\documentclass{article} \usepackage{amsmath} \usepackage{tikz} \usepackage{exam} \usepackage{setspace} \begin{document} This is one of the special cases mentioned earlier. Our general binomial looks like $ (x + a)(y + b) $, but perfect squares are easier and look like $ (x + a)(x + a) $ which can then be simplified to be $ (x + a)^2 $. Remember the trick mentioned earlier? This is it: \begin{enumerate} \item Take the first term, square it \item Take the last term, square it \item Multiply all the terms with each other \end{enumerate} Thus we have $ (x + a)^2 = x^2 + 2ax + a^2 $. Simple as that. Here is the geometric intuition: \begin{center} \begin{tikzpicture} \draw (0,0) rectangle (6,6); \draw (0,0) rectangle (4,2); \draw (4,2) rectangle (6,6); \node at (2,6) [above] {$x$}; \node at (0,4) [left] {$x$}; \node at (5,6) [above] {$a$}; \node at (0,1) [left] {$a$}; \node at (2,4) {$ x^2 $}; \node at (5,4) {$ax$}; \node at (5,1) {$a^2$}; \node at (2,1) {$ax$}; \end{tikzpicture} \end{center} We take a square of $x$ units and extend it to a square of length $x+a$: \begin{examplebox} \subsection{Examples} Let's only do a few examples this time. We'll come back and do more practise after covering \emph{differences of two squares.} \begin{doublespace} \begin{questions} \question[] \begin{parts} \part \((x-5)^2= \) \begin{solutionordottedlines}[1cm] $x^2 - 10x + 25$ \end{solutionordottedlines} \part \((x+7)^2=\) \begin{solutionordottedlines}[1cm] $x^2 + 14x + 49$ \end{solutionordottedlines} \part \((3x-1)^2=\) \begin{solutionordottedlines}[1cm] $9x^2 - 6x + 1$ \end{solutionordottedlines} \end{parts} \end{questions} \end{doublespace} \end{examplebox} \end{document}