\subsection*{Section 2} % The Pythagorean Theorem \begin{questions} \Question[3] \begin{parts} \begin{multicols}{3} \part\, \drawTriangle{top left}{11}{7}{8.49}{$y$}{$7$}{$11$}{0.3} \begin{solutionordottedlines}[1in] $y = \sqrt{11^2 - 7^2} = \sqrt{121 - 49} = \sqrt{72} = 8.49$ \end{solutionordottedlines} \part\, \drawTriangle{top right}{18.44}{4}{18}{$4$}{$18$}{$a$}{0.3} \begin{solutionordottedlines}[1in] $a = \sqrt{18^2 - 4^2} = \sqrt{324 - 16} = \sqrt{308} = 17.55$ \end{solutionordottedlines} \part\, \drawTriangle{bottom left}{10}{7.14}{7}{$7$}{$b$}{$10$}{0.3} \begin{solutionordottedlines}[1in] $b = \sqrt{10^2 - 7^2} = \sqrt{100 - 49} = \sqrt{51} = 7.14$ \end{solutionordottedlines} \end{multicols} \end{parts} \Question[3] Determine whether or not the following side-lengths form a right-angled triangle: \begin{parts}\begin{multicols}{3} \part $4.5,7,7.5$ \begin{solutionordottedlines}[1in] $7.5^2 \neq 4.5^2 + 7^2$, so it does not form a right-angled triangle. \end{solutionordottedlines} \part $6,10,12$ \begin{solutionordottedlines}[1in] $12^2 = 6^2 + 10^2$, so it forms a right-angled triangle. \end{solutionordottedlines} \part $20,21,29$ \begin{solutionordottedlines}[1in] $29^2 \neq 20^2 + 21^2$, so it does not form a right-angled triangle. \end{solutionordottedlines} \end{multicols} \end{parts} \Question[2] As part of a design, an artist draws a circle passing through the four corners (vertices) of a square. \begin{parts} \part If the square has side lengths of $4$cm, what is the radius, to the nearest millimetre, of the circle? \begin{solutionordottedlines}[1in] Radius $r = \frac{\sqrt{4^2 + 4^2}}{2} = \frac{\sqrt{32}}{2} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \approx 2.828$cm \end{solutionordottedlines} \part If the circle has a radius of $3$cm, what are the side lengths, to the nearest millimetre, of the square? \begin{solutionordottedlines}[1in] Side length $s = \sqrt{2} \times r = \sqrt{2} \times 3 \approx 4.242$cm \end{solutionordottedlines} \end{parts} \Question[2] A parent is asked to make some scarves for the local Scout troop. Two scarves can be made from one square piece of materia by cutting on the diagonal. If this diagonal side length is to be $100$cm long, what must be the side length of the square piece of materia to the nearest mm? \begin{solutionordottedlines}[1in] Side length $s = \frac{100}{\sqrt{2}} \approx 70.71$cm \end{solutionordottedlines} \Question[2] A girl planned to swim straight across a river of width $25$m. After she had swum across the river, the girl found she had been swept $4$m downstream. How far did she actually swim? Calculate your answer, in metres, correct to 1 decimal place. \begin{solutionordottedlines}[1in] Distance swum $d = \sqrt{25^2 + 4^2} \approx 25.3$m \end{solutionordottedlines} \end{questions} \subsection*{Section 3} % Introduction to Surds \begin{questions} \Question[3] Use Pythagoras' Theorem to find the value of $x$. Give your answer as a \emph{surd} which has been simplified. \begin{parts} \begin{multicols}{3} \part \drawTriangle{bottom left}{4.24}{3}{3}{$3$}{$x$}{$3$}{0.5} \begin{solutionordottedlines}[1in] $x = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$ \end{solutionordottedlines} \part \drawTriangle{bottom right}{2.82}{2.4}{1.73}{$\sqrt{3}$}{$\sqrt{5}$}{$x$}{0.7} \begin{solutionordottedlines}[1in] $x = \sqrt{\sqrt{5}^2 - \sqrt{3}^2} = \sqrt{5 - 3} = \sqrt{2}$ \end{solutionordottedlines} \part \drawTriangle{bottom right}{14}{12.65}{6}{$x$}{$6$}{$14$}{0.3} \begin{solutionordottedlines}[1in] $x = \sqrt{14^2 - 6^2} = \sqrt{196 - 36} = \sqrt{160} = 4\sqrt{10}$ \end{solutionordottedlines} \end{multicols} \end{parts} \end{questions} \subsection*{Section 4} % Simplifying Surds \begin{questions} \Question[18] Simplify all of the following: \begin{parts} \begin{multicols}{3} \part $(\sqrt{231})^2$ \begin{solutionordottedlines}[1in] $231$ \end{solutionordottedlines} \part $(3\sqrt{5})^2$ \begin{solutionordottedlines}[1in] $9 \times 5 = 45$ \end{solutionordottedlines} \part $(2\sqrt{11})^2$ \begin{solutionordottedlines}[1in] $4 \times 11 = 44$ \end{solutionordottedlines} \part $\sqrt{3}\times\sqrt{5}$ \begin{solutionordottedlines}[1in] $\sqrt{15}$ \end{solutionordottedlines} \part $\sqrt{5}\times\sqrt{6}$ \begin{solutionordottedlines}[1in] $\sqrt{30}$ \end{solutionordottedlines} \part $\sqrt{6}\div\sqrt{2}$ \begin{solutionordottedlines}[1in] $\sqrt{3}$ \end{solutionordottedlines} \part $\frac{\sqrt{77}}{\sqrt{11}}$ \begin{solutionordottedlines}[1in] $\sqrt{7}$ \end{solutionordottedlines} \part $2\times3\sqrt{2}$ \begin{solutionordottedlines}[1in] $6\sqrt{2}$ \end{solutionordottedlines} \part $6\times5\sqrt{7}$ \begin{solutionordottedlines}[1in] $30\sqrt{7}$ \end{solutionordottedlines} \part $(\sqrt{2})^3$ \begin{solutionordottedlines}[1in] $2\sqrt{2}$ \end{solutionordottedlines} \part $(\sqrt{11})^2+(\sqrt{2})^2$ \begin{solutionordottedlines}[1in] $11 + 2 = 13$ \end{solutionordottedlines} \part $(\sqrt{5})^2+(\sqrt{11})^2$ \begin{solutionordottedlines}[1in] $5 + 11 = 16$ \end{solutionordottedlines} \part $\sqrt{45}$ \begin{solutionordottedlines}[1in] $3\sqrt{5}$ \end{solutionordottedlines} \part $\sqrt{54}$ \begin{solutionordottedlines}[1in] $3\sqrt{6}$ \end{solutionordottedlines} \part $\sqrt{126}$ \begin{solutionordottedlines}[1in] $3\sqrt{14}$ \end{solutionordottedlines} \part $\sqrt{72}$ \begin{solutionordottedlines}[1in] $6\sqrt{2}$ \end{solutionordottedlines} \part $\sqrt{96}$ \begin{solutionordottedlines}[1in] $4\sqrt{6}$ \end{solutionordottedlines} \part $\sqrt{200}$ \begin{solutionordottedlines}[1in] $10\sqrt{2}$ \end{solutionordottedlines} \end{multicols} \end{parts} \Question[4] Express the following surds as the square root of a whole number \begin{parts} \begin{multicols}{2} \part $2\sqrt{3}$ \begin{solutionordottedlines}[1in] $\sqrt{12}$ \end{solutionordottedlines} \part $2\sqrt{13}$ \begin{solutionordottedlines}[1in] $\sqrt{52}$ \end{solutionordottedlines} \part $4\sqrt{5}$ \begin{solutionordottedlines}[1in] $\sqrt{80}$ \end{solutionordottedlines} \part $12\sqrt{10}$ \begin{solutionordottedlines}[1in] $\sqrt{1440}$ \end{solutionordottedlines} \end{multicols} \end{parts} \Question[2] Evaluate: \begin{parts} \begin{multicols}{2} \part $(\sqrt{\frac{2}{3}})^2$ \begin{solutionordottedlines}[1in] $\frac{2}{3}$ \end{solutionordottedlines} \part $\sqrt{\frac{16}{25}}$ \begin{solutionordottedlines}[1in] $\frac{4}{5}$ \end{solutionordottedlines} \end{multicols} \end{parts} \end{questions} \subsection*{Section 