variables.

From the previous chapter, we have a Docker Compose file ready for both testing and development.
Now, we’ll enhance it by adding an extra volume that loads the SQL schema when the container
starts. Just include these lines in the volumes section of both Docker Compose files for the
development containers:

docker_compose.yml

...
    volumes:
      - ./data/postgres:/var/lib/postgresql/data
      - ./data/init_scripts:/docker-entrypoint-initdb.d

Now, include these lines in the volumes section of both Docker Compose files for the testing containers:

docker_compose_test.yml

...
    volumes:
      - ./data/init_scripts:/docker-entrypoint-initdb.d

We’ve introduced a new script into the docker-entrypoint-initdb.d directory, ensuring
automatic execution upon container startup. Importantly, the schema.sql file from the previous
chapter should be placed in the ./data/init_scripts folder. Since our test container lacks
a persistent volume, each restart clears the database, providing a fresh schema setup—ideal for
testing scenarios.

Integrating SQL implementation in the codebase 127

When you start the containers, it will also execute our SQL file and will create the schema for us. To
activate the container, use this command:

$ docker-compose -f docker_compose.yml up -d

With the database operational, integrate the connection string into your .env.dev file as follows:

DATABASE_URL="postgresql://user:pass@localhost:5433/db"

It’s crucial to manage database connections in separate environment files for development and testing.
This is because Bun defaults to loading the .env file, overriding variables in any subsequently loaded
environment files.

If we launch the app now, we will read and write data to the database instead of the in-memory storage
we used before, ensuring data persistence across app restarts:

$ bun run dev --env-file .env.dev

Congrats! We have successfully replaced our in-memory data storage with a SQL-based solution,
which is very common to use in a production setup.

Important note
Remember that you can always clear the data created in your database and start again. For
this, you need to stop the Docker containers you are running and remove the data directory
for PostgreSQL:

$ docker-compose -f docker_compose.yml down

$ rm -r data/postgres

And don’t forget that after this, you need to recreate the required tables in the database, as
shown in the previous chapter – the only thing different is the user and db values we need
to use to connect to the database:

$ docker exec -it $DOCKER_PG_CONTAINER_ID psql -U user db

Let’s talk now about what we need to do to test our SQL integrations.

Interacting with PostgreSQL Using Libraries128

Testing our SQL integrations to ensure reliability
We have created the implementation using SQL, but we haven’t tested whether it works with our new
implementation. Fortunately, to complete that, we do not need to do much. Our test’s setup is flexible
enough to run the test with any data source we need, but we need to ensure that we provide the data
source correctly and that we clean it between the test runs. This is what we are going to accomplish
with the following code snippets:

1.	 First, start the test Docker container:

$ docker-compose -f docker_compose_test.yml up -d

2.	 Then, we will add utils for our test (tests/utils.ts) that are going to help us clean the
database between each test run:

import type { Pool } from "pg";

export async function resetSQLDB(pg: Pool) {
  await pg.query(
    `
      DELETE FROM message;
      DELETE FROM chat;
      DELETE FROM "user";`,
  );
}

Here, resetSQLDB deletes all the data from all the tables we use.

3.	 We also need to change the setup of our test files (tests/auth.test.ts) to use the
SQL-based storage when they run instead of the in-memory storage:

import { beforeEach, describe, expect, test } from "bun:test";
import { Pool } from "pg";
import { createSQLApp } from "../src/controllers/main";
import { resetSQLDB } from "./utils";

describe("auth tests", () => {
  const app = createSQLApp();

  const pool = new Pool({
    connectionString: Bun.env.TEST_DATABASE_URL,
  });

Summary 129

  beforeEach(async () => {
    await resetSQLDB(pool);
  });

  test("POST /register - normal case", async () => {
....

This setup is very similar to what we wrote in Chapter 5. The only difference is that as we store
the data in permanent storage, we cannot simply recreate the app between the test runs and
start with clear storage. Now, we run our resetSQLDB utility function to clean the database
before every test run. In a similar manner, we need to change the setup in our tests/chat.
test.ts file.

4.	 Before we run the tests, we also need to provide the environment variable with the connection
string to our database. Add the following to .env.test:

DATABASE_URL="postgresql://test:test@localhost:5434/test"

5.	 Now, use the test environment variables and run the tests with this command:

$ bun test –env-file .env.test

Our tests use the test database we started with Docker for running the tests, and they also clear
the data between the runs, so we always start with a clean database.

This is everything that we need to integrate with SQL in all parts of our application.

Summary
In this chapter, we’ve taken a significant step by integrating our backend server with PostgreSQL,
utilizing SQL and the pg library for direct database interactions. This integration allows us to efficiently
store, retrieve, and manipulate data within our server, laying the groundwork for a robust and dynamic
backend system. This knowledge is crucial for developing advanced backend functionalities, enabling
us to manage application data effectively.

Moving forward, in the next chapter, we will explore the use of Object-Relational Mapping (ORM) to
interact with our database. ORM will help us reduce code repetition and simplify database interactions,
making our development process more efficient and our codebase cleaner. This next phase is important
for enhancing our application’s maintainability and scalability.

9
Interacting with PostgreSQL

Using Prisma ORM

In the previous chapter, we delved into the world of persistent storage, focusing on the implementation
and management of databases within Docker containers. We learned how to set up PostgreSQL in
Docker, construct a robust database schema for a chat application, and perform essential CRUD
operations directly with SQL. This knowledge is pivotal in ensuring data persistence and integrity,
critical for maintaining user information and messages across server restarts in dynamic applications.

This chapter shifts our focus toward streamlining database interactions and migrations in web
development. We introduce object-relational mapping (ORM) as a powerful tool to abstract and
simplify database operations, specifically through Prisma, a next-generation ORM. By integrating
Prisma into our development workflow, we aim to enhance productivity, reduce errors, and promote
code clarity when interacting with our PostgreSQL database.

Understanding and utilizing ORMs, especially Prisma, is invaluable for developers. It not only simplifies
CRUD operations with its intuitive query language but also facilitates database schema migrations,
making it easier to evolve your database alongside your application without the hassle of manual SQL
script management.

The topics we’ll cover in this chapter are the following:

•	 Introduction to ORMs and Prisma

•	 Handling migrations using Prisma

•	 Interacting with the database using Prisma

•	 Testing our ORM integration:

Starting with Introduction to ORMs and Prisma, we’ll break down the concept of ORMs and discuss
the advantages of using Prisma over traditional SQL queries. This section will set the stage for
understanding how Prisma can make our development process more efficient and our code base
cleaner and more maintainable.

Interacting with PostgreSQL Using Prisma ORM132

Technical requirements
To proceed with this chapter, you need to install prisma and @prisma/client to use Prisma to
interact with our database. You can do it with this command:

$ bun add prisma@^5.7.1 @prisma/client@^5.7.1

Another tool that we need to install is dotenv. This tool will help us to load environment variables from
files before the Bun execution. We can install it with the following command globally for our system:

$ npm install -g dotenv-cli@^7.4.2

All the code we are going to discuss in this chapter is available at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/
main/Chapter09.

Introduction to ORMs and Prisma
At the heart of modern application development, ORM serves as a crucial bridge between the objects
in our TypeScript applications and the tables in a relational database. This technique allows us to
interact with our database using the programming language we’re already working with, sidestepping
the direct use of SQL. Essentially, ORMs let us treat database records as objects in our code, simplifying
data manipulation and management.

Here is why ORMs shine over plain SQL:

•	 Boosted productivity: By automating the creation of SQL queries, ORMs free us from manual
query writing, allowing us to focus on building features

•	 Cleaner code: They encapsulate the boilerplate of database interactions, making our code base
more readable and maintainable

•	 Ease of maintenance: With ORMs, adapting to schema changes becomes more straightforward,
ensuring our application evolves smoothly

•	 Flexibility across databases: Many ORMs support multiple database systems, making it easier
to switch or integrate different databases without changing our application logic

However, it’s not all smooth sailing. Here are some potential disadvantages of using ORMs:

•	 Performance overhead: The abstraction layer can sometimes generate less optimized queries
than hand-crafted SQL, affecting performance

•	 Complexity for simple queries: For straightforward database operations, ORMs can introduce
unnecessary complexity

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter09
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter09
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter09

Introduction to ORMs and Prisma 133

•	 Steep learning curve: Fully leveraging an ORM’s capabilities often requires a deep understanding
of its features and behaviors

•	 Loss of control: Advanced database optimizations may be harder to implement due to the
abstraction over SQL

All in all, ORMs are still very useful tools for applications with a lot of easy-to-medium-complexity
queries. So, let’s discuss the ORM that we are going to use in our project.

Introducing Prisma – our ORM of choice

Prisma emerges as an ORM tailored for TypeScript, offering a compelling suite of features designed
to streamline database operations. What sets Prisma apart is its focus on type safety and developer
experience, ensuring that we write secure and efficient database interactions with minimal effort.
Here is what Prisma brings to the table:

•	 Type safety: Prisma’s approach to type safety is unparalleled, providing us with autogenerated
types for our models. This integration drastically reduces the risk of runtime errors, making
our database interactions predictable and robust.

•	 Developer experience: With intelligent autocompletion and a comprehensive query builder,
Prisma turns database operations into a more seamless experience, enhancing productivity
and reducing bugs.

•	 Migration management: Prisma Migrate addresses the complexities of database schema
evolution, offering a streamlined process for applying and tracking schema changes.

Prisma also comes with a solution for the management of changes to our SQL schema, which is called
Prisma Migrate. Let’s talk more about it.

Understanding Prisma Migrate

Prisma Migrate is a feature within Prisma that automates the process of evolving your database schema
in a safe, easy, and version-controlled manner. It helps in creating, applying, and managing database
schema changes through simple commands. This feature tracks schema changes in versioned files,
allowing for collaborative development and straightforward deployment processes.

When you modify your Prisma schema file, Prisma Migrate can generate a corresponding SQL
migration script that reflects the changes. These scripts are applied to your database to update its
schema, ensuring that your database and application model stay in sync.

With this, we are ready to look into how we are going to handle migrations in our system using Prisma.

Interacting with PostgreSQL Using Prisma ORM134

Handling migrations using Prisma
To handle migrations and schema using Prisma, we need to define our database schema using the
Prisma format so that it can understand which SQL operations it transforms to.

We will first define the database provider we are going to use, and then we will define the structure
for each table. As a result, we will get migrations that we can run to generate a database schema and
also classes for interaction with the database from inside our code.

Defining the database schema

Let’s now write our user table in Prisma format:

prisma/schema.prisma

generator client {
  provider = "prisma-client-js"
}

These lines specify that a Prisma client should be generated for JavaScript/TypeScript. It means the
Prisma client is going to create classes in our code that we can call within our TypeScript application
to interact with the database.

In the following code lines, provider indicates the type of database. In this case, it’s PostgreSQL,
much like specifying the database engine in a connection string in SQL:

datasource db {
  provider = "postgresql"

The following code line defines the database connection string through an environment variable:

  url      = env("DATABASE_URL")
}

Now, we will create a User model that represents the user table:

model User {

Here is an id integer that serves as the primary key, auto-incrementing for each new record. This
mirrors the SERIAL primary key in SQL:

  id        Int      @id @default(autoincrement())

Handling migrations using Prisma 135

Next, we have timestamps for record creation and last update, automatically managed by Prisma:

  createdAt DateTime @default(now())
  updatedAt DateTime @updatedAt

These are the user attributes, with the email field marked as unique:

  name      String   @db.VarChar(500)
  email     String   @unique @db.VarChar(200)
  password  String   @db.VarChar(500)

The @db.VarChar(n) annotations specify the string length, directly mapping to SQL’s VARCHAR(n)
type definition.

Here is a one-to-many relationship with the Chat model, indicating that a user can have multiple
chats. In SQL, we managed this relationship with a user_id foreign key in the chat table:

  chats     Chat[]

}

Next, let’s write our chat table in Prisma format:

model Chat {
  id        String      @id @default(uuid())
  createdAt DateTime @default(now())
  updatedAt DateTime @updatedAt
  ownerId   String

An integer field represents a foreign key link to the User model. In SQL, this would be a column
with a foreign key constraint pointing to the user table.

The following lines establish a many-to-one relationship to User, connecting each chat to its owner.
This is a declarative way to handle foreign key relationships in Prisma:

  name      String   @db.VarChar(1000)
  owner     User     @relation(fields: [ownerId], references: [id])

The following stores the foreign key to the Chat model, linking each message to a chat:

  messages  Message[]
}

Interacting with PostgreSQL Using Prisma ORM136

Next, let’s define our message table:

model Message {
  id        String      @id @default(uuid())
  createdAt DateTime @default(now())
  updatedAt DateTime @updatedAt
  chatId    String

The following lines establish a foreign key relationship to Chat, ensuring each message is associated
with a specific chat:

  type      String   @db.VarChar(100)
  message   String   @db.Text
  chat      Chat     @relation(fields: [chatId], references: [id])
}

Now, that we’ve created our schema, let’s apply the migration to our database.

Applying the migration to our database

To apply the migration to our database, we will follow these steps:

1.	 First, let’s stop our dev database container if it is running:

$ docker-compose -f docker_compose.yml down

2.	 Then, we should delete the data/postgres folder as we will need to instantiate the
database again.

3.	 We also need to remove the data/init_scripts volume from both our docker_compose.
yml and docker_compose_text.yml files as we no longer want to create the schema
using native SQL when we start the container.

4.	 Now, run the container again:

$ docker-compose -f docker_compose.yml up -d

5.	 Now, we can run prisma to create and apply migrations to our database with the
following command:

$ bun --env-file=.env.dev run prisma migrate dev --name init

Interacting with the database using Prisma 137

Important note
If you encounter an issue on Windows that goes along the lines of Environment variable
is not found postgresql://user:pass@localhost:5433/db, you need to either
use a Bash-compatible terminal such as Git Bash, use WSL, or export the environment variable
manually before you run the command. You can export the variable manually by executing $
set DATABASE_URL=postgresql://user:pass@localhost:5433/db

6.	 You are going to see the following message in the terminal:

? We need to reset the "public" schema at "localhost:5433"
Do you want to continue? All data will be lost. › (y/N)

Type y and press Enter.

You should see the following message:
Your database is now in sync with your schema.

Also, you will notice that there is a new folder under prisma called migrations. The
migrations folder keeps track of changes that we applied to the database. When we change
our database, we will create a new migration, which we are going to apply. This guarantees that
we always keep track of changes we make to our database and can reliably recreate the database
structure in any environment.

In production, you cannot just remove the database and start again; if you make a change to
the schema, you need to apply the changes. This is exactly what migrations help us achieve.

With this in place, we can move to the next part of this chapter – how to interact with our database
from our code using Prisma.

Interacting with the database using Prisma
Now that we have the database ready for interactions, as well as our interaction client generated with
the necessary classes, we can write an implementation of our IDatabaseResource interface using
Prisma. First, we are going to import the prisma client that contains objects we will use to interact
with our tables; then we are going to implement CRUD methods delegating the main work to prisma.

Interacting with PostgreSQL Using Prisma ORM138

Defining the Prisma Client class

Let’s define a class that is going to implement IDatabaseResource and use prisma for
database interaction.

src/storage/orm.ts

The following line imports PrismaClient for database interaction:

import type { PrismaClient } from "@prisma/client";

The following code block initializes the class with a PrismaClient instance:

import type {
  DBChat,
  DBCreateChat,
  DBCreateMessage,
  DBCreateUser,
  DBMessage,
  DBUser,
} from "../models/db";
import type { IDatabaseResource } from "./types";

export class UserDBResource implements IDatabaseResource<DBUser,
DBCreateUser> {
  prisma: PrismaClient;

  constructor(prisma: PrismaClient) {
    this.prisma = prisma;
  }

The following code block uses Prisma client’s create method on the User model, spreading the
data object to match the create method’s expected input:

  async create(data: DBCreateUser): Promise<DBUser> {
    const user = await this.prisma.user.create({
      data: { ...data },
    });
    return user as DBUser;
  }

Interacting with the database using Prisma 139

The following code lines utilize Prisma client’s delete method, specifying which user to delete by
using a where clause with the user’s ID:

  async delete(id: string): Promise<DBUser | null> {
    const user = await this.prisma.user.delete({ where: { id: id } });
    return user as DBUser;
  }

The following code snippet uses Prisma client’s findFirst method to search for the first user
matching the given ID. A where clause is used to specify the search condition:

  async get(id: string): Promise<DBUser | null> {
    const user = await this.prisma.user.findFirst({ where: { id: id }
});
    return user as DBUser | null;
  }

Let’s continue with the functions that are left in UserDBResource and define the find, findAll,
and update methods.

These lines employ the findFirst method to locate the first user record that fits the search criteria
provided in data:

  async find(data: Partial<DBUser>): Promise<DBUser | null> {
    const user = await this.prisma.user.findFirst({ where: { ...data }
});

The following code lines use the findMany method to fetch multiple user records that match the
conditions in data:

    return user as DBUser | null;
  }

  async findAll(data: Partial<DBUser>): Promise<DBUser[]> {
    const users = await this.prisma.user.findMany({ where: { ...data }
});

The following code snippet utilizes the update method, specifying the user to update through a
where clause and applying the changes provided in data:

    return users as DBUser[];
  }

  async update(id: string, data: Partial<DBUser>): Promise<DBUser |
null> {
    const updateUser = await this.prisma.user.update({
      where: {

Interacting with PostgreSQL Using Prisma ORM140

        id,
      },
      data,
    });
    return updateUser as DBUser | null;
  }
}

As you can see, our Prisma client generated very comfortable classes that we can use to interact with
the database, which simplifies and abstracts the way we work with the database.

We also need to implement ChatDBResource and MessageDBResource, but as the code there
is very similar, you can simply copy these classes from here:

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-
TypeScript-5/blob/main/Chapter09/chat_backend/src/storage/orm.ts

We now have the ORM implementation, and we can integrate it into our main function.

Integrating ORM into the main function

To do this, add import lines after all the other imports and add the new function to the end of the file:

src/controllers/main.ts

...
import { PrismaClient } from "@prisma/client";
import {
  ChatDBResource,
  MessageDBResource,
  UserDBResource,
} from "../storage/orm";

...
export function createORMApp() {
  const prisma = new PrismaClient();
  prisma.$connect();
  return createMainApp(
    createAuthApp(new UserDBResource(prisma)),
    createChatApp(new ChatDBResource(prisma), new
MessageDBResource(prisma)),
  );
}

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/blob/main/Chapter09/chat_backend/src/storage/orm.ts
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/blob/main/Chapter09/chat_backend/src/storage/orm.ts

Testing our ORM integration 141

The preceding code imports our Prisma client so that we can create it and then sets up auth and chat
apps with the Prisma client. prisma.$connect(); is used to explicitly initiate the connection to
our Prisma client after we create a client. While it is not strictly necessary, it is still a good practice.

Now, instead of creating our app with SQL storage, we can swap it for the ORM implementation:

src/index.ts

import { createORMApp } from "./controllers/main";
const app = createORMApp();
export default app;

With this in place, we can launch the server, which is going to now use our ORM implementation to
talk to the database:

$ bun --env-file=.env.dev dev

Nice! We have replaced the SQL-based solution with an ORM one, which has a lot of pros, especially
for bigger applications.

The only thing left is to correctly interact with our database during testing, so let’s cover that next.

Testing our ORM integration
We need to see that our tests pass with the newly created ORM integration and that everything works
as expected. To do this, we will need to apply our migrations to the test Docker database and change
how we instantiate the tests. To do so, follow these steps:

1.	 First, start the test Docker container:

$ docker-compose -f docker_compose_test.yml up -d

2.	 Now, we can apply our migrations to the test database with the following command:

$ bun --env-file=.env.dev run prisma migrate deploy

First, we provide the test environment variables, and then we run all the migrations we have
created for our test database, which creates all the tables.

3.	 Now, let’s add an extra function to our test utils file (tests/utils.ts) to clean up between
the tests using Prisma client:

import type { PrismaClient } from "@prisma/client";
import type { Pool } from "pg";

export async function resetORMDB(prisma: PrismaClient) {
  await prisma.$transaction([

Interacting with PostgreSQL Using Prisma ORM142

    prisma.message.deleteMany(),
    prisma.chat.deleteMany(),
    prisma.user.deleteMany(),
  ]);
}
...

