YEAR 9 MATHEMATICS TOPIC 4 FACTORISATION

PEN Education

December 1, 2023

Contents	
1 Introduction	1
2 Common Factors	2
3 Difference of Two Squares	4
4 Simple Quadratics	9
5 Perfect Squares	12
6 Quadratics with Common Factors	tion ¹⁵
7 Homework	20
1 Introduction	
Today we will cover the theory of factorisation . This is the proces $x^2 + 5x + 6$ and transforming it into $(x + 2)(x + 3)$. This looks familiar process to <i>expansion</i> , which is what we learned in our Topic 1 lesson.	
1. Why do you think it is important to learn the factorisation technic	que?

1

2. What is a silly, real life example of factorisation?

2 Common Factors

We can factorise expressions entirely by realising that there is a some term which can be pulled out of all the terms. Consider 4a + 12. Here we have ______ common, and so this can be factorised as ______. Similarly, see for the following examples what term can be extracted from all the other ones.

Examp	oles:		
1. Facto	orise:		
(a)	$12x^2 + 3x$	(d) $-7a^2 - 49$	
(b)	36ab - 27a	(e) $7a^2 + 63ab$	
(c)	3x + 9	(f) $5pq^2 + 10p^2q + 25p^2q^2$	
			•

2.1 Exercises:

1. Complete each factorisation.

(a) $12x = 12 \times$ _____

(e) $24a^2 = 6a \times$ _____

(b) $24a = 12 \times$ _____

(f) $-6b^2 = 2b \times _{-}$

(c) $15ac = 5c \times$ _____

(g) $4x^2y = 2x \times _{---}$

(d) $y^2 = y \times _{----}$

(h) $12m^2n = 3mn \times$ _____

2. Fill in the blanks by finding the missing factors.

(a) $12a + 18 = 6 \times$

(c) $a^2 + 4a = (a+4) \times \underline{\hspace{1cm}}$

(b) $20mn - 15n = 5 \times$ _____

(d) $6yz^2 - 18yz = 3z \times$ _____

3. Factorise:

(a) 6x + 24 =

(d) 4x + 24 =_____

(b) 5a + 15 =

(e) $y^2 - 3y =$

(c) $y^2 + xy =$ _____

(f) -14a - 21 =_____

4. Factorise:

(a) 4ab + 16a =_____

(i) $14mn^2 - 21m^2n =$ _____

(b) $12a^2 + 8a =$

(j) $6pq^2 - 21qp^2 =$ _____

(c) $15a^2b^2 + 10ab^2 =$ _____

(k) $-10b^2 + 5b =$ _____

(d) $4a^2 + 6a =$ _____

(1) $-4pq + 16p^2 =$ _____

(e) $3b - 6b^2 =$ _____

(m) $-16a^2b - 8ab =$ _____

(f) $4x^2 - 6xy =$ _____

(n) $-8a^2b^2 - 2ab =$ _____

(g) $18y - 9y^2 =$ _____

(o) $-5x^2y + 30x =$ _____

(h) $4a - 6ab^2 =$ _____

(p) $12xy^2 - 3x^2y =$

5. In each part, an expression for the area of the rectangle has been given. Find an expression for the missing side length.

3

8

|4|

6

	2a+3	5		6a	
(a)	Area = 8a + 12	(b) Area = 10	0b + 15 (c)	$Area = 12a^2 + 6ab$	
6. Fact	orise:				4
(a)	$4a^2b - 2ab + 8ab^2$	(c)	$) 5a^2b + 3ab + 4$	$4ab^2$	
(b)	$7ab + 14a^2 + 21b$	(d)	$) 5p^2q^2 + 10pq^2$	$+15p^2q$	

3 Difference of Two Squares

Continueing with the theme of using our algebraic identities backwards, we have

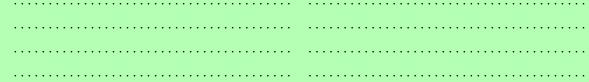
$$(a+b)(a-b) = a^2 - b^2,$$

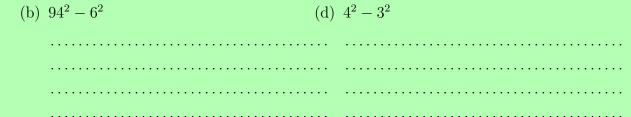
Which becomes:

$$a^2 - b^2 = (a+b)(a-b)$$

Now we can write expressions such as $x^2 - 9$ in the factored form of ______.