5} % Addition & Subtraction of Surds \begin{questions} \Question[16] Simplify: \begin{parts} \begin{multicols}{2} \part $6\sqrt{2} + 4\sqrt{2}$ \begin{solutionordottedlines}[1in] $10\sqrt{2}$ \end{solutionordottedlines} \part $10\sqrt{7}-5\sqrt{7}$ \begin{solutionordottedlines}[1in] $5\sqrt{7}$ \end{solutionordottedlines} \part $3\sqrt{11}-5\sqrt{11}$ \begin{solutionordottedlines}[1in] $-2\sqrt{11}$ \end{solutionordottedlines} \part $2\sqrt{2}+3\sqrt{2}+\sqrt{2}$ \begin{solutionordottedlines}[1in] $6\sqrt{2}$ \end{solutionordottedlines} \part $10\sqrt{5}-\sqrt{5}-6\sqrt{5}$ \begin{solutionordottedlines}[1in] $3\sqrt{5}$ \end{solutionordottedlines} \part $\sqrt{3}-2\sqrt{2}+2\sqrt{3}+\sqrt{2}$ \begin{solutionordottedlines}[1in] $3\sqrt{3}-\sqrt{2}$ \end{solutionordottedlines} \part $5\sqrt{14}+4\sqrt{6}+\sqrt{14}+3\sqrt{6}$ \begin{solutionordottedlines}[1in] $6\sqrt{14}+7\sqrt{6}$ \end{solutionordottedlines} \part $\sqrt{5}-3\sqrt{2}-4\sqrt{5}+7\sqrt{2}$ \begin{solutionordottedlines}[1in] $-3\sqrt{5}+4\sqrt{2}$ \end{solutionordottedlines} \part $\sqrt{50} + 3\sqrt{2}$ \begin{solutionordottedlines}[1in] $5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$ \end{solutionordottedlines} \part $\sqrt{48} + 2\sqrt{3}$ \begin{solutionordottedlines}[1in] $4\sqrt{3} + 2\sqrt{3} = 6\sqrt{3}$ \end{solutionordottedlines} \part $\sqrt{8}+4\sqrt{2}+2\sqrt{18}$ \begin{solutionordottedlines}[1in] $2\sqrt{2}+4\sqrt{2}+6\sqrt{2} = 12\sqrt{2}$ \end{solutionordottedlines} \part $\sqrt{8}+\sqrt{2}+\sqrt{18}$ \begin{solutionordottedlines}[1in] $2\sqrt{2}+\sqrt{2}+3\sqrt{2} = 6\sqrt{2}$ \end{solutionordottedlines} \part $4\sqrt{5}-4\sqrt{20}-\sqrt{45}$ \begin{solutionordottedlines}[1in] $4\sqrt{5}-8\sqrt{5}-3\sqrt{5} = -7\sqrt{5}$ \end{solutionordottedlines} \part \[\frac{\sqrt{7}}{2}-\frac{\sqrt{7}}{5}\] \begin{solutionordottedlines}[1in] $\frac{5\sqrt{7}-2\sqrt{7}}{10} = \frac{3\sqrt{7}}{10}$ \end{solutionordottedlines} \part \[\frac{3\sqrt{11}}{7}+\frac{2\sqrt{11}}{21}\] \begin{solutionordottedlines}[1in] $\frac{9\sqrt{11}+2\sqrt{11}}{21} = \frac{11\sqrt{11}}{21}$ \end{solutionordottedlines} \part $\sqrt{80}-\sqrt{45} = \sqrt{x}$ \begin{solutionordottedlines}[1in] $4\sqrt{5}-3\sqrt{5} = \sqrt{5} = \sqrt{x}$, so $x = 5$ \end{solutionordottedlines} \end{multicols} \end{parts} \end{questions} \subsection*{Section 6} % Multiplication and Division of Surds \begin{questions} \Question[8] Simplify: \begin{parts} \begin{multicols}{2} \part $4\sqrt{7}\times\sqrt{2}$ \begin{solutionordottedlines}[1in] $4\sqrt{7}\times\sqrt{2} = 4\sqrt{14}$ \end{solutionordottedlines} \part $6\sqrt{3}\times 4\sqrt{7}$ \begin{solutionordottedlines}[1in] $6\sqrt{3}\times 4\sqrt{7} = 24\sqrt{21}$ \end{solutionordottedlines} \part $12\sqrt{33}\div3\sqrt{3}$ \begin{solutionordottedlines}[1in] $12\sqrt{33}\div3\sqrt{3} = 4\sqrt{11}$ \end{solutionordottedlines} \part $36\sqrt{15}\div4\sqrt{3}$ \begin{solutionordottedlines}[1in] $36\sqrt{15}\div4\sqrt{3} = 9\sqrt{5}$ \end{solutionordottedlines} \part $7\sqrt{28}\div4\sqrt{7}$ \begin{solutionordottedlines}[1in] $7\sqrt{28}\div4\sqrt{7} = 7\sqrt{4} = 14$ \end{solutionordottedlines} \part $\sqrt{7}\times2\sqrt{7}$ \begin{solutionordottedlines}[1in] $\sqrt{7}\times2\sqrt{7} = 2\sqrt{49} = 14$ \end{solutionordottedlines} \part $7\sqrt{10}\times3\sqrt{2}$ \begin{solutionordottedlines}[1in] $7\sqrt{10}\times3\sqrt{2} = 21\sqrt{20} = 42\sqrt{5}$ \end{solutionordottedlines} \part $\sqrt{2}(2\sqrt{2}-\sqrt{6})$ \begin{solutionordottedlines}[1in] $\sqrt{2}(2\sqrt{2}-\sqrt{6}) = 2\cdot2 - \sqrt{12} = 4 - 2\sqrt{3}$ \end{solutionordottedlines} \end{multicols} \end{parts} \Question[12] Expand and simplify: \begin{parts} \begin{multicols}{2} \part $5\sqrt{5}(4\sqrt{2}-3)$ \begin{solutionordottedlines}[1in] $5\sqrt{5}(4\sqrt{2}-3) = 20\sqrt{10} - 15\sqrt{5}$ \end{solutionordottedlines} \part $2\sqrt{3}(3\sqrt{3}-5)$ \begin{solutionordottedlines}[1in] $2\sqrt{3}(3\sqrt{3}-5) = 6\cdot3 - 10\sqrt{3} = 18 - 10\sqrt{3}$ \end{solutionordottedlines} \part $3\sqrt{7}(2-\sqrt{14})$ \begin{solutionordottedlines}[1in] $3\sqrt{7}(2-\sqrt{14}) = 6\sqrt{7} - 3\cdot7 = 6\sqrt{7} - 21$ \end{solutionordottedlines} \part $\sqrt{2}(2\sqrt{2}-\sqrt{6})$ \begin{solutionordottedlines}[1in] $\sqrt{2}(2\sqrt{2}-\sqrt{6}) = 4 - 2\sqrt{3}$ \end{solutionordottedlines} \part $(4\sqrt{5}+1)(3\sqrt{5}+2)$ \begin{solutionordottedlines}[1in] $(4\sqrt{5}+1)(3\sqrt{5}+2) = 12\cdot5 + 8\sqrt{5} + 3\sqrt{5} + 2 = 60 + 11\sqrt{5}$ \end{solutionordottedlines} \part $(3\sqrt{2}+2)(3\sqrt{2}-1)$ \begin{solutionordottedlines}[1in] $(3\sqrt{2}+2)(3\sqrt{2}-1) = 9\cdot2 + 6\sqrt{2} - 3\sqrt{2} - 2 = 18 + 3\sqrt{2}$ \end{solutionordottedlines} \part $(2\sqrt{3}-4)(3\sqrt{3}+5)$ \begin{solutionordottedlines}[1in] $(2\sqrt{3}-4)(3\sqrt{3}+5) = 6\cdot3 + 10\sqrt{3} - 12\sqrt{3} - 20 = 18 - 2\sqrt{3} - 20 = -2 - 2\sqrt{3}$ \end{solutionordottedlines} \part $(7\sqrt{2}+5)^2$ \begin{solutionordottedlines}[1in] $(7\sqrt{2}+5)^2 = 49\cdot2 + 70\sqrt{2} + 25 = 98 + 70\sqrt{2} + 25 = 123 + 70\sqrt{2}$ \end{solutionordottedlines} \part $(3\sqrt{5}+2)(\sqrt{2}+3)$ \begin{solutionordottedlines}[1in] $(3\sqrt{5}+2)(\sqrt{2}+3) = 3\sqrt{10} + 9\sqrt{5} + 2\sqrt{2} + 6$ \end{solutionordottedlines} \part $(4+2\sqrt{3})(2\sqrt{7}-5)$ \begin{solutionordottedlines}[1in] $(4+2\sqrt{3})(2\sqrt{7}-5) = 8\sqrt{7} - 20 + 4\sqrt{21} - 10\sqrt{3}$ \end{solutionordottedlines} \part $(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})$ \begin{solutionordottedlines}[1in] $(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5}) = 7 - 5 = 2$ \end{solutionordottedlines} \part $(4\sqrt{7}-\sqrt{5})(2\sqrt{5}+\sqrt{7})$ \begin{solutionordottedlines}[1in] $(4\sqrt{7}-\sqrt{5})(2\sqrt{5}+\sqrt{7}) = 8\sqrt{35} + 4\cdot7 - 2\cdot5 - \sqrt{35} = 28 - 10 + 7\sqrt{35}$ \end{solutionordottedlines} \end{multicols} \end{parts} \question \textbf{Challenge:} \Question[2] If $x = \sqrt{2} - 1$ and $y = \sqrt{3} + 1$, find: \begin{solutionordottedlines}[1in] $x + y = (\sqrt{2} - 1) + (\sqrt{3} + 1) = \sqrt{2} + \sqrt{3}$ \end{solutionordottedlines} \Question[2] \[\frac{6\sqrt{10}}{x+1}\] \begin{solutionordottedlines}[1.5in] \[\frac{6\sqrt{10}}{\sqrt{2}} = 6\sqrt{5}\] \end{solutionordottedlines} \Question[2] \[x + \frac{1}{x}\] \begin{solutionordottedlines}[1.5in] \[\sqrt{2} - 1 + \frac{1}{\sqrt{2} - 1} = \sqrt{2} - 1 + \frac{\sqrt{2} + 1}{1} = 2\sqrt{2}\] \end{solutionordottedlines} \end{questions}