The expansion of a perfect square has a special form. For example: \[ \begin{aligned} (x+3)^{2} & =(x+3)(x+3) \\ & =x^{2}+6 x+9 \\ & =x^{2}+2 \times(3 x)+3^{2} \end{aligned} \] \begin{theorembox} \subsection{Theorem} \begin{align} a^{2}+2 a b+b^{2}&=(a+b)^{2}\\ a^{2}-2 a b+b^{2}&=(a-b)^{2} \end{align} \end{theorembox} \begin{examplebox} \subsection*{Examples:} \begin{questions} \question[3] \begin{parts} \part \(x^{2}+8 x+16\) \begin{solutionordottedlines}[1in] \(x^{2}+8 x+16=x^{2}+2 \times 4 x+4^{2}\) \[ =(x+4)^{2} \] \end{solutionordottedlines} \part \(x^{2}-10 x+25\) \begin{solutionordottedlines}[1in] \(x^{2}-10 x+25=x^{2}-2 \times 5 x+5^{2}\) \[ =(x-5)^{2} \] \end{solutionordottedlines} \part \(x^{2}+11 x+\frac{121}{4}\) \begin{solutionordottedlines}[1in] \(x^{2}+11 x+\frac{121}{4}=x^{2}+2 \times \frac{11}{2} x+\left(\frac{11}{2}\right)^{2}\) \[ =\left(x+\frac{11}{2}\right)^{2} \] \end{solutionordottedlines} \end{parts} \question[2] Identify the simple quadratic expression that cannot be factorised as a perfect square. \begin{onehalfspacing} \begin{parts}\begin{multicols}{2} \part \(x^{2}+4 x+4\) \begin{solutionordottedlines}[0.5in] Can be factorised as \((x+2)^{2}\). \end{solutionordottedlines} \part \(x^{2}-6 x+12\) \begin{solutionordottedlines}[0.5in] Cannot be factorised as a perfect square because \(b^{2}-4ac = 36-48 < 0\). \end{solutionordottedlines} \part \(x^{2}-12 x+36\) \begin{solutionordottedlines}[0.5in] Can be factorised as \((x-6)^{2}\). \end{solutionordottedlines} \part \(x^{2}-10 x+25\) \begin{solutionordottedlines}[0.5in] Can be factorised as \((x-5)^{2}\). \end{solutionordottedlines} \part \(x^{2}+6 x+9\) \begin{solutionordottedlines}[0.5in] Can be factorised as \((x+3)^{2}\). \end{solutionordottedlines} \part \(x^{2}+5 x+\frac{25}{4}\) \begin{solutionordottedlines}[0.5in] Can be factorised as \(\left(x+\frac{5}{2}\right)^{2}\). \end{solutionordottedlines} \part \(x^{2}-8 x-16\) \begin{solutionordottedlines}[0.5in] Cannot be factorised as a perfect square because \(b^{2}-4ac = 64+64 > 0\) and is not a perfect square. \end{solutionordottedlines} \part \(x^{2}-14 x+49\) \begin{solutionordottedlines}[0.5in] Can be factorised as \((x-7)^{2}\). \end{solutionordottedlines} \end{multicols}\end{parts} \end{onehalfspacing} \end{questions} \end{examplebox} \begin{exercisebox} \subsection*{Exercises:} \begin{questions} \question[8] \begin{parts}\begin{multicols}{2} \part \(x^{2}+12 x+36\) \begin{solutionordottedlines}[0.5in] \(x^{2}+12 x+36=(x+6)^{2}\) \end{solutionordottedlines} \part \(a^{2}-4 a+4\) \begin{solutionordottedlines}[0.5in] \(a^{2}-4 a+4=(a-2)^{2}\) \end{solutionordottedlines} \part \(x^{2}-9 x+\frac{81}{4}\) \begin{solutionordottedlines}[0.5in] \(x^{2}-9 x+\frac{81}{4}=\left(x-\frac{9}{2}\right)^{2}\) \end{solutionordottedlines} \part \(x^{2}+8 x+16=(x+\ldots)^{\ldots}\) \begin{solutionordottedlines}[0.5in] \(x^{2}+8 x+16=(x+4)^{2}\) \end{solutionordottedlines} \part \(x^{2}-\ldots+\ldots=(x-9)^{2}\) \begin{solutionordottedlines}[0.5in] \(x^{2}-18 x+81=(x-9)^{2}\) \end{solutionordottedlines} \part \(x^{2}-8 x+16\) \begin{solutionordottedlines}[0.5in] \(x^{2}-8 x+16=(x-4)^{2}\) \end{solutionordottedlines} \part \(m^{2}-26 m+169\) \begin{solutionordottedlines}[0.5in] \(m^{2}-26 m+169=(m-13)^{2}\) \end{solutionordottedlines} \part \(x^{2}+13 x+\frac{169}{4}\) \begin{solutionordottedlines}[0.5in] \(x^{2}+13 x+\frac{169}{4}=\left(x+\frac{13}{2}\right)^{2}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] A brick company provides rectangular and square pavers. \begin{parts} \part{} Draw a diagram to show how two different square pavers of side lengths \(a\) and \(b\) respectively, and two identical rectangular pavers with dimensions \(a \times b\), can be arranged into a square. \begin{solutionordottedlines}[2in] \end{solutionordottedlines} \part{} How many of each type of paver enables you to pave a square area of side length \(a+3 b\)? Draw a diagram to illustrate how this can be done. \begin{solutionordottedlines}[2in] You would need 1 square paver of side length \(a\), 9 square pavers of side length \(b\), and 6 rectangular pavers of dimensions \(a \times b\). \end{solutionordottedlines} \end{parts} \end{questions} \end{exercisebox}