Let’s discuss the new resetORMDB function here. resetORMDB runs a transaction inside
prisma that deletes all the information in all our tables using deleteMany without any
query, which wipes out the whole table.

4.	 We also need to change the setup of our test files (tests/auth.test.ts) to use the
ORM-based implementation when they run instead of the SQL-based implementation:

import { PrismaClient } from "@prisma/client";
import { beforeEach, describe, expect, test } from "bun:test";
import { createORMApp } from "../src/controllers/main";
import { resetORMDB } from "./utils";

describe("auth tests", () => {
  const app = createORMApp();
  const prisma = new PrismaClient();

  beforeEach(async () => {
    await resetORMDB(prisma);
  });

  test("POST /register - normal case", async () => {
....

This setup is very similar to what we wrote in Chapter 5. The only difference is that we instantiate
our app using createORMApp and then run our resetORMDB utility function to clean
the database before every test run. You will also need to make a similar setup in the tests/
chat.test.ts file.

5.	 Now, you can run the tests with this command:

$ bunx dotenv -e .env -e .env.test -- bun test

This is everything that we need to integrate with the ORM in all parts of our application.

Summary 143

Summary
In this chapter, we delved into the integration of ORMs, with a focus on Prisma, into our development
workflow. We started with an introduction to ORMs and Prisma, highlighting their significance in
bridging the gap between databases and application logic. We then explored handling database schema
changes using Prisma’s migration tools, followed by learning to interact directly with the database
using Prisma’s client. Finally, we covered testing our ORM integration to ensure reliability and stability
in our application’s data layer.

This integration is crucial for enhancing our application’s development efficiency and maintainability
by abstracting complex database operations, making them more manageable and less error-prone.
It also ensures that our application remains robust and adaptable to changes, thanks to streamlined
schema migrations and thorough testing of data interactions.

In the next chapter, we shift our focus to integrating external APIs, specifically starting with the
groundwork needed to integrate the OpenAI API. We’ll start with the basics of integrating external
APIs with TypeScript and Hono, a crucial step toward enriching our application’s functionality by
generating dynamic responses to user messages. This step is essential for developing interactive
applications that leverage the power of external services.

Part 4:
AI Integration with OpenAI API

This part introduces the integration of artificial intelligence (AI) into your applications using the
OpenAI API. It focuses on how to set up and utilize AI technologies to enhance application capabilities
and provide advanced features such as natural language processing and machine learning. This
part is particularly valuable for developers looking to integrate cutting-edge AI functionalities into
their applications.

This part includes the following chapters:

•	 Chapter 10, Basics of Integrating External APIs with TypeScript and Hono

•	 Chapter 11, Setting up and Configuring the OpenAI API for the Backend

10
Basics of Integrating External

APIs with TypeScript and Hono

In the previous chapter, we learned how to handle our database to store persistent data. Now, it’s
time to finish our backend server by adding an API integration with OpenAI. We will focus here on
using fetch – a Promise-based method for making HTTP requests from our Bun environment –
to communicate with external services. Then, we will see how to improve the reliability of our API
integration by handling errors and introducing retries. Also, we will make sure that we get a response
in the format we want with the help of response validation. All this knowledge is going to enable us
to write robust and effective API integrations.

In this chapter, we’re going to cover the following main topics:

•	 Introduction to API integration in TypeScript using fetch

•	 Handling errors and retries

•	 Validating API correctness

We will start by talking about the importance of calling external APIs and how to do this with fetch.

Technical requirements
To proceed with this chapter, you don’t need to install any additional libraries.

All the code we are going to discuss in this chapter is available at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/
main/Chapter10.

Let’s get into our chapter now.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter10
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter10
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter10

Basics of Integrating External APIs with TypeScript and Hono148

Introduction to API integration in TypeScript using fetch
Integrating external APIs is a cornerstone of building dynamic and feature-rich applications. We
need to call external services to enrich the functionality of our application. For the sake of this book,
we will need to integrate the OpenAI API to generate Generated Pre-trained Transformer (GPT)
responses. Integrating with external APIs is essential but comes with a few things to watch out for:
the API call can take a significant time, it can fail, and we can get back something we do not expect
as a message with a different structure. We will go through how to mitigate all of the difficulties, and
we will start by showing how to communicate with an external API using the native fetch method.

The fetch interface allows you to make HTTP requests to servers from our backend. It’s a good
choice for API communication for several reasons:

•	 Native support: fetch is natively available in modern browsers, eliminating the need for
external libraries for basic request/response handling

•	 Promise-based: It works with Promises, enabling a more straightforward way to handle
asynchronous operations and making the code cleaner and more readable

•	 Support for various data types: fetch can easily handle various types of data, including
JSON, text, FormData, and even binary data such as ArrayBuffer and Blob, directly
aligning with the needs of diverse APIs

Let’s see fetch in action and how we can use it to define a function that is going to call the OpenAI
API to generate GPT responses:

src/integrations/api.ts

export async function callGPTAPI(data: object) {
  const res = await fetch("https://api.openai.com/v1/chat/
completions", {
    method: "POST",
    body: JSON.stringify(data),
    headers: {
      "content-type": "application/json",
      authorization: "Bearer " + Bun.env.OPENAPI_API_KEY,
    },
  });
  return res;
}

Handling errors and retries 149

This code defines an asynchronous function, callGPTAPI, which is intended to interact with an
external OpenAI GPT API to obtain completions based on the data it sends. We will discuss more
GPT functionalities in Chapters 11 and 12, but here, let’s focus on the integration code:

•	 fetch returns a Promise object that resolves when you get the response to that request,
whether it is successful or not.

•	 method: "POST" specifies the HTTP method the request uses; as we create something in
this request, it’s natural we use POST.

•	 body: JSON.stringify(data) is where the data object is converted into a JSON
string because the API expects the request payload to be in JSON format. This is necessary
because the fetch API does not automatically convert objects into JSON strings. The data
object contains parameters for the API request, such as the prompt and other settings for the
completion request.

•	 "content-type": "application/json" tells the server that the body of the request
contains JSON. This is important for the server to correctly interpret the data sent in the request.

•	 Authorization: "Bearer " + Bun.env.OPENAPI_API_KEY provides the
necessary authentication to access the API. The API uses a similar authentication method of a
JWT token as our backend. We will talk about how to create an OPENAPI_API_KEY token
in the next chapter.

This basic configuration is designed for handling API integration when it succeeds, commonly known
as the “happy path.” We also need to handle cases of failures from the APIs, so let’s talk more about
error management and retries.

Handling errors and retries
We should always treat APIs as erroneous because from time to time, they will fail, and we will need
to be ready for that. One popular solution for solving intermittent external API errors is to try the
request again with an increasing time between calls, a technique called retries with exponential
backoffs. A retry with exponential backoff means if a request fails, we are going to try calling the
external API again and wait more and more time before each call. Let’s implement a function that is
going to be a wrapper for our API call to enhance our API call with retries and exponential backoff:

src/integrations/retry.ts

export async function retryWrapper(
    fn: () => Promise<Response>,
    retryCount: number = 3,
    delayMs: number = 1000,
): Promise<Response> {
  async function attempt(attemptNumber: number = 1): Promise<Response>

Basics of Integrating External APIs with TypeScript and Hono150

{
    try {
      const result = await fn();
      if (!result.ok) {
        throw new Error(`Request failed with status ${result.
status}`);
      }
      return result;
    } catch (error: unknown) {
      if (retryCount > 0) {
        await new Promise((resolve) => setTimeout(resolve, delayMs *
Math.pow(2, attemptNumber - 1)));
        retryCount--;
        return attempt(attemptNumber + 1);
      } else {
        throw new Error(
            `API calls failed after retries: ${(error as Error)?.
message}`,
        );
      }
    }
  }
  return attempt();
}

Let’s explore in detail what is happening in the function:

•	 Function parameters:

	� fn: The function to execute, which returns a Promise<Response> instance. This is the
main action you’re trying to perform – our API request.

	� retryCount: The number of times to retry fn upon failure before giving up. Defaults to 3.

	� delayMs: The initial delay in milliseconds before the first retry attempt, in case of failure.
This delay increases exponentially in subsequent retries. Defaults to 1000 milliseconds
(1 second).

•	 Inner attempt function:

	� An asynchronous function defined within retryWrapper that attempts to execute fn.

	� It takes attemptNumber as a parameter, starting from 1, to track the number of attempts
made and to calculate the delay for the exponential backoff.

Handling errors and retries 151

•	 Executing fn and handling success:

	� The fn function is called within a try block. If the call is successful (result.ok is true),
a response is returned immediately.

	� If the response indicates failure (result.ok is false), an error is thrown, prompting
a retry attempt.

•	 Handling failures and retries:

	� In case of an error (either from fn failing directly or the response being unsuccessful), the
catch block checks if there are remaining retries with retryCount > 0.

	� Before retrying, the function waits for a period calculated by delayMs * Math.pow(2,
attemptNumber - 1). This wait time increases exponentially with each attempt, based
on attemptNumber, therefore, the wait time becomes 1, 2, and 4 seconds. This is the
exponential backoff mechanism, aimed at reducing the load on the server and improving
the chance of success in subsequent attempts.

	� retryCount is decremented, and attempt is recursively called with attemptNumber
+ 1 to indicate the next attempt.

•	 Exhaustion of retries:

	� If retryCount reaches 0, meaning all retry attempts have been exhausted without success,
the function throws an error, indicating that the API calls failed after the specified number
of retries.

	� The original error message from the last attempt is included in the error message for
debugging purposes.

•	 Return value:

	� The retryWrapper function initiates the retry logic by calling attempt and returns
its result. This will either be a successful response from fn or an error after all retries have
been exhausted.

This retry mechanics is going to ensure that we are going to increase our chance of solving short
temporary issues with the external API, and it will throw an error if it eventually doesn’t happen.
Now, we can move on to validating the response we got.

Basics of Integrating External APIs with TypeScript and Hono152

Validating API correctness
We have no guarantees on what the API is going to return to us. Or, rather, we do, but it’s a bad
practice to rely solely on guarantees, especially if the API is not controlled by us. To ensure that what
we expect is what we need to validate the response from the API call, our code will use zod to ensure
that responses from an API match a predefined structure, effectively validating the integrity of the data
before it’s used in the application. If the data is correctly structured, the function extracts and returns
a specific piece of content; otherwise, it throws an error indicating what went wrong:

src/integrations/validation.ts

import { z } from "zod";

const GPTResponseSchema = z.object({
  choices: z.array(
    z.object({
      message: z.object({
        content: z.string(),
      }),
    }),
  ),
});

export async function validateGPTResponse(response: Response):
Promise<string> {
  const responseData = await response.json();
  try {
    const parsed = GPTResponseSchema.parse(responseData);
    const content = parsed.choices[0].message.content.trim();
    return content;
  } catch (error) {
    throw new Error(`Invalid API response format, format ${error}`);
  }
}

Let’s break down the components of the function :

•	 First, we import the zod library.

•	 Then, we define GPTResponseSchema. According to this schema, the response should be
an object with a key named choices, which is an array of objects. Each object within the
choices array should have a message object, which in turn should have a content string.

Validating API correctness 153

•	 This structure mirrors a typical structure you might expect from a GPT API response, where
choices contains an array of possible completions or responses generated by the model.

•	 The validateGPTResponse function is an asynchronous function that takes a Response
object (the result of a fetch call) as its argument.

•	 It first converts Response to an object using response.json().

•	 It then attempts to validate this object against GPTResponseSchema defined earlier using
.parse(responseData). If the data matches the schema, it means the API response has
the expected format and the function proceeds.

•	 The code extracts the content of the first choice’s message, trims any leading or trailing whitespace
using .trim(), and returns this trimmed content as a string.

•	 If the response data does not match GPTResponseSchema, zod will throw an error during
the .parse() call.

•	 This error is caught in the catch block, and the function then throws a new error with a
message indicating that the API response format is invalid. The original error message from
zod (which typically contains details about what part of the data did not match the schema)
is included in the new error message for debugging purposes.

Now, we can retry our API call and also validate the response, so let’s put all the pieces together in
our function invocation:

src/integrations/gpt.ts

import { HTTPException } from "hono/http-exception";
import { callGPTAPI } from "./api";
import { retryWrapper } from "./retry";
import { validateGPTResponse } from "./validation";

export async function getGPTAnswer(data: object) {
  try {
    const response = await retryWrapper(() => callGPTAPI(data));
    const message = await validateGPTResponse(response);
    return message;
  } catch {
    throw new HTTPException(503, { message: "GPT integration is down"
});
  }
}

Basics of Integrating External APIs with TypeScript and Hono154

Let’s break this code down here:

•	 First, we include HTTPException from hono/http-exception, which we can use
to return responses with custom error codes and messages we want. Then, we import all the
functions we defined in the previous code pieces.

•	 GetGPTAnswer accepts the data that we are going to send further to callGPTAPI and
returns the GPT-generated message or an HTTPException error with code 503, which
means that our server is temporarily unavailable.

•	 Finally, we pass an anonymous function to retryWrapper, which is going to call our API with
() => callGPTAPI(data), and then we try to validate the response and return the result.

With this in place, we are ready to securely and reliably call our GPT API. Our API is not callable yet,
and we will explore in the next two chapters how to finish it.

Summary
In this chapter, we tackled the crucial task of showing how to integrate an API with our backend
server, spotlighting the utility of fetch for executing HTTP requests within the Bun environment.
We navigated through enhancing API reliability by addressing error handling, implementing retries
with exponential backoff, and ensuring the integrity of API responses through structured validation.
These strategies collectively improve our API interactions, enabling the development of secure, robust,
and efficient backend integrations.

The next chapter will delve into setting up and configuring the OpenAI API so that we can call it from
our application. This will include generating API keys to be able to call the OpenAI API and then
finishing the integration to generate a GPT response end to end.

11
Setting Up and Configuring the

OpenAI API for the Backend

In this chapter, we’ll explore and master the integration of the OpenAI API into our backend setup.
Starting with a deep dive into large language models (LLMs) and the OpenAI API, we’ll cover
everything from the basics to practical implementation steps. This knowledge is not only important
for enhancing the technical repertoire with the cutting-edge capabilities of artificial intelligence (AI)
but also for leveraging these technologies to innovate and streamline processes in your applications.
By the end of this chapter, you’ll be well equipped with the skills to configure secure and efficient
OpenAI API integration and bring the power of AI into your TypeScript projects.

In this chapter, we’re going to discuss the following topics:

•	 Introduction to LLMs and their applications

•	 Setting up OpenAI API integration

•	 Integrating the OpenAI API into our backend

We will start with a general introduction to LLMs and their applications.

Technical requirements
For this chapter, we won’t need any additional libraries.

All the code examples we discuss are available in the GitHub repository: https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/
main/Chapter11

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter11

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter11

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter11

Setting Up and Configuring the OpenAI API for the Backend156

Introduction to LLMs and their applications
LLMs are a big step forward in AI, helping machines understand and create text that sounds like it was
written by a human, thanks to a lot of training data. At the core of these developments are generative
pre-trained transformers (GPTs), a group of models recognized for their outstanding capability to
produce text that is both coherent and contextually appropriate on a variety of topics.

LLMs are at the forefront of AI, enabling computers to understand and produce text that mirrors
human communication. These models are trained on extensive datasets, covering a broad spectrum
of human knowledge, to predict and generate text based on input. Among the most prominent LLMs
is OpenAI’s GPT, which has revolutionized the way machines understand and interact with human
language. Let’s break down the technical workings in a more digestible manner:

•	 Transformer architecture: GPT models leverage the transformer architecture for parallel
word processing, moving away from traditional sequential processing. They feature a self-
attention mechanism that lets the model assess the importance of all words in a sentence at
once, improving its understanding of context.

•	 Pre-training and fine-tuning: Initially, GPT models are pre-trained on vast datasets to grasp
general language patterns. This stage is unsupervised, focusing on next-word prediction.
They’re then fine-tuned with specific datasets to tailor the model for particular tasks such as
translation or question-answering.

•	 Tokenization and embeddings: The input text is segmented into tokens (words or subwords),
which are then transformed into numerical embeddings. These embeddings encode semantic
information, facilitating language generation and understanding.

•	 Attention mechanism: Utilizing the self-attention mechanism, the model assesses the entire
input to decide on the significance of each word when generating text, allowing it to draw
connections across different parts of the text.

•	 Layered structure: Comprising multiple layers of transformer blocks, GPT models progressively
refine text representation through each layer, enabling the handling of complex language structures.

•	 Output generation: The model generates text by predicting the most likely next word based
on the input and its learned patterns, continuing until a specified end condition is met.

Integrating GPT models via the OpenAI API also involves understanding several key technical aspects
to effectively use its capabilities. Here’s a breakdown of the main concepts:

•	 Tokens: Tokens are the basic units of text that the model processes. Input text and output
generation are measured in tokens, which can be words, parts of words, or punctuation. The
total number of tokens you can send in a single request is limited, so understanding how to
effectively use tokens is important for optimizing API calls and managing longer conversations
or documents. One token is approximately four characters.

Introduction to LLMs and their applications 157

•	 Context windows: The context window refers to the maximum number of tokens the model
can consider for generating a response. Each version of GPT limits the context window size,
impacting how much previous text the model can consider when generating its output.

•	 Hallucinations: Hallucinations refer to instances where the model generates factually incorrect
or nonsensical information. While GPT models are highly advanced, they can still produce
errors or fabricate details, especially when dealing with topics outside their training data or when
pushed beyond their limits of understanding. Handling hallucinations often involves refining
prompts or postprocessing the output to ensure accuracy. At the same time, it’s important to
understand that hallucinations are essentially what LLMs do all the time, as they simply try to
guess the next word that “makes sense” in the given context.

•	 Temperature: Temperature controls the randomness of the model’s output. A lower temperature
results in more deterministic and predictable text, while a higher temperature encourages
creativity and variability. Modifying the temperature parameter allows you to customize the
model’s responses based on your requirements, from generating highly creative content to
providing accurate information.

•	 Prompt engineering: Crafting effective prompts is an art on its own, significantly influencing
the model’s output. Good prompt engineering involves providing clear, concise instructions and
context to guide the model toward the desired output. It can include specifying the format, style,
or content of the response and is a key skill for maximizing the potential of GPT integration.

Knowing this, we can discuss the technical cases that LLMs and GPTs can help us to solve, as the
possibilities are vast:

•	 Content creation: Automating the generation of articles, reports, and narratives, saving time
and resources

•	 Chatbots: Developing sophisticated virtual assistants that provide human-like interactions for
customer support and engagement

•	 Code generation: Assisting developers by generating code snippets, thus speeding up the
development process

•	 Language translation: Facilitating real-time, accurate language translation services for
global applications

•	 Personalized recommendations: Generating personalized content or product recommendations
in e-commerce platforms

•	 Data analysis: Summarizing complex datasets into understandable reports, enhancing
decision-making processes

•	 Educational tools: Creating personalized learning materials and interactive learning environments

•	 Email automation: Drafting and personalizing email responses, improving communication efficiency

Setting Up and Configuring the OpenAI API for the Backend158

•	 Search engines: Enhancing search algorithms to understand natural language (NL) queries,
delivering more relevant results

•	 Game development: Generating dynamic dialogues and narratives, creating more immersive
gaming experiences

•	 Classification: GPT models can decide on a category of information and be used to, for
example, detect spam

There are also many other players in the field that provide APIs to their models. One of the prominent
examples at the time of writing this book is Claude 3 Opus, which allows a much bigger context
window than GPT-4. This means that Claude 3 Opus allows the acceptance of more data as input and
produces more data as output, which is required in certain cases. In the next section, we will showcase
an example on the OpenAI API, but the integrations and concepts are mostly similar to other providers.

Let’s now see how we can configure OpenAI to get an API token for calling models’ endpoints from
our code.

