Year 9 Mathematics | Topic 1 | Algebra Revision

PEN Education

January 1, 2024

C	ontents		
1	Introduction		1
2	Substitution		2
3	Like Terms		4
4	Multiplication and Division		6
5	Simple Expansion of Brackets		8
6	Binomial Products		g
7	Perfect Squares		12
8	Difference of Two Squares	Education	14
9	Homework		16
1	Introduction		
W	hat does the word algebra mean?		
 XX 7	here does the word algebra come from?		
vv	nere does one word argebra come nom:		

	t is an example of alcohor?
vv na	t is an example of algebra?
	t can I do with Algebra?
2	Substitution
Wha	t is substitution?
_	Definition 1
Р	ronumeral:
1	
• •	
• •	
	□ Definition 2
N	Jumerical Value:
1	umencar value.

2.1 Examples

1. E valuate 2x when x = 3

.....

1

1

1

1

2. E valuate 5a + 2b when a = 2 and b = -3

.....

3. E valuate 2p(3q-2) when p=1 and q=-2

.....

4. E valuate 7m - 4n when m = -3 and n = -2

.....

5. E valuate a + 2b - 3c when a = 3, b = -5, c = -2

.....

2.2 Exercises 1. E valuate $2x - 3y$ when:	
(a) $x = \frac{2}{5}, y = -\frac{1}{4}$	(b) $x = \frac{1}{3}, y = \frac{1}{6}$
2. E valuate $n^2 - 2a$ when:	
(a) $p = -7, q = 2$	(b) $p = -\frac{1}{3}, q = \frac{5}{6}$
2. E valuate $p^2 - 2q$ when: (a) $p = -7, q = 2$	(b) $p = -\frac{1}{3}, q = \frac{5}{6}$

3 Like Terms

Why should we gr	oup like terms?	
Give an example	of grouping like terms.	

1. W hich of the following are pairs of like terms?

(a) 3x, 2x

(c) $3x^2, 3x$

(e) 2mn, 3nm

(b) 3m, 2c

(d) $2x^2y, 3yx^2$

(f) $5y^2, 6y^2x$

2. S implify each expression if possible:

(a) 4a + 7a =

(d) 9b + 2c - 3b + 6c =

.....

(b) $3x^2y + 4x^2 - 2x^2y =$

(e) 3z + 5yx - z - 6xy =

.....

(c) 5m + 6n =

(f) $6x^3 - 4x^2 + 5x^3$

.....

3.2 Exercises

1. S implify:

(a) $\frac{x}{2} + \frac{x}{3}$

(b) $\frac{3x}{4} - \frac{2x}{5}$

.....

.....

.....

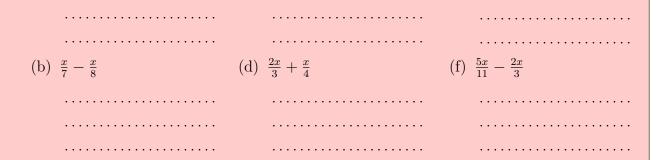
2. W hich of the following are pairs of like terms?

(a) 12m, 5m

(c) 6ab, -7b

(b) -6a, 7b

(d) $6x^2, -7x^2$


3. S implify each expression by collecting like terms.

4

2

3

(a) $8b + 3b$	(b) $6x^2 + 4x^2$		(c) $7f - 3f +$	- 9 <i>f</i>	ı
					ı
4. F ill in the missing term	m.				3
(a) $8mn+ =$	$12mn$ (b) $6m^2 - \dots$	$\dots = m^2$	(c) $-7a^2b+$	$\dots = a^2b$	ı
5. S implify by collecting	like terms.				6
(a) $8p + 6 + 3p - 2 =$			$x^2 - 3y - 7y = .$		ı
(b) $10ab + 11b - 12b -$			$x^2 - 4y^3 - x^2 = \dots$		ı
(c) $4p^2 - 3p - 8p - 3p$	$p^2 = \dots$	(f) $-3ab^2 + 4ab^2 +$	$4a^2b - 5ab^2 + a^2$	$b = \dots$	ı
6. S implify:					6
(a) $\frac{c}{6} + \frac{c}{7}$	(c) $c - \frac{c}{7}$		(e) $\frac{5x}{3} + \frac{x}{2}$		ı

4 Multiplication and Division

This part is interesting. In the last section we saw that we could **not** further simplify terms that were different such as 2x + 4y. But now with multiplication and division we can! $2x \times 4y = 8xy$ and $2x \div 4y = \frac{2}{4y} = \frac{x}{2y}$. Isn't that cool? Okay, now you guys try:

4.1 Examples

1. M ultiplications

(a) $4 \times 3a =$

(c) $4m \times 5m =$ (e) $3x \times (-6) =$

(b) $2d \times 5e =$

(d) $3p \times 2pq =$ (f) $-5ab \times -3bc$

2. D ivisions

(a) $24x \div 6 =$ (c) $-18x^2 \div (-3)$ (e) $\frac{12x}{21}$

(b) $36a \div 4$

(d) $\frac{15a}{3}$

4.2Exercises

1. R ewrite as a single fraction:

(a) $\frac{2a}{5} \times \frac{a}{4} =$

(c) $\frac{4p}{q} \times \frac{3}{2p} =$

(e) $\frac{2x}{3} \div \frac{3x}{5} =$

(b) $\frac{3x}{7} \times \frac{5y}{12} =$

(d) $\frac{15}{x} \times \frac{2}{3x} =$

(f) $\frac{6a}{7b} \div \frac{2ab}{3} =$

2. S implify

(a) $5c \times 2d =$ (c) $-2m \times (-4m) =$ (e) $7 \times 15p \div 21 =$

(b) $-6l \times (-5m) =$ (d) $24a^2 \div 8 =$ (f) $18y \div 6 \times 2 =$

3. S implify by first cancelling out common factors:

8

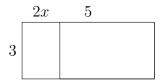
6

6

(a)
$$\frac{14p}{21} =$$
 (c) $\frac{2xy}{6xy} =$ (e) $\frac{2y}{5} \times \frac{y}{4} =$ (g) $\frac{2yz}{5xy} \times \frac{3xy}{4yz} =$ (b) $\frac{22x^2}{33} =$ (d) $\frac{-4xy}{8x} =$ (f) $\frac{p}{6q} \times \frac{9p}{4q} =$ (h) $\frac{2y}{5} \div \frac{y}{4} =$

5 Simple Expansion of Brackets

Often times algebraic concepts have a geometric meaning too. You've now done enough arithmetic with pronumerals to be able to learn this secret of the universe.


Consider 3(2x+5). You can expand this by distributing the 3 to each term in the brackets like so:

$$\frac{1}{(3)(2x+5)} = 6x + 15 \tag{1}$$

3

3

Or you can think about this as having some kind of original rectangle with dimensions 3 by 2x and then extending the width by 5.

Now finding the area of the enlarged shape is algebraically equivalent to 3(2x+5) and often times expanding this will make substitution easier if you know what the value of x is!

These kinds of expansions are the backbone of mathematics and becoming proficient at these will help you simplify harder problems. Let's get better at expanding:

5.1 Examples

1. E xpand:

(a)
$$2(a+3) =$$
 (b) $3(x-2) =$ (c) $4(2m-7) =$

2. N ow try:

(a)
$$5(a+1)+6=$$
 (b) $4(2b-1)+7=$ (c) $6(d+5)-3d=$

3. C an you handle some more terms?

(a)
$$2(b+5) + 3(b+2) =$$
 (b) $3(x-2) - 2(x+1) =$

2

10

5.2 Exercises

1. H ave a go at these ones yourselves:

(a)
$$\frac{3}{5}(6x + \frac{7}{3}) = \dots$$
 (f) $-\frac{4}{5}(25m - 100) = \dots$

(b)
$$\frac{4}{3}(6x+11) + \frac{2}{3} = \dots$$
 (g) $\frac{3}{5}(\frac{x}{6} + \frac{1}{3}) = \dots$

(c)
$$-12(4y-5) = \dots$$
 (h) $-\frac{3}{5}(\frac{a}{3}-\frac{2}{3}) = \dots$

(d)
$$\frac{2}{3}(12p+6) = \dots$$
 (i) $c(c-5) = \dots$

(e)
$$-\frac{1}{2}(10d - 6) = \dots$$
 (j) $2i(5i + 7) = \dots$

6 Binomial Products

What does the prefix bi mean?

Welcome to some respectable mathematics. Binomals look like this: (x+something)(y+something else). We are going to learn how to expand any variant of these, and then we will look at the special cases when x and y are the same and the something's are also the same; i.e. (x+a)(x+a). (There is a quick trick for solving these). Then we shall conclude the class with the second special case of the binomials - The Difference of Two Squares. They come in the shape of (x+a)(x-a), and also can be easily expanded with a trick!

Before we get stuck in to the expansion tricks, let's make sure we understand what we are expanding.

Examples of 'bi' things include

Now let us expand (a+2)(b+5). You just need to distribute each term in the first brackets with every term of the next set of brackets.

$$(a+2)(b+5) = ab + 2b + 5a + 10$$
(2)

If at first you are struggling to remember the steps, just remember the acronym FOIL, First Outside Inside Last.

