# YEAR 9 MATHEMATICS TOPIC 7A : INDEX LAWS

PEN Education

| I EN Education                                                    |
|-------------------------------------------------------------------|
| 2024                                                              |
|                                                                   |
|                                                                   |
| Contents                                                          |
|                                                                   |
| Introduction                                                      |
| index indices power root exponent reciprocal section beso product |
| 1. What is the fourth power of two equal to?                      |
| <b>Solution:</b> $2^4 = 16$                                       |
| 2. How do you interpret this?                                     |
|                                                                   |
| <b>Solution:</b> $2^4 = 2 \times 2 \times 2 \times 2 = 16$        |

**Solution:**  $2^4 = 2 \times 2 \times 2 \times 2 = 16$ 

4

3. But then what about  $2^{-2}$ ? Does this have an answer? What is it's interpretation?!

4. Why are learning about these powers?

**Solution:** Because they express small quantities and large quantites very well. And the world around us expresses itself to us in that way: there are  $10^{22}$  stars in the universe (thereabouts) and the mass of an electron has the mass of  $9.1 \times 10^{-31}$ . These quantities would be dreadful to write out in full. Also, if we study these well we can manipulate them and make our mathematical expressions simpler.

1

# 2 The Index Laws

Let us begin simply with the following:

# 2.1 Examples:

- 1. Express as a power or as a product of powers.
  - (a)  $5 \times 5 \times 5$

Solution:  $5 \times 5 \times 5 = 5^3$ 

(b)  $3 \times 3 \times 7 \times 7 \times 7 \times 7$ 

Solution:  $3 \times 3 \times 7 \times 7 \times 7 \times 7 = 3^2 \times 7^4$ 

(c)

- 2. Express each number as a power of a prime.
  - (a) 81

Solution:  $81 = 3 \times 3 \times 3 \times 3$ 

(b) 128

**Solution:**  $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 3^4 = 2^7$ 

Now some definitions:

Definition 1

Base:

**Solution:** The number 2 in  $2^4$  is called the base.



Index:

**Solution:** The number 4 in  $2^4$  is called the index or exponent.

### 2.2 **Examples**

1. Simplify, expressing the answer in index form.

(a)  $3^2 \times 3^4$ 

(f)  $\frac{9^5}{9^4}$ 

**Solution:**  $3^2 \times 3^4 = 3^6$ 

**Solution:**  $\frac{9^5}{9^4} = 9^1$ 

(b)  $a^3 \times a^5$ 

(g)  $10^6 \div 10^4$ 

Solution:  $a^3 \times a^5 = a^8$ 

**Solution:**  $10^6 \div 10^4 = 10^{6-4} = 3^3 = 9$ =  $10^2 = 27 = 100$ 

(c)  $3x^2 \times x^3$ 

Solution:  $3x^2 \times x^3 = 3x^5$ 

(h)  $a^7 \div a^4$ 

(d)  $2a^2b^3 \times 5ab^2$ 

Solution:  $a^7 \div a^4 = a^{7-4} = a^3$ 

**Solution:**  $2a^2b^3 \times 5ab^2 = 10 \times a^{2+1} \times_{(i)} \ \frac{3y^4}{2}$ 

 $=10a^3b^5$ 

Solution:  $\frac{3y^4}{y} = 3 \times \frac{y^4}{y}$ 

(e)  $\frac{3^5}{3^2}$ 

**Solution:**  $\frac{3^5}{3^2} = 3^{5-2}$ 

**Solution:**  $\frac{6x^5}{2x^3} = \frac{6}{2} \times \frac{x^5}{x^3} = 3 \times y^{4-1} = 3 \times x^{5-3} = 3y^3 = 3x^2$ 

2. Double marks for each of these:

(a)

$$\frac{3x^3y^2}{4xy} \times \frac{6x^2y^3}{x^3y^2}$$

Solution:  $\frac{3x^3y^2}{4xy} \times \frac{6x^2y^3}{x^3y^2} = \frac{18x^5y^5}{4x^4y^3} = \frac{9xy^2}{2}$ 

(b)

$$\frac{8a^2b^3}{3a^3b} \div \frac{4ab^2}{9a^3b^5}$$

4

Solution:  $\frac{8a^2b^3}{3a^3b} \div \frac{4ab^2}{9a^3b^5} = \frac{8a^2b^3}{3a^3b} \times \frac{9a^3b^5}{4ab^2}$ 

$$= \frac{72 \times a^5 \times b^8}{12 \times a^4 \times b^3}$$

$$=6ab^5$$

- 3. And a  $1.5 \times$  multiplier for these:
  - (a)  $(\frac{2}{3})^2$

Solution:  $\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}$ 

(b)  $\left(\frac{m}{n}\right)^5$ 

Solution:  $\left(\frac{m}{n}\right)^5 = \frac{m^5}{n^5}$ 

(c)  $\left(\frac{x^3}{y^2}\right)^2 \times \left(\frac{y}{x}\right)^4$ 

Solution:  $\left(\frac{x^3}{y^2}\right)^2 \times \left(\frac{y}{x}\right)^4 = \frac{x^6}{y^4} \times \frac{y^4}{x^4}$ 

