We can factorise expressions entirely by realising that there is a some term which can be pulled out of all the terms. Consider \(4a + 12\). Here we have \fillin[3] common, and so this can be factorised as \fillin[$4(a+3)$]. Similarly, see for the following examples what term can be extracted from all the other ones. \begin{examplebox} \subsection*{Examples:} \begin{questions} \question[8] Factorise: \begin{parts}\begin{multicols}{2} \part \(12 x^{2}+3 x\) \begin{solutionordottedlines}[1in] \(12 x^{2}+3 x=3\left(4 x^{2}+x\right)\) \end{solutionordottedlines} \part \(36 a b-27 a\) \begin{solutionordottedlines}[1in] \(36 a b-27 a=9(4 a b-3 a)\) \(=3 x(4 x+1)\) \(=9 a(4 b-3)\) \end{solutionordottedlines} \part \(3 x+9\) \begin{solutionordottedlines}[1in] \(3 x+9=3(x+3)\) \end{solutionordottedlines} \part \(-7 a^{2}-49\) \begin{solutionordottedlines}[1in] \(-7 a^{2}-49=-7 \times a^{2}+(-7) \times 7\) \end{solutionordottedlines} \part \(7 a^{2}+63 a b\) \begin{solutionordottedlines}[1in] \(7 a^{2}+63 a b=7 a(a+9 b)\) \(=-7\left(a^{2}+7\right)\) \(7\left(-a^{2}-7\right)\) is also correct. \end{solutionordottedlines} \part \(5 p q^{2}+10 p^{2} q+25 p^{2} q^{2}\) \begin{solutionordottedlines}[1in] \(5 p q^{2}+10 p^{2} q+25 p^{2} q^{2}=5 p q(q+2 p+5 p q)\) \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \end{examplebox} \begin{exercisebox} \subsection{Exercises:} \begin{questions} \begin{onehalfspacing} \question[8] Complete each factorisation. \begin{parts}\begin{multicols}{2} \part \(12 x=12 \times \fillin[x]\) \part \(24 a=12 \times \fillin[2a]\) \part \(15 a c=5 c \times \fillin[3a]\) \part \(y^{2}=y \times \fillin[y]\) \part \(24 a^{2}=6 a \times \fillin[4a]\) \part \(-6 b^{2}=2 b \times \fillin[-3b]\) \part \(4 x^{2} y=2 x \times \fillin[2xy]\) \part \(12 m^{2} n=3 m n \times \fillin[4m]\) \end{multicols}\end{parts} \question[4] Fill in the blanks by finding the missing factors. \begin{parts}\begin{multicols}{2} \part \(12 a+18=6 \times \fillin[(2a+3)]\) \part \(20 m n-15 n=5 n \times \fillin[(4m-3)]\) \part \(a^{2}+4 a=(a+4) \times \fillin[a]\) \part \(6 y z^{2}-18 y z=3 y z \times \fillin[(2z-6)]\) \end{multicols}\end{parts} \question[6] Factorise: \begin{parts}\begin{multicols}{2} \part \(6 x+24=\fillin[6(x+4)]\) \part \(5 a+15=\fillin[5(a+3)]\) \part \(y^{2}+x y=\fillin[y(y+x)]\) \part \(4 x+24=\fillin[4(x+6)]\) \part \(y^{2}-3 y=\fillin[y(y-3)]\) \part \(-14a - 21=\fillin[-7(2a+3)]\) \end{multicols}\end{parts} \question[8] Factorise: \begin{parts}\begin{multicols}{2} \part \(4 a b+16 a=\fillin[4a(b+4)]\) \part \(12 a^{2}+8 a=\fillin[4a(3a+2)]\) \part \(15 a^{2} b^{2}+10 a b^{2}=\fillin[$5ab^{2}(3a+2)$]\) \part \(4 a^{2}+6 a=\fillin[2a(2a+3)]\) \part \(3 b-6 b^{2}=\fillin[-3b(2b-1)]\) \part \(4 x^{2}-6 x y=\fillin[2x(2x-3y)]\) \part \(18 y-9 y^{2}=\fillin[9y(2-y)]\) \part \(4 a-6 a b^{2}=\fillin[$2a(2-3b^{2})$]\) \part \(14 m n^{2}-21 m^{2} n=\fillin[7mn(2n-3m)]\) \part \(6 p q^{2}-21 q p^{2}=\fillin[3pq(2q-7p)]\) \part \(-10 b^{2}+5 b=\fillin[5b(-2b+1)]\) \part \(-4 p q+16 p^{2}=\fillin[4p(-q+4p)]\) \part \(-16 a^{2} b-8 a b=\fillin[-8ab(2a+1)]\) \part \(-8 a^{2} b^{2}-2 a b=\fillin[-2ab(4ab+1)]\) \part \(-5 x^{2} y+30 x=\fillin[$5x(-x^{2}y+6)$]\) \part \(12 x y^{2}-3 x^{2} y=\fillin[3xy(4y-x)]\) \end{multicols}\end{parts} \question[3] In each part, an expression for the area of the rectangle has been given. Find an expression for the missing side length. \begin{parts}\begin{multicols}{3} \part \begin{tikzpicture} \draw (0,0) -- (4,0) -- (4,2) -- (0,2) -- cycle; \node at (2, 2) [above] {$2a + 3$}; \node at (2, 1) {Area = $8a + 12$}; \end{tikzpicture} \begin{solutionordottedlines}[1in] $4$ \end{solutionordottedlines} \part \begin{tikzpicture} \draw (0,0) -- (4,0) -- (4,2) -- (0,2) -- cycle; \node at (2, 2) [above] {$5$}; \node at (2, 1) {Area = $10b + 15$}; \end{tikzpicture} \begin{solutionordottedlines}[1in] $2b+3$ \end{solutionordottedlines} \part \begin{tikzpicture} \draw (0,0) -- (4,0) -- (4,2) -- (0,2) -- cycle; \node at (2, 2) [above] {$6a$}; \node at (2, 1) {Area = $12a^2 + 6ab$}; \end{tikzpicture} \begin{solutionordottedlines}[1in] $2a + b$ \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] Factorise: \begin{parts}\begin{multicols}{2} \part \(4 a^{2} b-2 a b+8 a b^{2}\) \begin{solutionordottedlines}[1in] \(2ab(2a-1+4b)\) \end{solutionordottedlines} \part \(7 a b+14 a^{2}+21 b\) \begin{solutionordottedlines}[1in] \(7(2a^{2}+ab+3b)\) \end{solutionordottedlines} \part \(5 a^{2} b+3 a b+4 a b^{2}\) \begin{solutionordottedlines}[1in] \(ab(5a+3+4b)\) \end{solutionordottedlines} \part \(5 p^{2} q^{2}+10 p q^{2}+15 p^{2} q\) \begin{solutionordottedlines}[1in] \(5pq(pq+2q+3p)\) \end{solutionordottedlines} \end{multicols}\end{parts} \end{onehalfspacing} \end{questions} \end{exercisebox}