Setting up OpenAI API integration
To use the GPTs provided by OpenAI, we need to set up our account there and create an API token
that will make it possible for us to access models programmatically. To do so, follow these steps:

1.	 First, we will need to register here: https://platform.openai.com/signup. Now,
we need to add a payment method and top up our account with $5 for the experiments.

2.	 We need to add a payment method here by clicking on the Add payment details button: https://
platform.openai.com/settings/organization/billing/overview.

3.	 You then need to enter payment information. After this, you will be prompted to add credits
to the account.

4.	 Type the minimum amount allowed; it will be enough for our experiments. Now, we can start
creating an API key.

5.	 To do this, we will go to the Api keys section: https://platform.openai.com/
api-keys.

6.	 We will be asked to also validate our phone number by a notification at the top of the screen.

7.	 Now, we need to create a new secret key by clicking on Create new secret key.

8.	 In the popup, we will go to the Restricted Permission tab.

9.	 We will enable access to chat completion by enabling only the section with /v1/chat/completions
by setting Write to it.

10.	 You will get a secret key generated that you will never see again, so keep it secure.

We’ve got the API key that we will use in our application. Now, let’s finish up our integration with
OpenAI from our code and see how it works.

https://platform.openai.com/signup
https://platform.openai.com/settings/organization/billing/overview
https://platform.openai.com/settings/organization/billing/overview
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys

Integrating the OpenAI API into our backend 159

Integrating the OpenAI API into our backend
We wrote most of the code for our API integration in the previous chapter, in the Introduction to API
integration in TypeScript using fetch section, so now it is time to write the missing pieces.

First, let’s put the API key that we got into our environment file:

.env

OPENAPI_API_KEY=HERE_GOES_YOUR_KEY

Now, we can add a function that will call our API integration code with configurations for a GPT model.

Here, we import the DBMessage type for our message and the getGPTAnswer function we created
in the previous chapter to call GPT:

src/integrations/generate_message.ts

import type { DBMessage } from "../models/db";
import { getGPTAnswer } from "./gpt";

Now, we can define a generateMessageResponse function that is going to generate a GPT
message response to the user message:

export async function generateMessageResponse(
  messages: DBMessage[],
): Promise<string> {

Here, we accept all messages relevant to our conversation to generate the next one. It is important to
include the message history and not only the last message, so that we have a consistent conversation.
Let’s configure the parameters needed for our GPT model:

  const params = {
    model: "gpt-3.5-turbo-0125",
    temperature: 0,
    max_tokens: 1000,
    top_p: 1,
    n: 1,
    stream: false,
    stop: "",
  };

Setting Up and Configuring the OpenAI API for the Backend160

Let’s discuss the parameters:

•	 model: Specifies the version of the GPT model to use for the request. "gpt-3.5-turbo-0125"
indicates a specific iteration of the GPT-3.5 Turbo model, optimized for certain types of tasks
and performance characteristics.

•	 temperature: Controls the randomness of the output. A temperature of 0 makes the model’s
responses deterministic, meaning given the same prompt, the model will always generate the
same response. The max value is 1, which makes it as “creative” as possible. This setting is useful
for tasks requiring consistency and less creativity.

•	 max_tokens: Sets the maximum number of tokens (including both the prompt and the
generated response) that the model will output in its response. 1000 tokens means the response,
combined with the input prompt, will not exceed 1,000 tokens in total. This limit is important
for controlling the length of the generated content.

•	 top_p: Known as “nucleus sampling,” top_p controls the number of potential words the
model evaluates. A higher top_p value allows the model to consider a wider range of words,
including those that are less probable, resulting in more varied text output. Setting it to the
max value of 1 means all potential words are included in the generation, and setting it to 0.5
means only words that make up 50% of all the words’ probability will be used.

•	 n: Specifies the number of responses to generate for the given prompt. 1 means the model will
generate a single response for each request. This is useful for applications that require a unique
output for each input.

•	 stream: Determines whether the model’s output should be streamed. false indicates that
a response will be sent back only after it’s fully generated. Streaming is beneficial for receiving
the model’s output in real time, especially for longer responses, but here it is not enabled.

•	 stop: Sets a stop sequence at which the model will stop generating further tokens. An empty
string ("") means there is no specific stop sequence, and the model will continue generating
tokens until another stopping condition is met (such as reaching the max_tokens limit).

Now, let’s construct the data object we are going to send to our OpenAI endpoint:

  const data = {
    ...params,
    messages: [
      {
        role: "system",
        content: `You are a helpful AI assistant who answers to the
user messages`,
      },
      ...messages.map((m) => ({ role: m.type, content: m.message })),
    ],
  };

Integrating the OpenAI API into our backend 161

  return getGPTAnswer(data);
}

Here, we create a data object that consists of configuration parameters and messages we are going to
send to the API. The first message by the “system" role is the way we provide additional instructions
for our GPT models, as it listens to the “system" role as an instruction.

At the end, we return a response from calling getGPTAnswer.

We are almost done; the only thing left is to actually call the generateMessageResponse
function from our message creation endpoint. For this, we will need to replace our dummy message
with a call to this function:

src/controllers/chat.ts

import { generateMessageResponse } from "../integrations/generate_
message";
...
chatApp.post(
    CHAT_MESSAGE_ROUTE,
...
      await messageResource.create(userMessage);

      const allMessage = await messageResource.findAll({ chatId });
      const response = await generateMessageResponse(allMessage);
      const responseMessage: DBCreateMessage = {
        message: response,
        chatId,
        type: "user",
      };

First, we get all the messages in the chat, then we get the response from our endpoint, and finally, we
put it in our DB message object to insert in the database and return to the user.

The only bit left is that now, as we call the real endpoint, we need to also adapt our test to account
for it. Let’s change the lines where we expect the response message to be a dummy message to any
non-empty string:

tests/chat.test.ts

...
expect(messages.data[0].message).toBe("Hello World");
expect(messages.data[1].message?.length).toBeGreaterThan(0);

Setting Up and Configuring the OpenAI API for the Backend162

With this in place, our integration is ready, and now, if you call the message creation endpoint from
curl, you will observe that we get a GPT-generated response in return.

This has been a great feat, and now we are done with the backend part of the functionality and are
ready to get on the frontend journey.

Summary
In this chapter, we covered how LLMs and GPT models work and the main technical aspects we need
to know to integrate with them. Then, we discussed how to set up an account at OpenAI and get a
token for API calls. Finally, we integrated the API into our backend system. All this knowledge enables
us to integrate AI-based functionality so that we can solve various tasks in our backend systems.

Now, we are going to turn our attention to the frontend part of our chat application and our Svelte journey.

Part 5:
Frontend Development

with Svelte

The final part of the book focuses on frontend development using Svelte, a modern tool for building
reactive and efficient user interfaces. This part will guide you through setting up a Svelte project,
developing a chat application, and applying advanced frontend techniques to enhance performance
and maintainability. It’s designed to provide a comprehensive understanding of how to build and
optimize frontend architectures effectively.

This part includes the following chapters:

•	 Chapter 12, Introduction to Svelte for Frontend Development

•	 Chapter 13, Setting up the Svelte Project

•	 Chapter 14, Svelte Chat Application Development

•	 Chapter 15, Advanced Svelte Techniques

12
Introduction to Svelte for

Frontend Development

We’ve successfully finished our backend logic and learned how to build robust and extensible APIs.
Now, it’s time for us to write the part of the application that matters the most for our end users: the
frontend. To do that, we will use Svelte as our frontend library. Before we start building the actual
application, we will need to discuss what Svelte is, why we chose it, and cover the main aspects of
developing apps in Svelte – and this is exactly what we are going to cover in this chapter. By the end
of it, we will have a good grasp of Svelte and will be equipped with the knowledge to start developing
the frontend with it.

We will cover the following topics in this chapter:

•	 What is Svelte?

•	 Learning Svelte fundamentals

Technical requirements
To proceed with this chapter, we won’t need any additional libraries.

All the code examples we are going to discuss in this chapter are available at https://github.
com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/
tree/main/Chapter12.

What is Svelte?
Svelte is an innovative component-based JavaScript framework for building UIs. Unlike traditional
frameworks such as React, Angular, or Vue, Svelte shifts much of the work from the browser to the
build step, compiling applications to highly optimized vanilla JavaScript at build time.

Let’s touch briefly on its history now and also understand how it is different from other frameworks.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter12
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter12
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter12

Introduction to Svelte for Frontend Development166

History of Svelte

Svelte was created by Rich Harris and first released in 2016. Harris, a graphics editor at The New York
Times, designed Svelte to address the complexities and performance bottlenecks inherent in existing
JavaScript frameworks. Svelte has evolved rapidly, with Svelte 3 introduced in 2019, bringing significant
advancements, including a new reactivity model that further distinguishes it from its predecessors.
Svelte 4 was released in 2023 with major performance improvements.

Differentiation from other frameworks

The key differentiator of Svelte lies in its compile-time philosophy. While frameworks such as React
and Vue rely on virtual DOM diffing algorithms at runtime to update the UI, Svelte generates minimal,
imperative code during build time to directly update the DOM when the state of an app changes. This
approach reduces overhead and runtime dependencies, leading to faster initial loads and smoother updates.

Pros of using Svelte include the following:

•	 Performance: By avoiding the virtual DOM and minimizing runtime overhead, Svelte applications
typically start faster and remain responsive even as they grow in complexity.

•	 Simplicity: Svelte’s syntax is clean and approachable with less boilerplate, making it easier for
developers to read and write code. Its reactivity model is straightforward, relying on assignment
to trigger updates.

•	 Developer experience: Svelte offers a delightful developer experience, with clear error messages,
comprehensive documentation, and a supportive community. Its single-file component format
integrates styles, logic, and markup, streamlining development.

•	 Size efficiency: Applications built with Svelte are often smaller than those built with other
frameworks, thanks to the compile-time optimizations. This results in better performance
and faster loading times.

•	 Built-in features: Svelte comes with built-in support for animations, transitions, and state
management, reducing the need for external libraries.

•	 Ease of learning: Svelte introduces a linear learning curve and provides a tremendously useful
interactive tutorial into all of its features at https://learn.svelte.dev/tutorial.

While Svelte offers many advantages, there are also some considerations that might make it less
suitable for certain projects compared to other established frameworks. Here are some of the cons
associated with Svelte:

•	 Community and ecosystem size: Being newer and less widespread than giants such as React
or Angular, Svelte’s community and ecosystem are smaller. This can mean fewer third-party
libraries, resources, and community support available, which might hinder solving specific
problems or finding pre-built solutions.

https://learn.svelte.dev/tutorial

Learning Svelte fundamentals 167

•	 Fewer learning resources: Although the quality of Svelte’s official documentation is excellent,
there might be fewer tutorials, courses, and external learning materials available compared to
more established frameworks.

•	 Job market: The demand for Svelte developers is growing but still lags behind the demand for
developers with expertise in more established technologies such as React, Vue, or Angular. This
could be a consideration for developers prioritizing the marketability of their skills.

•	 Advanced use cases: While Svelte is highly capable, very complex applications might benefit
from the more mature ecosystems of larger frameworks, which offer a wider range of solutions
for scalability and optimization out of the box.

•	 Tooling and integrated development environment (IDE) support: Though improving, tooling
around Svelte (for example, plugins for code editors, IDEs, and debugging tools) may not be as
advanced or as plentiful as those available for more established frameworks.

Despite these considerations, there are compelling reasons why Svelte was chosen for developing our
frontend application. Svelte is driven by its performance benefits, the developer experience it offers, and
its suitability for the project’s specific requirements. Despite its smaller ecosystem, Svelte’s advantages
align well with our goals of building a fast, efficient, and maintainable frontend application.

It’s time that we get to know Svelte with examples.

Learning Svelte fundamentals
We will start our journey by talking about what we can see in a Svelte component and how it
works together.

Component composition structure

Svelte components are encapsulated units of HTML, CSS, and JavaScript (or TypeScript) logic
that define parts of a UI. A Svelte component is typically written in a .svelte file, which neatly
bundles together the structure (HTML), appearance (CSS), and behavior (JavaScript/TypeScript) of
UI elements. When using TypeScript, you can define types and interfaces to ensure type safety and
improve the development experience.

Introduction to .svelte file structure

A .svelte file is divided into three primary sections:

1.	 HTML/markup block: This section contains the HTML structure of the component and
Svelte-specific syntax for reactivity, loops, conditionals, and event handling, enclosed within
the <html> tag.

Introduction to Svelte for Frontend Development168

2.	 Script block: Enclosed within <script> tags, this area is where you write the component’s
JavaScript or TypeScript logic. To use TypeScript, we will need to include lang="ts" in
the <script> tag. In this tag, you can define component props, local state, functions, and
reactive statements.

3.	 Style block: CSS styles are placed within a <style> tag. Styles defined here are scoped to
the component, meaning they won’t leak out and affect other parts of the application unless
explicitly made global.

Let’s see an example of a simple component with all these mentioned parts:

Hello.svelte

<script lang="ts">
  export let name: string = 'World';
</script>

<main>
  <h1>Hello {name}!</h1>
</main>

<style>
  main {
    text-align: center;
    color: purple;
  }
</style>

In Svelte, it is more common to stick to the Pascal case names, so this is what we used for the filename here:

1.	 Script block: The component begins with a script block where TypeScript is enabled, <script
lang="ts">. We declare a prop named name of type string, which allows this component
to receive a name value from its parent.

2.	 HTML/markup block: The HTML structure consists of a <main> element containing an
<h1> tag. The text within the <h1> tag dynamically displays the name prop’s value, showcasing
Svelte’s reactive bindings. Curly braces ({name}) are used to reference the JavaScript variable
in the HTML markup.

3.	 Style block: The styles are scoped to this component, styling the <main> element to center
the text and set its color to purple. These styles won’t affect elements outside this component.

Let’s now cover how reactivity works in Svelte.

Learning Svelte fundamentals 169

Reactivity

Svelte’s reactivity system is uniquely straightforward and powerful, enabling seamless updates to the
UI in response to state changes with minimal code. By simply assigning new values to variables, Svelte
components reactively update the DOM. Additionally, Svelte’s reactive statements, denoted by $:,
allow for automatic re-computation of expressions when their dependencies change.

Let’s explore both concepts—reactivity through assignment and reactive statements—within a Svelte
example. We will create a counter that we can increment when you click on a button:

Count.svelte

<script lang="ts">
    let count: number = 0;
    $: doubled = count * 2;
    function increment() {
        count += 1; // Triggers reactivity
    }
</script>

<button on:click={increment}>
    Clicked {count} {count === 1 ? 'time' : 'times'}
</button>
<p>Doubled Value: {doubled}</p>

Let’s discuss the preceding code block in detail:

•	 Script block:

	� The count variable is declared with a type of number and is initialized to 0. This simple
state will be reactively updated in the UI whenever its value changes.

	� A $: doubled = count * 2; reactive statement is used to define a derived value
named doubled, which automatically recalculates whenever count changes. This showcases
how effortlessly Svelte handles derived state or side effects in response to state modifications.

	� The increment function demonstrates triggering reactivity in Svelte. By incrementing
count, we not only update the count variable itself but also indirectly cause doubled
to update, thanks to the reactive statement.

Introduction to Svelte for Frontend Development170

•	 HTML/markup block:

	� Contains a button that displays the current count. Each click on the button calls increment,
showcasing the direct reactivity by updating the text displayed on the button itself.

	� The <p>Doubled Value: {doubled}</p> paragraph displays the derived doubled
value, which updates reactively as count changes, illustrating the power of reactive statements
for managing derived state.

We’ve seen click events in action in this example of code, but let’s explore further how to write and
handle events in Svelte.

Events

Events in Svelte are handled through the on:eventName directive, making it straightforward
to listen for user actions such as clicks, input changes, or more complex events. Modifiers such as
preventDefault can be appended to event directives to modify the event’s default behavior
directly in the markup, streamlining the code.

Components can dispatch their own custom events using Svelte’s built-in createEventDispatcher
function. This feature is particularly useful for creating encapsulated, reusable components that
communicate with their parents or other components.

In this class, we will increment a counter when a user clicks on the button. We will reset the state to
0 when the Reset button is pressed, and we are also going to dispatch a custom event to the parent:

EventDispatch.svelte

<script lang="ts">
    import { createEventDispatcher } from 'svelte';

    let count: number = 0;
    const dispatch = createEventDispatcher<{ reset: void }>();

    function increment() {
        count += 1;
    }

    function handleResetClick(event: MouseEvent) {
        count = 0;
        dispatch('reset'); // Dispatching a custom event named 'reset'
    }
</script>

Learning Svelte fundamentals 171

The counter’s state is stored in a count variable. The increment function increases this count
variable, demonstrating direct event handling by incrementing the count variable upon a button click.

We use Svelte’s createEventDispatcher function to create a dispatcher function, enabling the
component to emit a custom reset event. The handleResetClick function resets the count
variable to 0 and dispatches this event, showcasing how components can communicate actions upward
to their parent components or other listeners.

The handleResetClick function also demonstrates how TypeScript can be used to type event
handlers, in this case, specifying that the event parameter is of type MouseEvent.

Two buttons are defined: one for incrementing the counter and another for resetting it. An on:click
directive is used to attach event handlers to these buttons:

<button on:click={increment}>Increment</button>
<button on:click|preventDefault={handleResetClick}>Reset</button>

The preventDefault modifier is used with the Reset button’s click event to demonstrate event
modifiers in Svelte. This modifier prevents the default action that belongs to the event (useful in cases
such as form submission buttons within <form> tags), although its effect is not directly observable
in this example since the button click doesn’t have a default behavior to prevent.

We can now write a parent component that is going to handle the custom reset event we wrote:

EventCatch.svelte

<script lang="ts">
    import EventDispatch from './EventDispatch.svelte';
    function handleReset() {
        console.log('Counter was reset');
    }
</script>

<main>
    <EventDispatch on:reset={handleReset} />
</main>

The handleReset function is defined to perform actions when the reset event is caught.
This is where you can add any logic that should execute in response to the reset event from the
EventDispatch component.

In the markup, we include the Counter component and use the on:reset directive to listen
for the reset event. When the reset event is dispatched from the Counter component, the
handleReset function is called.

Next, let’s cover another important aspect of how to handle form data with the help of bindings in Svelte.

Introduction to Svelte for Frontend Development172

Bindings

Svelte simplifies the synchronization of UI elements with application state using its intuitive binding
system. This system allows for a two-way data flow between state variables and UI elements, such as
input fields and select boxes, without the need for explicit event handling or manual DOM updates.
Let’s explore this with an example that demonstrates bindings with an input field and a select box.

In this example, we’ll create a Svelte component that includes a text input and a select box. Both will
be bound to local state variables, showcasing how changes to these UI elements automatically update
the variables and vice versa.

Two state variables, name and favoriteColor, are declared with initial values. These variables
will be bound to an input field and a select box, respectively:

Binding.svelte

<script lang="ts">
    let name: string = 'John Doe';
    let favoriteColor: string = 'blue';

    const colors: string[] = ['red', 'green', 'blue', 'yellow'];
</script>

A colors array is defined, listing the options for the select box. This array is used to dynamically
generate the select box options using Svelte’s {#each} block.

The text input is bound to the name variable using bind:value={name}:

<div>
    <input type="text" bind:value={name}/>

This creates a two-way binding between the input’s value and the name variable, meaning any change
in the input field will automatically update name, and any programmatic change to name will update
the input field’s value.

The select box is bound to the favoriteColor variable using bind:value={favoriteColor}:

    <select bind:value={favoriteColor}>

Similar to the input binding, this establishes a two-way binding, ensuring the select box reflects the
current favoriteColor value and updates it upon user selection.

The select box options are dynamically generated using Svelte’s {#each} loop, iterating over the
colors array:

        {#each colors as color}
            <option value={color}>{color}</option>

Learning Svelte fundamentals 173

        {/each}
    </select>

This approach demonstrates how to handle dynamic lists in select boxes with Svelte.

This demonstrates the reactivity of Svelte bindings by displaying the current values of name and
favoriteColor. As these variables are updated via the UI elements they’re bound to, the displayed
text automatically updates to reflect the current state:

</div>

<p>Hello, {name}! Your favorite color is {favoriteColor}.</p>

We can continue with conditionals and look more into how to handle arrays in Svelte.

