\documentclass[10pt]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage[version=4]{mhchem} \usepackage{stmaryrd} \usepackage{graphicx} \usepackage[export]{adjustbox} \graphicspath{ {./images/} } \title{Factorisation } \author{} \date{} \begin{document} \maketitle \section*{Factorisation of simple quadratics} A simple quadratic expression is an expression of the form \(x^{2}+b x+c\), where \(b\) and \(c\) are given numbers. When we expand \((x+3)(x+4)\), we obtain a simple quadratic. \[ \begin{gathered} x(x+4)+3(x+4)=x^{2}+4 x+3 x+12 \\ =x^{2}+7 x+12 \end{gathered} \] We want to develop a method for reversing this process. In the expansion \((x+3)(x+4)=x^{2}+7 x+12\), notice that the coefficient of \(x\) is \(3+4=7\). The term that is independent of \(x\), the constant term, is \(3 \times 4=12\). This suggests a method of factorising. In general, when we expand \((x+p)(x+q)\), we obtain \[ x^{2}+p x+q x+p q=x^{2}+(p+q) x+p q \] The coefficient of \(x\) is the sum of \(p\) and \(q\), and the constant term is the product of \(p\) and \(q\). \section*{Factorisation of simple quadratics} To factorise a simple quadratic, look for two numbers that add to give the coefficient of \(x\), and that multiply together to give the constant term. For example, to factorise \(x^{2}+8 x+15\), we look for two numbers that multiply to give 15 and add to give 8 . Of the pairs that multiply to give \(15(15 \times 1,5 \times 3,-5 \times(-3)\) and \(-15 \times(-1))\), only 5 and 3 add to give 8 . Therefore, \(x^{2}+8 x+15=(x+3)(x+5)\) The result can be checked by expanding \((x+3)(x+5)\). 2 Factorise these quadratric expressions. 3 Factorise these quadratric expressions. 4 Factorise these quadratic expressions. Example 85 Factorise these quadratic expressions. \section*{1 Factorisation using perfect squares} In Chapter 4, Example 8, we used the methods discussed previously to show that \(x^{2}+8 x+16=(x+4)^{2}\). This form of quadratic factorisation is called a perfect square. We recall from Chapter 1 that a perfect square is an expression such as \((x+3)^{2},(x-5)^{2}\) or \((2 x+7)^{2}\). Note that the constant term 9 is the square of half the coefficient of \(x\). The quadratic \(x^{2}+10 x+25\) is a perfect square since the "constant term is equal to the square of half of the coefficient of \(x\) '. So: \[ x^{2}+10 x+25=(x+5)^{2} \] We recognise a perfect square such as this in the following way: the constant term is the square of half of the coefficient of \(x\). For example: \[ \begin{array}{ll} x^{2}+12 x+36=(x+6)^{2} & x^{2}+7 x+\frac{49}{4}=\left(x+\frac{7}{2}\right)^{2} \\ x^{2}-14 x+49=(x-7)^{2} & x^{2}-9 x+\frac{81}{4}=\left(x-\frac{9}{2}\right)^{2} \end{array} \] \section*{Factorising using the perfect square identities} \begin{itemize} \item In general, \(a^{2}+2 a b+b^{2}=(a+b)^{2}\) \item Similarly, \(a^{2}-2 a b+b^{2}=(a-b)^{2}\) \end{itemize} When a quadratic expression has the form of a perfect square, factorisation can occur immediately by application of the relevant identity. Example 9 1 Factorise using the appropriate perfect square identity. \section*{\(4 E\) Quadratics with common factors} Sometimes a common factor can be taken out of a quadratic expression so that the expression inside the brackets becomes a simple quadratic that can be factorised. 