Welcome to some respectable mathematics. Binomals look like this: $ (x + \text{something})(y + \text{something else} ) $. We are going to learn how to expand any variant of these, and then we will look at the special cases when $ x $ and $ y $ are the same and the \emph{something}'s are also the same; i.e. $ (x + a)(x + a)$. (There is a quick trick for solving these). Then we shall conclude the class with the second special case of the binomials - \emph{The Difference of Two Squares}. They come in the shape of $ (x + a)(x - a) $, and also can be easily expanded with a trick! Before we get stuck in to the expansion tricks, let's make sure we understand what we are expanding. What does the prefix \textit{\textbf{bi}} mean? \mdots{2} Examples of `\textbf{bi}' things include \dotfill\\\dotfill. Thus a \textbf{bi}nomial means \dotfill\\\dotfill. Now let us expand $ (a + 2)(b + 5) $. You just need to distribute each term in the first brackets with every term of the next set of brackets. \begin{equation} (\source{a}+\source{2})(\target{b}+\target{5})= ab + 2b + 5a + 10\mbox{\drawarrows} \end{equation} If at first you are struggling to remember the steps, just remember the acronym \textbf{FOIL}, \textbf{F}irst \textbf{O}utside \textbf{I}nside \textbf{L}ast. Once again this has a geometric interpretation: \begin{center} \begin{tikzpicture} \draw (0,0) rectangle (6,6); \draw (0,0) rectangle (4,5); \draw (4,5) rectangle (6,6); \node at (2,6) [above] {$a$}; \node at (0,5.5) [left] {$b$}; \node at (0,2.5) [left] {$5$}; \node at (5, 6) [above] {$2$}; \node at (2,5.5) {$ab$}; \node at (5,5.5) {$2b$}; \node at (5,2.5) {$10$}; \node at (2,2.5) {$5a$}; \end{tikzpicture} \end{center} And the area can now be computed by adding all the parts: \( ab + 2b + 5a + 10\), which is what our algebraic expansion told us too! \begin{examplebox} \subsection{Examples} \begin{enumerate} \item Expand the following: \begin{multicols}{2} \begin{enumerate} \item \((x+4)(x+5)=\)\mdots{2} \item \((x+3)(x-2)=\)\mdots{2} \item \((x-4)(x-3)=\)\mdots{2} \item \((2y+1)(3y-4)=\)\mdots{2} \end{enumerate} \end{multicols} \end{enumerate} \end{examplebox} \begin{exercisebox} \subsection{Exercises} \begin{multicols}{2} \begin{enumerate}[(a)] \item \((a+3)(a+9)=\)\mdots{2} \item \((a+8)(9+a)=\)\mdots{2} \item \((p-6)(p+4)=\)\mdots{2} \item \((x+3)(x-8)=\)\mdots{2} \item \((x+7)(x-4)=\)\mdots{2} \item \((5x+1)(x+2)=\)\mdots{2} \item \((4m+3)(2m-1)=\)\mdots{2} \item \((2x-7)(3x-1)=\)\mdots{2} \item \((2b+3)(4b-2)=\)\mdots{2} \item \((4c+d)(2c-3d)=\)\mdots{2} \item \((3x-y)(2x+5y)=\)\mdots{2} \item \((2p-5q)(3q-2p)=\)\mdots{2} \end{enumerate} \end{multicols} \end{exercisebox}