The nomenclature ``simple'' quadratic means that the coefficient of $x^2$ is just 1. Let us recall some definitions: \begin{questions} \question[1] \begin{boxdef} Nomenclature: \begin{solutionordottedlines}[1cm]the terminology for a specific topic\end{solutionordottedlines} \end{boxdef} \question[1] \begin{boxdef} Quadratic: \begin{solutionordottedlines}[1cm]a polynomial whose highest power is 2\end{solutionordottedlines} \end{boxdef} \question[1] \begin{boxdef} Coefficient: \begin{solutionordottedlines}[1cm]the number before the variable\end{solutionordottedlines} \end{boxdef} \end{questions} \fbox{\parbox{\textwidth}{\textbf{The Technique:}\\Let us take a concrete example: $x^2-3x-18$. To factorise this monic quadratic we need to find two numbers that multiply to give -18 and add to give -3. Such numbers will be -6 and 3. Thus we can write \(x^{2}-3 x-18=(x+3)(x-6)\)}} \begin{examplebox} \subsection*{Examples:} \begin{questions} \question[2] Factorise: \begin{parts} \part\(x^{2}+8 x+16\) \begin{solutionordottedlines}[1in] \(x^{2}+8 x+16=(x+4)(x+4)\) \[ =(x+4)^{2} \] \end{solutionordottedlines} \part\(x^{2}+5 x+6\) \begin{solutionordottedlines}[1in] \(x^{2}+5 x+6=(x+2)(x+3)\) \end{solutionordottedlines} \part\(x^{2}+7 x+10\) \begin{solutionordottedlines}[1in] \(x^{2}+7 x+10=(x+2)(x+5)\) \end{solutionordottedlines} \part\(x^{2}+9 x+14\) \begin{solutionordottedlines}[1in] \(x^{2}+9 x+14=(x+2)(x+7)\) \end{solutionordottedlines} \end{parts} \end{questions} \end{examplebox} \begin{exercisebox} \subsection*{Exercises:} \begin{questions} \question[4] Factorise: \begin{parts}\begin{multicols}{2} \part\(x^{2}+9 x+20\) \begin{solutionordottedlines}[1in] \(x^{2}+9 x+20=(x+4)(x+5)\) \end{solutionordottedlines} \part\(x^{2}+12 x+32\) \begin{solutionordottedlines}[1in] \(x^{2}+12 x+32=(x+4)(x+8)\) \end{solutionordottedlines} \part\(x^{2}+20 x+75\) \begin{solutionordottedlines}[1in] \(x^{2}+20 x+75=(x+5)(x+15)\) \end{solutionordottedlines} \part\( x^{2}+15 x+56\) \begin{solutionordottedlines}[1in] \(x^{2}+15 x+56=(x+7)(x+8)\) \end{solutionordottedlines} \part\(x^{2}-5 x+6\) \begin{solutionordottedlines}[1in] \(x^{2}-5 x+6=(x-2)(x-3)\) \end{solutionordottedlines} \part\(x^{2}-17 x+30\) \begin{solutionordottedlines}[1in] \(x^{2}-17 x+30=(x-2)(x-15)\) \end{solutionordottedlines} \end{multicols}\end{parts} \begin{parts}\begin{multicols}{2} \setcounter{partno}{6} \part\(x^{2}-9 x+14\) \begin{solutionordottedlines}[1in] \(x^{2}-9 x+14=(x-2)(x-7)\) \end{solutionordottedlines} \part\(x^{2}-15 x+44\) \begin{solutionordottedlines}[1in] \(x^{2}-15 x+44=(x-4)(x-11)\) \end{solutionordottedlines} \part\(x^{2}-18 x+80\) \begin{solutionordottedlines}[1in] \(x^{2}-18 x+80=(x-10)(x-8)\) \end{solutionordottedlines} \part\(x^{2}-14 x+40\) \begin{solutionordottedlines}[1in] \(x^{2}-14 x+40=(x-4)(x-10)\) \end{solutionordottedlines} \part\(x^{2}-30 x+56\) \begin{solutionordottedlines}[1in] \(x^{2}-30 x+56=(x-8)(x-7)\) \end{solutionordottedlines} \part\(x^{2}+x-6\) \begin{solutionordottedlines}[1in] \(x^{2}+x-6=(x-2)(x+3)\) \end{solutionordottedlines} \part\(x^{2}+x-30\) \begin{solutionordottedlines}[1in] \(x^{2}+x-30=(x-5)(x+6)\) \end{solutionordottedlines} \part\(x^{2}-5 x-14\) \begin{solutionordottedlines}[1in] \(x^{2}-5 x-14=(x+2)(x-7)\) \end{solutionordottedlines} \part\(x^{2}-7 x-44\) \begin{solutionordottedlines}[1in] \(x^{2}-7 x-44=(x+4)(x-11)\) \end{solutionordottedlines} \part\(x^{2}+2 x-80\) \begin{solutionordottedlines}[1in] \(x^{2}+2 x-80=(x-8)(x+10)\) \end{solutionordottedlines} \part\(x^{2}+3 x-40\) \begin{solutionordottedlines}[1in] \(x^{2}+3 x-40=(x-5)(x+8)\) \end{solutionordottedlines} \part\(x^{2}+4 x-21\) \begin{solutionordottedlines}[1in] \(x^{2}+4 x-21=(x-3)(x+7)\) \end{solutionordottedlines} \end{multicols}\end{parts} \begin{parts}\begin{multicols}{2} \setcounter{partno}{12} \part\(x^{2}-x-56\) \begin{solutionordottedlines}[1in] \((x-8)(x+7)\) \end{solutionordottedlines} \part\(x^{2}-3 x+2\) \begin{solutionordottedlines}[1in] \(x^{2}-3 x+2=(x-1)(x-2)\) \end{solutionordottedlines} \part\(x^{2}-3 x-10\) \begin{solutionordottedlines}[1in] \(x^{2}-3 x-10=(x+2)(x-5)\) \end{solutionordottedlines} \part\(x^{2}-5 x-14\) \begin{solutionordottedlines}[1in] \(x^{2}-5 x-14=(x+2)(x-7)\) \end{solutionordottedlines} \part\(x^{2}-5 x+4\) \begin{solutionordottedlines}[1in] \(x^{2}-5 x+4=(x-1)(x-4)\) \end{solutionordottedlines} \part\(x^{2}-x-12\) \begin{solutionordottedlines}[1in] \(x^{2}-x-12=(x+3)(x-4)\) \end{solutionordottedlines} \part\(x^{2}+3 x-10\) \begin{solutionordottedlines}[1in] \(x^{2}+3 x-10=(x-2)(x+5)\) \end{solutionordottedlines} \part\(x^{2}+6 x+9\) \begin{solutionordottedlines}[1in] \(x^{2}+6 x+9=(x+3)(x+3)\) \[ =(x+3)^{2} \] \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \end{exercisebox}