\documentclass{article} \usepackage{amsmath} \usepackage{multicol} \usepackage{exsheets} \usepackage{tasks} \SetupExSheets{solution/print=true} \begin{document} \begin{examplebox} \subsection{Examples:} \begin{questions} \question[14] Factorise: \begin{parts}\begin{multicols}{2} \part \(25-y^{2}\) \begin{solutionordottedlines}[1in] \(25-y^{2}=5^{2}-y^{2}\) \[ =(5+y)(5-y) \] \end{solutionordottedlines} \part \(4 x^{2}-9\) \begin{solutionordottedlines}[1in] \(4 x^{2}-9=(2 x)^{2}-3^{2}\) \[ =(2 x+3)(2 x-3) \] \end{solutionordottedlines} \part \(3 a^{2}-27\) \begin{solutionordottedlines}[1in] \(3 a^{2}-27=3(a^{2}-9)\) \(=3(a+3)(a-3)\) \end{solutionordottedlines} \part \(-16+9 x^{2}\) \begin{solutionordottedlines}[1in] \(-16+9 x^{2}=9 x^{2}-16\) \(=(3 x)^{2}-4^{2}\) \(=(3 x-4)(3 x+4)\) \end{solutionordottedlines} \question[5] Use the factorisation of the difference of two squares to evaluate the following. One has been done for you. \[ \begin{aligned} 17^{2}-3^{2} & =(17+3)(17-3) \\ & =20 \times 14 \\ & =280 \end{aligned} \] \begin{parts}\begin{multicols}{2} \part \(23^{2}-7^{2}\) \begin{solutionordottedlines}[1in] \(23^{2}-7^{2}=(23+7)(23-7)\) \(=30 \times 16\) \(=480\) \end{solutionordottedlines} \part \(94^{2}-6^{2}\) \begin{solutionordottedlines}[1in] \(94^{2}-6^{2}=(94+6)(94-6)\) \(=100 \times 88\) \(=8800\) \end{solutionordottedlines} \part \(11.3^{2}-8.7^{2}\) \begin{solutionordottedlines}[1in] \(11.3^{2}-8.7^{2}=(11.3+8.7)(11.3-8.7)\) \(=20 \times 2.6\) \(=52\) \end{solutionordottedlines} \part \(4^{2}-3^{2}\) \begin{solutionordottedlines}[1in] \(4^{2}-3^{2}=(4+3)(4-3)\) \(=7 \times 1\) \(=7\) \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} Note: You can always check your factorisation is correct by expanding your result and checking to see if that is the expression you started with! \end{examplebox} \begin{exercisebox} \subsection{Exercises:} \begin{questions} \question[16] Factorise: \begin{parts}\begin{multicols}{2} \part \(x^{2}-49\) \begin{solutionordottedlines}[1in] \(x^{2}-49=(x+7)(x-7)\) \end{solutionordottedlines} \part \((3 x)^{2}-16\) \begin{solutionordottedlines}[1in] \((3 x)^{2}-16=(3x+4)(3x-4)\) \end{solutionordottedlines} \part \(16 y^{2}-49\) \begin{solutionordottedlines}[1in] \(16 y^{2}-49=(4y+7)(4y-7)\) \end{solutionordottedlines} \part \(9-16 y^{2}\) \begin{solutionordottedlines}[1in] \(9-16 y^{2}=(3+4y)(3-4y)\) \end{solutionordottedlines} \part \(a^{2}-121\) \begin{solutionordottedlines}[1in] \(a^{2}-121=(a+11)(a-11)\) \end{solutionordottedlines} \part \((4 x)^{2}-1\) \begin{solutionordottedlines}[1in] \((4 x)^{2}-1=(4x+1)(4x-1)\) \end{solutionordottedlines} \part \(100 a^{2}-49 b^{2}\) \begin{solutionordottedlines}[1in] \(100 a^{2}-49 b^{2}=(10a+7b)(10a-7b)\) \end{solutionordottedlines} \part \(25 a^{2}-100 b^{2}\) \begin{solutionordottedlines}[1in] \(25 