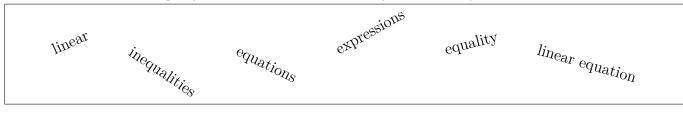
YEAR 9 MATHEMATICS TOPIC 5B LINEAR EQUATIONS & INEQUALITIES

PEN Education

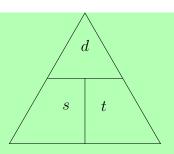

2024

C	Contents	
1	Introduction	1
2	Using linear equations to solve problems	2
3	Literal Equations	5
4	Inequalities	6
5	Solving linear inequalities	Education 8
6	Homework	14

1 Introduction

Welcome to the second installment of LINEAR EQUATIONS AND INEQUALITIES. In this lesson we will be applying our techniques to more heavily worded problems; problems that do not immediately seem to be mathematical in nature.

Here are the **buzz-words** that you should be familiar with by the end of the lesson. If you feel uncomfortable when reading any of these words out loud to yourself, ask your tutor for a definition!


2 Using linear equations to solve problems

Let us first practise the skill of converting worded problems to mathematical ones with appropriate variables:

2

2

2.1 E	Examples:
	ree children earn weekly pocket money. Andrew earns \$2 more than Gina, and Katya s twice the amount Gina earns. The total of the weekly pocket money is \$22.
(a)	How much money does Gina earn?
(b)	How much money do Andrew and Katya earn?
0 4 1:	
	and Jasmine each have a number of swap cards. Jasmine has 25 more cards than Ali, in total the two children have 149 cards.
(a)	How many cards does Ali have?
(b)	How many cards does Jasmine have?
3. Spee	ed is one of the most familiar rates. In problems involving speed, we use the relation:
	, distance travelled
	$average speed = \frac{abstance travelled}{time taken}$
whic	ch we can remember conveniently with the following triangle:

4. F or a training run, a triathlete covers 50 km in $4\frac{1}{4}$ hours. She runs part of the way a speed of 10 km/h, cycles part of the way at a speed of 40 km/h and swims the remaind distance at a speed of $2\frac{1}{2}$ km/h. The athlete runs for twice the time it takes to complete the cycle leg. How long did she take to complete the cycle leg?	ing
	• •
	• •

9	T7	
2.2	- r _z xer	cises:

i. Derek's present age

- • -	L'Act ciscs.	
1.	J acques thinks of a number $x.$ When he adds 17 to his number, the result is 32 . What is the value of x ?	1
2.	W hen 16 is added to twice Simone's age, the answer is 44 . How old is Simone?	1
3.	W hen 14 is added to half of Suzette's weight in kilograms, the result is 42 . How much does Suzette weigh?	1
4.	D erek is presently 20 years older than his daughter, Alana.	4

(a) If x represents Alana's present age, express each of the following in terms of x.

