The quadratics for this section are a little less tame. The $x^2$ term now possesses a coefficient which we will be trying to pull out of the entire expression to use our techniques from section 4 on the new expression within the parenthesis. \begin{examplebox} \subsection{Examples:} \begin{questions} \question[3] Factorise: \begin{parts} \part \(3 x^{2}+9 x+6\) \begin{solutionordottedlines}[1in] \(3 x^{2}+9 x+6=3\left(x^{2}+3 x+2\right) \quad\) (Take out the common factor.) \[ =3(x+2)(x+1) \] \end{solutionordottedlines} \part \(6 x^{2}-54\) \begin{solutionordottedlines}[1in] \(6 x^{2}-54=6\left(x^{2}-9\right)\) \[ =6(x+3)(x-3) \] \end{solutionordottedlines} \part \(-x^{2}-x+2\) \begin{solutionordottedlines}[1in] \(-x^{2}-x+2=-\left(x^{2}+x-2\right)\) (Factor -1 from each term.) \[ =-(x+2)(x-1) \] \end{solutionordottedlines} \end{parts} \question[10] \begin{parts}\begin{multicols}{2} \part \(2 x^{2}+14 x+24\) \begin{solutionordottedlines}[1in] \(2 x^{2}+14 x+24=2(x^{2}+7 x+12)\) \[ =2(x+3)(x+4) \] \end{solutionordottedlines} \part \(4 x^{2}-24 x+36\) \begin{solutionordottedlines}[1in] \(4 x^{2}-24 x+36=4(x^{2}-6 x+9)\) \[ =4(x-3)^{2} \] \end{solutionordottedlines} \part \(4 x^{2}-4 x+48\) \begin{solutionordottedlines}[1in] \(4 x^{2}-4 x+48=4(x^{2}-x+12)\) (This quadratic does not factor over the integers.) \end{solutionordottedlines} \part \(3 x^{2}+9 x-120\) \begin{solutionordottedlines}[1in] \(3 x^{2}+9 x-120=3(x^{2}+3 x-40)\) \[ =3(x+8)(x-5) \] \end{solutionordottedlines} \part \(2 x^{2}-4 x-96\) \begin{solutionordottedlines}[1in] \(2 x^{2}-4 x-96=2(x^{2}-2 x-48)\) \[ =2(x-8)(x+6) \] \end{solutionordottedlines} \part \(3 x^{2}-18 x+27\) \begin{solutionordottedlines}[1in] \(3 x^{2}-18 x+27=3(x^{2}-6 x+9)\) \[ =3(x-3)^{2} \] \end{solutionordottedlines} \part \(4 x^{2}-16\) \begin{solutionordottedlines}[1in] \(4 x^{2}-16=4(x^{2}-4)\) \[ =4(x+2)(x-2) \] \end{solutionordottedlines} \part \(3 a^{2}-27\) \begin{solutionordottedlines}[1in] \(3 a^{2}-27=3(a^{2}-9)\) \[ =3(a+3)(a-3) \] \end{solutionordottedlines} \part \(27 x^{2}-3 y^{2}\) \begin{solutionordottedlines}[1in] \(27 x^{2}-3 y^{2}=3(9x^{2}-y^{2})\) \[ =3(3x+y)(3x-y) \] \end{solutionordottedlines} \part \(128-2 x^{2}\) \begin{solutionordottedlines}[1in] \(128-2 x^{2}=-2(x^{2}-64)\) \[ =-2(x+8)(x-8) \] \end{solutionordottedlines} \end{multicols}\end{parts} \begin{parts}\begin{multicols}{2} \setcounter{partno}{10} \part \(\frac{1}{4} a^{2}-9\) \begin{solutionordottedlines}[1in] \(\frac{1}{4} a^{2}-9=\left(\frac{1}{2}a\right)^{2}-3^{2}\) \[ =\left(\frac{1}{2}a+3\right)\left(\frac{1}{2}a-3\right) \] \end{solutionordottedlines} \part \(-x^{2}-8 x-12\) \begin{solutionordottedlines}[1in] \(-x^{2}-8 x-12=-1(x^{2}+8 x+12)\) \[ =-(x+6)(x+2) \] \end{solutionordottedlines} \part \(9+8 x-x^{2}\) \begin{solutionordottedlines}[1in] \(9+8 x-x^{2}=-(x^{2}-8 x-9)\) \[ =-(x-9)(x+1) \] \end{solutionordottedlines} \part \(-x^{2}+3 x+40\) \begin{solutionordottedlines}[1in] \(-x^{2}+3 