We shall cover this one quickly so you have time to do a brick of exercises after :D. Difference of Two Squares are the second special case of the \textbf{binomial} expansion, and come in the form $ (x + a)( x - a) $. Expanding this out with our usual \textbf{FOIL} method gives $ x^2 + \cancel{ax} - \cancel{ax} - a^2$ which just leaves $ x^2 - a^2$; how convenient! This time I will leave the geometric intuition as an exercise, feel free to come to me before next class to explain your ideas! \begin{exercisebox} \subsection{Exercises} \begin{enumerate} \item Let's Practise: \begin{enumerate} \item \((x-5)(x+5)=\)\mdots{2} \item \((3x-4)(3x+4)=\)\mdots{2} \item \((a+b)(a-b)=\)\mdots{2} \end{enumerate} \item Now back to perfect squares: \begin{multicols}{2} \begin{enumerate} \item \((x+1)^2=\)\mdots{2} \item \((x+5)^2=\)\mdots{2} \item \((2+x)^2)=\)\mdots{2} \item \((x+20)^2)=\)\mdots{2} \end{enumerate} \end{multicols} \item Try a mix now: \begin{multicols}{2} \begin{enumerate} \item \((3x-2)(3x+2)=\)\mdots{3} \item \((3a-4b)^2=\)\mdots{2} \item \((2x+3y)^2)=\)\mdots{2} \item \((5a+2b)(5a-2b))=\)\mdots{2} \item \((\frac{x}{2}+3)^2)=\)\mdots{2} \item \((3c-b)^2)=\)\mdots{2} \end{enumerate} \end{multicols} \end{enumerate} \end{exercisebox}