(d)  $\left(\frac{2x^2}{3}\right)^2 \div \frac{4x^3}{9}$ 

**Solution:**  $\left(\frac{2x^2}{3}\right)^2 \div \frac{4x^3}{9} = \frac{4x^4}{9} \times \frac{9}{4x^3} = x^2 = x$ 

(a)  $(5a^3)^0$ 

**Solution:**  $(5a^3)^0 = 1$ 

(b)  $\frac{6x^2y}{xy^2} \times \frac{y^3x}{2y^2x^2}$ 

Solution:

$$\frac{6x^2y}{xy^2} \times \frac{y^3x}{2y^2x^2} = \frac{6}{2} \times \frac{x^3}{x^3} \times \frac{y^4}{y^4}$$
$$= 3x^0y^0$$
$$= 3 \times 1 \times 1$$
$$= 3$$

(c)  $(mn^2)^0$ 

**Solution:**  $(mn^2)^0 = 1$ 

(d)  $(a^4b^2)^3$ 

**Solution:**  $(a^4b^2)^3 = a^{12}b^6$ 

(e)  $(2a^4)^3$ 

**Solution:**  $(2a^4)^3 = 2^3 \times a^{12}$ 

(f)  $2(x^2y)^0 \times (x^2y^3)^3$ 

**Solution:**  $2(x^2y)^0 \times (x^2y^3)^3 = 2 \times 1 \times x^6y^9 = 8a^{12} = 2x^6y^9$ 

(g)

Note: There are different possible interpretations of the word 'simplify'. There may be more than one acceptable simplified form.

### 2.3 **Exercises:**

1. State the base and index of:

(a)  $6^4 =$  **6** (b)  $7^3 =$  **7** (c)  $8^2 =$  **8** 

Solution: Base: 6, In-

dex: 4

Solution: Base: 7, Index: 3

Solution: Base: 8, Index: 2

2. Express as a power of a prime number.

(a)  $8 = \underline{\phantom{a}}$  (b)  $27 = \underline{\phantom{a}}$  (c)  $64 = \underline{\phantom{a}}$ 

| 2   | 1.0  | 4      |
|-----|------|--------|
| ≺ . | HATE | 111910 |
| IJ. | Liva | luate: |

| (a) | $3^4 =$ | 81 |
|-----|---------|----|
| \ / |         |    |

(b) 
$$2^7 = \underline{\hspace{1cm}} \mathbf{128} \hspace{1cm} (c) 5^5 = \underline{\hspace{1cm}} \mathbf{3125}$$

(c) 
$$5^5 =$$
 3125

4. Express as a product of powers of prime numbers.

(a) 
$$18 = \underline{2 \times 3^2}$$

(a) 
$$18 = \underline{2 \times 3^2}$$
 (b)  $24 = \underline{2^3 \times 3}$  (c)  $144 = \underline{2^4 \times 3^2}$ 

(c) 
$$144 = 2^4 \times 3^2$$

5. Simplify:

(a)  $2^7 \times 2^3$ 

Solution:  $3^{12}$ 

(c)  $3x^2 \times 4x^3$ 

Solution:  $12x^5$ 

Solution:  $2^{10}$ 

(b) 
$$3^3 \times 3^4 \times 3^5$$

6. Simplify:

(a)  $a^2b^3 \times b^2$ 

(c)  $2xy^2 \times 3x^2y$ 

Solution:  $a^2b^5$ 

Solution:  $6x^3y^3$ 

(b)  $a^3b \times a^2b^3$ 

(d)  $4a^3b^2 \times a^2b^4$ 

Solution:  $a^5b^4$ 

Solution:  $4a^5b^6$ 

7.

(a)  $\frac{3^7}{3^2}$ 

(d)  $\frac{10^{12}}{10^4}$ 

Solution:  $3^5$ 

Solution:  $10^8$ 

(b)  $\frac{2^6}{2^2}$ 

(e)  $\frac{2x^3}{x^2}$ 

Solution:  $2^4$ 

Solution: 2x

(c)  $10^7 \div 10^2$ 

 $(f) \quad \frac{6x^5}{2x^2}$ 

Solution:  $10^5$ 

Solution:  $3x^3$ 

8.

3

3

3

4

(a)  $\frac{a^3b^2}{a^2}$ (c)  $\frac{12a^6b^2}{4a^2b}$ Solution:  $ab^2$ Solution:  $3a^4b$ (b)  $\frac{x^3y^2}{xy}$ (d)  $\frac{15xy^3}{3y^2}$ Solution:  $x^2y$ Solution: 5xy9. (a)  $\frac{a^3b^2}{ab} \times \frac{a^2b}{a}$ (c)  $\frac{6ab^2}{5a^3b} \div \frac{12ab}{15a^5b}$ Solution:  $a^4b^2$ Solution:  $3a^2b$ (b)  $\frac{x^3y}{xy^2} \times \frac{x^4y^5}{x^2}$ (d)  $\frac{7x^3y^4}{2xy^2} \div \frac{21x^2y^3}{4x^3y^2}$ 

Solution:  $x^4y^4$ Solution:  $2x^2y$  4

6

2

6

(a)  $a^4 \times \underline{\phantom{a}^6} = a^{10}$  $\ell^2 m^5$ Solution:  $5d^5$ Solution:  $a^6$ Solution:  $\ell^4 m^2$ 

Solution:  $b^9$ Solution:  $3ab^2$ Solution: 3d

(c)  $15d^7 \div \underline{\qquad 5d^5 \qquad} = 3d^6) \ \ell^6 m^7 \div \underline{\qquad \ell^4 m^2 \qquad} =$ 

10.

11.

(a)  $a^0$ Solution: 2 Solution: 1

(b)  $2x^0$ 

12.