3.1 Examples:


1. Factorise:


(a)	$25 - y^2$	(h)	$1 - 4a^2$
(b)	$4x^2 - 9$	(i)	$3x^2 - 48$
(c)	$3a^2 - 27$	(i)	$10x^2 - 1000$
(0)			
(1)	10 + 0 2		9 1019
(d)	$-16 + 9x^2$	(K)	$3 - 12b^2$
(e)	$x^2 - 16$	(1)	$45m^2 - 125n^2$
(f)	$(2x)^2 - 25$	(m)	$-25 + x^2$
(g)	$9x^2 - 4$	(n)	$-81x^2 + 16$

2.	Use the factorisation of the difference of two squares to evaluate the following.	One has
	been done for you.	

$$17^{2} - 3^{2} = (17 + 3)(17 - 3)$$
$$= 20 \times 14$$
$$= 280$$

(a)
$$23^2 - 7^2$$
 (c) $11.3^2 - 8.7^2$

Note: You can always check your factorisation is correct by expanding your result and checking to see if that is the expression you started with!

3.2 Exercises:

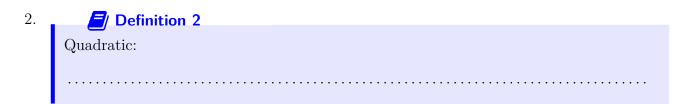
1. Factorise:

(a)	$x^2 - 49$	(g)	$100a^2 - 49b^2$
(b)	$(3x)^2 - 16$	(h)	$25a^2 - 100b^2 d d^2 - 400$
(c)	$16y^2 - 49$		$4x^2 - 100$
(0)	109 – 49	(1)	4.t - 100
(d)	$9 - 16y^2$	(j)	$5x^2 - 45$
(e)	$a^2 - 121$	(k)	$7x^2 - 63$
(c)	(4.)2 4	(1)	0.2 50
(1)	$(4x)^2 - 1$	(1)	$8x^2 - 50$
		• • •	

(m)	$20 - 5y^2$	(t)	$23^2 - 3^2$
(n)	$27a^2 - 12b^2$	(u)	$1.8^2 - 0.2^2$
		•••	
(o)	$27a^2 - 192l^2$	(v)	$92.6^2 - 7.4^2$
(p)	$-8x^2 + 32y^2$	(w)	$5^2 - 4^2$
(q)	$-4 + 9x^2$	(x)	$9^2 - 8^2$
		• • •	
(r)	$-100x^2 + 9$	(y)	$6^2 - 5^2$
		• • •	
(s)	$-36x^2 + 400$	(z)	$10^2 - 9^2$
		• • •	

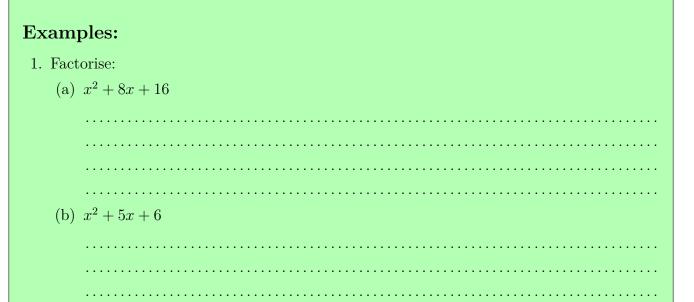
4 Simple Quadratics

The nomenclature "simple" quadratic means that the coefficient of x^2 is just 1. Let us recall some definitions:


1.	Definition 1
	N 1
	Nomenclature:

1

|1|


1

2

3.	Definition 3
	Coefficient
	Coemcient.

Let us take a concrete example: $x^2 - 3x - 18$. To factorise this monic quadratic we need to find two numbers that multiply to give -18 and add to give -3. Such numbers will be _____ and _____. Thus we can write $x^2 - 3x - 18 = (x - \ldots)(x + \ldots)$

(c)
$$x^2 + 7x + 10$$

(d) $x^2 + 9x + 14$	

Exerci			
(a)	$x^2 + 9x + 20$	(d) $x^2 + 15x + 56$	
(b)	$x^2 + 12x + 32$	(e) $x^2 - 5x + 6$	
(c)	$x^2 + 20x + 75$	(f) $x^2 - 17x + 30$	

(g)	$x^2 - 9x + 14$	(m) $x^2 + x - 30$
(h)	$x^2 - 15x + 44$	(n) $x^2 - 5x - 14$
(11)	x - 13x + 44	(ii) $x - 3x - 14$
(i)	$x^2 - 18x + 80$	(o) $x^2 - 7x - 44$
(i)	$x^2 - 14x + 40$	(p) $x^2 + 2x - 80$
(J)		
(k)	$x^2 - 30x + 56$	(q) $x^2 + 3x - 40$
(1)	$x^2 + x - 6$	(r) $x^2 + 4x - 21$
()		