2 Factorise: 3 Factorise: \section*{Review exercise} 1 Factorise: a \(4 x+16\) b \(7 x-21\) c \(6 a-9\) d \(4 a b+7 a\) e \(6 p q-11 p\) f \(5 m n-10 n\) g \(4 u v-8 v\) h \(a^{2}+9 a\) i \(4 m^{2} n-12 m n\) j \(a^{2} b-4 a b^{2}\) k \(3 p q-6 p^{2}\) l \(6 p^{3} q-18 p q\) 2 Factorise: a \(x^{2}-9\) b \(x^{2}-16\) c \(9 a^{2}-25\) d \(16 m^{2}-1\) e \(9-4 b^{2}\) f \(100-81 b^{2}\) g \(16 x^{2}-y^{2}\) h \(2 m^{2}-50\) i \(3 a^{2}-27\) j \(1-36 b^{2}\) k \(4 y^{2}-\frac{1}{4}\) l \(p^{2} q^{2}-1\) 3 Factorise: a \(x^{2}+8 x+12\) b \(x^{2}+9 x+18\) c \(x^{2}+11 x+30\) d \(x^{2}-11 x+24\) e \(x^{2}-10 x+24\) f \(x^{2}-14 x+24\) g \(x^{2}-25 x+24\) h \(x^{2}+x-20\) i \(x^{2}-2 x-48\) j \(x^{2}-4 x-12\) k \(x^{2}+3 x-40\) l \(x^{2}-7 x-8\) m \(x^{2}-x-132\) n \(a^{2}+19 a+60\) o \(x^{2}-50 x+96\) 4 Factorise: a \(a^{2}-22 a+121\) b \(m^{2}-14 m+49\) c \(s^{2}+8 s+16\) d \(a^{2}+24 a+144\) e \(a^{2}-12 a+36\) f \(z^{2}-40 z+400\) g \(x^{2}+5 x+\frac{25}{4}\) h \(y^{2}-\frac{2 y}{3}+\frac{1}{9}\) i \(a^{2}+\frac{3 a}{2}+\frac{9}{16}\) 5 Factorise: a \(2 x^{2}+18 x+40\) b \(3 x^{2}-30 x+63\) c \(5 x^{2}-50 x+120\) d \(2 x^{2}+8 x-90\) e \(3 x^{2}-6 x-105\) f \(2 x^{2}-6 x-260\) 6 Factorise: a \(25 a^{2}-16 b^{2}\) b \(a^{2}+14 a+49\) c \(a^{2}-a-20\) d \(1-36 m^{2}\) e \(4-9 x^{2} y^{2}\) f \(\frac{1}{9}-\frac{a^{2}}{25}\) g \(m^{2}-\frac{1}{4}\) h \(x^{3}-49 x y^{2}\) i \(3 a^{2}-75\) j \(b^{2}-20 b+96\) k \(n^{2}-31 n+150\) l \(m^{2}+20 m+91\) \(\mathbf{m} a^{2}-7 a b-98 b^{2}\) n \(m^{2}-4 m-165\) o \(x^{2}+3 x y-4 y^{2}\) p \(20 m^{2} n-5 n^{3}\) q \(a^{2}-2 a-63\) r \(5 q^{2}-5 p q-30 p^{2}\) s \(x^{2}-3 x-130\) t \(42-x-x^{2}\) u \(x^{2}+7 x-18\) \section*{Challenge exercise} 1 Factorise: a \(x^{4}-1\) b \(x^{4}-16\) c \(x^{2}-3\) d \(x^{2}-5\) e \(x^{2}-2 \sqrt{2} x+2\) f \(x^{2}+2 \sqrt{2} x+2\) g \(x^{2}+x+\frac{1}{4}\) h \(x^{2}+3 x+\frac{9}{4}\) i \(x^{2}-x+\frac{1}{4}\) j \(x^{2}-3 x+\frac{9}{4}\) k \(x^{2}-x y-2 y^{2}\) l \(x^{2}+x y-2 y^{2}\) 2 Simplify: a \(\frac{x^{2}+x-2}{x^{2}-x-20} \times \frac{x^{2}+5 x+4}{x^{2}-x} \div\left(\frac{x^{2}+3 x+2}{x^{2}-2 x-15} \times \frac{x+3}{x^{2}}\right)\) b \(\frac{x^{2}-64}{x^{2}+24 x+128} \times \frac{x^{2}+12 x-64}{x^{2}-16} \div \frac{x^{2}-16 x+64}{x^{2}-10 x+16}\) c \(\frac{x^{2}-18 x+80}{x^{2}-5 x-50} \times \frac{x^{2}-6 x-7}{x^{2}-15 x+56} \div \frac{x-1}{x+5}\) 3 Factorise: a \((x+2)^{2}-8 x\) \(\mathbf{b}(x-3)^{2}+12 x\) c \((x+a)^{2}-4 a x\) d \((x-a)^{2}+4 a x\) 4 Simplify \(\left(\frac{a}{b}+\frac{c}{d}\right) \div\left(\frac{a}{b}-\frac{c}{d}\right)\). 5 Factorise: a \(\left(x^{2}+1\right)^{2}-4\) b \(\left(x^{2}-2\right)^{2}-4\) c \(x^{2}+4 x+4-y^{2}\) d \(x^{2}+8 x+16-a^{2}\) e \(m^{2}-2 m+1-n^{2}\) f \(p^{2}-5 p+\frac{25}{4}-q^{2}\) 6 a By adding and subtracting \(4 x^{2}\), factorise \(x^{4}+4\). b Factorise \(x^{4}+4 a^{4}\). 7 A swimming pool is designed in an L-shape with dimensions in metres as shown. The pool is enlarged or reduced depending on the value of \(x\). a Find, in terms of \(x\), the length of: i \(A F\) ii \(C D\) \begin{center} \includegraphics[max width=\textwidth]{2023_11_30_c996b59107099c56822bg-14} \end{center} b Show that the perimeter is equal to \((10 x+50) \mathrm{m}\). c What is the perimeter if \(x=3\) ? d Find the area of the swimming pool in terms of \(x\). Expand and simplify your answer. e It is decided that a square swimming pool would be a better use of space. i By factorising your answer to part \(\mathbf{d}\), find the dimensions, in terms of \(x\), of a square swimming pool with the same area as the L-shaped swimming pool. ii What is the perimeter, in terms of \(x\), of this square swimming pool? 8 For positive whole numbers \(a\) and \(b\), prove that: a if \(\frac{a}{b}<1\) then \(\frac{a+1}{b+1}>\frac{a}{b}\) b if \(\frac{a}{b}>1\) then \(\frac{a+1}{b+1}<\frac{a}{b}\) 9 A right-angled triangle has a hypotenuse of length \(b \mathrm{~cm}\) and one other side of length \(a \mathrm{~cm}\). If \(b-a=1\), find the length of the third side in terms of \(a\) and \(b\). 10 Factorise \(\left(1+\frac{y^{2}+z^{2}-x^{2}}{2 y z}\right) \div\left(1-\frac{x^{2}+y^{2}-z^{2}}{2 x y}\right)\). \end{document}