\begin{theorembox} \section*{Theorem} For a right-angled triangle, the following relationship holds between the three sides: \[a^2 + b^2 = c^2\] Where $c$ is the length of the hypotenuse, and $a$ and $b$, the lengths of the remaining two sides. \end{theorembox} \begin{boxdef} \subsubsection*{Theorem:} \begin{solutionordottedlines}[2cm] A statement that has been proven on the basis of previously established statements. \end{solutionordottedlines} \end{boxdef} \begin{boxdef} \subsubsection*{Hypotenuse} \begin{solutionordottedlines}[2cm] The longest side of a right-angled triangle, opposite the right angle. \end{solutionordottedlines} \end{boxdef} This is probably the first \textbf{Theorem} that you have ever seen and it is also one of the most mathematically significant ones. It must be emphasised that a Theorem means nothing without a \textbf{Proof}. \\12-year old Einstein, President James Garfield, and Euclid all found unique proofs to $a^2 + b^2 = c^2$. Below we outline Pythagoras' original proof by rearrangement so that you can visually grasp the geometry of this fact. \begin{center} \begin{tikzpicture} % First Square \draw (0,0) -- (5,0) -- (5,5) -- (0,5) -- cycle; % Triangles for first square \draw (0,3.5) -- (1.5,0); \draw (1.5,0) -- (5,1.5); \draw (5,1.5) -- (3.5,5); \draw (3.5,5) -- (0,3.5); % Labels for first square \node at (2.5,2.5) {$c^2$}; \node at (0,3.5/2) [left] {$a$}; \node at (0,3.5+1.5/2) [left] {$b$}; \node at (3.5/2,5) [above] {$a$}; \node at (3.5+1.5/2,5) [above] {$b$}; \node at (5,3.5+1.5/2) [right] {$a$}; \node at (5,1.5/2) [right] {$b$}; \node at (3.5+1.5/2,0) [below] {$a$}; \node at (1.5/2,0) [below] {$b$}; % Second Square \draw (7,0) rectangle (12,5); \draw (7,0) rectangle (7+3.5,3.5); \draw (7+3.5,3.5) rectangle (12,5); \draw (7,3.5) -- (7+3.5,5); \draw (7+3.5,0) -- (12,3.5); \node at (7+3.5/2, 3.5/2) {$a^2$}; \node at (7+3.5+1.5/2,3.5+1.5/2) {$b^2$}; \node at (7+3.5/2,5-1.5) [above] {$a$}; \node at (7+3.5,3.5+1.5/2) [left] {$b$}; \node at (7+3.5+1.5/2,3.5) [below] {$b$}; \node at (12-1.5,3.5/2) [left] {$a$}; \end{tikzpicture} \end{center} \subsection*{Explanation} If you don't understand it immediately, do not panic. It takes a moment to click. What is happening here is that the 4 triangles in the fir figure are the same as the 4 triangles in the second figure. So the free space of figure 1 must be the same as the free space in figure 2, and thus $ c^2 = a^2 + b^2$. Now that we all believe \emph{The Pythagorean Theorem}, let us use this mathematical result to discover things about our world: \begin{examplebox} \section*{Examples} \begin{questions} \Question[1]\, \begin{center} \begin{tikzpicture}[scale=1.5] \draw (0,0) -- (4,0) node[midway,below] {$40$}; \draw (4,0) -- (0,0.9) node[midway,sloped,above] {$x$}; \draw (0,0.9) -- (0,0) node[midway,left] {$9$}; \draw (0,0) rectangle (0.2, 0.2); \end{tikzpicture} \end{center} \begin{solutionordottedlines}[1in] $x = \sqrt{40^2 + 9^2} = \sqrt{1600 + 81} = \sqrt{1681} = 41$ \end{solutionordottedlines} \Question[1]\, \begin{center} \begin{tikzpicture}[scale=1.5] \draw (0,0) -- (1.6,0) node[midway,below] {$x$}; \draw (1.6,0) -- (1.6,3) node[midway, right] {$30$}; \draw (1.6,3)--(0,0) node[midway,above,sloped] {$34$}; \draw (1.6,0) rectangle (1.4, 0.2); \end{tikzpicture} \end{center} \begin{solutionordottedlines}[1in] $x = \sqrt{34^2 - 30^2} = \sqrt{1156 - 900} = \sqrt{256} = 16$ \end{solutionordottedlines} \Question[1]\, \begin{center} \begin{tikzpicture}[scale=1.5] \draw (0,0) -- (3,0) node[midway,below] {$30$}; \draw (3,0) -- (0,1.2) node[midway, above] {$x$}; \draw (0,1.2)--(0,0) node[midway,left] {$12$}; \draw (0,0) rectangle (0.2, 0.2); \end{tikzpicture} \end{center} \begin{solutionordottedlines}[1in] $x = \sqrt{30^2 + 12^2} = \sqrt{900 + 144} = \sqrt{1044} \approx 32.31$ \end{solutionordottedlines} \end{questions} \end{examplebox} What is the difference between the third example and the previous 2? \begin{solutionordottedlines}[1in] The third example involves finding the hypotenuse $x$ given the two shorter sides, whereas the previous two examples involve finding on of the shorter sides given the hypotenuse and the other shorter side. \end{solutionordottedlines} What is the significance of this result? Why did it hurt the brains of the \emph{Ancient Greeks}? \begin{solutionordottedlines}[1.5in] Because the answer is irrational. And what does it really mean to have an irrational line length?? How could you ever accurately draw something like that?! \end{solutionordottedlines} \begin{exercisebox} \section*{Exercises} \begin{questions} \question A door frame has height $1.7$m and width $1$m. Will a square piece of board $2$m by $2$m fit through the doorway? \begin{solutionordottedlines}[1.5in] The diagonal of the door frame is $\sqrt{1.7^2 + 1^2} = \sqrt{2.89 + 1} = \sqrt{3.89} \approx 1.97$m, which is less than th side of the board ($2$m). Therefore, the board will not fit through the doorway. \end{solutionordottedlines} \begin{multicols}{2} \Question[1]\, \begin{center} \drawTriangle{bottom left}{10}{6}{8}{$6$}{$8$}{$x$}{0.5} \end{center} \begin{solutionordottedlines}[1in] $x = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10$ \end{solutionordottedlines} \Question[1]\, \begin{center} \drawTriangle{top left}{13}{5}{12}{$12$}{$5$}{$x$}{0.5} \end{center} \begin{solutionordottedlines}[1in] $x = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13$ \end{solutionordottedlines} \Question[1]\, \begin{center} \drawTriangle{bottom right}{5}{3}{4}{$3$}{$4$}{$x$}{0.75} \end{center} \begin{solutionordottedlines}[1in] $x = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ \end{solutionordottedlines} \Question[1]\, \begin{center} \drawTriangle{top right}{17}{8}{15}{$x$}{$15$}{$17$}{0.4} \end{center} \begin{solutionordottedlines}[1in] $x = \sqrt{17^2 - 15^2} = \sqrt{289 - 225} = \sqrt{64} = 8$ \end{solutionordottedlines} \end{multicols} \end{questions} \end{exercisebox} \subsection*{The Converse} In the introduction we mentioned \emph{the converse} of the \textbf{Pythagorean Theorem}. Let us recall that the theorem states: ``in a \emph{right-angled} triangle $a^2 + b^2 = c^2$, thus the converse becomes, \emph{if $a^2 + b^2 = c^2$}, then the triangle must be \emph{right-angled}. \begin{examplebox} \section*{Examples} Decide if the triangles with the following side lengths are \textbf{right-angled}. \begin{questions} \Question[1] 16,30,34 \begin{solutionordottedlines}[1in] $16^2 + 30^2 = 256 + 900 = 1156$ and $34^2 = 1156$. Since $16^2 + 30^2 = 34^2$, the triangle is right-angled. \end{solutionordottedlines} \Question[1] 10,24,26 \begin{solutionordottedlines}[1in] $10^2 + 24^2 = 100 + 576 = 676$ and $26^2 = 676$. Since $10^2 + 24^2 = 26^2$, the triangle is right-angled. \end{solutionordottedlines} \Question[1] 4,6,7 \begin{solutionordottedlines}[1in] $4^2 + 6^2 = 16 + 36 = 52$ and $7^2 = 49$. Since $4^2 + 6^2 \neq 7^2$, the triangle is not right-angled. \end{solutionordottedlines} \end{questions} \end{examplebox}