Handling conditionals and iterating arrays

Svelte provides a straightforward syntax for conditional rendering and iterating over lists, making
dynamic UIs simpler to implement. Let’s explore how to use Svelte’s {#if}, {#else}, and {#each}
blocks, combined with TypeScript, to control what is rendered based on the application’s state and
to display lists of items.

Our example will demonstrate creating a task list where tasks can be marked as completed. It will
showcase conditional rendering to display different messages based on whether the list is empty and
iterating over a list of tasks with the ability to dynamically update their completion status:

Conditional.svelte

<script lang="ts">
    interface Task {
        id: number;
        name: string;
        completed: boolean;
    }

A Task interface is defined to describe the structure of a task, ensuring type safety for our list of tasks:

    let tasks: Task[] = [
        {id: 1, name: 'Learn Svelte', completed: false},
        {id: 2, name: 'Build an app', completed: false},
    ];

Introduction to Svelte for Frontend Development174

The toggleTaskCompletion function toggles the completion status of a task. It uses taskId
to find the task in the array and updates its completed property:

    function toggleTaskCompletion(taskId: number) {

The if statement checks if the tasks array is empty. If so, a message prompts the user to add tasks:

        const taskIndex = tasks.findIndex(task => task.id === taskId);
        if (taskIndex !== -1) {
            tasks[taskIndex].completed = !tasks[taskIndex].completed;
        }
    }
</script>
{#if tasks.length === 0}
<p>No tasks found. Add some tasks!</p>

This illustrates how to conditionally render content based on the application’s state.

Now, we will see an example of using Svelte’s else block to handle alternative content rendering.

In the next lines, we will see a {#each} block that iterates over the tasks array, rendering a
list item for each task. This shows how to display dynamic lists in Svelte:

{:else}
    
        {#each tasks as task}
            <li on:click={() => toggleTaskCompletion(task.id)}>
                <input type="checkbox" bind:checked={task.completed}/>
{task.name}
            
        {/each}
    
{/if}

Each list item contains a checkbox bound to the task’s completed property, demonstrating two-way
data binding within a list. Clicking the list item calls toggleTaskCompletion for the task, toggling
its completion status. This interaction showcases handling events and updating state based on user actions.

We can now talk about how props passing works in Svelte.

Props

Props in Svelte are a way to pass data from a parent component to a child component, enabling
component reuse and the composition of complex interfaces. When using TypeScript, you can enhance
props with types, ensuring that components receive data in the expected format and improving the
developer experience through better tooling support.

Learning Svelte fundamentals 175

To declare a prop in a Svelte component, you use the export keyword on a variable within the
<script> tag. This makes the variable accessible to any parent component that uses the child
component. TypeScript allows you to specify the type of each prop, adding a layer of type safety.

Our example demonstrates creating a Greeting component that accepts a name prop of type
string. The parent component will pass a name to the Greeting component, which will then
render a personalized message:

Greeting.svelte

<script lang="ts">
  export let name: string;
</script>

<p>Hello, {name}!</p>

The name variable is declared and exported, making it a prop that the Greeting component expects
from any parent component. Specifying the type as string ensures that name is treated as a string,
leveraging TypeScript’s type checking.

The markup simply displays a greeting message incorporating the name prop.

Now, let’s use the Greeting component within a parent component, passing a name to it as a prop:

GreetingParent.svelte

<script lang="ts">
    import Greeting from './Greeting.svelte';
</script>

<main>
    <Greeting name="John" />
</main>

Within the parent’s <main> element, the Greeting component is instantiated and given a name
prop with the value "John". This showcases how data is passed down from parent to child components
in Svelte.

Now, let’s cover the lifecycle of a Svelte component.

Lifecycle

Svelte offers lifecycle hooks that allow you to perform actions at different stages of a component’s
life, such as when it’s created, updated, or destroyed. These hooks are crucial for managing resources,
subscriptions, and other side effects in a component.

Introduction to Svelte for Frontend Development176

Let’s create a component that utilizes lifecycle hooks to demonstrate how they can be used:

Lifecycle.svelte

<script lang="ts">
    import { onMount, beforeUpdate, afterUpdate, onDestroy } from
'svelte';
    let count: number = 0;
    onMount(() => {
        console.log('Component mounted');
    });
    beforeUpdate(() => {
        console.log('Component will update');
    });
    afterUpdate(() => {
        console.log('Component updated');
    });
    onDestroy(() => {
        console.log('Component will be destroyed');
    });

    function increment() {
        count += 1;
    }
</script>

<button on:click={increment}>Increment</button>
<p>Count: {count}</p>

Let’s talk about the lifecycle hooks that we use here:

•	 onMount: This hook is used to log a message when the component is mounted. It’s an ideal
place for initialization tasks, such as fetching data or setting up subscriptions that require the
component to be present in the DOM.

•	 beforeUpdate and afterUpdate: These hooks provide insight into the component’s
reactive updates. beforeUpdate is useful for preparations before the DOM updates, and
afterUpdate can be used for actions that require the updated DOM, such as scrolling or
focusing elements

•	 onDestroy: Here, a cleanup action is logged, demonstrating where you would typically free
resources or remove event listeners to prevent memory leaks.

We are now ready to cover the last part, which is to handle the state of our app using stores.

Learning Svelte fundamentals 177

Stores

Svelte stores are a built-in mechanism for managing state reactively across components. They’re
particularly useful for sharing stateful logic and data in different parts of your application without
the need for prop drilling or context providers.

Svelte provides several types of stores, and the most commonly used is a writable store. A
writable store allows you to create a reactive state that components can subscribe to and update
from anywhere in the app.

Let’s create a simple task manager where tasks can be added and marked as completed. We’ll use a
writable store to manage the tasks and TypeScript to ensure our tasks conform to a defined structure:

stores/taskStore.ts

import { writable } from 'svelte/store';

interface Task {
  id: number;
  title: string;
  completed: boolean;
}

const initialTasks: Task[] = [
  { id: 1, title: 'Learn Svelte', completed: false },
];

export const tasks = writable<Task[]>(initialTasks);

We define a Task interface that represents the structure of a task in our application.

A writable store named tasks is created with an initial array of tasks. The store is typed as
Task[], indicating it holds an array of Task objects.

Now, let’s use the tasks store in a Svelte component to display and update a list of tasks:

Task.svelte

<script lang="ts">
  import { tasks } from './stores/taskStore';

  function toggleCompletion(taskId: number) {
    tasks.update(allTasks =>
      allTasks.map(task =>
        task.id === taskId ? { ...task, completed: !task.completed } :

Introduction to Svelte for Frontend Development178

task
      )
    );
  }
</script>

  {#each $tasks as task}
    <li on:click={() => toggleCompletion(task.id)}>
      <input type="checkbox" bind:checked={task.completed} /> {task.
title}
    
  {/each}

We import the tasks store from its module. In Svelte, you access a store’s value in markup by prefixing
the store name with $.

The toggleCompletion function demonstrates how to update a store. It uses the update method
provided by writable stores to toggle the completion status of a task. The update method takes a
function that receives the current state and returns the updated state.

The {#each} block iterates over $tasks, rendering a list item for each task. The task’s completion
status can be toggled by clicking on the item, demonstrating a reactive update across components
using the store.

With this, we have covered the basics of Svelte, and now we can proceed with coding our application
in the next chapter.

Summary
In this chapter, we learned the fundamentals of Svelte, including file structure, reactivity, events,
bindings, conditionals, arrays, props, and stores. All of this is going to be useful in the next chapter,
where we are going to utilize the learned aspects to build a full-fledged chat application that integrates
with our backend.

13
Setting Up the Svelte Project

Now that we have covered the basics of Svelte in Chapter 12, it is time for us to start developing our
frontend application. We are going to cover how to set up our frontend single-page application (SPA)
projects with Svelte, Vite, and TypeScript.

By the end of this chapter, we will have a solid grasp of how to initiate a project and how all the files
of our frontend project play together.

We are going to cover the following topics in this chapter:

•	 Discussing Vite and SvelteKit

•	 Setting up the project

•	 Exploring the project structure

Technical requirements
To proceed with this chapter, we won’t need any additional libraries.

All the code examples we are going to discuss in this chapter are available at https://github.
com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/
tree/main/Chapter13.

Discussing Vite and SvelteKit
Vite is a server for local development that we will use to serve our frontend application locally.
Additionally, it is a build tool that we will use to ship our frontend application to production. Vite
leverages the latest web technologies to offer instantaneous hot module replacement (HMR), which
is a practice that only recompiles the parts of the application that we have changed) and extremely fast
server startup times. This efficiency drastically reduces the feedback loop for developers, allowing for
immediate observation of changes directly in the browser. Vite also has a plugin-based infrastructure
that helps us to add extra functionality for it, such as integration with Svelte.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter13
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter13
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter13

Setting Up the Svelte Project180

Now, let’s talk about a popular framework for building Svelte apps that we chose not to go with in
our app.

SvelteKit is a framework designed to build web applications using Svelte, offering features such as
server-side rendering (SSR), static site generation (SSG), and file-based routing. While SvelteKit
is powerful for complex applications, providing integrated solutions for SEO, fast loading times, and
more, we decided against using it for our project. The primary reason is its complexity and the breadth
of features it offers, such as SSR and SSG, which are unnecessary for our app’s simpler requirements.
Our focus is on leveraging Svelte’s core capabilities for a lightweight and straightforward SPA, avoiding
the overhead that comes with SvelteKit’s extensive tooling and features.

Instead, in our app, we are going to use a simple svelte-router library to handle routing together
with bare Svelte.

Let’s now set up our project.

Setting up the project
We can create our Svelte project using the template that Vite provides. To do that, we can execute the
following CLI command. It will ask us for a couple of configurations to set up the project further:

$ npm create vite
? Project name: › chat_frontend
? Select a framework:  Svelte
? Select a variant: TypeScript

Now, we can go to the newly created folder, add a routing dependency, and install the libraries by
using the following commands:

$ cd chat_frontend
$ npm add axios@1.6.7 svelte-routing@2.11.0

$ npm install

We are going to use axios for sending API requests to our backend and svelte-routing for
showing different pages based on the URL.

This setup has created a lot of files, so let’s discuss the files that we see and tailor some of them to
our needs.

Exploring the project structure
There are quite a lot of files that we got from the template setup in the previous section, so let’s
explore them.

Exploring the project structure 181

Vite configuration file

The first file we will look into is the Vite configuration file. The Vite config is the place where you
define settings and plugins that tailor how Vite builds and serves your application. Let’s go through
the important parts of this file:

vite.config.js

import { defineConfig } from 'vite'

The defineConfig function is used to create a configuration object for Vite.

The following line imports the Svelte plugin for Vite, enabling Vite to handle Svelte files:

import { svelte } from '@sveltejs/vite-plugin-svelte'

The plugin is responsible for compiling Svelte components and integrating them into the Vite
build process.

This line exports the configuration object for Vite, using the defineConfig function:

export default defineConfig({
  plugins: [svelte()],
})

The object defines the settings and plugins that Vite will use. This setup has everything we need to
develop the frontend part of our app. Now, let’s explore the TypeScript configuration.

TypeScript configuration file

This file is used to configure TypeScript in the application, so let’s look at it:

tsconfig.json

{
  "extends": @tsconfig/svelte/tsconfig.json,

By extending @tsconfig/svelte/tsconfig.json, we inherit a set of compiler options
optimized for Svelte, ensuring that TypeScript plays nicely with Svelte’s syntax and file structure.

This line specifies the target JavaScript version for the output code:

  "compilerOptions": {
    "target": "ESNext",

Setting Up the Svelte Project182

"ESNext" targets the latest supported ECMAScript (ES) features, allowing you to use the newest
JavaScript features.

The following line ensures that class fields are defined using JavaScript’s defineProperty function,
aligning with the latest JavaScript standards for class field semantics:

    "useDefineForClassFields": true,

The next code line determines the module system used in the project:

    "module": "ESNext",

ESNext means the latest module syntax is used (such as import and export), which is standard
in modern JavaScript development.

The next line allows importing JSON files directly into your TypeScript files, treating them as modules:

    "resolveJsonModule": true,

This is useful for configuration files or other JSON data your application might need.

This enables JavaScript files to be included in your TypeScript project, allowing a mix of JavaScript
and TypeScript files:

    "allowJs": true,

The following tells TypeScript to type-check JavaScript files, offering the benefits of TypeScript’s type
system in regular JavaScript files:

    "checkJs": true,

The next line ensures each file can be safely transpiled independently without relying on type
information from other files:

    "isolatedModules": true

This is important for certain build optimizations and is recommended when using Babel or when
targeting ES modules.

The next lines include the source map files in the output build. Source maps help you to restore the
precompiled step of your code. This is useful for debugging:

    "sourceMap": true

The following line specifies which files are included in the TypeScript compilation context:

  },
  "include": ["src/**/*.ts", "src/**/*.js", "src/**/*.svelte"],

Exploring the project structure 183

include includes TypeScript files, JavaScript files, and *.svelte Svelte files within the src
directory, indicating a project structure where the source code is centralized in the src folder.

Our project uses project references to split the TypeScript configuration between different parts of
the application. tsconfig.node.json is used to configure the local node environment to build
our application, while tsconfig.json is used for browser support:

  "references": [{ "path": "./tsconfig.node.json" }]
}

The necessity for two distinct TypeScript configurations arises from the project’s deployment across
two separate execution environments:

1.	 The application code, located within the src folder, is designed to operate within a web browser
environment. This setting leverages browser-specific APIs and functionalities.

2.	 The Vite configuration, along with its associated code, executes within Node.js on your local
machine. This environment differs markedly from the browser, with its own set of APIs
and limitations.

Let’s now look into tsconfig.node.json.

The following config with composite enables project compilation in a way that allows TypeScript
to more efficiently manage projects that are split into multiple build outputs:

tsconfig.node.json

{
  "compilerOptions": {

    "composite": true,

Then, the skipLibCheck option tells TypeScript to skip type checking of declaration files (.d.ts
files from node_modules):

    "skipLibCheck": true,

This can speed up the compilation process by ignoring the types of third-party libraries.

Now, we will specify that we are going to run it with our Vite bundler:

    "module": "ESNext",
    "moduleResolution": "bundler"

Setting Up the Svelte Project184

The following code lines indicate that the config is specifically designed for type-checking and compiling
the Vite configuration file:

  },
  "include": ["vite.config.ts"]
}

Let’s turn our attention to the Svelte configuration.

Svelte configuration file

This configuration specifies the settings for Svelte. Let’s take a look at it:

Svelte.config.js

import { vitePreprocess } from '@sveltejs/vite-plugin-svelte'

vitePreprocess is designed to work with Vite, facilitating the preprocessing of Svelte files.

Preprocessing can involve tasks such as transpiling TypeScript, handling SCSS or Less, and other file
transformations before they’re handed off to the Svelte compiler.

The following setup indicates that the Svelte compiler should use the preprocessing steps defined by
vitePreprocess during the build process:

export default {
  preprocess: vitePreprocess(),
}

Let’s now look at our package.json file.

Configuring package.json

This file serves as the main entry point for the general configurations in our applications; let’s go
through it:

package.json

{
  "name": "chat_frontend",

The next line prevents accidental publication of our project as a package to npm:

  "private": true,

Exploring the project structure 185

The next script indicates that ES module syntax is used:

  "version": "0.0.0",
  "type": "module",

The following defines a script that starts the Vite development server:

  "scripts": {
    "dev": "vite",

vite build builds the project for production using Vite:

    "build": "vite build",

Now, we will write a config that starts a local web server that serves the built solution from ./dist:

    "preview": "vite preview",

The following code line runs svelte-check for linting and type-checking the Svelte components:

    "check": "svelte-check --tsconfig ./tsconfig.json"

The next lines include development tools and dependencies such as Vite, the Vite plugin for Svelte
(@sveltejs/vite-plugin-svelte), TypeScript, and others necessary for development but
not required in production:

  },
  "devDependencies": {
    "@sveltejs/vite-plugin-svelte": "^3.0.2",
    "@tsconfig/svelte": "^5.0.2",
    "svelte-check": "^3.6.7",
    "tslib": "^2.6.2",
    "typescript": "^5.2.2",
    "vite": "^5.2.0"
  },

The following section includes the libraries we need in production. We also moved the Svelte library
here as we need it conceptually in production:

  "dependencies": {
    "axios": "^1.6.7",
    "svelte": "^4.2.12",
    "svelte-routing": "^2.11.0"
  }
}

Setting Up the Svelte Project186

Even though this config doesn’t do much as all the libraries we use are going to be merged into single
JavaScript files during the build, it is still useful to segregate which libraries we expect to be in the
runtime for clarity.

Another file we can see is package-lock.json, which is the locked resolution of the dependencies
from package.json.

We can now look at index.html, a static file that will be preserved in our build, which serves as
our entry point TypeScript file.

HTML entry point

The following code block sets up the document structure, including meta tags for character encoding
and responsive design, links a favicon, and defines the title of the page:

index.html

<!doctype html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <link rel="icon" type="image/svg+xml" href="/vite.svg" />
    <meta name="viewport" content="width=device-width, initial-
scale=1.0" />
    <title>Vite + Svelte + TS</title>
  </head>
  <body>
    <div id="app"></div>
    <script type="module" src="/src/main.ts"></script>
  </body>
</html>

The body contains a single div tag with an id property of app, which acts as the mounting point for
the Svelte application. The application’s entry point, main.ts, is linked as a module script, allowing
the Svelte app to be initialized and rendered within the app div tag. This setup ensures that the
application is correctly loaded and displayed in the browser.

We can also see the public folder in the root of our project tree, which we are going to use to store
things that we can directly access from our HTML file, such as fonts, favicons, or tracking libraries.

Here is what the files in the public folder are responsible for:

•	 src/vite-env.d.ts is used to tell our TypeScript compiler to allow using environment
variables from import.meta.env.

•	 src/assets is the folder that we are going to use to place our images and icons.

Exploring the project structure 187

•	 src/lib is the place where we are going to put our Svelte components. We can remove the
only component we see in this folder as we will write our own components here.

•	 src/app.css defines project-wide styles that should apply to all of our HTML components.

Now, let’s explore the main entry point of our application.

Main file

The main.ts file is the entry point of our application. Let’s go through this file.

The first line imports the CSS styles for the application. It ensures that the global styles defined in
app.css are applied to the application:

main.ts

import './app.css'

We will import the main App component from App.svelte:

import App from './App.svelte'

The App component is the root component that wraps our entire application.

Here, we create and export a new instance of the App component:

const app = new App({
  target: document.getElementById('app')!,
})
export default app

The component is mounted to a DOM element identified by id='app' that we defined in our
index.html file.

The last file that we need to cover is src/App.svelte. We are going to replace the content of the
file so that it simply returns a header title for us.

Application title

We will replace the content of our main component with a very simple header:

src/App.svelte

<main>
  <h1>Chat</h1>
</main>

Setting Up the Svelte Project188

Now, if we execute the following command, we will see that our frontend server has started:

$ npm run dev

We will see a console output like this:

> chat_frontend@0.0.0 dev
> vite
  VITE v5.2.8  ready in 447 ms
  →  Local:   http://localhost:5173/
  →  Network: use --host to expose
  →  press h + enter to show help

If we visit the localhost server presented to us, we will see a big Chat title in the middle of the screen.

Now, you can see HMR in action by following these steps:

1.	 Add some additional HTML tags (such as <h2>ai-based chat</h2>) in src/App.
svelte.

2.	 Save the src/App.svelte file.

3.	 You will see that the HTML tag is immediately visible in the browser.

With this, we have covered our frontend setup.

Summary
In this chapter, we have covered how to set up a frontend SPA project with Svelte, TypeScript, and Vite.
We also learned what all the files in the configuration do, and now we are able to create a comfortable
working environment with HMR and a fast-building tool.

In the next chapter, we will begin working on our frontend application functionality.