x+40=-1(x^{2}-3 x-40)\) \[ =-(x-8)(x+5) \] \end{solutionordottedlines} \part \(11 x-x^{2}-24\) \begin{solutionordottedlines}[1in] \(11 x-x^{2}-24=-(x^{2}-11 x+24)\) \[ =-(x-8)(x-3) \] \end{solutionordottedlines} \part \(-16 x-63-x^{2}\) \begin{solutionordottedlines}[1in] \(-16 x-63-x^{2}=-(x^{2}+16 x+63)\) \[ =-(x+7)(x+9) \] \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \end{examplebox} \begin{exercisebox} \subsection{Exercises:} \begin{questions} \question[16] Factorise: \begin{parts}\begin{multicols}{2} \part \(3 x^{2}+24 x+36\) \begin{solutionordottedlines}[1in] \(3 x^{2}+24 x+36=3(x^{2}+8 x+12)\) \[ =3(x+6)(x+2) \] \end{solutionordottedlines} \part \(7 x^{2}+14 x+7\) \begin{solutionordottedlines}[1in] \(7 x^{2}+14 x+7=7(x^{2}+2 x+1)\) \[ =7(x+1)^{2} \] \end{solutionordottedlines} \part \(2 x^{2}-18 x+36\) \begin{solutionordottedlines}[1in] \(2 x^{2}-18 x+36=2(x^{2}-9 x+18)\) \[ =2(x-6)(x-3) \] \end{solutionordottedlines} \part \(3 x^{2}-3 x-90\) \begin{solutionordottedlines}[1in] \(3 x^{2}-3 x-90=3(x^{2}-x-30)\) \[ =3(x-6)(x+5) \] \end{solutionordottedlines} \part \(5 x^{2}+65 x+180\) \begin{solutionordottedlines}[1in] \(5 x^{2}+65 x+180=5(x^{2}+13 x+36)\) \[ =5(x+9)(x+4) \] \end{solutionordottedlines} \part \(5 x^{2}-20 x+20\) \begin{solutionordottedlines}[1in] \(5 x^{2}-20 x+20=5(x^{2}-4 x+4)\) \[ =5(x-2)^{2} \] \end{solutionordottedlines} \part \(2 x^{2}-18\) \begin{solutionordottedlines}[1in] \(2 x^{2}-18=2(x^{2}-9)\) \[ =2(x+3)(x-3) \] \end{solutionordottedlines} \part \(6 x^{2}-600\) \begin{solutionordottedlines}[1in] \(6 x^{2}-600=6(x^{2}-100)\) \[ =6(x+10)(x-10) \] \end{solutionordottedlines} \part \(45-5 b^{2}\) \begin{solutionordottedlines}[1in] \(45-5 b^{2}=-5(b^{2}-9)\) \[ =-5(b+3)(b-3) \] \end{solutionordottedlines} \part \(\frac{1}{2} a^{2}-2 b^{2}\) \begin{solutionordottedlines}[1in] \(\frac{1}{2} a^{2}-2 b^{2}=\frac{1}{2}(a^{2}-4 b^{2})\) \[ =\frac{1}{2}(a+2b)(a-2b) \] \end{solutionordottedlines} \part \(\frac{1}{5} x^{2}-20\) \begin{solutionordottedlines}[1in] \(\frac{1}{5} x^{2}-20=\frac{1}{5}(x^{2}-100)\) \[ =\frac{1}{5}(x+10)(x-10) \] \end{solutionordottedlines} \part \(12-11 x-x^{2}\) \begin{solutionordottedlines}[1in] \(12-11 x-x^{2}=-(x^{2}+11 x-12)\) \[ =-(x-1)(x+12) \] \end{solutionordottedlines} \end{multicols}\end{parts} \begin{parts}\begin{multicols}{2} \part \(-x^{2}-4 x-4\) \begin{solutionordottedlines}[1in] \(-x^{2}-4 x-4=-1(x^{2}+4 x+4)\) \[ =-(x+2)^{2} \] \end{solutionordottedlines} \part \(42+x-x^{2}\) \begin{solutionordottedlines}[1in] \(42+x-x^{2}=-(x^{2}-x-42)\) \[ =-(x-7)(x+6) \] \end{solutionordottedlines} \part \(-3 x^{2}-30 x+72\) \begin{solutionordottedlines}[1in] \(-3 x^{2}-30 x+72=-3(x^{2}+10 x-24)\) \[ =-3(x-2)(x+12) \] \end{solutionordottedlines} \part \(-x^{2}-35+12 x\) \begin{solutionordottedlines}[1in] \(-x^{2}-35+12 x=-1(x^{2}-12 x+35)\) \[ =-(x-7)(x-5) \] \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \end{exercisebox}