Often times algebraic concepts have a geometric meaning too. You've now done enough arithmetic with pronumerals to be able to learn this secret of the universe. Consider \(3(2x+5)\). You can expand this by distributing the \(3\) to each term in the brackets like so: \vspace{0.5cm} \begin{equation} (\source{3}\source{})(\target{2x}+\target{5})=6x + 15\mbox{\drawarrowssingle} \end{equation} \vspace{0.5cm} Or you can think about this as having some kind of original rectangle with dimensions $ 3 $ by $ 2x $ and then extending the width by $ 5 $. \begin{center} \begin{tikzpicture}[scale=0.5] \draw (0,0) rectangle (7,3); \draw (2,0) rectangle (7,3); \node at (1,3) [above] {$2x$}; \node at (0, 1.5) [left] {$3$}; \node at (3.5, 3) [above] {$5$}; \end{tikzpicture} \end{center} Now finding the area of the enlarged shape is algebraically equivalent to $ 3(2x + 5) $ and often times expanding this will make substitution easier if you know what the value of $ x $ is! These kinds of expansions are the backbone of mathematics and becoming proficient at these will help you simplify harder problems. Let's get better at expanding: \begin{examplebox} \subsection{Examples} \begin{enumerate} \item Expand: \begin{multicols}{3} \begin{enumerate} \item \(2(a+3)=\)\dotfill \item \(3(x-2)=\)\dotfill \item \(4(2m-7)=\)\dotfill \end{enumerate} \end{multicols} \item Now try: \begin{multicols}{3} \begin{enumerate} \item \(5(a+1)+6=\)\dotfill \item \(4(2b-1)+7=\)\dotfill \item \(6(d+5)-3d=\)\dotfill \end{enumerate} \end{multicols} \item Can you handle some more terms? \begin{multicols}{2} \begin{enumerate} \item \(2(b+5)+3(b+2)=\)\dotfill \item \(3(x-2)-2(x+1)=\)\dotfill \end{enumerate} \end{multicols} \end{enumerate} \end{examplebox} \begin{exercisebox} \subsection{Exercises} Have a go at these ones yourselves: \begin{multicols}{2} \begin{enumerate} \item \(\frac{3}{5}(6x+\frac{7}{3})=\)\dotfill \item \(\frac{4}{3}(6x+11)+\frac{2}{3}=\)\dotfill \item \(-12(4y-5)=\)\dotfill \item \(\frac{2}{3}(12p+6)=\)\dotfill \item \(-\frac{1}{2}(10d-6)=\)\dotfill \item \(-\frac{4}{5}(25m-100)=\)\dotfill \item \(\frac{3}{5}(\frac{x}{6}+\frac{1}{3})=\)\dotfill \item \(-\frac{3}{5}(\frac{a}{3}-\frac{2}{3})=\)\dotfill \item \(c(c-5)=\)\dotfill \item \(2i(5i+7)=\)\dotfill \end{enumerate} \end{multicols} \end{exercisebox}