14
Svelte Chat Application

Development

We’ve set up our Svelte development environment in the previous chapter, and now it is time to
implement the logic of our frontend. We will cover topics such as routing in Svelte, developing the state
management of our application, making API calls, and writing the overall logic of our chat. By the end
of this chapter, you will be well equipped with tools to write your own frontend applications in Svelte.

We will cover the following topics:

•	 Writing routes for our application

•	 Handling authentication logic

•	 Developing chat logic

•	 Introducing styling

Technical requirements
To implement our chat functionality, we will need to install the following libraries:

$ npm install axios@1.6.7 jwt-decode@4.0.0 svelte-routing@2.11.0

We will use axios to make API calls, jwt-decode to get the payload from a JWT token, and
svelte-routing to define the routing of our application.

All the code examples we are going to discuss in this chapter are available at https://github.
com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/
tree/main/Chapter14.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter14
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter14
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter14

Svelte Chat Application Development190

Writing routes for our application
Routing is a crucial aspect of web development, enabling navigation between different parts of an
application without the need to reload the web page. It’s essential for creating a seamless user experience
and organizing the content structure within single-page applications. In Svelte, routing is not included
out of the box. This means we need to integrate a third-party library to manage the routes.

For simplicity and ease of use, especially for beginners, Svelte routing is a practical choice. Svelte
routing is straightforward to use and integrates smoothly with Svelte projects.

Let’s use it to define the routes of our application that we will need. In the following code, we will
define our routes for registration and signing in, and the routes we will use for our chats:

src/App.svelte

<script>
  import { Route, Router } from "svelte-routing";
  import Register from "./routes/Register.svelte";
  import Login from "./routes/Login.svelte";
  import Chat from "./routes/Chat.svelte";
</script>

<Router>
  <Route path="/register" component={Register} />
  <Route path="/login" component={Login} />
  <Route >
    <Chat chatId={null} />
  </Route>
  <Route path="/:id" let:params>
    <Chat chatId={params.id} />
  </Route>
</Router>

The <Router> component is the root component for handling routing. It wraps all <Route>
components, which define different paths in the application. We need to wrap all our components
with a router if we want to make them accessible by a specific URL.

Each <Route> component has a path prop that specifies the URL path for that route. When the
URL matches the path of any <Route> component, the component specified in the component prop
of the instance of <Route> is rendered.

Handling authentication logic 191

The <Chat> component is rendered in two different routes:

•	 In the first case, it’s rendered with a chatId prop of null when the URL is "/".

•	 In the second case, it’s rendered with a chatId prop that comes from the URL parameters
when the URL matches the /:id pattern. The let:params attribute is used to bind the
URL parameters to a local variable parameter.

We need to specify two different routes for the chat depending on the presence of id because the
library, unfortunately, doesn’t provide the functionality to provide a default argument.

With this setup, we will be able to access all of our routes. Now, it’s time to implement the components
you see in the routes, and we will start with the authentication.

Handling authentication logic
To authenticate our users, we will need to do quite a few things:

1.	 First, we will need to define the logic for authentication and how we are going to store the
authentication data in our application once a user logs in

2.	 Then, we need to write components for registration and logging in

3.	 And finally, we need to also redirect the user to the login page if they access a page that needs
authentication and they are not logged in yet

Let’s start with defining the logic for our authentication using a store in Svelte.

Defining the authentication store

The authentication store is going to be responsible for storing and providing our authentication token
as well as providing user data from the JWT token payload. Let’s write such a store:

src/stores/auth.ts

import { writable } from "svelte/store";
import axios from "axios";
import { jwtDecode } from "jwt-decode";

interface TokenPayload {
  name: string;
}

The preceding code block is the TypeScript structure of the data payload of our JWT token.

Svelte Chat Application Development192

The next lines set a token as the default Authorization header for all axios requests so that the
token is attached to every request we make with axios after we call the setAxiosAuth function:

function setAxiosAuth(token: string) {
  axios.defaults.headers.common["Authorization"] = `Bearer ${token}`;
}

The createAuthStore function is used to create the authentication store:

function createAuthStore() {

The createAuthStore function first checks whether there is an authentication token stored in
the local storage. If there is, it sets this token as the default Authorization header for all axios
requests, which serves as the holder of the authentication information for our server. Storing the
token in the local storage makes sure that when we reload the page, our user is not going to lose the
authentication capabilities.

The createAuthStore function then creates a writable Svelte store with the initial value set
to the token from local storage:

  const token = localStorage.getItem("authToken");
  if (token) {
    setAxiosAuth(token);
  }
  const { subscribe, set } = writable<string | null>(token);

The writable function returns an object with subscribe, set, and update methods. These
methods are used to subscribe to changes in the store, set the value of the store, and update the value
of the store, respectively.

Then, the createAuthStore function returns an object with the subscribe method from the
writable store and custom set, remove, and getPayload methods:

  return {
    subscribe,
    set: (value: string) => {
      localStorage.setItem("authToken", value);
      set(value);
      if (value) {
        setAxiosAuth(value);
      } else {

Handling authentication logic 193

        delete axios.defaults.headers.common["Authorization"];
      }
    },

When we export the subscribe method, we make an object to be a store in Svelte concepts and
enable it to work with the Svelte reactivity.

The set method is used to set the value of the authentication token. It stores the token in local
storage, sets the value of the Svelte store, and sets the token as the default Authorization header
for all axios requests.

The remove method is used to remove the authentication token:

    remove: () => {
      localStorage.removeItem("authToken");
      set(null);
      delete axios.defaults.headers.common["Authorization"];
    },

The remove method removes the token from local storage, sets the value of the Svelte store to null,
and removes the Authorization header from the axios defaults.

The getPayload method is used to get the payload of the JWT token. It decodes the token and
returns the payload:

    getPayload: () => {
      const token = localStorage.getItem("authToken");
      if (token) {
        const decoded: TokenPayload = jwtDecode(token);
        return decoded;
      }
      return null;
    },
  };
}

Finally, the authToken store is created by calling the createAuthStore function:

export const authToken = createAuthStore();

This authToken store can then be used in other parts of our application to manage the
authentication token.

Svelte Chat Application Development194

Implementing Login component

We can write a Login component that will make it possible for our users to log in with their credentials.

Before we start working on a component, let’s define a constant variable that will serve as a prefix for
our backend API:

src/constants.ts

export const API_HOST = import.meta.env.VITE_API_HOST;

Here, we retrieve a variable from the environment called VITE_API_HOST and set it as a constant
that we use when we make an API call to the application.

Vite will automatically pick up all the environments from the .env file that have a VITE prefix. Let’s
also define this environment file:

.env

VITE_API_HOST=http://localhost:3000

Let’s proceed with the implementation of our Login component.

Providing a form for credential input

In this component, we will provide a form for email and password input, and then try to log the user
in using the provided credentials.

Here are the main things we need to accomplish in the component:

•	 When users provide an email and password, try to log them in

•	 Validate that the email and password are not empty

•	 Gracefully handle the authentication errors coming back from the backend

•	 Save the user authentication token and redirect to our home page once we have successfully
logged in

We will also import the styles for every component from our styles folder, and we will explore the
contents of these files in the Introducing styling section of this chapter.

src/routes/Login.svelte

<script lang="ts">
  import { onMount } from "svelte";
  import { navigate } from "svelte-routing";

Handling authentication logic 195

  import axios from "axios";
  import "../styles/auth.css";

The component has three reactive variables – email, password, and errorMessage:

  import { authToken } from "../stores/auth";
  import {API_HOST} from "../constants";

  let email = "";
  let password = "";
  let errorMessage = "";

The email and password variables are bound to the corresponding input fields in the form, and
their values change as the user types into these fields.

The formValid reactive statement checks that the email and password fields are not empty:

  $: formValid = email.length > 0 && password.length > 0;

The formValid reactive statement is used to enable or disable the Sign in button. It gets reevaluated
once the email and password values change.

The onMount function runs after the component is first rendered:

  onMount(() => {
    if ($authToken) {
      navigate("/");
    }
  });

The onMount function checks whether the user is already authenticated by checking the authToken
store. If the user is authenticated, it navigates to the home page so that the user doesn’t need to log in
again when they are already authenticated.

The login function is an asynchronous function that is called when the user submits the form:

  async function login() {
    try {
      const response = await axios.post(`${API_HOST}/api/v1/auth/
login/`, {
        email,
        password,
      });
      authToken.set(response.data?.token);
      navigate("/");
    } catch (error) {

Svelte Chat Application Development196

      const defaultError = "An unexpected error occurred"
      if (axios.isAxiosError(error) && error.response) {
        const errorSlug = error?.response?.data?.error
        switch(errorSlug) {
          case "INVALID_CREDENTIALS":
            errorMessage = "Invalid email or password"
            break;

The login function sends a POST request to the /api/v1/auth/login/ endpoint with email
and password as the request body. If the request is successful, it sets the authentication token in the
authToken store and navigates to the home page. If the request fails, it sets the errorMessage
variable based on the error received.

Here, we also check for a specific error of invalid credentials to show a more understandable error
to the user.

Checking invalid credentials

The on:submit|preventDefault={login} directive is used to call the login function
when the form is submitted. The preventDefault modifier is used to prevent the form from
being submitted in the traditional way, which would cause the page to reload:

          default:
            errorMessage = defaultError
        }
      } else {
        errorMessage = defaultError
      }
    }
  }

</script>

<div class="auth-container">
  <form on:submit|preventDefault={login} class="auth-form">

The errorMessage variable is used to display an error message to the user when the login attempt fails.

The error message is displayed in the form only if it’s not an empty string:

    <div class="form-header">
      <h2>Login</h2>
    </div>
    {#if errorMessage}

Handling authentication logic 197

      <div class="error">{errorMessage}</div>
    {/if}

Next, we use bind here as a two-way binding to our variables, so that when we type a new input,
our email variable updates, and if we update email, our input updates. We do the same for the
password field:

    <div class="input-group">
      <input type="email" placeholder="Email" bind:value={email}
required />
    </div>
    <div class="input-group">
      <input
        type="password"
        placeholder="Password"
        bind:value={password}
        required
      />
    </div>
    <div class="action-group">

If our form is not valid, we disable the button for the user; otherwise, this click triggers the form
to submit:

      <button type="submit" class="auth-btn" disabled={!formValid}
        >Sign in</button
      >
    </div>

At the end of the login component, we also have a redirect link to the registration page if the user
doesn’t have an account yet:

    <div class="switch-auth">
      Don't have an account? Register here.
    </div>
  </form>
</div>

The registration process is the component that we are going to write next.

Svelte Chat Application Development198

Implementing Register component

Our Register component will be somewhat similar in logic to our Login component, but it will have
an additional input field, name, and we will call another endpoint to register a user.

We need to accomplish the following situation:

•	 When users provide their email, name, and password, try to register them with it

•	 Validate that the email, name, and password are not empty

•	 Gracefully handle the authentication errors coming back from the backend

•	 Redirect the users to the login page after the successful registration

Here is the code for the Register component:

src/routes/Register.svelte

<script lang="ts">
  import { onMount } from "svelte";
  import { navigate } from "svelte-routing";
  import axios from "axios";
  import "../styles/auth.css";
  import { authToken } from "../stores/auth";
  import {API_HOST} from "../constants";

Next, we declare the four reactive variables we are going to use in our form:

  let name = "";
  let email = "";
  let password = "";
  let errorMessage = "";

We follow a similar logic to onMount in the Login component and redirect the user to the home
page if the user is already authenticated:

  onMount(() => {
    if ($authToken) {
      navigate("/");
    }
  });

Handling authentication logic 199

Next, we try to register the user with their name, email, and password, and if it is successful, we redirect
them to the login page. If we meet an error, we show it on the screen:

  async function register() {
    try {
      await axios.post(`${API_HOST}/api/v1/auth/register/`, {
        name,
        email,
        password,
      });
      navigate("/login");

We handle a specific error that occurs when the user with the same email already exists; otherwise,
we show a default error message:

    } catch (error) {
      const defaultError = "An unexpected error occurred"
      if (axios.isAxiosError(error) && error.response) {
        const errorSlug = error?.response?.data?.error
        switch(errorSlug) {
          case "ERROR_USER_ALREADY_EXIST":
            errorMessage = "User already exists, try logging in
instead"
            break;
          default:
            errorMessage = defaultError
        }
      } else {
        errorMessage = defaultError
      }
    }
  }

The formValid variable indicates that a user can submit a form:

  $: formValid = email.length > 0 && password.length > 0 && name.
length > 0;

On submission of the form, we call the register function and prevent the page from reloading:

</script>

<div class="auth-container">
  <form on:submit|preventDefault={register} class="auth-form">

Svelte Chat Application Development200

Here, we display the error message if it is present:

    <div class="form-header">
      <h2>Create Account</h2>
    </div>
    {#if errorMessage}
      <div class="error">{errorMessage}</div>
    {/if}

The next code lines show our input variables (name, email, and password), which are bound to
the respective reactive variables:

    <div class="input-group">
      <input type="text" placeholder="Name" bind:value={name} required
/>
    </div>
    <div class="input-group">
      <input type="email" placeholder="Email" bind:value={email}
required />
    </div>
    <div class="input-group">
      <input
        type="password"
        placeholder="Password"
        bind:value={password}
        required
      />
    </div>

At the end, we have a redirect URL to the login page in case the user is already registered:

    <div class="action-group">
      <button type="submit" class="auth-btn" disabled={!formValid}
        >Sign Up</button
      >
    </div>
    <div class="switch-auth">
      Already have an account? Sign in here.
    </div>
  </form>
</div>

Now, both our Login and Register components are defined and we can move to defining our
chat-related components.

Developing chat logic 201

Developing chat logic
We will implement a few functionalities and components to support our chat logic so that, when our
user is authenticated, we will allow them to do the following actions:

•	 Log out

•	 Create a new chat

•	 See all the created chats

•	 Select a created chat

•	 Load all messages in a chat

•	 Send messages inside a chat

We will begin with a parent component.

Creating a parent component

Let’s start with a general component called Chat, which we will use when a user is authenticated; this is
going to hold the other chat components that will accomplish the functionality mentioned previously:

src/routes/Chat.svelte

<script lang="ts">
    import {onMount} from "svelte";
    import {navigate} from "svelte-routing";
    import {authToken} from "../stores/auth";
    import ChatListSideBar from "../components/ChatListSideBar.
svelte";
    import ChatDetails from "../components/ChatDetails.svelte";
    import Header from "../components/Header.svelte";
    import '../styles/chat.css'
    export let chatId: string | null;

The chatId variable is declared as an exported variable, which means it can be passed as a prop from
a parent component. In our case, it is passed by the routes. chatId is used to display the details of
a specific chat.

In the onMount hook, we check whether the user is authenticated by checking the authToken store:

    onMount(() => {
        if (!$authToken) {
            navigate("/register");

Svelte Chat Application Development202

        }
    });

If the user is not authenticated, we navigate the user to the Register page.

The component’s markup is divided into several sections, as shown here:

</script>

<div>
    <Header></Header>
    <div class="container">
        <div class="chat-list-container">
            <ChatListSideBar chatId={chatId}/>

        </div>
        <div class="chat-container">
            {#if chatId}
                <ChatDetails chatId={chatId}/>
            {/if}
        </div>
    </div>
</div>

The Header component is displayed at the top; this will display the user’s name and give a button to
log out. The ChatListSideBar component is displayed on the left side of the page and receives
chatId as a prop. This will show all the chat and will provide a button to create a new one. The
ChatDetails component is displayed on the right side of the page and also receives chatId as a
prop. The ChatDetails component is only rendered if chatId is not null.

Let’s now look at the implementation of the Header component.

Implementing the Header component

The Header component will retrieve the username from the JWT token payload and will remove
the token from the store when the user logs out and redirect the user to the login page.

The Header component is the first component we define in the components folder. We have a
separation for the structure clarity. All the components that are shown from the routes directly are
defined in the routes folder, while all the components that are not rendered by the router are defined
in the components folder:

Developing chat logic 203

src/components/Header.svelte

<script lang="ts">
    import { navigate } from 'svelte-routing';
    import { authToken } from '../stores/auth';
    import '../styles/header.css';
    const name = authToken.getPayload()?.name || "User"

We retrieve the name from the payload if it is not null or use "User" as the default name for display.

On logging out, we remove the saved JWT token and redirect the user to the login page:

    function logout() {
        authToken.remove();
        navigate('/login');
    }
</script>

In the next code lines, we define a simple structure to show the user’s name and a button to log out:

<div class="header">
    <div class="user-name">{name}</div>
    <button class="logout-button" on:click={logout}>
        Log out
    </button>
</div>

Now, let’s focus on the component that is going to show the list of chats and also provide a button to
create a new chat.

Creating the Chat component

The Chat component is going to retrieve all the chats from the server and also open a modal window
where a user can create a new chat.

Retrieving chats from the server

In the following component, we will retrieve all of the existing chats and show them in a list on the
left side of our screen.

Svelte Chat Application Development204

src/components/ChatListSideBar.svelte

<script lang="ts">
  import { onMount } from "svelte";
  import axios from "axios";

  import { navigate } from "svelte-routing";
  import CreateChatPopup from "./CreateChatPopup.svelte";
  import {API_HOST} from "../constants";
  import '../styles/chatList.css'
  let chats: { id: string; name: string }[] = [];

The chats variable is an array that stores the list of chats fetched from the server.

The errorMessage variable is used to display an error message to the user when the fetch
operation fails:

  let errorMessage: string | null = null;

The chatId variable is an exported variable. This means it can be passed as a prop from a parent
component, which, for this component, means that the chat is selected:

  export let chatId: string | null;

The getData function is an asynchronous function that fetches the list of chats from the server:

  async function getData() {
    try {
      const response = await axios.get(`${API_HOST}/api/v1/chat/`);
      chats = response.data.data;
    } catch (error) {
      console.error("Error fetching chats:", error);
      errorMessage = "Failed to fetch chats. Please try again later.";
    }
  }

If the fetch operation is successful, the getData function updates the chats variable with the
fetched data. If the fetch operation fails, the getData function updates the errorMessage
variable with an error message.

When the Chat component first loads, we call the getData function to retrieve all the chats:

  onMount(async () => {
    await getData();
  });

Developing chat logic 205

The isCreatingNewChat variable is a Boolean that determines whether the CreateChatPopup
component should be displayed:

  let isCreatingNewChat = false;

The selectChat function is used to navigate to the chat with the given chatId:

  function selectChat(chatId: string) {
    navigate(`/${chatId}`);
  }

The preceding code lines will change our URL and provide our Chat component with the chatId
variable, which will, in turn, pass chatId to all the children that use it.

The createNewChat function sets the isCreatingNewChat variable to true, which causes
the CreateChatPopup component to be displayed:

  function createNewChat() {
    isCreatingNewChat = true;
  }

The onCreate function is called when a new chat is created from CreateChatPopup. It navigates
to the new chat and fetches the updated list of chats:

  async function onCreate(newChatId: string) {
    onClose();
    navigate(`/${newChatId}`);
    await getData()
  }

The onClose function sets the isCreatingNewChat variable to false, which causes the
CreateChatPopup component to be hidden:

  function onClose() {
    isCreatingNewChat=false;
  }
</script>

Svelte Chat Application Development206

The following code structure allows the chat list sidebar to display a list of chats, navigate to a chat
when it’s clicked, display an error message when the fetch operation fails, and display a popup for
creating a new chat:

<div class="chat-list-container">
  {#if errorMessage}
    <div class="error">{errorMessage}</div>
  {/if}
  {#if isCreatingNewChat}
    <CreateChatPopup onCreate={onCreate} onClose={onClose} />
  {/if}
  {#if chats.length === 0}
    <div class="no-chats">No chats available. Create a new one!</div>
  {/if}
  <div class="chat-list">
    {#each chats as chat (chat.id)}
      <div class="class-list-item" class:selected={chat.id === chatId}
on:click={() => selectChat(chat.id)}>

When the iterated chat ID matches the currently active chat obtained by the chatId prop, we add
the selected class to highlight visually which chat is currently in use.

Let’s show the chat’s name and add a button for creating a chat:

        {chat.name}
      </div>
    {/each}
  </div>
  <button on:click={() => createNewChat()}>New Chat</button>
</div>

We can now look at the Popup component that creates a new chat by the typed-in name.