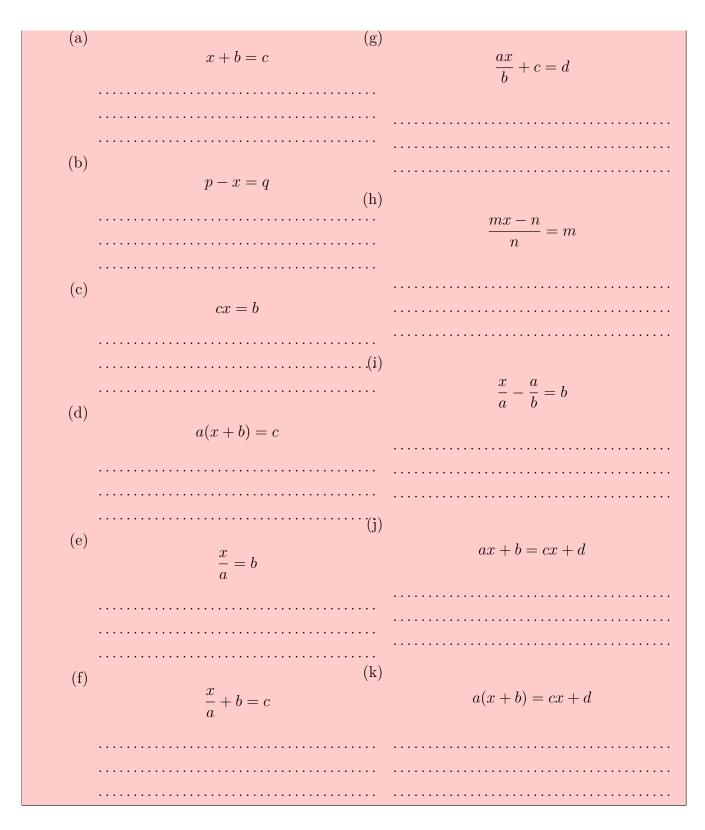
	4
_	

	ii. Alana's age in 12 years' time
	iii. Derek's age in 12 years' time
(2. X	
` '	If Derek's age 12 years from now is twice Alana's age 12 years from now, find their present ages.
	n, Brendan and Calum each have a number of plastic toys from a fast food store. dan has 5 more toys than Alan, and Calum has twice as many toys as Alan.
(a)	If x represents the number of toys Alan has, express each of the following in terms of x :
	i. the number of toys Brendan has
	ii. the number of toys Calum has
	iii. the total number of toys the three boys have
(h)	If the boys have 37 toys in total, determine how many toys each boy has.
(0)	ir the boys have or toys in total, determine now many toys each boy has.

3 Literal Equations

Sometimes instead of having an equation such as 3x + 7 = 22, we have many variables such as ax + b = c. But our algebraic rules still apply and we can treat these letters the same way as we would treat the numbers:

- 1. Subtract b from both sides
- 2. Divide both sides by a


Which would have been the same as subtracting both sides by 7 and then dividing by 3 in our numerical example.

This type of mathematics - rearranging for a variable even when the other variables are unknown is very helpful in the mathematics that you will soon do. Practise this skill thoroughly:

3.1 Examples:	
1. R ewrite $a(x+b) = c$ in terms of x .	1
2. Solve $mx - n = nx + m$ for x .	1

3.2 Exercises:

1. Solve each of these equations for x.

4 Inequalities

This is the punchline of today's lesson, and an important new concept for you all to grasp: **Inequalities**. The symbols for them are:

1. > = _____

 $3. \le =$ _____

2. < = $4. <math> \ge =$

1

1

1

1

3

4.1 Examples:

1. 4_____6

2. 5_____3

3. 2_____2

4. -2_____ - 10

5. 8______ - 8

Let us now visualise these inequalities on a number line:

1. x < 2:

2. $x \ge -1$

Here is some more practise:

1. G raph each set on the number line.

(a) $\{x : x \le -2\}$

(b) $\{x: x > 3\}$

(c) $\{x : x \ge 3\frac{1}{2}\}$

3

3

5

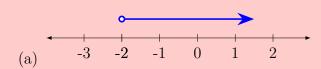
4.2 Exercises:

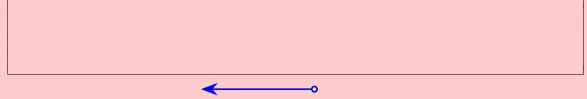
1. C opy and insert > or < to make each statement true.

(a) 7_____2

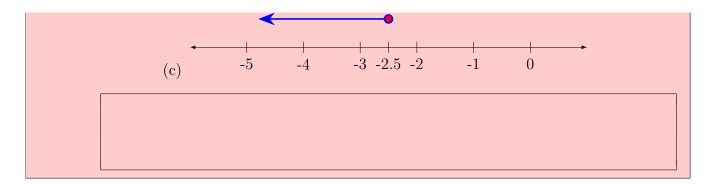
(b) -54______- - 500

(c) 21_____40


2. C opy and insert \leq or \geq to make each statement true.


(a) -7_____-2

(b) -10______- - 50


(c) 12_____26

3. U se set notation to describe each interval.

5 Solving linear inequalities

You should now understand the difference between equalities x = 5 and inequalities x < 2, where the first expression only has one answer ______, and the other has an infinite amount of answers: ______.

We can now add another layer of complexity to this and learn how to do some mathematical operations on on inequality expression.

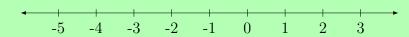
Let us begin with -1 < 5, which is something we agree to be true.

From here we can add 3 to both sides yielding ______. We agree that this is also true!

What about subtraction? Let's continue with our inequality from the last blank and subtract 1: 1 < 7. That still checks out, very cool.

How about we multiply the whole expression by -1?

$$-1 < -7$$


Is this still true?...

That is the most important thing to remember when manipulating inequalities!

When multiplying an inequality by a negative number you must flip the inequality!

Let us practise our 4 operations of addition, subtraction, multiplication and division on inequality expressions:

- 1. (a) Solve the inequality 4x 5 < 3
 - (b) Graph the solution set on the number line

2. S olve each of the following inequalities:

(a) $-2x \le 6$

 $-\frac{x}{3} > 4$

.......