a^{2}-100 b^{2}=(5a+10b)(5a-10b)\) \end{solutionordottedlines} \part \(d^{2}-400\) \begin{solutionordottedlines}[1in] \(d^{2}-400=(d+20)(d-20)\) \end{solutionordottedlines} \part \(4 x^{2}-100\) \begin{solutionordottedlines}[1in] \(4 x^{2}-100=(2x+10)(2x-10)\) \end{solutionordottedlines} \part \(5 x^{2}-45\) \begin{solutionordottedlines}[1in] \(5 x^{2}-45=5(x^{2}-9)\) \(=5(x+3)(x-3)\) \end{solutionordottedlines} \part \(7 x^{2}-63\) \begin{solutionordottedlines}[1in] \(7 x^{2}-63=7(x^{2}-9)\) \(=7(x+3)(x-3)\) \end{solutionordottedlines} \part \(8 x^{2}-50\) \begin{solutionordottedlines}[1in] \(8 x^{2}-50=2(4x^{2}-25)\) \(=2(2x+5)(2x-5)\) \end{solutionordottedlines} \end{multicols}\end{parts} \begin{parts}\begin{multicols}{2} \setcounter{partno}{12} \part \(20-5 y^{2}\) \begin{solutionordottedlines}[1in] \(20-5 y^{2}=5(4-y^{2})\) \(=5(2+y)(2-y)\) \end{solutionordottedlines} \part \(27 a^{2}-12 b^{2}\) \begin{solutionordottedlines}[1in] \(27 a^{2}-12 b^{2}=3(9a^{2}-4b^{2})\) \(=3(3a+2b)(3a-2b)\) \end{solutionordottedlines} \part \(27 a^{2}-192 l^{2}\) \begin{solutionordottedlines}[1in] \(27 a^{2}-192 l^{2}=3(9a^{2}-64l^{2})\) \(=3(3a+8l)(3a-8l)\) \end{solutionordottedlines} \part \(-8 x^{2}+32 y^{2}\) \begin{solutionordottedlines}[1in] \(-8 x^{2}+32 y^{2}=32 y^{2}-8 x^{2}\) \(=8(4y^{2}-x^{2})\) \(=8(2y+x)(2y-x)\) \end{solutionordottedlines} \part \(-4+9 x^{2}\) \begin{solutionordottedlines}[1in] \(-4+9 x^{2}=9 x^{2}-4\) \(=(3x+2)(3x-2)\) \end{solutionordottedlines} \part \(-100 x^{2}+9\) \begin{solutionordottedlines}[1in] \(-100 x^{2}+9=9-100 x^{2}\) \(=(3+10x)(3-10x)\) \end{solutionordottedlines} \part \(-36 x^{2}+400\) \begin{solutionordottedlines}[1in] \(-36 x^{2}+400=400-36 x^{2}\) \(=(20+6x)(20-6x)\) \end{solutionordottedlines} \part \(23^{2}-3^{2}\) \begin{solutionordottedlines}[1in] \(23^{2}-3^{2}=(23+3)(23-3)\) \(=26 \times 20\) \(=520\) \end{solutionordottedlines} \part \(1.8^{2}-0.2^{2}\) \begin{solutionordottedlines}[1in] \(1.8^{2}-0.2^{2}=(1.8+0.2)(1.8-0.2)\) \(=2 \times 1.6\) \(=3.2\) \end{solutionordottedlines} \part \(92.6^{2}-7.4^{2}\) \begin{solutionordottedlines}[1in] \(92.6^{2}-7.4^{2}=(92.6+7.4)(92.6-7.4)\) \(=100 \times 85.2\) \(=8520\) \end{solutionordottedlines} \part \(5^{2}-4^{2}\) \begin{solutionordottedlines}[1in] \(5^{2}-4^{2}=(5+4)(5-4)\) \(=9 \times 1\) \(=9\) \end{solutionordottedlines} \part \(9^{2}-8^{2}\) \begin{solutionordottedlines}[1in] \(9^{2}-8^{2}=(9+8)(9-8)\) \(=17 \times 1\) \(=17\) \end{solutionordottedlines} \part \(6^{2}-5^{2}\) \begin{solutionordottedlines}[1in] \(6^{2}-5^{2}=(6+5)(6-5)\) \(=11 \times 1\) \(=11\) \end{solutionordottedlines} \part \(10^{2}-9^{2}\) \begin{solutionordottedlines}[1in] \(10^{2}-9^{2}=(10+9)(10-9)\) \(=19 \times 1\) \(=19\) \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \end{exercisebox} \end{document}