Welcome to some respectable mathematics. Binomals look like this: $ (x + \text{something})(y + \text{something else} ) $. We are going to learn how to expand any variant of these, and then we will look at the special cases when $ x $ and $ y $ are the same and the \emph{something}'s are also the same; i.e. $ (x + a)(x + a)$. (There is a quick trick for solving these). Then we shall conclude the class with the second special case of the binomials - \emph{The Difference of Two Squares}. They come in the shape of $ (x + a)(x - a) $, and also can be easily expanded with a trick! Before we get stuck in to the expansion tricks, let's make sure we understand what we are expanding. What does the prefix \textit{\textbf{bi}} mean? \begin{solutionordottedlines}[2cm] The prefix \textit{\textbf{bi}} means two. \end{solutionordottedlines} Examples of `\textbf{bi}' things include \fillin[binoculars (two eye pieces)] and \fillin[bicycle (two wheels)]. Thus a \textbf{bi}nomial means \fillin[a polynomial with 2 terms] Now let us expand $ (a + 2)(b + 5) $. You just need to distribute each term in the first brackets with every term of the next set of brackets. \vspace{0.5cm} \begin{equation} (\source{a}+\source{2})(\target{b}+\target{5})= ab + 2b + 5a + 10\mbox{\drawarrows} \end{equation} \vspace{0.5cm} If at first you are struggling to remember the steps, just remember the acronym \textbf{FOIL}, \textbf{F}irst \textbf{O}utside \textbf{I}nside \textbf{L}ast. Once again this has a geometric interpretation: \begin{center} \begin{tikzpicture} \draw (0,0) rectangle (6,6); \draw (0,0) rectangle (4,5); \draw (4,5) rectangle (6,6); \node at (2,6) [above] {$a$}; \node at (0,5.5) [left] {$b$}; \node at (0,2.5) [left] {$5$}; \node at (5, 6) [above] {$2$}; \node at (2,5.5) {$ab$}; \node at (5,5.5) {$2b$}; \node at (5,2.5) {$10$}; \node at (2,2.5) {$5a$}; \end{tikzpicture} \end{center} And the area can now be computed by adding all the parts: \( ab + 2b + 5a + 10\), which is what our algebraic expansion told us too! \newpage \begin{examplebox} \subsection{Examples} \begin{questions} \Question[4] Expand the following: \begin{multicols}{2} \begin{parts} \part \((x+4)(x+5)=\) \begin{solutionordottedlines}[1cm] $x^2 + 5x + 4x + 20 = x^2 + 9x + 20$ \end{solutionordottedlines} \part \((x+3)(x-2)=\) \begin{solutionordottedlines}[1cm] $x^2 - 2x + 3x - 6 = x^2 + x - 6$ \end{solutionordottedlines} \part \((x-4)(x-3)=\) \begin{solutionordottedlines}[1cm] $x^2 - 3x - 4x + 12 = x^2 - 7x + 12$ \end{solutionordottedlines} \part \((2y+1)(3y-4)=\) \begin{solutionordottedlines}[1cm] $6y^2 - 8y + 3y - 4 = 6y^2 - 5y - 4$ \end{solutionordottedlines} \end{parts} \end{multicols} \end{questions} \end{examplebox} \begin{exercisebox} \subsection{Exercises} \begin{questions} \question[] \begin{parts}\begin{multicols}{2} \part \((a+3)(a+9)=\) \begin{solutionordottedlines}[2cm] $a^2 + 9a + 3a + 27 = a^2 + 12a + 27$ \end{solutionordottedlines} \part \((a+8)(9+a)=\) \begin{solutionordottedlines}[2cm] $a^2 + 9a + 8a + 72 = a^2 + 17a + 72$ \end{solutionordottedlines} \part \((p-6)(p+4)=\) \begin{solutionordottedlines}[2cm] $p^2 + 4p - 6p - 24 = p^2 - 2p - 24$ \end{solutionordottedlines} \part \((x+3)(x-8)=\) \begin{solutionordottedlines}[2cm] $x^2 - 8x + 3x - 24 = x^2 - 5x - 24$ \end{solutionordottedlines} \part \((x+7)(x-4)=\) \begin{solutionordottedlines}[2cm] $x^2 - 4x + 7x - 28 = x^2 + 3x - 28$ \end{solutionordottedlines} \part \((5x+1)(x+2)=\) \begin{solutionordottedlines}[2cm] $5x^2 + 10x + x + 2 = 5x^2 + 11x + 2$ \end{solutionordottedlines} \part \((4m+3)(2m-1)=\) \begin{solutionordottedlines}[2cm] $8m^2 - 4m + 6m - 3 = 8m^2 + 2m - 3$ \end{solutionordottedlines} \part \((2x-7)(3x-1)=\) \begin{solutionordottedlines}[2cm] $6x^2 - 2x - 21x + 7 = 6x^2 - 23x + 7$ \end{solutionordottedlines} \part \((2b+3)(4b-2)=\) \begin{solutionordottedlines}[2cm] $8b^2 - 4b + 12b - 6 = 8b^2 + 8b - 6$ \end{solutionordottedlines} \part \((4c+d)(2c-3d)=\) \begin{solutionordottedlines}[2cm] $8c^2 - 12cd + 2cd - 3d^2 = 8c^2 - 10cd - 3d^2$ \end{solutionordottedlines} \part \((3x-y)(2x+5y)=\) \begin{solutionordottedlines}[2cm] $6x^2 + 15xy - 2xy - 5y^2 = 6x^2 + 13xy - 5y^2$ \end{solutionordottedlines} \part \((2p-5q)(3q-2p)=\) \begin{solutionordottedlines}[2cm] $-4p^2 + 10pq + 6pq - 15q^2 = -4p^2 + 16pq - 15q^2$ \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \end{exercisebox}