(m) $x^2 - x + 56$ (q) $x^2 - 5x + 4$ (r) $x^2 - 3x + 2$ (r) $x^2 - x - 12$ (o) $x^2 - 3x - 10$ (s) $x^2 + 3x - 10$ (p) $x^2 - 5x - 14$ (t) $x^2 + 6x + 9$

5 Perfect Squares

The expansion of a perfect square has a special form. For example:

$$(x+3)^2 = (x+3)(x+3)$$

= $x^2 + 6x + 9$
= $x^2 + 2 \times (3x) + 3^2$

5.1 Theorem

$$a^2 + 2ab + b^2 = (a+b)^2 (1)$$

$$a^2 - 2ab + b^2 = (a - b)^2 (2)$$

Examples:

1. (a)
$$x^2 + 8x + 16$$

(b) $x^2 - 10x + 25$	
(c) $x^2 + 11x + \frac{121}{4}$	
	expression that cannot be factorised as a perfect square. (e) $x^2 + 6x + 9$
dentify the simple quadratic extension (a) $x^2 + 4x + 4$	expression that cannot be factorised as a perfect square. (e) $x^2 + 6x + 9$
(a) $x^2 + 4x + 4$	(e) $x^2 + 6x + 9$
(a) $x^2 + 4x + 4$ 	(e) $x^2 + 6x + 9$ (f) $x^2 + 5x + \frac{25}{4}$
(a) $x^2 + 4x + 4$ 	(e) $x^2 + 6x + 9$ (f) $x^2 + 5x + \frac{25}{4}$

Exercises:

1	(0)	$x^{2} +$	19 _m	1 26
1.	(a)	$x^2 +$	- 1 <i>2x</i>	+ 30

(e)
$$x^2 - \ldots + \ldots = (x - 9)^2$$

8

4

(b) $a^2 - 4a + 4$

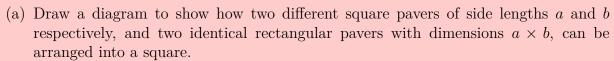
(f)
$$x^2 - 8x + 16$$

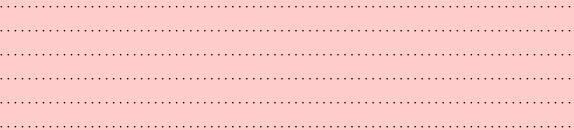
.....

(c) $x^2 - 9x + \frac{81}{4}$

(g)
$$m^2 - 26m + 169$$

.....


(d) $x^2 + 8x + 16 = (x + \ldots)^{\dots}$


(h)
$$x^2 + 13x + \frac{169}{4}$$

.....

2. A brick company provides rectangular and square pavers.


.....

.....

(b) How many of each type of paver enables you to pave a square area of side length a+3b? Draw a diagram to illustrate how this can be done.

6 Quadratics with Common Factors

The quadratics for this section are a little less tame. The x^2 term now possesses a coefficient which we will be trying to pull out of the entire expression to use our techniques from section 4 on the new expression within the parenthesis.

Examples:
1. Factorise:
(a) $3x^2 + 9x + 6$
(b) $6x^2 - 54$
(c) $-x^2 - x + 2$

10

_	()		(C)	2 2 10 107
2.	(a)	$2x^2 + 14x + 24$	(I)	$3x^2 - 18x + 27$
			• •	
			• • •	
			• •	
	(b)	$4x^2 - 24x + 36$	(g)	$4x^2 - 16$
	(~)		(0)	
			• •	
			• •	
	(0)	$4x^2 - 4x + 48$	(h)	$3a^2 - 27$
	(6)	4x - 4x + 40	(11)	54 21
			• • •	
			• •	
			(·)	0 - 0
	(d)	$3x^2 + 9x - 120$	(i)	$27x^2 - 3y^2$
			• • •	
			• • •	
	(e)	$2x^2 - 4x - 96$	(i)	$128 - 2x^2$
	(0)	200 100 000	(J)	120 20
			• • •	

(k)	$\frac{1}{4}a^2 - 9$	(n)	$-x^2 + 3x + 40$
(1)	$-x^2 - 8x - 12$		$11x - x^2 - 24$
(m)	$9 + 8x - x^2$	(p)	$-16x - 63 - x^2$

$\mathbf{E}_{\mathbf{x}}$	ero	ris	65.