.....

3. (a) Solve the inequality 2x + 3 < 3x - 4.

2

6

(b)

(b) Graph the solution set on the number line.

	1					
			4			

5.1 Exercises:

1. S olve each of these inequalities. Graph each solution on a number line.

(a)

$$x + 3 \ge 7$$

(b)

$$x - 10 > -6$$

(c)

$$3x > -15$$

2. S olve the following purely algebraically: (a) $2x+1\geq 5$ (b) $\frac{4x}{7}\leq -2$ (c) $\frac{x}{3}-\frac{1}{2}\geq 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a) $-4x\leq 20$		
(a) $2x+1\geq 5$ (b) $\frac{4x}{7}\leq -2$ (c) $\frac{x}{3}-\frac{1}{2}\geq 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
(a) $2x+1\geq 5$ $ \frac{4x}{7}\leq -2$ $ \frac{x}{3}-\frac{1}{2}\geq 1$ $ \frac{x}{3}$ S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
(a) $2x+1\geq 5$ $ \frac{4x}{7}\leq -2$ $ \frac{x}{3}-\frac{1}{2}\geq 1$ $ \frac{x}{3}$ S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
(a) $2x+1\geq 5$ $ \frac{4x}{7}\leq -2$ $ \frac{x}{3}-\frac{1}{2}\geq 1$ $ \frac{x}{3}$ S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
$2x+1\geq 5$ (b) $\frac{4x}{7}\leq -2$ (c) $\frac{x}{3}-\frac{1}{2}\geq 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)	2. S ob	ve the following purely algebraically:
(b) $\frac{4x}{7} \le -2$ (c) $\frac{x}{3} - \frac{1}{2} \ge 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)	(a)	
$\frac{4x}{7} \le -2$ (c) $\frac{x}{3} - \frac{1}{2} \ge 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		$2x + 1 \ge 5$
$\frac{4x}{7} \le -2$ (c) $\frac{x}{3} - \frac{1}{2} \ge 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
$\frac{4x}{7} \le -2$ (c) $\frac{x}{3} - \frac{1}{2} \ge 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
$\frac{4x}{7} \le -2$ (c) $\frac{x}{3} - \frac{1}{2} \ge 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
$\frac{4x}{7} \le -2$ (c) $\frac{x}{3} - \frac{1}{2} \ge 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
(c) $\frac{x}{3}-\frac{1}{2}\geq 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)	(b)	
(c) $\frac{x}{3}-\frac{1}{2}\geq 1$ 3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		$\frac{4x}{7} \le -2$
$\frac{x}{3} - \frac{1}{2} \ge 1$ Solve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		'
$\frac{x}{3} - \frac{1}{2} \ge 1$ Solve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
$\frac{x}{3} - \frac{1}{2} \ge 1$ 8. Solve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
$\frac{x}{3} - \frac{1}{2} \ge 1$ Solve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)		
$\frac{x}{3} - \frac{1}{2} \ge 1$ Solve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)	(6)	
3. S olve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) (a)	(6)	x - 1 > 1
by a negative number!) (a)		$\frac{1}{3} - \frac{1}{2} \ge 1$
by a negative number!) (a)		
by a negative number!) (a)		
by a negative number!) (a)		
by a negative number!) (a)		
by a negative number!) (a)	3. S ol	ve: (don't forget to reverse the inequality sign when dividing the expression through
$-4x \le 20$	(a)	
		$-4x \le 20$
(b)	(b)	
$-\frac{x}{2} \le 5$	()	<i>-</i>

		1
(c)	r	
	$-\frac{x}{12} \ge -8$	
4. S ob	ve:	2
(a)		
	3-2x>5	
(b)		
(2)	$6 - \frac{2x}{3} < 4$	
	3 \ 4	
(c)		
(0)	$\frac{x+3}{2} \le \frac{3-x}{2}$	
	$2 \stackrel{\sim}{} \stackrel{\sim}{} 2$	
F 0 1		
5. S ol	ve:	5
(a)	$1.2x + 6.8 \le 15.2$	
	$1.2 \pm 0.0 \geq 10.2$	

(b)	$1.6(x+7) \le 1.5(x-3)$
(c)	$2x - 14 \le 8$
(4)	
(d)	$\frac{2x+1}{6} > -3$
(e)	
(e)	$\frac{x-8}{2} - \frac{2x}{3} \ge 3$
W h	en 5 is added to twice p , the result is greater than 17 . What values can p take?

