Often times algebraic concepts have a geometric meaning too. You've now done enough arithmetic with pronumerals to be able to learn this secret of the universe. Consider \(3(2x+5)\). You can expand this by distributing the \(3\) to each term in the brackets like so: \vspace{0.5cm} \begin{equation} (\source{3}\source{})(\target{2x}+\target{5})=6x + 15\mbox{\drawarrowssingle} \end{equation} \vspace{0.5cm} Or you can think about this as having some kind of original rectangle with dimensions $ 3 $ by $ 2x $ and then extending the width by $ 5 $. \begin{center} \begin{tikzpicture}[scale=0.5] \draw (0,0) rectangle (7,3); \draw (2,0) rectangle (7,3); \node at (1,3) [above] {$2x$}; \node at (0, 1.5) [left] {$3$}; \node at (3.5, 3) [above] {$5$}; \end{tikzpicture} \end{center} Now finding the area of the enlarged shape is algebraically equivalent to $ 3(2x + 5) $ and often times expanding this will make substitution easier if you know what the value of $ x $ is! These kinds of expansions are the backbone of mathematics and becoming proficient at these will help you simplify harder problems. Let's get better at expanding: \begin{examplebox} \subsection{Examples} \begin{questions} \Question[3] Expand: \begin{multicols}{3} \begin{parts} \part \(2(a+3)=\) \begin{solutionordottedlines}[1cm] \(2a+6\) \end{solutionordottedlines} \part \(3(x-2)=\) \begin{solutionordottedlines}[1cm] \(3x-6\) \end{solutionordottedlines} \part \(4(2m-7)=\) \begin{solutionordottedlines}[1cm] \(8m-28\) \end{solutionordottedlines} \end{parts} \end{multicols} \Question[3] Now try: \begin{multicols}{3} \begin{parts} \part \(5(a+1)+6=\) \begin{solutionordottedlines}[1cm] \(5a+5+6\) \(5a+11\) \end{solutionordottedlines} \part \(4(2b-1)+7=\) \begin{solutionordottedlines}[1cm] \(8b-4+7\) \(8b+3\) \end{solutionordottedlines} \part \(6(d+5)-3d=\) \begin{solutionordottedlines}[1cm] \(6d+30-3d\) \(3d+30\) \end{solutionordottedlines} \end{parts} \end{multicols} \Question[2] Can you handle some more terms? \begin{multicols}{2} \begin{parts} \part \(2(b+5)+3(b+2)=\) \begin{solutionordottedlines}[1cm] \(2b+10+3b+6\) \(5b+16\) \end{solutionordottedlines} \part \(3(x-2)-2(x+1)=\) \begin{solutionordottedlines}[1cm] \(3x-6-2x-2\) \(x-8\) \end{solutionordottedlines} \end{parts} \end{multicols} \end{questions} \end{examplebox} \begin{exercisebox} \subsection{Exercises} \begin{questions} \Question[10] Have a go at these ones yourselves: \begin{parts} \begin{multicols}{2} \part \(\frac{3}{5}(6x+\frac{7}{3})=\)\dotfill \( \frac{18}{5}x + \frac{7}{5} \) \part \(\frac{4}{3}(6x+11)+\frac{2}{3}=\)\dotfill \( 8x + \frac{44}{3} + \frac{2}{3} = 8x + \frac{46}{3} \) \part \(-12(4y-5)=\)\dotfill \( -48y + 60 \) \part \(\frac{2}{3}(12p+6)=\)\dotfill \( 8p + 4 \) \part \(-\frac{1}{2}(10d-6)=\)\dotfill \( -5d + 3 \) \part \(-\frac{4}{5}(25m-100)=\)\dotfill \( -20m + 80 \) \part \(\frac{3}{5}(\frac{x}{6}+\frac{1}{3})=\)\dotfill \( \frac{1}{10}x + \frac{1}{5} \) \part \(-\frac{3}{5}(\frac{a}{3}-\frac{2}{3})=\)\dotfill \( -\frac{1}{5}a + \frac{2}{5} \) \part \(c(c-5)=\)\dotfill \( c^2 - 5c \) \part \(2i(5i+7)=\)\dotfill \( 10i^2 + 14i \) \end{multicols} \end{parts} \end{questions} \end{exercisebox}