Please attempt every question in your exercise books! \begin{enumerate} \item Evaluate \(2m(m-3n)\) when: \begin{multicols}{4} \begin{enumerate} \item \(m=3,n=5\) \item \(m=-3, n=-2\) \item \(m=\frac{1}{3}, n=\frac{1}{2}\) \end{enumerate} \end{multicols} \item Evaluate \(\frac{p+2q}{3r}\) when \(p = 7, q = -2, r = 2\) \item Evaluate \(\frac{x+y}{3}\) when \(x = -6, y = -5\) \item Fill in the missing term: \begin{multicols}{3} \begin{enumerate} \item \(2a+\dotfill=7a\) \item \(5m^2-\dotfill = -6m^2n\) \item \(-6lm+\dotfill=lm\) \end{enumerate} \end{multicols} \item Simplify by collecting like terms: \begin{multicols}{3} \begin{enumerate} \item \(9a^2+5a^2-12a^2\) \item \(14a^2d-10a^2d-6a^2d\) \item \(17m^2-14m^2+8m^2\) \item \(-4x^2+3x^2-3y-7y\) \item \(7x^3+6x^2-4y^3-x^2\) \item \(-3ab^2+4a^2b-5ab^2+a^2b\) \end{enumerate} \end{multicols} \item Simplify \begin{multicols}{4} \begin{enumerate} \item \(4a\times 3b\) \item \(-2p \times(-3q)\) \item \(27y \div 3\) \item \(3 \times 12t \div 9\) \item \(24x\div 8 \times 3\) \item \(-\frac{12m}{18}\) \item \(\frac{12ab}{4a}\) \item \(\frac{3x}{5}\times\frac{2}{3}\) \item \(\frac{2}{5a}\times\frac{1}{4a}\) \item \(\frac{3x}{5}\div\frac{3}{4}\) \item \(\frac{9y}{2}\div 18\) \item \(\frac{5p}{6}\div(-\frac{10p}{3})\) \end{enumerate} \end{multicols} \item Fill in the missing boxes. Each box contains the product of the 2 boxes below it. \begin{multicols}{2} \begin{enumerate} \item \begin{centering} \begin{tikzpicture} \draw (0,0) rectangle (1,1); \draw (1,0) rectangle (2,1); \draw (2,0) rectangle (3,1); \draw (0.5,1) rectangle (1.5,2); \draw (1.5,1) rectangle (2.5,2); \draw (1,2) rectangle (2,3); \node at (0.5,0.5) {$2a$}; \node at (1.5,0.5) {$4b$}; \node at (2.5,0.5) {$5a$}; \end{tikzpicture} \end{centering} \item \begin{centering} \begin{tikzpicture} \draw (0,0) rectangle (1,1); \draw (1,0) rectangle (2,1); \draw (2,0) rectangle (3,1); \draw (0.5,1) rectangle (1.5,2); \draw (1.5,1) rectangle (2.5,2); \draw (1,2) rectangle (2,3); \node at (1,1.5) {$24a$}; \node at (1.5,2.5) {$48a^2b$}; \node at (2.5,0.5) {$2b$}; \end{tikzpicture} \end{centering} \end{enumerate} \end{multicols} \item Expand: \begin{multicols}{4} \begin{enumerate} \item \(b(b+7)\) \item \(4h(5h-7)\) \item \(-k(5k-4)\) \item \(-4x(3x-5)\) \item \(4c(2c-d)\) \item \(-3x(2x+5y)\) \item \(3p(2-5pq)\) \item \(-10b(3a-7b)\) \end{enumerate} \end{multicols} \item Expand and collect like terms \begin{multicols}{3} \begin{enumerate} \item \(\frac{1}{4}(x+2)+\frac{x}{3}\) \item \(\frac{3}{7}(3x+5)+\frac{x}{3}\) \item \(-\frac{1}{2}(3x+2)-\frac{2x}{5}\) \item \(2p(3p+1)-5(p+1)\) \item \(2p(3p+1)-4(2p+1)\) \item \(4z(4z-2)-z(z+2)\) \end{enumerate} \end{multicols} \item Expand: \begin{multicols}{4} \begin{enumerate} \item \((x-6)(x-4)\) \item \((4x+1)(3x-1)\) \item \((4x+3)(2x-1)\) \item \((x-4)(2x+5)\) \item \((x+3)(x+3)\) \item \((2x-5)(x+3)\) \item \((2x+3)(2x+3)\) \item \((\frac{2b}{3}+2)(\frac{b}{5}-2)\) \end{enumerate} \end{multicols} \item Fill in the blanks: \begin{multicols}{2} \begin{enumerate} \item \((x+5)(\dotfill)=x^2+8x+15\) \item \((x+3)(\dotfill)=x^2-2x-15\) \item \((3x+4)(\dotfill)=3x^2+x-4\) \item \((x+\dotfill)(x+6)=x^2+9x+\dotfill\) \item \((2x+3)(\dotfill)=2x^2+7x+\dotfill\) \item \((\dotfill x - 3)(\dotfill x 5 \dotfill) = 12x^2-x-6\) \end{enumerate} \end{multicols} \item Expand \begin{multicols}{4} \begin{enumerate} \item \((x-7)^2\) \item \((a+8)^8\) \item \((9+x)^2\) \item \(x-11)^2\) \end{enumerate} \end{multicols} \item Expand \begin{multicols}{2} \begin{enumerate} \item \((\frac{2x}{5}-1)^2\) \item \((\frac{3x}{4}+\frac{2}{3})^2\) \end{enumerate} \end{multicols} \item Evaluate the following using $ (a+b)^2 = a^2 + 2ab + b^2 $ and $(a-b)^2 = a^2 - 2ab + b^2$. \begin{multicols}{3} \begin{enumerate} \item \((1.01)^2\) \item \((0.99)^2\) \item \((4.01)^2\) \end{enumerate} \end{multicols} \item Expand and collect like terms \begin{multicols}{2} \begin{enumerate} \item \((x-2)^2+(x-4)^2\) \item \((2x+5)^2+(2x-5)^2\) \item \(x^2+(x+1)^2+(x+2)^2+(x+3)^2\) \item \((\frac{x}{2}+1)^2 + (\frac{x}{2}-1)^2\) \end{enumerate} \end{multicols} \item Expand \begin{multicols}{2} \begin{enumerate} \item \((z-7)(z+7)\) \item \((10-x)(10+x)\) \item \((3x-2)(3x+2)\) \item \((\frac{x}{2}+3)(\frac{x}{2}-3)\) \item \((\frac{x}{3}+\frac{1}{2})(\frac{x}{3}-\frac{1}{2})\) \item Is $ a^2-2a+1 $ a perfect square expansion or a difference of 2 squares? \end{enumerate} \end{multicols} \end{enumerate} \subsection{Challenge Problems} \begin{enumerate} \item \begin{enumerate} \item Show that the perimeter of the rectangle is \(4x+6\)cm \item Find the perimeter if $AD = 2\text{cm}$ \item Find $x$ if the perimeter = $36\text{cm}$ \item Find the area of $ABCD$ in terms of $x$ \item Find the area of the rectangle if $AB=6\text{cm}$ \end{enumerate} \begin{center} \begin{tikzpicture} \draw (0,0) rectangle (5,2); \draw (0,0) rectangle (0.2,0.2); \draw (4.8,0.2) rectangle (5,0); \draw (0,2) rectangle (0.2,1.8); \draw (5,2) rectangle (4.8,1.8); \node at (0,0) [below left] {$D$}; \node at (0,2) [above left] {$A$}; \node at (5,2) [above right] {$B$}; \node at (5,0) [below right] {$C$}; \node at (0,1) [left] {$x$}; \node at (2.5,2) [above] {$x+3$}; \end{tikzpicture} \end{center} \item Expand and collect: \begin{enumerate} \item \((x-1)(x^2+x+1)\) \item \((x-1)(x^4+x^3+x^2+x+1)\) \item What do you expect the result of expanding \((x-1)(x^9+x^8+\dots+1)\) will be? \end{enumerate} \end{enumerate}