This part is interesting. In the last section we saw that we could \textbf{not} further simplify terms that were different such as \(2x + 4y\). But now with multiplication and division we can! \(2x \times 4y = 8xy\) and \(2x \div 4y = \frac{\cancel{2}x}{\cancel{4}y} = \frac{x}{2y}\). Isn't that cool? Okay, now you guys try: \begin{examplebox} \subsection{Examples} \begin{enumerate} \item Multiplications \begin{multicols}{3} \begin{enumerate} \item \(4 \times 3a = \)\dotfill \item \(2d \times 5e =\)\dotfill \item \(4m \times 5m = \)\dotfill \item \(3p \times 2pq = \)\dotfill \item \(3x \times (-6) = \)\dotfill \item \(-5ab \times -3bc\)\dotfill \end{enumerate} \end{multicols} \item Divisions \begin{multicols}{3} \begin{enumerate} \item \(24x \div 6 = \)\dotfill \item \(36a\div 4\)\dotfill \item \(-18x^2 \div (-3)\)\dotfill \item \(\frac{15a}{3}\)\dotfill \item \(\frac{12x}{21}\)\dotfill \item \(\frac{-24xy}{6y}\)\dotfill \end{enumerate} \end{multicols} \end{enumerate} \end{examplebox} \begin{exercisebox} \subsection{Exercises} \begin{enumerate} \item Rewrite as a single fraction: \begin{multicols}{3} \begin{doublespace} \begin{enumerate} \item \(\frac{2a}{5} \times \frac{a}{4}=\)\dotfill \item \(\frac{3x}{7} \times \frac{5y}{12}=\)\dotfill \item \(\frac{4p}{q} \times \frac{3}{2p}=\)\dotfill \item \(\frac{15}{x} \times \frac{2}{3x}=\)\dotfill \item \(\frac{2x}{3} \div \frac{3x}{5}=\)\dotfill \item \(\frac{6a}{7b} \div \frac{2ab}{3}=\)\dotfill \end{enumerate} \end{doublespace} \end{multicols} \item Simplify \begin{multicols}{3} \begin{enumerate} \item \(5c \times 2d =\)\dotfill \item \(-6l \times (-5m)=\)\dotfill \item \(-2m \times (-4m)=\)\dotfill \item \(24a^2 \div 8 = \)\dotfill \item \(7 \times 15p \div 21 = \)\dotfill \item \(18y \div 6 \times 2= \)\dotfill \end{enumerate} \end{multicols} \item Simplify by first cancelling out common factors: \begin{multicols}{4} \begin{doublespace} \begin{enumerate} \item \(\frac{14p}{21} =\)\dotfill \item \(\frac{22x^2}{33} =\)\dotfill \item \(\frac{2xy}{6xy}=\)\dotfill \item \(\frac{-4xy}{8x} =\)\dotfill \item \(\frac{2y}{5} \times \frac{y}{4} =\)\dotfill \item \(\frac{p}{6q} \times \frac{9p}{4q} =\)\dotfill \item \(\frac{2yz}{5xy} \times \frac{3xy}{4yz} =\)\dotfill \item \(\frac{2y}{5} \div \frac{y}{4} =\)\dotfill \end{enumerate} \end{doublespace} \end{multicols} \end{enumerate} \end{exercisebox}