Creating a new chat

CreateChatPopup is used for creating a new chat by name; when we open the popup, the user
is allowed to type a name for the chat, and then we try to create the chat. Once it is created, we close
the popup:

src/components/CreateChatPopup.svelte

<script lang="ts">
  import axios from 'axios';
  import {API_HOST} from "../constants";
  import '../styles/chatPopup.css';

Developing chat logic 207

onCreate and onClose are provided as props from the parent, and we call them when we create
a new chat or initiate the closure of the popup:

  export let onCreate: (newChatId: string) => void;
  export let onClose: () => void;

Doing this is an example of how we can easily share data and events between two coupled components.

We use the chatName and errorMessage variables to store the chat name in the input and the
error that we can potentially get from the server:

  let chatName = '';
  let errorMessage: string | null = null;

The createChat function tries to create a chat, and if it is successful, it calls to its parent that a new
chat is created by calling onCreate and providing the freshly created chat’s ID:

  async function createChat() {
    try {
      const response = await axios.post(`${API_HOST}/api/v1/chat/`, {
name: chatName });
      onCreate(response.data.data.id);
    } catch (error) {
      console.error('Error creating chat:', error);
      errorMessage = "Failed to create chat. Please try again later.";
    }
  }
</script>

The component’s markup is div with a class of popup, which we are going to use for styling:

<div class="popup">
  <div class="close-button" on:click={onClose}>X</div>
  {#if errorMessage}
    <div class="error">{errorMessage}</div>
  {/if}
  <input type="text" bind:value={chatName} placeholder="Enter chat
name" />
  <button disabled={!chatName.length} on:click={createChat}>Create</
button>
</div>

Svelte Chat Application Development208

Inside the popup div, we have a button we use to close the popup that calls the onClose function
when clicked, an error message that is displayed if there is an input field for the chat name, and a
Create button that calls the createChat function when clicked. The Create button is disabled
if chatName is an empty string.

The last component that we need to build is the component of a specific chat that will load the messages
for a chat, allow us to type a new message, and show the response from our AI.

Showing chat details

ChatDetails is used to show messages in the chat. It loads all the messages from a specific chat
and also allows us to send a new chat message in our chat:

src/components/ChatDetails.svelte

<script lang="ts">
  import { onMount } from "svelte";
  import axios from "axios";
  import {API_HOST} from "../constants";
  import '../styles/chatDetails.css'
  export let chatId: string;
  let messages: { message: string, createdAt: number }[] = [];
  let newMessage = "";
  let errorMessage: string | null = null;
  let isLoading = false;

The preceding code block lists these variables:

•	 The chatId variable is a prop of the selected chat.

•	 The messages variable is an array that stores the list of messages fetched from the server.

•	 The newMessage variable is bound to textarea in the form, and its value changes as the
user types into this field.

•	 The errorMessage variable is used to display an error message to the user when the fetch
or send operation fails.

•	 The isLoading variable is a Boolean that determines whether the "Send" button should
be disabled. When we are waiting for the response from our server, which can take a while as
we are waiting for GPT to generate a response, we will not allow sending new messages.

Developing chat logic 209

The loadMessages function is an asynchronous function that fetches the list of messages from
the server:

  onMount(async () => {
    await loadMessages();
  });

  async function loadMessages() {
    try {
      const response = await axios.get(
        `${API_HOST}/api/v1/chat/${chatId}/message/`
      );
      messages = response.data.data;
    } catch (error) {
      errorMessage = "Failed to get chat details. Please try again
later.";
      console.error("Error fetching messages:", error);
    }
  }

If the fetch operation is successful, the loadMessages function updates the messages variable
with the fetched data. If the fetch operation fails, it updates the errorMessage variable with an
error message. We call it when the component first loads.

The sendMessage function is an asynchronous function that sends a new message to the server:

  async function sendMessage() {
    isLoading = true;
    try {
      const response = await axios.post(
        `${API_HOST}/api/v1/chat/${chatId}/message/`,
        { message: newMessage }
      );
      messages = [...messages, {message:newMessage, createdAt: Date.
now()}, response.data.data];
      newMessage = "";
    } catch (error) {
      errorMessage = "Failed to send message. Please try again
later.";
      console.error("Error sending message:", error);
    }
    isLoading = false;
  }

Svelte Chat Application Development210

If the send operation is successful, the sendMessage function updates the messages variable
with the new message the user typed and the response message from the server and then clears the
newMessage variable. If the send operation fails, it updates the errorMessage variable with
an error message.

The reactive statement with $: runs the loadMessages function whenever the chatId variable
changes so that we get messages for a new chat when we choose a new chat:

  $: {
    if (chatId) {
      loadMessages();
    }
  }
</script>

The component’s markup displays an error message if there is one, a list of messages with their creation
times, textarea for typing a new message, and a Send button that calls the sendMessage function
when clicked. The Send button is disabled if the isLoading variable is true:

<div class="chat-details-wrapper">
  {#if errorMessage}
    <div class="error">{errorMessage}</div>
  {/if}
  
    {#each messages as message (message.id)}
      
        {message.message}
        {new Date(message.createdAt).toLocaleTimeString()}</
span>
      
    {/each}
  
  <textarea bind:value={newMessage} placeholder="Type a message"></
textarea>
  <button on:click={sendMessage} disabled={isLoading}>
    {#if isLoading}
      Sending...
    {:else}
      Send
    {/if}
  </button>
</div>

Introducing styling 211

These are all the components that we need for our simple chat application to work.

Now, we can start our frontend server and observe the functionality of our application with the
following command:

$ npm run dev

Among other lines, you will also see that our frontend server has started running on a certain port,
something similar to this:

  →  Local:   http://localhost:5173/

We need to add this URL to our backend-allowed CORS, as this is the URL from which we are going
to access our backend. Add the provided frontend URL to the .env.dev file in the backend folder
as a new environment variable.

CORS_ORIGIN=http://localhost:5173

Then, don’t forget to start the backend server with the following command:

$ bun --env-file .env.dev dev

At this point, you can start using our frontend application. I encourage you to first try to register and
log in, then create a new chat, and try to send a couple of messages to our server and have a small
conversation with our LLM API.

Well, this is all amazing, but it looks pretty basic and bland, so let’s spice it up a little bit with our styles.

Introducing styling
We’ve already included our styles in the right places in the components, so what is left for us to do
is to actually implement the styling. We will start with app.css, which we import into our main
file, which means that it’s going to be applied to all of our components in the application. We will put
there the styles that we want to be shared across all the components.

Writing application-wide styling

The following code lines mean that the children of the form will be laid out in a column, one below
the other:

Svelte Chat Application Development212

src/app.css

form {
  display: flex;
  flex-direction: column;
}

The following lines give the input fields a certain amount of space around them, padding inside them,
a border, and rounded corners:

input {
  margin-bottom: 10px;
  padding: 8px;
  border: 1px solid #ccc;
  border-radius: 4px;
}

The button style sets several properties to style the buttons:

button {
  padding: 10px;
  background-color: blue;
  color: white;
  border: none;
  border-radius: 4px;
  cursor: pointer;
}

button:hover {
  background-color: #0876fa;
}

button:disabled {
  background-color: gray;
}

We add padding and background-color, the color of the text, and remove the border. The
border-radius property is set to create a slight rounding. The cursor property is set to pointer,
which changes the cursor to a pointer when hovering over the button. There are also hover and
disabled states defined for the button, which slightly change the color.

Introducing styling 213

The .error class makes our errors’ text red and bold:

.error {
  color: red;
  font-weight: bold;
  margin-bottom: 10px;
}

Now, let’s look at the styles we use for our Login and Register components.

Styling for our Login and Register components

Here, we are going to discuss the styles we use to make our authentication forms look smoother:

src/styles/auth.css

.auth-container {
    display: grid;
    place-items: center;
    min-height: 100vh;
    background-color: #f4f7fa;
}

This style centers all content within .auth-container both horizontally and vertically using
CSS Grid. The container extends to the full height of the viewport (100vh), ensuring that the
authentication form is centered on the page. The background color is a light grayish blue, providing
a neutral, calming background.

The .auth-form class applies to the authentication form, setting a maximum width of 400px and
full width as default to ensure it works responsively on different devices:

.auth-form {
    width: 100%;
    max-width: 400px;
    padding: 20px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    border-radius: 8px;
    background: white;
}

Padding is added for internal spacing, a subtle box-shadow for depth, rounded borders for aesthetics,
and a white background to stand out against the lighter container background.

Svelte Chat Application Development214

The following lines target <h2> elements inside .form-header, providing a bottom margin for
spacing and centering the text enhancing readability and focus:

.form-header h2 {
    margin-bottom: 20px;
    text-align: center;
}

.input-group is used for grouping form elements, providing a consistent bottom margin that
separates each input group for clarity:

.input-group {
    margin-bottom: 20px;
}

Inputs within .input-group take the full width of their parent, have padding for comfort in
typing, rounded borders for a modern look, a light gray border for definition, and box-sizing:
border-box to include padding and border in the element’s total width and height:

.input-group input {
    width: 100%;
    padding: 15px;
    border-radius: 4px;
    border: 1px solid #ccc;
    box-sizing: border-box;
}

.action-group centers text inside of itself:

.action-group {
    text-align: center;
}

.auth-btn is styled for form submission buttons; these are given full width, substantial padding,
and no border with rounded edges:

.auth-btn {
    width: 100%;
    padding: 10px 15px;
    border: none;
    border-radius: 4px;
    background-color: #5C6BC0;
    color: white;
    font-size: 16px;

Introducing styling 215

    font-weight: bold;
    cursor: pointer;
    transition: background-color 0.3s;
}

The background is a deep blue, the text color is white for contrast, and the font is bold and slightly
larger for easy reading. The cursor changes to a pointer to indicate it’s clickable, with a background
color transition for a responsive hover effect.

Both the hover and disabled states share a darker blue shade, providing immediate visual feedback
on interaction or state change:

.auth-btn:hover,

.auth-btn:disabled {
    background-color: #3F51B5;
}

When the button is disabled, the cursor reverts to the default to reflect the non-interactive state.

.auth-btn:disabled {
    cursor: default;
}

This .switch-auth class centers the text inside and the content above it:

.switch-auth {
    margin-top: 20px;
    text-align: center;
}

Within the .switch-auth section, spans are styled in a medium gray, with a right margin for spacing:

.switch-auth span {
    color: #666;
    margin-right: 5px;
}

The links in .switch-auth are bold, in the same blue color as buttons for consistency, with no
underline to keep a clean look:

.switch-auth a {
    color: #5C6BC0;
    text-decoration: none;

Svelte Chat Application Development216

    font-weight: bold;
    transition: color 0.3s;
}

A color transition is also applied for a subtle hover effect.

On hover, the link color darkens and an underline appears, enhancing user interaction cues by making
the link visually responsive:

.switch-auth a:hover {
    color: #3F51B5;
    text-decoration: underline;
}

We will now add styles for the header component.

Styling our header component

The .header class is applied to the topmost part of a layout, commonly used as a navigation or
status bar:

src/styles/header.css

.header {
    display: flex;
    height: 5vh;
    justify-content: flex-end;
    align-items: center;
    padding: 10px 20px;
    background-color: #f4f7fa;
    border-bottom: 1px solid #ccc;
}

This styling sets the header’s height to 5% of the viewport height (5vh), ensuring that it takes minimal
vertical space while still being noticeable. The styling uses Flexbox to align items, with justify-
content: flex-end; placing child elements (such as user controls or logout buttons) toward
the right-hand side of the header.

align-items: center; ensures that all child elements are vertically centered, making the
header content appear vertically aligned. Padding is added on all sides (10px top and bottom, 20px
left and right) to give the content some breathing room. The background color is set to a light grayish
blue, creating a calm and neutral tone, and a bottom border of light gray (#ccc) adds a subtle visual
separation from the rest of the content.

Introducing styling 217

Then, the .user-name class targets the element displaying the user’s name. It is pushed to the left
side of the flex container due to margin-right: auto;, which automatically assigns all remaining
horizontal space to the right of this element. This ensures that the username is prominently displayed
at the start of the header:

.user-name {
    margin-right: auto;
    padding: 10px;
    font-size: 16px;
    color: #333;
}

Padding is uniformly set to 10px for comfort, preventing any text from sticking too closely to the
edges. The font size is moderately set to 16px for clear readability, and the text color is dark gray
(#333), offering good contrast against the lighter background of the header, making the username
easy to spot.

Now, let’s look at the styles we use for the chat container.

Styling the chat container

The style options for our chat container set up a container using the Flexbox layout, stretching it to
cover 90% of the viewport height (90vh):

src/styles/chat.css

.container {
    display: flex;
    height: 90vh;
}

The use of Flexbox ensures that its child elements (in this context, likely chat lists and chat windows)
are aligned in a row and can be sized and spaced responsively.

The .chat-list-container class is designed for the part of the interface that holds the list of
chats. It is given a fixed width of 20% of its parent container and does not grow or shrink (flex:
0 0 20%):

.chat-list-container {
    flex: 0 0 20%;
    display: flex;
    flex-direction: column;
    justify-content: space-between;
}

Svelte Chat Application Development218

This chat list container uses a vertical Flexbox layout (flex-direction: column), which arranges
its children (such as individual chat list items) in a column. The justify-content: space-
between; property distributes the child elements evenly with space between them, aligning the
first item to the top and the last item to the bottom, making it visually organized and easy to navigate.

The .chat-container class applies to the area where chat messages are displayed. It is designed
to take up the remaining space in .container not used by .chat-list-container:

.chat-container {
    flex: 1;
}

The flex: 1; property allows this container to grow and fill the space.

We can now talk about the styles we use for the chat list.

Styling for the chat list

The .chat-list class is applied to a list element that displays a list of chat entries:

src/styles/chatList.css

.chat-list {
    list-style: none;
    padding: 0;
    margin: 0;
    max-height: 95vh;
    overflow-y: auto;
}

This chat list style removes the default list styling (list-style: none) and sets both padding
and margin to 0 to ensure that the list fills its container without unnecessary space. It limits the
height of the chat list to 95% of the viewport height (95vh), allowing for a controlled scrolling
area (overflow-y: auto), which activates vertical scrolling when the content exceeds the
maximum height.

Each list item within .chat-list has a padding of 15px for a spacious touch area, making each
chat entry easier to interact with:

.chat-list-item {
    padding: 15px;
    border-bottom: 1px solid #ddd;
    cursor: pointer;
    transition: background-color 0.3s ease;
    border-radius: 3px;

Introducing styling 219

    margin: 5px;
}

A subtle border (1px solid #ddd) at the bottom of each item helps visually separate one chat
entry from another. The cursor is set to pointer to indicate that these items are clickable. A
background color transition effect is added for smooth visual feedback when interacting with the list
items. Rounded corners (border-radius: 3px) soften the visual design, and a small margin
keeps items visually distinct from each other.

The .no-chats class is used for a message displayed when there are no chats available:

.no-chats {
    color: #999;
    text-align: center;
    margin-top: 20px;
    margin-bottom: 20px;
}

The .no-chats class styles the text color in a light gray (#999), which indicates a less important
or inactive state. Text is centered, and vertical margins provide ample spacing from other content,
focusing attention on the message in the absence of chat entries.

Buttons within .chat-list-container are styled to expand to the full width of their container,
ensuring that they are easily clickable and maintain a consistent appearance:

.chat-list-container button {
    width: 100%;
}

Hovering over chat list items changes their background to a bright blue (#579ae8), with the text color
switching to white, enhancing readability and user interaction by clearly highlighting the active selection:

.chat-list-item:hover {
    background-color: #579ae8;
    color: white;
}

The .selected class, applied to a chat list item that is currently active or opened, mirrors the
hover style, maintaining a consistent visual cue that this item is selected. It has the same bright blue
background and white text, ensuring it stands out against other list items:

.selected {
    background-color: #579ae8;
    color: white;
}

Svelte Chat Application Development220

Let’s look at the styling for our chat popup creation component.

Styling our chat popup creation component

The .popup class is used for modal dialogs, positioned in the center of the viewport using a combination
of position: fixed, top: 50%, left: 50%, and transform: translate(-50%,
-50%). This ensures that the popup is always centered, regardless of the viewport size:

src/styles/chatPopup.css

.popup {
    position: fixed;
    top: 50%;
    left: 50%;
    transform: translate(-50%, -50%);
    width: 300px;
    padding: 20px;
    background-color: white;
    border-radius: 8px;
    box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
    z-index: 1000;
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
}

The fixed width and padding provide structure and internal space, while the white background
and rounded borders create a clean, friendly appearance. A light box-shadow adds depth and
prominence, and z-index ensures the popup remains above all other content. The Flexbox layout
with column direction centers its child elements vertically and horizontally.

Text inputs within the popup are styled to take up 80% of the popup’s width, with padding for
comfortable typing and rounded corners for a modern look:

.popup input[type="text"] {
    width: 80%;
    padding: 10px 5px;
    border-radius: 4px;
    margin-bottom: 10px;
}

Introducing styling 221

A margin at the bottom separates the input from other elements, helping to maintain visual clarity
and focus.

Buttons in the popup are slightly wider than the text inputs, filling 85% of the popup’s width, which
helps them stand out as primary interaction elements:

.popup button {
    width: 85%;
    padding: 10px;
}

The padding ensures they are easy to interact with, catering to usability.

A close button positioned absolutely within the popup allows it to float in the top-right corner,
which makes it easily accessible for users to dismiss the popup:

.popup .close-button {
    position: absolute;
    top: 10px;
    right: 10px;
    cursor: pointer;
}

The cursor pointer on hover indicates that the element is interactive, enhancing the user experience
by making it clear that clicking the button will perform an action, specifically, closing the popup.

Now, let’s cover the last set of styles for our specific chat.

Styling for specific chats

The .chat-details-wrapper class is styled to organize elements within a chat interface vertically:

src/styles/chatDetails.css

.chat-details-wrapper {
    display: flex;
    flex-direction: column;
    justify-content: space-between;
    height: 100%;
    padding-bottom: 10px;
}

By using display: flex and flex-direction: column, the classs arranges its children
in a vertical stack. justify-content: space-between ensures that the first child is aligned
to the top and the last child is aligned to the bottom, with the maximum space between them. The

Svelte Chat Application Development222

wrapper takes the full height of its container (height: 100%) and has padding at the bottom for
spacing away from any adjacent elements.

This style applies to elements, commonly used to list items such as chat messages:

ul {
    list-style: none;
    padding: 0;
    margin: 0;
    overflow-y: auto;
    flex-grow: 1;
}

list-style: none removes bullet points, and padding and margin set to 0 remove default
spacing to maximize content area. overflow-y: auto enables vertical scrolling when the content
exceeds the element’s height. flex-grow: 1 allows the instance of to expand and fill the
space in flex containers, making it responsive to varying amounts of content.

Each list item () within a instance of has padding for spacing inside, a light gray border at
the bottom (#ddd) to visually separate individual items, and vertical margins to space out list items
slightly from each other, enhancing readability:

li {
    padding: 10px;
    border-bottom: 1px solid #ddd;
    margin: 5px 0;
}

textarea is styled to not resize, maintaining a consistent layout that includes padding for comfortable
typing, a solid border, and slightly rounded corners for aesthetics:

textarea {
    resize: none;
    padding: 10px;
    border: 1px solid #ccc;
    border-radius: 4px;
    margin-bottom: 10px;
}

A margin at the bottom separates textarea from any subsequent content, such as a send button.

Now, our application looks much more decent!

With this, we have completed writing the main logic of our frontend application.

Summary 223

Summary
In this chapter, we have learned how to write real-world-like applications using Svelte. We have covered
how to use routing, apply styling, handle authentication, use reactivity in real cases, use styling, and
interact with the backend. This forms the foundation for our ability to write frontend applications
with Svelte.

In the next chapter, we are going to talk about more advanced topics of Svelte such as linting, testing,
and internationalization.