(a)  $3a^0$ (c)  $4a^0 + 3b^0$ (e)  $(4b)^0 + 2b^0$ Solution: 7 Solution: 3 Solution: 3 (f)  $(3b)^0 - 5d^0$ (b)  $6a^0$ (d)  $6a^0 + 7m^0$ Solution: -4Solution: 6 Solution: 13 13. Simplify, leaving the answer as a power. (a)  $(2^3)^4$ Solution:  $3^6$ Solution:  $2^{12}$ (b)  $(3^2)^3$ 14. (a)  $(a^3)^2 \times (a^3)^4$ (c)  $2ab^2 \times 3a(b^3)^2$ Solution:  $a^{14}$ Solution:  $6a^2b^8$ (b)  $(x^4)^2 \times (x^3)^3$  $\left(\mathbf{d}\right) \ \frac{3ab}{\left(b^2\right)^3} \times \frac{4b^7}{3a}$ Solution:  $x^{17}$ Solution:  $4b^2$ 15. (c)  $\left(\frac{a}{5}\right)^2$ (a)  $(3a)^2$ Solution:  $9a^2$ Solution:  $\frac{a^2}{25}$ 

2

4

4

4

16.

(b)  $(2x)^3$ 

Solution:  $8x^3$ 

(d)  $\left(\frac{2}{x}\right)^3$ 

Solution:  $\frac{8}{x^3}$ 

(a)  $(2a^2b)^2 \times 3ab^3$ (c)  $(5xy^2)^3 \times (x^2y^3)^2$ Solution:  $125x^7y^{13}$ Solution:  $12a^5b^5$ (b)  $(3xy^2)^3 \times (x^2y)^2$ (d)  $(2a^3b)^3 \times 3a^0$ Solution:  $27x^5y^8$ Solution:  $24a^9b^3$ 17. (a)  $\left(\frac{x^2}{y}\right)^2 \times \left(\frac{y^2}{x}\right)^3$ (c)  $\frac{(3xy^2)^2 \times (2x^2y)^3}{(6x^2y)^2}$ Solution:  $\frac{xy^4}{y^2}$ Solution:  $x^2y^4$ (d)  $\frac{3a^2b^4 \times (2ab^2)^3}{(4a^2b^3)^2}$ (b)  $\left(\frac{4a^2}{b}\right)^2 \times \left(\frac{b}{2a}\right)^3$ Solution:  $\frac{8ab}{b^2}$ Solution:  $\frac{3a^2b^2}{4}$ 

4

# 3 Negative Indices

This section is tricky as negative numbers always tend to be. The most important thing you will learn here is:

$$a^{-n} = \frac{1}{a^n}$$

I want you to take a second to realise that this **breaks** your interpretation of a being raised to some power n as being n successive multiplications of the number a.

$$a^n = \underbrace{a \times a \times a \dots}_n$$

Suddenly what does it mean to multiply a by itself -n times?! Here is some working out space for you to reconcile with this fact.

**Solution: Proof:** 

Consider the product of  $a^n$  and  $a^{-n}$ :

$$a^n \cdot a^{-n} = a^{n+(-n)} = a^0$$

Since anything raised to the power of 0 is 1, we have:

$$a^0 = 1$$

$$a^n \cdot a^{-n} = 1$$

Dividing both sides by  $a^n$ , we get:

$$\frac{a^n \cdot a^{-n}}{a^n} = \frac{1}{a^n}$$

Simplifying the left side, we have:

$$a^{-n} = \frac{1}{a^n}$$

Hence proved.

### 3.1 **Examples:**

Worked Example:

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

- 1. Evaluate
  - (a)  $6^{-2}$

(c)  $2^{-7}$ 

**Solution:**  $6^{-2} = \frac{1}{6^2} = \frac{1}{36}$ 

**Solution:**  $2^{-7} = \frac{1}{2^7} = \frac{1}{128}$ 

(b)  $4^{-3}$ 

(d)  $10^{-3}$ 

**Solution:**  $4^{-3} = \frac{1}{4^3} = \frac{1}{64}$ 

**Solution:**  $10^{-3} = \frac{1}{10^3} = \frac{1}{1000}$ 

- 2. These ones just reciprocate!
  - (a)  $(\frac{1}{3})^{-1}$

- (b)  $\left(\frac{2}{7}\right)^{-2}$
- (c)  $\left(4\frac{1}{4}\right)^{-2}$

**Solution:** 
$$\left(\frac{2}{7}\right)^{-2} = \frac{49}{4}$$

Solution: 
$$\left(\frac{1}{3}\right)^{-1} = \frac{3}{1}$$
 | Solution:  $\left(\frac{2}{7}\right)^{-2} = \left(\frac{7}{2}\right)^2 = \frac{49}{4}$  | Solution:  $\left(4\frac{1}{4}\right)^{-2} = \left(\frac{17}{4}\right)^{-2} = \left(\frac{4}{17}\right)^2 = \frac{16}{289}$ 

|4|

3

8

- 3. Write as a single power and then evaluate:
  - (a)  $3^4 \times 3^{-2}$

**Solution:**  $3^4 \times 3^{-2} = 3^2$ 

(b) 
$$5^7 \times 5^{-8}$$

**Solution:** 
$$5^7 \times 5^{-8} = 5^{-1}$$

$$=9$$

(c) 
$$13^{-8} \times 13^{15} \times 13^{-7}$$

Solution: 
$$13^{-8} \times 13^{15} \times 13^{-7} = 13^{0}$$
  
= 1

$$=1$$

$$=\frac{1}{5}$$

(d) 
$$\left(\frac{2}{3}\right)^{-6} \times \left(\frac{2}{3}\right)^{4}$$

**Solution:** 
$$\left(\frac{2}{3}\right)^{-6} \times \left(\frac{2}{3}\right)^4 = \left(\frac{2}{3}\right)^{-2}$$

$$=\left(\frac{3}{2}\right)^2$$

$$=\frac{9}{4}$$

$$\frac{2^4}{2^5}$$

(g)