Once again this has a geometric interpretation:

	a	2
b	ab	2b
5	5a	10

And the area can now be computed by adding all the parts: ab + 2b + 5a + 10, which is what our algebraic expansion told us too!

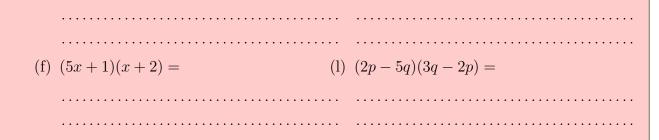
6.1 Examples

1. E xpand the following:

(a) (x+4)(x+5) =

(c) (x-4)(x-3) =

.....


.....

(b) (x+3)(x-2) =

(d) (2y+1)(3y-4) =

.....

7 Perfect Squares

This is one of the special cases mentioned earlier. Our general binomial looks like (x + a)(y + b), but perfect squares are easier and look like (x + a)(x + a) which can then be simplified to be $(x + a)^2$.

Remember the trick mentioned earlier? This is it:

1. Take the first term, square it

- 2. Take the last term, square it
- 3. Multiply all the terms with each other

Thus we have $(x+a)^2 = x^2 + 2ax + a^2$. Simple as that. Here is the geometric intuition:

	x	a
x	x^2	ax
a	ax	a^2

We take a square of x units and extend it to a square of length x + a:

7.1 Examples

Let's only do a few examples this time. We'll come back and do more practise after covering differences of two squares.

1. (a) $(x-5)^2 =$

.....

(b) $(x+7)^2 =$

.....

(c) $(3x-1)^2 =$

.....

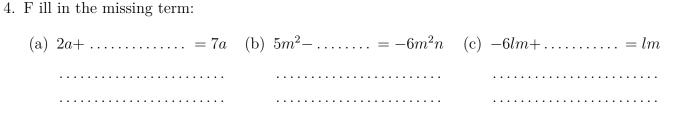
8 Difference of Two Squares

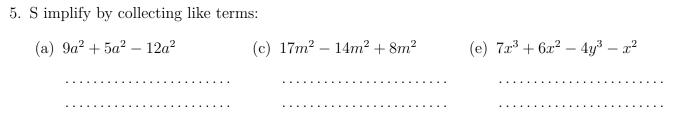
We shall cover this one quickly so you have time to do a brick of exercises after :D. Difference of Two Squares are the second special case of the **binomial** expansion, and come in the form (x+a)(x-a). Expanding this out with our usual **FOIL** method gives $x^2 + \alpha x - \alpha x - a^2$ which just leaves $x^2 - a^2$; how convenient!

This time I will leave the geometric intuition as an exercise, feel free to come to me before next class to explain your ideas!

8.1 Exercises	
1. L et's practise:	3
(a) $(x-5)(x+5) =$	
(b) $(3x-4)(3x+4) =$	
(c) $(a+b)(a-b) =$	
2. N ow back to perfect squares:	4
(a) $(x+1)^2 =$ (c) $(2+x)^2 =$	
(b) $(x+5)^2 =$ (d) $(x+20)^2 =$	
3. T rv a mix now:	6

(a) $(3x-2)(3x+2) =$	
	(d) $(5a+2b)(5a-2b) =$
	(e) $(\frac{x}{2}+3)^2 =$
(b) $(3a - 4b)^2 =$	
	(C) (Q 1)2
	$(f) (3c - b)^2 =$
(c) $(2x+3y)^2 =$	


Homework


1. E valuate 2m(m-3n) when:

(a) $m = 3, n = 5$	(b) $m = -3, n = -2$	(c) $m = \frac{1}{3}, n = \frac{1}{2}$

2.	E valuate $\frac{p+2q}{3r}$ when $p=7, q=-2, r=2$
3.	E valuate $\frac{x+y}{2}$ when $x=-6, y=-5$

E valuate $\frac{x+y}{3}$ when $x=-6,y=-5$	

(b)
$$14a^2d - 10a^2d - 6a^2d$$
 (d) $-4x^2 + 3x^2 - 3y - 7y$ (f) $-3ab^2 + 4a^2b - 5ab^2 + a^2b$

((a)	4a	×	3h
((a)	4u	X	30

(d)
$$3 \times 12t \div 9$$

$$(g) \frac{12ab}{4a}$$

(j)
$$\frac{3x}{5} \div \frac{3}{4}$$

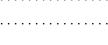
.