15
Advanced Svelte Techniques

In this last chapter of the book, we are going to cover the more advanced aspects of Svelte: formatting,
linting, internationalization, accessibility, and testing. All of these topics are essential to writing a
robust and user-friendly frontend application. By the end of this chapter, you will have a solid grasp
of developing frontend applications in general.

We are going to cover the following topics:

•	 Configuring formatting and linting

•	 Exploring a11y

•	 Setting up i18n

•	 Introducing testing

•	 Further reading

Technical requirements
To introduce the functionality mentioned in the introduction, we will need to install a few additional
libraries. First, we must install the libraries that are required for formatting and linting. These are
eslint and prettier, and they should be familiar to you from Chapter 3, where we introduced
linting and formatting for our backend application:

$ npm install --save-dev @typescript-eslint/eslint-plugin@^7.7.0 @
typescript-eslint/parser@^7.7.0 eslint@^8.57.0 eslint-config-
prettier@^9.1.0 eslint-plugin-prettier@^5.1.3 eslint-plugin-
svelte@^2.37.0 prettier@^3.2.3 prettier-plugin-svelte@^3.2.3

Advanced Svelte Techniques226

Let’s talk about each library:

•	 @typescript-eslint/eslint-plugin: This plugin integrates TypeScript language
features with ESLint, allowing for TypeScript code to be linted using ESLint rules.

•	 @typescript-eslint/parser: An ESLint parser that enables ESLint to lint TypeScript
code, parsing TypeScript files into a format that ESLint can understand.

•	 eslint: The ESLint library we use for linting that runs static checks against our code to detect
issues such as unused variables.

•	 eslint-config-prettier: A config that disables rules that might conflict with Prettier,
ensuring that ESLint and Prettier do not give conflicting formatting advice.

•	 eslint-plugin-prettier: This plugin integrates Prettier into ESLint by running it as a
rule within ESLint. It identifies and reports formatting discrepancies as individual ESLint issues.

•	 eslint-plugin-svelte: Adds support for Svelte components in ESLint, allowing for
linting of Svelte-specific syntax and patterns.

•	 prettier: The Prettier library for formatting our code according to the standards we choose.

•	 prettier-plugin-svelte: This plugin formats Svelte components using Prettier, ensuring
that Svelte code is formatted according to Prettier’s standards.

We will also need to install some libraries to test our application:

$ npm install --save-dev vitest@^1.5.0 jsdom@^24.0.0 @testing-library/
jest-dom@^6.4.2 @testing-library/svelte@^5.0.1

Let’s take a closer look at each library:

•	 vitest: A fast, Vite-based testing framework that’s designed to provide a Jest-like experience
with improved performance, which is well-integrated with Vite

•	 jsdom: A JavaScript implementation of web standards such as DOM and HTML, allowing
Node.js to simulate a browser environment for testing

•	 @testing-library/jest-dom: This library extends vitest with custom matchers to
simplify asserting conditions on DOM nodes in tests

•	 @testing-library/svelte: This library provides utilities to functionally test Svelte
components, encouraging best practices in testing

Finally, we will need to install a library for internationalization:

$ npm install svelte-i18n

We will use svelte-i18n to translate our application into different languages.

Configuring formatting and linting 227

All the code examples we are going to discuss in this chapter are available at https://github.
com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/
tree/main/Chapter15.

Configuring formatting and linting
Just like we did for the backend, in our frontend, we need to ensure that our application follows the
same standards across the whole project. We also want to try to catch potential issues with our code
early. To simplify this process, we can automate our formatting and linting using ESLint and Prettier.
To glue everything together, we will need to add additional plugins that integrate the libraries with
Svelte since Svelte has its own syntax, and therefore requires additional plugins to handle its code.

First, we will configure ESLint.

ESLint config file

Let’s start by discussing our main ESLint config file.

.eslintrc.cjs

We’ll begin with env, which specifies the environments the script is expected to run in:

module.exports = {
  env: {
    browser: true,
    es2021: true,
  },

Here, it’s set for browser environments and acknowledges the use of ECMAScript 2021 features.

The extends key is used to inherit configurations from a set of predefined recommended configurations:

  extends: [
    "plugin:svelte/recommended",
    "eslint:recommended",
    "plugin:@typescript-eslint/recommended",
    "prettier",
    "plugin:prettier/recommended"
  ],

This setup extends ESLint configurations for Svelte, TypeScript, and Prettier. This helps enforce best
practices and style consistency.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter15
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter15
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-TypeScript-5/tree/main/Chapter15

Advanced Svelte Techniques228

The parserOptions config sets the parser’s behavior:

  parserOptions: {

The ecmaVersion config indicates that the code uses ECMAScript 2021 features:

    ecmaVersion: 12,

The sourceType config signals that the code uses ES modules:

    sourceType: "module",

The project config specifies the TypeScript configuration file path:

    project: "./tsconfig.json",

The extraFileExtensions config allows the parser to handle files with the .svelte extension,
which are Svelte components:

    extraFileExtensions: [".svelte"],

The following section allows different ESLint settings for specific file types:

  },
  overrides: [

The following line shows that the override is specific to Svelte component files – that is, *.svelte:

    {
      files: ["*.svelte"],

The following lines configure ESLint to correctly process and parse Svelte files:

      processor: "svelte/svelte",
      parser: "svelte-eslint-parser",

The parserOptions config parses scripts within Svelte files that use TypeScript:

      parserOptions: {
        parser: "@typescript-eslint/parser",

The rules config defines specific rules for ESLint to enforce or ignore:

      },
    },
  ],
  rules: {

Configuring formatting and linting 229

The following line turns off the rule that prevents you from declaring functions or variables within
nested blocks, which is a common pattern in JavaScript:

    "no-inner-declarations": "off",

The following line ensures that any formatting inconsistencies found by Prettier are reported as errors:

    "prettier/prettier": "error",
  },
};

Now, let’s define the rules for Prettier that ESLint will use when it tries to lint the files.

Prettier file

The following file specifies configurations for our Prettier plugins key in it:

.prettierrc

{
  "plugins": ["prettier-plugin-svelte"],

Here, prettier-plugin-svelte is included, which adds support for the Svelte syntax for
Prettier. This allows Prettier to correctly format Svelte component files.

The following lines ensure that the Svelte-specific syntax is handled correctly during formatting:

  "overrides": [{ "files": "*.svelte", "options": { "parser": "svelte"
} }]
}

Now, let’s add an additional command to the scripts section of our package.json file to handle
linting. We will also add a command for testing that we will need later in the Introducing testing section:

package.json

{
  "name": "chat_frontend_3",
  "private": true,
  "version": "0.0.0",
  "type": "module",
  "scripts": {
    "dev": "vite",
    "build": "vite build",
    "preview": "vite preview",

Advanced Svelte Techniques230

    "check": "svelte-check --tsconfig ./tsconfig.json",
    "lint": "eslint src --fix",

The lint command runs eslint in our src folder and fixes any issues it can fix automatically,
such as styling.

The following line starts running our tests using vitest:

    "test": "vitest"
  },
...

Now, we can run the following command:

$ npm run lint

We will see that a lot of files have been adjusted so that they have the correct styling and that there
are a couple of errors in our project:

/chat_frontend_3/src/components/ChatListSideBar.svelte
  61:7  error  A11y: visible, non-interactive elements with an
on:click event must be accompanied by a keyboard event handler.
Consider whether an interactive element such as <button type="button">
or <a> might be more appropriate. See https://svelte.dev/docs/
accessibility-warnings#a11y-click-events-have-key-events for more
details.(a11y-click-events-have-key-events)  svelte/valid-compile
  61:7  error  A11y: Non-interactive element should not be
assigned mouse or keyboard event listeners.(a11y-no-noninteractive-
element-interactions)
/chat_frontend_3/src/components/CreateChatPopup.svelte
  25:3  error  A11y: visible, non-interactive elements with an
on:click event must be accompanied by a keyboard event handler.
Consider whether an interactive element such as <button type="button">
or <a> might be more appropriate. See https://svelte.dev/docs/
accessibility-warnings#a11y-click-events-have-key-events for more
details.(a11y-click-events-have-key-events)  svelte/valid-compile
  25:3  error  A11y: <div> with click handler must have an ARIA
role(a11y-no-static-element-interactions)
✖ 4 problems (4 errors, 0 warnings)

All these errors are about accessibility. Let’s look at this in more detail.

Exploring a11y
Accessibility is essential for creating digital products that can be used by everyone, including those
with disabilities. It’s not only a matter of ethical practice and inclusivity but also a legal requirement in
many parts of the world. Accessible websites and applications can reach a broader audience, provide
a better user experience, and often result in cleaner and more maintainable code.

Exploring a11y 231

The importance of accessibility

Accessibility is important for several reasons:

•	 Inclusivity: Accessibility ensures that all users, regardless of their physical or cognitive abilities,
can access and interact with content. This includes people with visual impairments, hearing
difficulties, motor limitations, and cognitive disorders.

•	 Legal compliance: Many countries have regulations requiring digital content to be accessible. For
example, the Americans with Disabilities Act (ADA) in the US and the European Accessibility
Act in the EU set standards that websites must meet.

•	 SEO benefits: Accessible sites tend to be better optimized for search engines. Features that
improve accessibility, such as image alt text and proper heading structures, can also enhance
SEO performance.

•	 Improved usability: Accessible design improves the overall user experience and usability of a
website for all users, not just those with disabilities.

Svelte facilitates some of these, so let’s talk about what it helps us with.

Accessibility rules and best practices in Svelte

Svelte facilitates various best practices through its reactive and declarative syntax. Here are a few ways
Svelte helps with accessibility:

•	 a11y warnings: Svelte’s compiler will warn us about missing alt text on images and non-interactive
clickable elements

•	 Role and ARIA properties: Svelte allows us to easily integrate Accessible Rich Internet
Applications (ARIA) roles and properties to enhance the accessibility of complex web components

•	 Animation and motion reduction: Svelte provides tools to respect the prefers-reduced-
motion CSS media feature, reducing animations for users who have motion sensitivity

Now, let’s see how we can improve accessibility in our application.

Fixing accessibility issues in our project

After executing npm run lint, we’ll see that we have issues in the CreateChatPopup component,
mainly with our closing button. Let’s take a closer look at these issues:

•	 Keyboard inaccessibility: The element cannot be focused or activated using the keyboard.
Users who rely on keyboard navigation (such as those using screen readers or those unable to
use a mouse) would be unable to interact with this button.

•	 Semantic incorrectness: The div element does not semantically convey that it is a button,
which can confuse assistive technologies that rely on the correct roles to provide context to users.

Advanced Svelte Techniques232

Let’s improve our close button element in src/components/CreateChatPopup.svelte.
We need to add additional attributes, role and tabindex, to enhance a11y. To do so, we will edit
our div element and add the role and tabindex attributes. This will fix our a11y issues:

<div class="close-button" on:click={onClose}>X</div>

Replace the preceding line with the following code block:

<div
    class="close-button"
    on:click={onClose}
    on:keydown|preventDefault={(e) => e.key === "Enter" && onClose()}
    role="button"
    tabindex="0"
  >
    X
  </div>

 To solve our a11y issues, we added the following:

•	 tabindex="0": This attribute makes the element focusable using the keyboard, specifically
allowing it to be focused by the keyboard’s Tab key navigation. The "0" value means that the
element can be reached in the order it appears in the HTML source, fitting seamlessly into the
sequence of table elements on the page.

•	 on:keydown|preventDefault={(e) => e.key === "Enter" && onClose()}:
This adds a keyboard event listener that triggers the onClose function when the Enter key
is pressed. The |preventDefault modifier is used to prevent any default behavior that
might be triggered by pressing the Enter key, ensuring the button’s functionality is isolated to
closing only. This allows users who do not use a mouse to activate the button with the Enter
key, mimicking how native buttons behave.

•	 role="button": By assigning the role of "button" to the div element, this code explicitly
tells assistive technologies that the div element is meant to be used as a button. This helps
screen readers and other assistive tools understand the purpose of the element, thus providing
a correct description to users who rely on this information for navigation and interaction.

Moving forward, to fix an issue that’s similar to the close button, we will need to go to the src/
components/ChatListSideBar.svelte file and change our chat lists so that the accessibility
attributes are present. To do this, we will replace the following code lines:

<ul class="chat-list">
    {#each chats as chat (chat.id)}
      <li
        class="chat-list-item"
        class:selected={chat.id === chatId}

Setting up i18n 233

        on:click={() => selectChat(chat.id)}
      >
        {chat.name}
      
    {/each}
  

Replace the preceding code with the following:

  <div class="chat-list">
    {#each chats as chat (chat.id)}
      <div
        class="chat-list-item"
        class:selected={chat.id === chatId}
        on:click={() => selectChat(chat.id)}
        on:keydown|preventDefault={(event) =>
          event.key === "Enter" && selectChat(chat.id)}
        tabindex="0"
        role="button"
      >
        {chat.name}
      </div>
    {/each}
  </div>

Here, we replaced our list element with div elements and added the chat-list-item class to
them so that we can handle the tab index and role. These elements should not be assigned to li as
non-interactive elements cannot have an interactive role button.

With this, we have fixed our linting and accessibility issues, and we are ready to talk
about internationalization.

Setting up i18n
Internationalization, often abbreviated as i18n, refers to the practice of designing and building software
in such a way that it can be easily adapted to different languages and regional settings without the
need to alter the underlying code structure. Internationalization is a critical aspect of global software
development because it allows for the localization of content, formats, and functionality to meet the
specific cultural and linguistic needs of different target audiences. It typically involves using local time,
language, order of letters, and even culture-specific designs and colors.

Advanced Svelte Techniques234

Localization, or l10n, is a subset of internationalization. It mostly refers to translations of the content.
This is what we are going to focus on in this chapter as the most important part of i18n. In the context
of Svelte, translations can be efficiently managed using the svelte-i18n library. This library
provides a straightforward and powerful way to integrate dynamic localization capabilities into Svelte
applications. So, let’s learn how to integrate it.

First, we must define our translation files. As an example, we will translate a string into both English
and Ukrainian.

Here is the logout key in English:

src/locales/en.json

{
  "logout": "Logout"
}

Here is the logout key in Ukrainian:

src/locales/ua.json

{
  "logout": "Вийти з системи"
}

Here, we defined a similar logout key in two files, so our library will choose the correct specific
translation based on the language used. Now, we can initialize our translation.

We need to set i18n up before we can use it in our application. Once we’ve done that, we will need
to define it before the other elements of our app so that when we import it, it’s ready to use.

We can import the required functions from svelte-i18n:

src/i18n.ts

import { init, getLocaleFromNavigator, addMessages } from "svelte-
i18n";

Next, we must import the files with the specific translations and register them in the system by their
full locale names:

import ua from "./locales/ua.json";
import en from "./locales/en.json";

addMessages("en-US", en);
addMessages("uk-UA", ua);

Setting up i18n 235

In the following code block, we’re initializing our library, providing the default locale that we will use
if we don’t have a translation for the user’s locale, and also trying to get the current user locale from
the browser settings:

init({
  fallbackLocale: "en-US",
  initialLocale: getLocaleFromNavigator(),
});

Now, let’s import our translation into the main file:

src/main.ts

import "./i18n";
...

Here, we imported our translation functionality into the file to make sure it is evaluated first in our system.

Now, we are ready to use i18n. Let’s try to implement a language switcher that will change the
language of our app. Since we’ve only defined the translations of the word logout, let’s focus on
handling i18n and show the correct language for the logout button. To do that, we need to edit
our Header component, which contains our logout button:

src/component/Header.svelte

<script lang="ts">
  import { navigate } from "svelte-routing";
  import { authToken } from "../stores/auth";
  import "../styles/header.css";
  import { _, locale } from "svelte-i18n";

Here, we import the necessary functions. First, _ is used to show a key in the correct translation. After
this, we have locale. This is a Svelte store value that we can bind to an input field and update the
locale that’s used in the system:

  const name = authToken.getPayload()?.name || "User";
  function logout() {
    authToken.remove();
    navigate("/login");
  }
</script>

<div class="header">
  <div class="user-name">{name}</div>

Advanced Svelte Techniques236

Here, we will provide a select element that binds to the locale value. When we change the input,
it will be reflected in the setup language in our system:

  <div class="locale">
    <select bind:value={$locale}>

We can indicate that the logout key is in the correct locale based on what the user’s current locale is:

      <option value="en-US">English</option>
      <option value="uk-UA">Ukrainian</option>
    </select>
  </div>
  <button class="logout-button" on:click={logout}>{$_("logout")}</
button>
</div>

If you open the application on the home screen and try to change the language, you will see how our
translation of the logout button changes on the fly. We have more content in the application to
translate, so you can follow a similar process to translate other strings in the project.

Now, we are ready to cover the last aspect of this chapter: testing.

Introducing testing
Two popular types of testing can occur on the frontend:

•	 Component/unit testing: Unit testing is easier to write in the frontend setup, helps us ensure
higher overall code coverage, and allows us to test in isolation

•	 End-to-end testing: End-to-end testing ensures that our code works and that the integration
between pieces is smooth

We will focus on unit testing in this section to perform the higher code coverage, but I encourage
you to also read up about setups for end-to-end testing using Svelte and different testing techniques
here: https://svelte.dev/docs/faq.

We will start by configuring Vite for testing.

Configuring the Vite file

First, we need to expand the configuration for our Vite file so that it supports testing. We can do this
by using the following code:

https://svelte.dev/docs/faq

Introducing testing 237

vite.config.ts

import { defineConfig } from "vite";
import { svelte } from "@sveltejs/vite-plugin-svelte";
import "vitest/config";

Now, we must import the vitest/config library to enable a new key in the config called test:

// https://vitejs.dev/config/
export default defineConfig({
  plugins: [svelte()],
  test: {
    globals: true,

This tells Vitest to automatically inject global variables into the test files. This makes common testing
functions such as describe, it, and expect available in every test file.

environment specifies the environment in which the tests will run:

    environment: "jsdom",

jsdom is a common choice for projects that need a simulated DOM environment as it allows us
to test DOM interactions without a browser. This simulates a web browser’s environment so that
DOM-related functionality can be tested.

setupFiles lists files that will be executed before the tests run:

    setupFiles: ["./src/setupTests.ts"]
});

In setupFiles, you can place the global setup code that needs to be run before any tests are executed.
This could include setting up mocks, configuring global variables, or other preparatory tasks that are
necessary for the tests to run correctly.

Next, we’ll discuss what’s in our setup file.

Exploring our setup file

Here, we must import dom, which allows us to execute functions such as toBeInTheDocument()
on our expect statements that are specific to various the dom elements:

src/setupTests.ts

import "@testing-library/jest-dom/vitest";

Advanced Svelte Techniques238

Next, we must import vitest itself:

import { beforeAll, vi } from "vitest";

The following code is a hack that fixes an unfortunate bug between Svelte and Vite that exists at
the time of writing – without these lines, Vite won’t be able to execute the life cycle hooks of the
Svelte component:

// @ts-expect-error - svelte/internal is a module, wrong error
import * as svelteinternal from "svelte/internal";
beforeAll(() => {
  vi.mock("svelte", () => svelteinternal);
});

The preceding code also contains ts-expect-error, which we use to suppress an incorrect
TypeScript error on the line. This error indicates that svelte/internal is not a module, even
though we know it is.

Now that you understand the beauty of the JavaScript World Library’s integrations, we can start writing
a test for one of our components.

Writing a test for our component

In this section, we will write a couple of tests for ChatListSideBar.svelte. Here, we will
provide some chat data to it, throw an error, press a button to create a new chat, and test that whatever
is rendered is what we expect to be rendered.