(h)

$$\frac{5}{5^3}$$

**Solution:** 
$$\frac{2^4}{2^5} = 2^{-1} = \frac{1}{2}$$

**Solution:** 
$$\frac{5}{5^3} = 5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

$$\frac{3^4}{3^7}$$

$$\frac{3}{2}$$

**Solution:** 
$$\frac{3^4}{3^7} = 3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

**Solution:** 
$$\frac{3^4}{3^6} = 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

4. Simplify, expressing the answers with positive indices

(a) 
$$a^2b^{-3} \times a^{-4}b^5$$

(c) 
$$(2a^{-2}b^3)^{-2}$$

**Solution:** 
$$a^2b^{-3} \times a^{-4}b^5 = a^{2-4} \times b^{-3+5} = \frac{1}{a^2} \times b^2 = \frac{b^2}{a^2}$$

Solution: 
$$(2a^{-2}b^3)^{-2} = 2^{-2} \times a^4 \times b^{-6}$$
  
=  $\frac{1}{2^2} \times a^4 \times \frac{1}{b^6} = \frac{a^4}{4b^6}$ 

(b) 
$$\frac{x^2y^3}{x^3y^2}$$

(d) 
$$\left(\frac{3m^2}{n}\right)^{-4}$$

**Solution:** 
$$\frac{x^2y^3}{x^3y^2} = x^{-1}y^1 = \frac{1}{x} \times y = \frac{y}{x}$$

**Solution:** 
$$\left(\frac{3m^2}{n}\right)^{-4} = \left(\frac{n}{3m^2}\right)^4 = \frac{n^4}{81m^8}$$

Note that in general  $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$ .

# 3.2 Exercises:

1. Express with a positive index and then evaluate.

(a)  $2^{-1}$ 

(c) 
$$2^{-4}$$

Solution: 
$$2^{-1} = \frac{1}{2}$$
  
 $2^{-1} = 0.5$ 

**Solution:** 
$$2^{-4} = \frac{1}{2^4}$$
  
 $2^{-4} = 0.0625$ 

(b)  $5^{-1}$ 

(d) 
$$3^{-3}$$

**Solution:** 
$$5^{-1} = \frac{1}{5}$$
  
 $5^{-1} = 0.2$ 

**Solution:** 
$$3^{-3} = \frac{1}{3^3}$$
  $3^{-3} = \frac{1}{27}$ 

2. Write each fraction as a power of a prime with a negative index.

(a)  $\frac{1}{8}$ 

(c) 
$$\frac{1}{16}$$

**Solution:**  $\frac{1}{8} = 2^{-3}$ 

**Solution:** 
$$\frac{1}{16} = 2^{-4}$$

(b)  $\frac{1}{9}$ 

(d) 
$$\frac{1}{64}$$

**Solution:**  $\frac{1}{9} = 3^{-2}$ 

**Solution:** 
$$\frac{1}{64} = 2^{-6}$$

 $3. \,$  Express with positive indices, evaluating where possible.

4

|4|

(a)  $a^{-3}$ 

(c)  $\frac{3}{a^{-4}}$ 

Solution:  $a^{-3} = \frac{1}{a^3}$ 

Solution:  $\frac{3}{a^{-4}} = 3a^4$ 

(b)  $x^{-7}$ 

(d)  $\frac{5}{x^{-5}}$ 

Solution:  $x^{-7} = \frac{1}{x^7}$ 

Solution:  $\frac{5}{x^{-5}} = 5x^5$ 

4. Simplify and then evaluate

4

(a)  $\left(\frac{1}{4}\right)^{-1}$ 

Solution:  $\left(\frac{1}{4}\right)^{-1} = 4$ 

**Solution:**  $3^5 \times 3^{-2} = 3^{5-2}$  $3^5 \times 3^{-2} = 3^3$  $3^5 \times 3^{-2} = 27$ 

(b)  $\left(\frac{2}{5}\right)^{-2}$ 

(d)  $5^{11} \times 5^{-8}$ 

Solution:  $\left(\frac{2}{5}\right)^{-2} = \left(\frac{5}{2}\right)^2$   $\left(\frac{2}{5}\right)^{-2} = \frac{25}{4}$ 

(c)  $3^5 \times 3^{-2}$ 

Solution:  $5^{11} \times 5^{-8} = 5^{11-8}$   $5^{11} \times 5^{-8} = 5^3$   $5^{11} \times 5^{-8} = 125$ 

5.

4

(a)  $\frac{2^3}{2^6}$ 

(c)  $\frac{8^6}{8^7}$ 

Solution:  $\frac{2^3}{2^6} = 2^{3-6}$   $\frac{2^3}{2^6} = 2^{-3}$   $\frac{2^3}{2^6} = \frac{1}{8}$ 

Solution:  $\frac{8^6}{87} = 8^{6-7}$  $\frac{8^6}{87} = 8^{-1}$  $\frac{8^6}{87} = \frac{1}{8}$ 

(b)  $\frac{4^2}{4^4}$ 

(d)  $\frac{20^4}{20^6}$ 

Solution:  $\frac{4^2}{4^4} = 4^{2-4}$  $\frac{4^2}{4^4} = 4^{-2}$  $\frac{4^2}{4^4} = \frac{1}{16}$ 

$$\frac{4}{4^4} = 4^{-2}$$

$$\frac{4^2}{4^4} = \frac{1}{16}$$

Solution:  $\frac{20^4}{20^6} = 20^{4-6}$  $\frac{20^4}{20^6} = 20^{-2}$  $\frac{20^4}{20^6} = \frac{1}{400}$ 