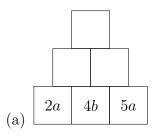
(b)
$$-2p \times (-3q)$$

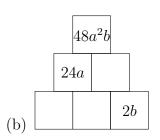
(e) $24x \div 8 \times 3$

$$(h) \frac{3x}{5} \times \frac{2}{3}$$

(k)
$$\frac{9y}{2} \div 18$$


(c)
$$27y \div 3$$


(f) $-\frac{12m}{18}$


(i)
$$\frac{2}{5a} \times \frac{1}{4a}$$

(1)
$$\frac{5p}{6} \div \left(-\frac{10p}{3}\right)$$

7. Fill in the missing boxes. Each box contains the product of the 2 boxes below it.

8. E xpand:

(c)
$$-k(5k-4)$$

(e)
$$4c(2c - d)$$

$$(g) 3p(2-5pq)$$

.

.

.

(b) 4h(5h-7)

(d)
$$-4x(3x-5)$$

(f)
$$-3x(2x+5y)$$

(h)
$$-10b(3a - 7b)$$

.

.

.

9. E xpand and collect like terms

(a)
$$\frac{1}{4}(x+2) + \frac{x}{3}$$

(b)
$$\frac{3}{7}(3x+5) + \frac{x}{3}$$

4

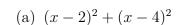
		(d)) 2p(3p+1)	-5((p + 1)		
(c)	$-\frac{1}{2}(3x+2) - \frac{2x}{5}$				(f)		-2) - z(z+2)
			2p(3p+1)	- 4((2p + 1)		
10. E xp	pand:						
(a)	(x-6)(x-4)	(c) $(4x +$	3)(2x-1)	(e)	(x+3)(x+3)	(g)	(2x+3)(2x+3)
(b)	(4x+1)(3x-1)	(d) $(x-4)$	(2x+5)	(f)	(2x-5)(x+3)	(h)	$(\frac{2b}{3}+2)(\frac{b}{5}-2)$
1. F ill	in the blanks:						
(b) (c)	(x + 5)($-2x - 15$ $x^2 + x - 4$	(e) (f)			$-$) = $2x^2 + 7x + $ $ x5$
12. E x _I	pand						
(a)	$(x-7)^2$	(b) $(a+8)$)8	(c)	$(9+x)^2$	(d)	$(x-11)^2$
3. Ехр	pand						
(a)	$(\frac{2x}{5}-1)^2$						

(b)	$\left(\frac{3x}{4}\right)$	$+\frac{2}{3})^{2}$
()	\ 4	' 3/

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	_	_	_	_	_	_	_	_	_	_	_	_	_							_	_	_	_	_		_	_	_	_	_	_	_	_	_			

14. E valuate the following using $(a + b)^2 = a^2 + 2ab + b^2$ and $(a - b)^2 = a^2 - 2ab + b^2$.

(a)
$$(1.01)^2$$


(b)
$$(0.99)^2$$

(c)
$$(4.01)^2$$

4

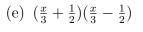
15. E xpand and collect like terms

(c)
$$x^2 + (x+1)^2 + (x+2)^2 + (x+3)^2$$

(b)
$$(2x+5)^2 + (2x-5)^2$$

(d)
$$(\frac{x}{2}+1)^2 + (\frac{x}{2}-1)^2$$

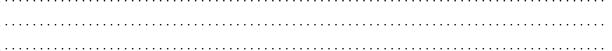
16. E xpand



(a)
$$(z-7)(z+7)$$

(b)
$$(10-x)(10+x)$$

(c)
$$(3x-2)(3x+2)$$


(f) Is
$$a^2 - 2a + 1$$
 a perfect square expansion or a difference of 2 squares?

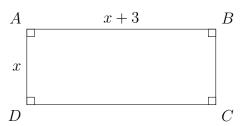
r + o(r - o)	

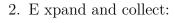
(d)
$$(\frac{x}{2} + 3)(\frac{x}{2} - 3)$$

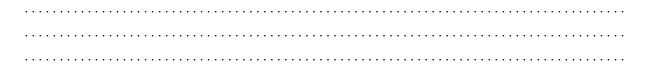
9.1 Challenge Problems

1. (a) Show that the perimeter of the rectangle is (4x + 6)cm

(c) Find x if the perimeter = 36cm




(d) Find the area of ABCD in terms of x


(e) Find the area of the rectangle if AB = 6cm

(a)
$$(x-1)(x^2+x+1)$$

(b)
$$(x-1)(x^4+x^3+x^2+x+1)$$

		•
() What do you expect the result of expanding $(x-1)(x^9+x^8+\cdots+1)$ will be?	

Marker's use only.

SECTION	1	2	3	4	5	6	7	8	HW	Total
MARKS	$\overline{0}$	9	33	32	18	$\overline{4}$	$\overline{0}$	1 3	88	197