To do this, we must import the Svelte-specific function that will help us imitate an event, render our
element in a fake DOM tree, and wait until some text finally renders in the DOM.

src/components/ChatListSideBar.test.ts

We’ll put the test next to the original component since this is a common convention in the frontend
world. However, it is not required:

import { beforeEach, describe, expect, it, vi } from "vitest";
import { fireEvent, render, waitFor } from "@testing-library/svelte";

Next, we must import external dependencies that we will mock to prevent the API call and
router navigation:

import { navigate as navigateOriginal } from "svelte-routing";
import axios from "axios";

Introducing testing 239

The following code lines import the component we are going to test and mock dependencies for:

import ChatListSideBar from "./ChatListSideBar.svelte";
vi.mock("axios");
vi.mock("svelte-routing", () => ({
  navigate: vi.fn(),
}));

axios and svelte-routing are mocked in the following code block. Mocks replace these
modules with test-specific functions, allowing us to gain control over their behavior without relying
on external services:

const navigate = vi.mocked(navigateOriginal, true);
const axiosGet = vi.mocked(axios, true).get;

Next, we must create some dummy data for our chats. We can provide this as the mock API response
when we retrieve chats:

describe("ChatListSideBar", () => {
  const mockChats = {
    data: {
      data: [
        { id: "chat1", name: "Chat 1" },
        { id: "chat2", name: "Chat 2" },
      ],
    },
  };

We must clear our mocks in every run. This can be seen in the following code snippet. This ensures
that mocks are reset before each test runs so that each test starts with a fresh state:

  beforeEach(() => {
    axiosGet.mockClear();
    navigate.mockClear();
  });

The following test checks that an error message is displayed if chats fail to load due to an API error.
This can be simulated by rejecting axios.get with an error:

  it("displays an error message when chats fail to load", async () =>
{
    axiosGet.mockRejectedValue(new Error("Failed to fetch chats"));

Advanced Svelte Techniques240

We’re mocking axios so that it doesn’t imitate the API error.

findByText is used to check if some text is rendered in our tree:

    const { findByText } = render(ChatListSideBar);

waitFor tries to call findByText again if it throws an error, but fails if it continues throwing
errors beyond the timeout:

    await waitFor(

Next, we must check that the element with the text of the failed request is present on the screen. The
test will fail if the body doesn’t succeed in 100 ms:

      async () => {
        const errorMessage = await findByText(
          "Failed to fetch chats. Please try again later.",
        );
        expect(errorMessage).toBeInTheDocument();
      },
      {
        timeout: 100
      },
    );
  });

Here, we provide an empty chat response from axios and ensure we show a message indicating that
no chats are on the screen:

  it("displays no chats message when there are no chats", async () =>
{
    axiosGet.mockResolvedValue({ data: { data: [] } });
    const { findByText } = render(ChatListSideBar);
    expect(
      await findByText("No chats available. Create a new one!"),
    ).toBeInTheDocument();
  });

This is our happy path test. It checks that the chats are rendered correctly when we get them from
the API.

The following code imitates the process of navigating to a specific chat:

it("displays chats when data is loaded", async () => {
    axiosGet.mockResolvedValue(mockChats);

Introducing testing 241

    const { findByText } = render(ChatListSideBar);
    expect(await findByText("Chat 1")).toBeInTheDocument();
    expect(await findByText("Chat 2")).toBeInTheDocument();
  });

Now, let’s imitate the process of clicking on a chat element to see whether it navigates to a specific URL:

  it("navigates to the chat when a chat item is clicked", async () =>
{
    axiosGet.mockResolvedValue(mockChats);
    const { findByText } = render(ChatListSideBar);
    const firstChatItem = await findByText("Chat 1");
    expect(firstChatItem).toBeInTheDocument();
    await fireEvent.click(firstChatItem);

The preceding code checks that our mock value was called with the correct URL.

Next, we must test that the nested component gets rendered when we want to create a new chat. This
part has more of an integration test nature than a unit test nature but without the external dependencies:

    expect(navigate).toHaveBeenCalledWith("/chat1");
  });

We can imitate the process of clicking on the new chat button like so:

  it("shows create chat popup when new chat button is clicked", async
() => {
    axiosGet.mockResolvedValue({ data: { data: [] } });
    const { getByText, findByText } = render(ChatListSideBar);
    await fireEvent.click(getByText("New Chat"));

Finally, let’s check that part of the popup is visible in our render tree:

    expect(await findByText("Create")).toBeInTheDocument();
  });
});

At this point, we have showcased how we can test different UI edge cases and how UI elements interact.
With this, we are ready to conclude this section.

Advanced Svelte Techniques242

Further reading
There are a lot of other topics in the frontend and Svelte world that you can benefit from understanding.
If you wish to learn more, I highly recommend exploring the following resources:

•	 UI kits: UI kits provide ready-made components with consistent styling and a lot of customization.
They are useful for speeding up development, though you’re limited in what you can achieve
with them. I recommend checking out Headless UI (https://svelte-headlessui.
goss.io/docs/2.0) and SvelteUI (https://svelteui.dev/).

•	 Server-side rendering (SSR): SSR can be a very useful technique as it speeds up how quickly
users see content and makes web pages more searchable by search engines. It does this by
generating the HTML on the server before sending it to the user’s browser. I highly recommend
checking it out at SvelteKit (https://kit.svelte.dev/). It has built-in features such
as server-side rendering, routing, and smooth client-side transitions.

•	 Animations: Animations can greatly enhance how good and smooth an application looks
by providing dynamic styling. You can follow the official tutorial from Svelte to find out
more: https://learn.svelte.dev/tutorial/tweens.

Summary
In this chapter, we covered more advanced aspects of Svelte development, such as linting, formatting,
localization, accessibility, and testing. All of these aspects are required in all-rounded and production-
like applications and at this point, we know how to handle them effectively.

With this, we have come to the end of this book. I hope it has been a good learning journey for you
and that you have a much better grasp of how to develop an end-to-end application that includes
frontend, backend, and external integrations by using cutting-edge technologies.

If you’ve enjoyed this book, I’d be extremely flattered to see a review on the Amazon page for this book.

I hope you have a fun and exciting coding journey – best of luck! ;)

https://svelte-headlessui.goss.io/docs/2.0
https://svelte-headlessui.goss.io/docs/2.0
https://svelte-headlessui.goss.io/docs/2.0
https://svelte-headlessui.goss.io/docs/2.0
https://svelteui.dev/
https://kit.svelte.dev/
https://learn.svelte.dev/tutorial/tweens

Index

A
a11y

exploring 230
abstraction 21, 22
accessibility

significance 231
accessibility issues

fixing, in project 231-233
Accessible Rich Internet

Applications (ARIA) 231
advanced typing techniques 12

function types 15
narrowing 12-14
null types 14

Americans with Disabilities Act (ADA) 231
animations 242
API correctness

validating 152-154
API type

creating 46-48
application

routes, writing 190
application-wide styling

writing 211, 212
authentication

implementing 51

authentication endpoints
tests, writing for 72
validation, adding to 66-68

authentication logic
handling 191
Login component, implementing 194
Register component, implementing 198-200

authentication middleware
developing 51-54

authentication store
defining 191-193

authorization
implementing 51

B
Bun 30

benefits 30, 31
tests, developing with 70, 71

Bun’s test runner
tests, writing with 71, 72

C
cache

managing 94
cache invalidation 94

Index244

cache middleware
logger, adding to 100-102
using, in chat endpoints 97-99
writing 94-96

Chat component
chat, creating 206-208
chat details, displaying 208-211
chats, retrieving from server 203-206
creating 203

chat container
styling 217, 218

chat controllers
endpoints, combining 59-61
endpoints, implementing 56-59
implementing 56
index file, used for calling function 61, 62
supporting, functionality 56

chat endpoints
cache middleware, using 97-99
test, writing for 79, 80
validation, adding to 68-70

chat list
styling 218, 219

chat logic
developing 201
header component, implementing 202, 203
parent component, creating 201, 202

chat popup creation component
styling 220, 221

chats validation tests 83-85
chat tests 80-82
class

writing 120-123
codebase

SQL implementation, integrating 120
component

test, writing for 238-241
component/unit testing 236

Content Security Policy (CSP) 88
controllers

defining 54-56
Create, Read, Update, and Delete

(CRUD) 46, 105
Cross-Origin Resource Sharing (CORS) 89
CRUD SQL operations

writing 115-117

D
database management system (DBMS) 108
database schema

components 111
constructing 111
creating 114, 115
defining 112-114

database type
creating 46-48

Docker 106
benefits 107
PostgreSQL, setting up 106

Docker Compose 107
benefits 107

Docker containers 106
database, creating as 109-111

DoS attacks 87, 88

E
ECMAScript (ES) features 182
encapsulation 21, 23
endpoints

combining 59-61
implementing 56-59

end-to-end (E2E) testing 71, 236
environment variables 39
errors

handling 149-151

Index 245

ESLint 35
ESLint config file 227-229

F
fetch

API integration, in TypeScript 148, 149
formatting 37

configuring 227
function

calling, with index file 61, 62
function types 15

G
Generated Pre-trained Transformer

(GPT) responses 148
generics 23-25
GPT models, via OpenAI API

technical aspects, capabilities 156, 157

H
header component

implementing 202, 203
styling 216, 217

Headless UI
reference link 242

Hono 31
features 31, 32

hot module replacement (HMR) 179
hot reloading 33
HTML entry point 186, 187

I
inheritance 21, 23
in-memory data storage

replacing, with SQL-based solution 126, 127

in-memory implementation
of interfaces 48-50

in-memory storage
API type, creating 46-48
database type, creating 46-48
implementing 44
interfaces, defining 44-46

instantiation
and usage 23

integration testing 71
interfaces 8, 9, 20
internationalization (i18n)

setting up 233-236

J
JavaScript

versus TypeScript 5, 6
Jest 71
JSON Web Token (JWT) 51

L
large language models (LLMs) 156

applications 156-158
linting 35, 36

configuring 227
localization (l10n) 234
logger

adding, to caching middleware 100-102
logger’s configuration

creating 99, 100
logging

using 99
Login component

form, providing for credential input 194-196
implementing 194

Index246

invalid credentials, checking 196, 197
styling 213-216

login tests 74-76

M
main function

SQL implementation, incorporating into 125
main.ts file 187
man-in-the-middle attack 89
messages tests 82, 83
middleware 37, 38, 51

implementing 92
including, in main app 93
writing 91, 92

modern web development
TypeScript, using advantages 6

multiple concurrent transactions 108
multi-version concurrency

control (MVCC) 108
MySQL/MariaDB

versus PostgreSQL 108

N
narrowing 12-14
natural language (NL) 158
NoSQL databases

versus PostgreSQL 108
null types 14

O
object-relational mapping (ORM) 132

disadvantages 132
integrating, into main function 140, 141
versus plain SQL 132

OOP functionalities 21
abstraction 21
encapsulation 21
inheritance 21
polymorphism 21

OpenAI API integration
into backend 159-162
setting up 158

ORM integration
testing 141, 142

P
package.json

configuring 184-186
parent component

creating 201, 202
pino 99
plain SQL

versus ORMs 132
polymorphism 21, 23
PostgreSQL 107

benefits 107, 108
setting up, in Docker 106
versus MySQL/MariaDB 108
versus NoSQL databases 108
versus SQLite 108

Prettier 37
Prettier file 229, 230
Prisma 133

database schema, defining 134-136
migration, applying to database 136, 137
used, for handling migration 134
used, for interacting with database 137

Prisma Client class
defining 138-140

Prisma Migrate 133

Index 247

project
accessibility issues, fixing 231-233
setting up 32-35
structure 40

promises 25

R
rate limiting 90
Register component

implementing 198-200
styling 213-216

registration tests 72-74
relational database management

system (RDBMS) 107
request throttling

adding 90
retries

handling 149-151
retries with exponential backoffs 149
routes

writing, for application 190

S
security aspects

managing 88-90
separation of concerns (SoC) 22
server

chats, retrieving from 203-206
server-side rendering (SSR) 180, 242
single-page application (SPA) 179
specific chats

styling 221, 222
SQL-based solution

in-memory data storage,
replacing with 126, 127

SQL command
types and purposes 116

SQL implementation
class, writing 120-123
incorporating, into main function 125
integrating, in codebase 120
user, updating 124, 125

SQL injection 88
SQL integrations

testing, to ensure reliability 128, 129
SQLite

versus PostgreSQL 108
standard input (STDIN) 115
static site generation (SSG) 180
styling 211
Svelte 165

.svelte file structure 167, 168
accessibility rules 231
arrays, iterating 173, 174
best practices 231
bindings 172, 173
component composition structure 167
conditionals, handling 173, 174
configuration file 184
cons 166, 167
events 170, 171
history 166
lifecycle 175, 176
project, setting up 180
project structure, exploring 180
props 174, 175
pros 166
reactivity 169
stores 177, 178

Svelte component 167
Svelte, frequently asked questions

reference link 236

Index248

SvelteKit 179, 180
reference link 242

Svelte, project structure
application title 187, 188
configuration file 184
HTML entry point 186, 187
main.ts file 187
package.json, configuring 184-186
TypeScript configuration file 181-184
Vite configuration file 181

Svelte tutorial
reference link 166

SvelteUI
reference link 242

T
teletype (TTY) 115
Test-Driven Development (TDD) 70
testing

component/unit testing 236
end-to-end testing 236
setup file, exploring 237, 238
Vite file, configuring 236, 237

tests
developing, with Bun 70, 71
writing, for authentication endpoints 72
writing, for chat endpoints 79, 80
writing, for component 238-241
writing, with Bun’s test runner 71, 72

Tweening, in Svelte tutorial
reference link 242

type intersection 19, 20
TypeScript 5

configuration file 181-184
disadvantages 7
evolution 5
interfaces 8, 9

simple types 7, 8
using, advantages in modern

web development 6
versus JavaScript 5, 6

U
UI kits 242
unauthorized domain request 89
union types 17-19
unit testing 71
user

updating 124, 125
utility types 16, 17

V
validation

adding, to authentication endpoints 66-68
adding, to chat endpoints 68-70
writing, with Zod 66

validation tests 76-78
Vite 179, 180

configuration file 181
Vite file

configuring 236, 237

X
XSS attack 88

Z
Zod

used, for writing validation 66

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

TypeScript 4 Design Patterns and Best Practices

Theofanis Despoudis

ISBN: 978-1-80056-342-1

•	 Understand the role of design patterns and their significance

•	 Explore all significant design patterns within the context of TypeScript

•	 Analyze, and develop classical design patterns in TypeScript

•	 Find out how design patterns differ from design concepts

•	 Understand how to put the principles of design patterns into practice

•	 Discover additional patterns that stem from functional and reactive programming

https://www.amazon.com/dp/1800563426

251Other Books You May Enjoy

Learn React with TypeScript

Carl Rippon

ISBN: 978-1-80461-420-4

•	 Gain first-hand experience of TypeScript and its productivity features

•	 Understand how to transpile your TypeScript code into JavaScript for running in a browser

•	 Build a React frontend codebase with hooks

•	 Interact with REST and GraphQL web APIs

•	 Design and develop strongly typed reusable components

•	 Create automated component tests

https://www.amazon.com/dp/1804614203

252

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Full-Stack Web Development with TypeScript 5, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon review page
for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1835885594

253

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835885581

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835885581

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction to TypeScript
	Chapter 1: TypeScript Fundamentals
	Technical requirements
	Introduction to TypeScript and its evolution
	Key differences between TypeScript and JavaScript
	The advantages of using TypeScript in modern web development
	Basic syntax of TypeScript
	Simple types
	Interfaces

	Summary

	Chapter 2: TypeScript Deep Dive –
Typing, Generics, Classes,
and Interfaces
	Technical requirements
	Advanced typing techniques
	Narrowing
	null types
	Function types

	Creating types from other types
	Utility types
	Union types
	Type intersections

	Interface and OOP features
	Interfaces
	OOP functionalities

	Generics
	Promises
	Summary

	Part 2:
Backend Development with
Bun and TypeScript
	Chapter 3: Configuring a Backend Environment with Bun
and Hono
	Technical requirements
	Introducing Bun
	Introducing Hono
	Setting up the project
	Adding linting and formatting
	Adding middleware
	Handling environment variables
	Discussing the project structure
	Summary

	Chapter 4: Building Backend Infrastructure with Bun,
Hono, and TypeScript
	Technical requirements
	Implementing in-memory storage
	Defining the interfaces
	Creating database and API types
	In-memory implementation of the interfaces

	Implementing authentication and authorization
	Developing the authentication middleware
	Defining our controllers

	Implementing chat controllers
	Implementing the endpoints
	Combining the endpoints
	Using the index file for calling the function

	Summary

	Chapter 5: Improving Reliability –
Testing and Validation
	Technical requirements
	Writing validation with Zod
	Adding validation to our authentication endpoints
	Adding validation to our chat endpoints

	Developing tests with Bun
	Writing tests with Bun’s test runner
	Writing tests for our authentication endpoints
	Writing test for our chat endpoints

	Summary

	Chapter 6: Advanced Backend Development – Security, Throttling, Caching,
and Logging
	Technical requirements
	Managing security aspects
	Adding request throttling
	Writing the middleware
	Implementing the middleware
	Including the middleware in the main app

	Managing the cache
	Writing the cache middleware
	Using the cache middleware in our chat endpoints

	Using logging
	Creating our logger’s configuration
	Adding logger to our caching middleware

	Summary

	Part 3:
Integrating PostgreSQL for Data Management
	Chapter 7: PostgreSQL Basics, Storage, and Setup
	Technical requirements
	Setting up PostgreSQL in Docker
	What are Docker and Docker Compose?
	What is PostgreSQL?
	Creating a database as a Docker container

	Constructing the database schema
	Defining the database schema
	Creating the database schema

	Writing CRUD SQL operations
	Summary

	Chapter 8: Interacting with PostgreSQL Using Libraries
	Technical requirements
	Integrating SQL implementation in the codebase
	Writing a class
	Updating a user
	Incorporating SQL implementation into the main function
	Replacing in-memory data storage with a SQL-based solution

	Testing our SQL integrations to ensure reliability
	Summary

	Chapter 9: Interacting with PostgreSQL Using Prisma ORM
	Technical requirements
	Introduction to ORMs and Prisma
	Introducing Prisma – our ORM of choice
	Understanding Prisma Migrate

	Handling migrations using Prisma
	Defining the database schema
	Applying the migration to our database

	Interacting with the database using Prisma
	Defining the Prisma Client class
	Integrating ORM into the main function

	Testing our ORM integration
	Summary

	Part 4:
AI Integration with OpenAI API
	Chapter 10: Basics of Integrating External APIs with TypeScript and Hono
	Technical requirements
	Introduction to API integration in TypeScript using fetch
	Handling errors and retries
	Validating API correctness
	Summary

	Chapter 11: Setting Up and Configuring the OpenAI API for the Backend
	Technical requirements
	Introduction to LLMs and their applications
	Setting up OpenAI API integration
	Integrating the OpenAI API into our backend
	Summary

	Part 5:
Frontend Development
with Svelte
	Chapter 12: Introduction to Svelte for Frontend Development
	Technical requirements
	What is Svelte?
	History of Svelte
	Differentiation from other frameworks

	Learning Svelte fundamentals
	Component composition structure
	Introduction to .svelte file structure
	Reactivity
	Events
	Bindings
	Handling conditionals and iterating arrays
	Props
	Lifecycle
	Stores

	Summary

	Chapter 13: Setting Up the Svelte Project
	Technical requirements
	Discussing Vite and SvelteKit
	Setting up the project
	Exploring the project structure
	Vite configuration file
	TypeScript configuration file
	Svelte configuration file
	Configuring package.json
	HTML entry point
	Main file
	Application title

	Summary

	Chapter 14: Svelte Chat Application Development
	Technical requirements
	Writing routes for our application
	Handling authentication logic
	Defining the authentication store
	Implementing Login component
	Implementing Register component

	Developing chat logic
	Creating a parent component
	Implementing the Header component
	Creating the Chat component

	Introducing styling
	Writing application-wide styling
	Styling for our Login and Register components
	Styling our header component
	Styling the chat container
	Styling for the chat list
	Styling our chat popup creation component
	Styling for specific chats

	Summary

	Chapter 15: Advanced Svelte Techniques
	Technical requirements
	Configuring formatting and linting
	ESLint config file
	Prettier file

	Exploring a11y
	The importance of accessibility
	Accessibility rules and best practices in Svelte
	Fixing accessibility issues in our project

	Setting up i18n
	Introducing testing
	Configuring the Vite file
	Exploring our setup file
	Writing a test for our component

	Further reading
	Summary

	Index