6. Express with negative index.

(a)  $\frac{3}{r}$ 

(b)  $\frac{5}{r^2}$ 

(c)  $\frac{8}{r^4}$ 

Solution:  $\frac{3}{x} = 3x^{-1}$ 

Solution:  $\frac{5}{x^2} = 5x^{-2}$ 

**Solution:**  $\frac{8}{x^4} = 8x^{-4}$ 

3

4

6

7. Evaluate.



Solution:  $\left(\frac{1}{2}\right)^{-1} = 2$   $\left(\frac{1}{2}\right)^{-2}$ 

**Solution:**  $(\frac{2}{3})^{-1} = \frac{3}{2}$ 

(d)  $\frac{36h^{-9}}{9h^{-4}}$ 

Solution:  $\left(\frac{1}{2}\right)^{-2} = 2^2$   $\left(\frac{1}{2}\right)^{-2} = 4$ 

- 8. Simplify, expressing the answer with positive indices.

(a)  $x^{-6}y^4 \times x^2y^{-2}$ 

Solution:  $x^{-6}y^4 \times x^2y^{-2} = x^{-6+2}y^{4-2}$   $x^{-6}y^4 \times x^2y^{-2} = x^{-4}y^2$   $x^{-6}y^4 \times x^2y^{-2} = \frac{y^2}{x^4}$ 

- (b)  $2a^{-1}b^5 \times 7ab^{-3}$ 
  - Solution:  $2a^{-1}b^5 \times 7ab^{-3}$   $14a^{-1+1}b^{5-3}$

 $2a^{-1}b^5 \times 7ab^{-3} = 14b^2$ 

Solution:  $\frac{36h^{-9}}{9h^{-4}} = 4h^{-9+4}$  $\frac{36h^{-9}}{9h^{-4}} = 4h^{-5}$  $\frac{36h^{-9}}{9h^{-4}} = \frac{4}{h^5}$ 

- (c)  $\frac{8a^{-4}}{2a^6}$
- 9. Fill in the missing term

(a)  $6^4 \times ... = 6^2$ 

**Solution:**  $6^4 \times 6^{-2} = 6^2$ 

**Solution:**  $(a^5)^{-3} = a^{-15}$ 

- (b)  $m^5 \times ... = m^{-6}$

(e)  $(...)^{-2} = \frac{m^6}{25}$ 

 $(f) (...)^{-2} = p^4 q^{-6}$ 

- **Solution:**  $m^5 \times m^{-11} = m^{-6}$
- **Solution:**  $(\frac{m^3}{5})^{-2} = \frac{m^6}{25}$

(c)  $d^{-7} \div \dots = d^{15}$ 

- **Solution:**  $d^{-7} \div d^{-22} = d^{15}$
- **Solution:**  $(p^2q^{-3})^{-2} = p^4q^{-6}$

(d)  $(a^5)\cdots = a^{-15}$ 

|4|

10. Simplify, expressing the answers with positive indices. Evaluate powers where possible.

(a) 
$$(3a^{2}b^{-2})^{3} \times (2a^{4})^{-2}$$
 (c)  $\frac{(2a^{4}b^{-2})^{3}}{c^{2}} \times \frac{(2^{2}a^{-3}b^{2})^{-1}}{c}$ 

Solution:  $(3a^{2}b^{-2})^{3} \times (2a^{4})^{-2} = \frac{27a^{6}b^{-6} \times \frac{1}{4a^{8}}}{(3a^{2}b^{-2})^{3} \times (2a^{4})^{-2} = \frac{27}{4}a^{-2}b^{-6}}$ 
 $(3a^{2}b^{-2})^{3} \times (2a^{4})^{-2} = \frac{27}{4a^{2}b^{6}}$ 

Solution:  $\frac{(2a^{4}b^{-2})^{3}}{c^{2}} \times \frac{(2^{2}a^{-3}b^{2})^{-1}}{c} = \frac{8a^{12}b^{-6}}{c^{2}} \times \frac{c}{4a^{3}b^{-2}}$ 
 $\frac{(2a^{4}b^{-2})^{3}}{c^{2}} \times \frac{(2^{2}a^{-3}b^{2})^{-1}}{c} = \frac{2a^{9}b^{-4}}{c^{3}}$ 

Solution: 
$$\frac{(2a^4b^{-2})^3}{c^2} \times \frac{(2^2a^{-3}b^2)^{-1}}{c} = \frac{8a^{12}b^{-6}}{c^2} \times \frac{c}{4a^3b^{-2}} = \frac{(2a^4b^{-2})^3}{c^2} \times \frac{(2^2a^{-3}b^2)^{-1}}{c} = \frac{2a^9b^{-4}}{c^3}$$

(b) 
$$(6a^{5}b^{-4})^{-3} \times 2(a^{3}b^{-3})^{2}$$

Solution:  $(6a^{5}b^{-4})^{-3} \times 2(a^{3}b^{-3})^{2} = \begin{bmatrix} (d) \\ \frac{1}{216a^{15}b^{-12}} \times 2a^{6}b^{-6} \\ (6a^{5}b^{-4})^{-3} \times 2(a^{3}b^{-3})^{2} = \frac{2}{216}a^{-9}b^{6} \\ (6a^{5}b^{-4})^{-3} \times 2(a^{3}b^{-3})^{2} = \frac{1}{108a^{9}b^{6}} \end{bmatrix}$ 