7. When 16 is subtracted from half of q , the result is less than 18. What values can q take?	2
8. When $2p$ is subtracted from 10 , the result is greater than or equal to 4 . What values can p take?	2

6 Homework

6.1 Using linear equations to solve problems

1.	P ing and Anna compete in a handicap sprint race. Anna starts the race 10 m ahead of Ping. Ping runs at an average speed that is 20% faster than Anna's average speed. The two sprinters will be level in the race after 9 seconds. Find the average speed of:	2
	(a) Anna	
	(b) Ping	
2.	Y olan buys 8 pens and receives 80 cents change from \$20.00. How much does a pen cost, assuming each pen costs the same amount?	1
3.	If the sum of $2p$ and 19 is the same as the sum of $4p$ and 11 , find the value of p .	1
4.	If the sum of half of q and 6 is equal to the sum of one-third of q and 2, find the value of q .	2
_		
5.	T he length of a swimming pool is 2 m more than four times its width.	3

(a) If x metres represents the width of the pool, express the length of the pool in terms of x.

6. M s	Minas earns \$3600 more than Mr Brown, and Ms Lee earns \$2000 less than Mr Brown.
(a)	If x represents Mr Brown's salary, express the salary of: i. Ms Minas in terms of x
	ii. Ms Lee in terms of x
(1.)	T()
(p)	If the total of the three incomes is \$151600, find the income of each person.
6.2 L	iteral Equations
1. R ev	write in terms of x :
(a)	-x+m=n

(c) m(nx+p) = n

(b) c - bx = e

(g)	$\frac{x}{f}$	+	$\frac{g}{h}$	=	k
-----	---------------	---	---------------	---	---

(d) $\frac{x+a}{b} = c$

 $(h) \ \frac{x}{b} - b = \frac{a}{b}$

(e) $\frac{mx}{n} = p$

(i) mx + n = nx - m

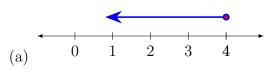
(f) $\frac{ax+b}{c} = d$

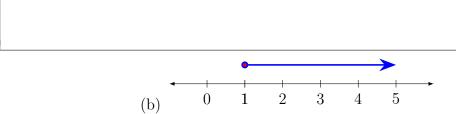
 $(j) \ a(x-b) = c(x-d)$

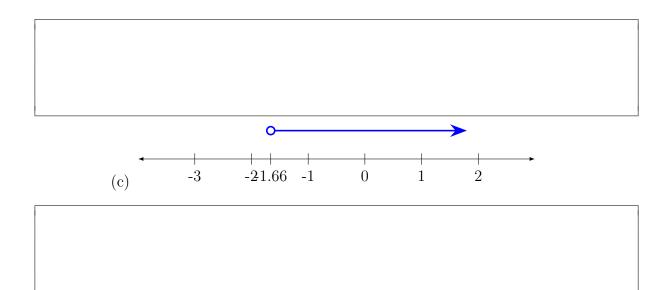
Inequalities 6.3

1. F ill in the missing blanks with >, < or = to make each statement true.

(b) -6_____0


(c) -2____5


(d) 5_______ - 7


(e) 0_____0

(f) 9_____9

2. U se set notation to describe each interval:

6.4 Solving linear inequalities

1. S olve and also sketch:

(a)

$$x - 2 < 3$$

(b)

$$x - 5 > -12$$

(c)

$$\frac{x}{5} \ge 4$$

2. J ust solve:

(a)	$4x - 6 \le -2$
(b)	2(+ 5) > 0
	$3(x+5) \ge 9$
(c)	$\frac{2x}{5} + \frac{1}{4} > 4$
(d)	$-10x \ge 130$
(e)	$-\frac{x}{7} \ge 4$
(r)	
(f)	$-\frac{x}{2} \ge -8$

(g)	$2 - 5x \le -8$
(h)	$4 - \frac{2x}{5} \ge 6$
(i)	$\frac{2x-1}{3} - \frac{3x+2}{4} > 3$
(j)	$2.4 - 0.7x \le 12.9$
(k)	2.8(x-4) > 1.3(x+3.5)
(1)	$-5x + 3 \ge 78$

(m)			$-\frac{x+}{3}$	$\frac{2}{2} \le 7$			
(n) $\frac{x}{4} > -\frac{x+12}{5}$							
3. The sum of $4d$ and 6 is greater than the sum of $2d$ and 18 . What values can d take?							
4. A number a i		by 3 and th					
than a, what values can a take?							
Marker's use only.							
SECTION	1	2	3	4	5	HW	Total
MARKS	ō	17	$\overline{2}$	2 1	31	49	120

 $\boxed{2}$

2