You will want to pay attention to this part, because we will come up against a more involved version of \emph{rationalising the denominator} in about 20 minutes. We will begin to see them not just as $\frac{1}{\sqrt{2}}$ as we see them in this section, but rather as \emph{binomials}: $\frac{1}{\sqrt{3}-\sqrt{2}}$. We explained the \underline{motivations} behind rationalising the denominator in the introduction but a quick revision will not hurt: \\ \begin{center} \fbox{ \begin{minipage}{0.3\textwidth} \begin{enumerate}[(1)] \item Historical Convention \item Simplicity \item Aesthetics \item Clarity \end{enumerate} \end{minipage} } \end{center} Now having said this, what is the mathematical method to rationalise a denominator? Simple, just multiply the denominator with whatever you need to such that the surd cancels out: \[ \begin{aligned} \frac{2}{\sqrt{2}} &= \frac{2 \textcolor{red}{\times \sqrt{2}}}{\sqrt{2} \textcolor{red}{\times \sqrt{2}}}\\ &= \frac{\cancel{2}\sqrt{2}}{\cancel{2}}\\ &= \sqrt{2} \end{aligned} \] \textbf{Recall that:} you may multiply or divide a fraction by any number as long as you \emph{do the top what you do to the bottom}. \begin{examplebox} \subsection{Examples:} \begin{questions} \Question[2] Express the following with a \emph{rational} denominator \begin{doublespace} \begin{parts} \part \(\frac{4}{\sqrt{2}}=\) \begin{solutionordottedlines}[2cm] \(\frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}\) \end{solutionordottedlines} \part \(\frac{9}{4 \sqrt{3}}=\) \begin{solutionordottedlines}[2cm] \(\frac{9}{4\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{9\sqrt{3}}{12} = \frac{3\sqrt{3}}{4}\) \end{solutionordottedlines} \part \[\frac{2}{\sqrt{3}}+\frac{\sqrt{3}}{2}=\] \begin{solutionordottedlines}[2cm] \(\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{\sqrt{3}}{2} \times \frac{2}{2} = \frac{2\sqrt{3}}{3} \frac{2\sqrt{3}}{4} = \frac{4\sqrt{3} + 3\sqrt{3}}{6} = \frac{7\sqrt{3}}{6}\) \end{solutionordottedlines} \end{parts} \end{doublespace} \end{questions} \end{examplebox} \begin{theorembox} \subsection*{Formulae:} \[ \frac{1}{\sqrt{a}}=\frac{1}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}}=\frac{\sqrt{a}}{a}, \text { where } a \text { is positive, } \] \end{theorembox} \begin{exercisebox} \subsection{Exercises:} \begin{questions} \Question[6] \begin{parts}\begin{multicols}{2} \begin{doublespace} \part \[\frac{\sqrt{3}}{\sqrt{7}}=\] \begin{solutionordottedlines}[2cm] \(\frac{\sqrt{3}}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{21}}{7}\) \end{solutionordottedlines} \part \[\frac{2 \sqrt{7}}{\sqrt{3}}=\] \begin{solutionordottedlines}[2cm] \(\frac{2 \sqrt{7}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{21}}{3}\) \end{solutionordottedlines} \part \[\frac{\sqrt{2}}{3 \sqrt{10}}=\] \begin{solutionordottedlines}[2cm] \(\frac{\sqrt{2}}{3\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} = \frac{\sqrt{20}}{30} = \frac{\sqrt{5}}{15}\) \end{solutionordottedlines} \part \[\frac{\sqrt{15}}{3 \sqrt{5}}=\] \begin{solutionordottedlines}[2cm] \(\frac{\sqrt{15}}{3\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{75}}{15} = \frac{5}{3}\) \end{solutionordottedlines} \part \[\frac{2}{\sqrt{3}}+\frac{3}{2 \sqrt{3}}=\] \begin{solutionordottedlines}[2cm] \(\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{3}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3} + \frac{3\sqrt{3}}{6} = \frac{4\sqrt{3} + 3\sqrt{3}}{6} = \frac{7\sqrt{3}}{6}\) \end{solutionordottedlines} \part \[\frac{5 \sqrt{2}}{3}-\frac{1}{\sqrt{3}}=\] \begin{solutionordottedlines}[2cm] \(\frac{5 \sqrt{2}}{3} - \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5 \sqrt{2}}{3} - \frac{\sqrt{3}}{3} = \frac{5\sqrt{2} - \sqrt{3}}{3}\) \end{solutionordottedlines} \end{doublespace} \end{multicols}\end{parts} \Question[4] Find the value of \(x\). Express your answer with a rational denominator. \begin{parts} \begin{multicols}{2} \part \includegraphics[width=0.4\linewidth]{img/4a} \begin{solutionordottedlines}[4cm] % Since the image is not available, I cannot provide a solution. \end{solutionordottedlines} \part \includegraphics[width=0.4\linewidth]{img/4b} \begin{solutionordottedlines}[4cm] % Since the image is not available, I cannot provide a solution. \end{solutionordottedlines} \end{multicols} \end{parts} \end{questions} \end{exercisebox}