Solution:  $\mathbf{j} \frac{(2a^{4})^{2}}{b^{7}} \div \frac{(a^{2})^{-3}}{2b} = \mathbf{j} \frac{4a^{8}}{b^{7}} \times \frac{2b}{a^{-6}}$ 
 $\mathbf{j} \frac{(2a^{4})^{2}}{b^{7}} \div \frac{(a^{2})^{-3}}{2b} = \mathbf{j} \frac{8a^{14}}{b^{6}}$ 

Solution: 
$$\mathbf{j} \frac{(2a^4)^2}{b^7} \div \frac{(a^2)^{-3}}{2b} = \mathbf{j} \frac{4a^8}{b^7} \times \frac{2b}{a^{-6}}$$

$$\mathbf{j} \frac{(2a^4)^2}{b^7} \div \frac{(a^2)^{-3}}{2b} = \mathbf{j} \frac{8a^{14}}{b^6}$$

# 4 Homework

## The Index Laws

1. State the base and index of:

(a)  $10^4$ 

(b) 5

(c)  $6^0$ 

Solution: Base: 10, In-

dex: 4

**Solution:** Base: 5, Index: 1

Solution: Base: 6, In-

dex: 0

2. Express as a power of a prime number.

(a) 243

**Solution:**  $243 = 3^5$ 

**Solution:**  $125 = 5^3$ 

**Solution:**  $81 = 3^4$ 

(b) 125

 $\overline{(c)}$  81

3. Evaluate:

(a)  $7^4$ 

Solution: 2401

**Solution:** 8 × 243 = 1944

**Solution:**  $1296 \times 9 = 11664$ 

(b)  $2^3 \times 3^5$ 

(c)  $6^4 \times 3^2$ 

4. Express as a product of powers of prime numbers.

(a) 90

(b) 700

(c) 84

Solution:  $90 = 2 \times 3^2 \times$ 

5

Solution:  $700 = 2^2 \times 5^2 \times 7$ 

Solution:  $84 = 2^2 \times 3 \times 7$ 

5. Simplify, leaving the answer as a power or a product of powers.

(a)  $3^4 \times 3^5$ 

(c)  $a^3 \times a^8$ 

(e)  $2y \times 3y^4$ 

Solution: 3<sup>9</sup>

Solution:  $a^{11}$ 

Solution:  $6y^5$ 

(b)  $3^4 \times 3^7$ 

(d)  $b^7 \times b^{12}$ 

(f)  $4b^2 \times 3b^4$ 

Solution:  $3^{11}$ 

Solution:  $b^{19}$ 

Solution:  $12b^6$ 

6. Simplify:

3

3

3

3

(a)  $x^2y \times x^3y$ 

(b)  $5a^4b \times 2ab^3$ 

Solution:  $x^5y^2$ 

Solution:  $10a^5b^4$ 

7. Simplify, leaving the answer as a power or a product of powers.

6

(a)  $5^4 \div 5$ 

(d)  $\frac{a^5}{a^3}$ 

Solution:  $5^3$ 

Solution:  $a^2$ 

(b)  $7^5 \div 7^3$ 

(e)  $\frac{10y^{12}}{5y^3}$ 

Solution:  $7^2$ 

Solution:  $2y^9$ 

(c)  $\frac{a^4}{a}$ 

 $(f) \frac{27p^4}{9p}$ 

Solution:  $a^3$ 

Solution:  $3p^3$ 

8. Simplify:

|4|

(a)

 $\frac{a^5b^3}{a^4b}$ 

(c)

 $\frac{16a^4b^3}{12a^2b^2}$ 

Solution:  $ab^2$ 

Solution:  $\frac{4}{3}a^2b$ 

(b)

 $\frac{x^4y^7}{x^3y^2}$ 

(d)

 $\frac{27x^2y^3}{18xy^2}$ 

Solution:  $xy^5$ 

Solution:  $\frac{3}{2}xy$ 

9. Simplify:

4

(a)

 $\frac{2ab^2}{3a^2b^4} \times \frac{6a^4b^5}{ab^5}$ 

(b)

$$\frac{12x^4y^3}{3x^2y} \times \frac{x^2y^4}{x^3y^5}$$

Solution:  $4ab^{-1}$ 

Solution: 4xy

(c) 
$$\frac{14a^4b^3}{3ab^2} \div \frac{7a^5b^4}{6a^3b^5} \qquad \qquad \frac{12x^2y}{x^3y^4} \div \frac{6xy^2}{x^6y^7}$$

Solution:  $2x^{-7}y^{-8}$ Solution:  $8a^2b^{-4}$ 

9

2

6

2

10. Copy and complete.

(b)  $(3b)^0$ 

(a)  $4a^3 \times \underline{\hspace{1cm}} = 12a^7$ (d)  $9d^6 \div \underline{\hspace{1cm}} = 3d$  (g)  $14x^5y^2 \times \underline{\hspace{1cm}} = 42x^{10}y^5$ Solution:  $3x^5y^3$ Solution:  $3a^4$ Solution:  $3d^5$ 

(b)  $a^8 \div _ = a^4$ (e)  $m^4 n^5 \times \underline{\hspace{1cm}} = m^{10} n^7$ (h)  $9m^7n^4 \div _ = 3m^2$ 

Solution:  $m^6n^2$ Solution:  $a^4$ Solution:  $3m^5n^4$ 

(c)  $x^{10} \div \underline{\hspace{1cm}} = x^6$ (f)  $a^7b^4 \div _ = a^2b$ (i)  $18p^2q^6 \div _ = 3pq$ 

Solution:  $6pq^5$ Solution:  $x^4$ Solution:  $a^5b^3$ 

11. Simplify:

(a)  $xy^0$ Solution: 7 Solution: x

(b)  $7x^0y^0$ 

12. Simplify:

(a)  $(4a)^0$ (d)  $(4a+3b)^0$ 

Solution: 1 Solution: 1 (e)  $(5m^0 + 7b)^0$ 

Solution: 1 Solution: 1

(f)  $(6m - 2c^0)^0$ (c)  $(2a+1)^0$ 

Solution: 1 Solution: 1

13. Simplify, leaving the answer as a power.

(a)  $(a^2)^5$ 

Solution:  $a^{10}$ 

Solution:  $y^{30}$ 

1

1

6

6

- (b)  $(y^5)^6$
- 14. Simplify

 $\frac{\left(y^3\right)^4}{\left(y^4\right)^2}$ 

Solution:  $y^4$ 

15. Simplify

 $\frac{3(x^3y)^2}{(x^2y)^2} \div \frac{12x^4y^2}{(2x^3y)^2}$ 

Solution:  $\frac{3}{4}$ 

16. Copy and complete (using index law 3).

(a)  $(a^6)^{---} = a^{24}$ 

(d)  $(\underline{\phantom{a}})^6 = p^{36}$ 

Solution: 4

Solution:  $p^6$ 

(b)  $(b^3)^{----} = b^{21}$ 

Solution: 7

Solution:  $a^2$ 

(c)  $(m^6)$ \_\_\_\_ =  $m^{30}$ 

(f)  $(\underline{\phantom{a}})^3 = m^{15}$ 

Solution: 5

Solution:  $m^5$ 

17.  $(2)^{6}$   $(6)^{2}$ 

(a) Is it true that  $(a^2)^6 = (a^6)^2$ ?

**Solution:** Yes, both equal  $a^{12}$ .

(b) Is it true that  $(b^4)^7 = (b^7)^4$ ?

**Solution:** Yes, both equal  $b^{28}$ .

(c) Generalise your result.

**Solution:**  $(a^m)^n = (a^n)^m = a^{mn}$ 

18. Simplify by expanding the brackets.

Solution:  $x^2y^6$ 

(a)  $(xy^3)^2$  Solution:  $\frac{a^5}{b^5}$ 

(b)  $(a^2b)^4$  (d)  $\left(\frac{x^2}{y}\right)^3$ 

Solution:  $a^8b^4$ (c)  $\left(\frac{a}{b}\right)^5$ Solution:  $\frac{x^6}{y^3}$ 

19. Simplify:

(a)  $\left(\frac{x^3}{y^2}\right)^2 \div \left(\frac{x}{y^2}\right)^3$ 

Solution:  $x^3$ 

 $\left(\frac{2x^4}{y}\right)^5 \div \left(\frac{4x^3}{y^3}\right)^2$ 

Solution:  $\frac{32x^8}{y}$ 

4

2

2

20. Simplify:

(a)  $\frac{(2x^2y^3)^3 \times (5xy^2)^2}{(10x^2y)^2 \times (xy)^3}$ 

Solution: 25y

(b)  $\frac{(6ab)^3 \times 2a^7b^4}{(2ab)^4 \times (3a^2b)^2}$ 

Solution:  $3a^2$ 

21. Copy and complete.

(a)  $(a^2b^3)^4 = a^8b^{12}$  (d)  $(x^4y^7)^{-1} = 1$ (b)  $(m^5n^4)^6 = m^{30}n^{24}$  (e)  $(2a^2)^4 = 16a^8$ 

(g)  $(7m^3)^2 = 49m^6$ 

(h)  $(4\ell^3 m)^3 = 64\ell^9 m^3$ 

(c)  $(p^3q)^3 = p^9q^3$ 

(f)  $(3q^3)^3 = 27q^9$ 

(i)  $(5m^5n^3)^2 = 25m^{10}n^6$ 

# **Negative Indices**

1. Express with a positive index and then evaluate.

(a)  $3^{-2}$ 

(d)  $5^{-3}$ 

Solution:  $\frac{1}{9}$ 

Solution:  $\frac{1}{125}$ 

(b)  $6^{-2}$ 

(e)  $3^{-4}$ 

Solution:  $\frac{1}{36}$ 

Solution:  $\frac{1}{81}$ 

(c)  $9^{-2}$ 

(f)  $10^{-5}$ 

Solution:  $\frac{1}{81}$ 

Solution:  $\frac{1}{100000}$ 

2. Write each fraction as a power of a prime with a negative index.

(a)  $\frac{1}{27}$ 

(d)  $\frac{1}{125}$ 

Solution:  $3^{-3}$ 

Solution:  $5^{-3}$ 

(b)  $\frac{1}{49}$ 

(e)  $\frac{1}{169}$ 

Solution:  $7^{-2}$ 

Solution:  $13^{-2}$ 

(c)  $\frac{1}{121}$ 

(f)  $\frac{1}{81}$ 

Solution:  $11^{-2}$ 

Solution:  $3^{-4}$ 

3. Express with positive indices, evaluating where possible.

6

9

(a)  $3a^{-4}$ 

(d)  $\frac{1}{x^{-3}}$ 

Solution:  $\frac{3}{a^4}$ 

Solution:  $x^3$ 

(b)  $5x^{-7}$ 

(e)  $3^{-2}a^{-2}$ 

Solution:  $\frac{5}{r^7}$ 

Solution:  $\frac{1}{9a^2}$ 

(c)  $4a^{-5}$ 

(f)  $4^{-2}x^{-2}$ 

Solution:  $\frac{4}{a^5}$ 

Solution:  $\frac{1}{16x^2}$ 

4. Simplify where possible and then evaluate.

(a)  $\left(3\frac{1}{3}\right)^{-2}$ 

(c)  $7^3 \times 7^{-5}$ 

Solution:  $\frac{1}{11.11}$ 

Solution:  $7^{-2}$ 

(b)  $\left(\frac{2}{3}\right)^{-3}$ 

(d)  $4^3 \times 4^{-5}$ 

(d)

Solution:  $\frac{27}{8}$ 

Solution:  $4^{-2}$ 

5. Write as a single power and then evaluate.

(a)

 $3^8$  $\frac{}{3^{9}}$ 

 $\overline{6^8}$ 

Solution:  $7^{-2}$ 

 $5^7$  $\overline{5^{10}}$  4

6

(b)

- (e)
- Solution:  $5^{-3}$

Solution:  $6^{-3}$ 

Solution:  $3^{-1}$ 

 $3^5$  $\frac{1}{3^{9}}$ 

Solution:  $3^{-4}$ 

(c)

 $12^{12}$  $\overline{12^{14}}$ 

(f)

Solution:  $12^{-2}$ 

6. Express with negative index.

(a)  $\frac{3}{2x^4}$ 

Solution:  $3 \cdot 2^{-1}x^{-4}$ 

(c)  $\frac{2}{3x^5}$ 

**Solution:**  $4 \cdot 3^{-1}x^{-7}$ 

Solution:  $2 \cdot 3^{-1}x^{-5}$ 

3

7

9

9

6

7. Evaluate.

(b)  $\frac{4}{3x^7}$ 

(a)  $(\frac{4}{5})^{-2}$ 

(b)  $\left(2\frac{1}{4}\right)^{-2}$ 

(c)  $\left(1\frac{1}{5}\right)^{-3}$ 

Solution:  $\frac{25}{16}$ 

Solution:  $\frac{16}{81}$ 

Solution:  $\frac{125}{216}$ 

8. Simplify, expressing the answer with positive indices.

(a)  $a^{-3}b^{-5} \times a^5b^{-3}$ 

(d)  $3r^2s^3 \times 4r^{-3}s^{-5}$ 

(g)  $\frac{27m^{-3}}{9m^{-2}}$ 

Solution:  $a^2b^{-8}$ 

**Solution:**  $12r^{-1}s^{-2}$ 

Solution:  $3m^{-1}$ 

(b)  $3x^{-2}y^5 \times 5x^{-7}y^{-2}$ 

(e)  $\frac{16a^{-4}}{8a^5}$ 

(h)  $\frac{72a^4b^{-3}}{36ab^{-2}}$ 

Solution:  $15x^{-9}y^3$ 

Solution:  $2a^{-9}$ 

Solution:  $2a^3b^{-1}$ 

(c)  $7a^3m^{-4} \times 8a^{-5}m^{-3}$ 

(f)  $\frac{18a^{-4}}{4a^5}$ 

(i)  $\frac{7a^2b^{-3}c^{-4}}{21a^5b^{-7}c^{-9}}$ 

Solution:  $56a^{-2}m^{-7}$ 

Solution:  $4.5a^{-9}$ 

Solution:  $\frac{1}{3}a^{-3}b^4c^5$ 

9. Copy and complete.

(a)  $9^5 \times 9^{-1} = 9^4$ 

(d)  $b^7 \div b^{-8} = b^{15}$ 

(g)  $(3a^3)^{-3} = \frac{1}{27a^9}$ 

(b)  $b^9 \times b^{-2} = b^7$ 

(e)  $e^{-7} \div e^2 = e^{-5}$ 

(h)  $\left(\frac{a^2}{b^3}\right)^{-3} = \frac{a^6}{b^9}$ 

(c)  $a^{11} \div a^{-3} = a^{14}$ 

(f)  $(m^{-2})^{-5} = m^{10}$ 

 $(i) \left(\frac{m^2 n^3}{p}\right)^{-6} = \frac{m^{12} n^{18}}{p^6}$ 

10. Simplify, expressing the answers with positive indices. Evaluate powers where possible.

(a)

 $(5x^4y^6)^{-3} \times (5^2xy^{-1})^3$ 

Solution:  $x^{-9}y^{-9}$ 

(b) 
$$(5m^2n^{-3})^{-2} \times 2(m^{-2}n^3)^2$$
 (e)  $\frac{(m^2n^3)^2}{p^{-3}} \times (mnp^{-2})^{-3}$ 

Solution:  $2m^{-2}n^6$  Solution:  $m^{-1}n^{-6}p^3$ 

(c) 
$$\frac{(x^2)^2}{y} \times \frac{(y^2)^{-3}}{x^3} \qquad (f) \qquad \frac{(a^2)^3}{b^3} \div \left(\frac{a}{b^2}\right)^{-2}$$

Solution:  $xy^{-5}$  Solution:  $a^7b$ 

(d) 
$$\frac{(2x^3)^{-2}}{y^4} \times \frac{(2x^7)^2}{3y^5}$$
 (g) 
$$\frac{(3m^2n^3)^{-2}}{p^4} \div \frac{p^{-3}}{m}$$

Solution:  $\frac{8x^{10}}{3y^9}$  Solution:  $\frac{m^5}{9n^6p}$ 

# 5 Marking

Marker's use only.

| SECTION | 1  | 2  | 3              | HW  | Total |
|---------|----|----|----------------|-----|-------|
| MARKS   | 10 | 87 | <del>5</del> 9 | 146 | 302   |