1. Factorise:

(a)	$3x^2 + 24x + 36$	(g)	$2x^2 - 18$
(b)	$7x^2 + 14x + 7$	(h)	$6x^2 - 600$
(c)	$2x^2 - 18x + 36$	··· (i)	$45 - 5b^2$
()	· · · · · · · · · · · · · · · · · · ·		
(d)	$3x^2 - 3x - 90$	(j)	$\frac{1}{2}a^2 - 2b^2$
	r 2 + cr + 100		12 20
(e)	$5x^2 + 65x + 180$	(K)	$\frac{1}{5}x^2 - 20$
(f)	$5x^2 - 20x + 20$	(l)	$12 - 11x - x^2$

(a)	$-x^2 - 4x - 4$	(c) $-3x^2 - 30x + 72$
(b)	$42 + x - x^2$	(d) $-x^2 - 35 + 12x$

Homework 7

7.1 Common Factors

1. Fill in the gaps	1.	Fill	in	the	gaps
---------------------	----	------	----	-----	------

(a) $36ab = 9a \times$ ____

(c) $8a^2b = 2ab \times _{___}$

(b) $6y^2 = 3y \times$ _____

(d) $25a^2b^2 = 5ab \times$ _____

2. Factorise:

(a) $16ab + 10b^2 - 2a^2b$

(b) $2x^2 + 4x$

3. Fill in the blanks:

(a) $15p - 10 = 5 \times$

(d) $6yz^2 - 18yz = yz \times$ _____

(b) $20mn - 15n = 5n \times$ _____

(c) $b^2 - 10b = b \times$ _____

(e) $6yz^2 - 18yz = 6yz \times$ _____

4. Pull out the common factor:

(a) ac + 5c

(c) 7a - 63

(e) -6y - 9

......

(b) $a^2 + a$

(d) 9a + 36

(f) -4 - 12b

5. Factorise:

(a) $18m^2n + 9mn^2$ (c) $9mn - 12m^2n$ (e) $10ab^2 - 25a^2b$ (g) $18p^2 - 4pq$

......

(b) $8a^2 + 12ab$ (d) $6xy - 4x^2$ (f) $-x^2y - 3xy$ (h) $-25m^2n^2 - 10mn^2$

|4|

2

5

6

8

|3|

6. In each part, an expression for the area of the rectangle has been given. Find an expression for the missing side length.

3aArea = 9a + 6ab(a)

 $Area = 2a + a^2$

	$3q^2 - 2$	
	Area = $24p^2q^2 - 16p^2$	
(c)		

	•			
7.	Factor	ise:		
	(a) 4n	$n^2n - 4mn + 16n^2$	(c)	$6a + 8ab + 10ab^2$
				$5\ell^2 - 15\ell m - 20m^2$

7.2 Difference of Two Squares

1. Fact	corise:		
(a)	$d^2 - 400$		
(b)	$(5m)^2 - 9$	(f)	$12m^2 - 75$
(c)	$64m^2 - 81p^2$	(g) 	$16x^2 - 100y^2$
(d)	$-9+x^2$	(h)	$-200p^2 + 32q^2$
(e)	$6x^2 - 24$	(i)	$-9x^2+4$

	(m) $28^2 - 2.2^2$
(j) $-18 + 50x^2$	(n) $3.214^2 - 2.214^2$
	······································
(k) $-175 + 28x^2$	(o) $7^2 - 6^2$
(1) $36^2 - 6^2$	(p) $101^2 - 100^2$
Simple Quadratics	
Simple Quadratics factorise: (a) $x^2 + 11x + 18$	(e) $x^2 + 13x + 40$
actorise:	(e) $x^2 + 13x + 40$
actorise:	
Factorise: (a) $x^2 + 11x + 18$	
actorise:	
Factorise: (a) $x^2 + 11x + 18$	
Factorise: (a) $x^2 + 11x + 18$ (b) $x^2 + 11x + 30$	(f) $x^2 + 28x + 27$
Factorise: (a) $x^2 + 11x + 18$	
Factorise: (a) $x^2 + 11x + 18$ (b) $x^2 + 11x + 30$	(f) $x^2 + 28x + 27$
Factorise: (a) $x^2 + 11x + 18$ (b) $x^2 + 11x + 30$	(f) $x^2 + 28x + 27$

(i)	$x^2 - 13x + 42$	(m)	$x^2 - 11x + 24$
(j)	$x^2 - 47x + 90$		$x^2 - 14x + 24$
(k)	$x^2 - 25x + 100$		$x^2 - 8x - 33$
(l)	$x^2 - 21x + 80$	(p)	$x^2 - 19x - 42$
Fact	orise:		
(a)	$x^2 - 9x - 90$		
(b)	$x^2 + 15x - 100$	(f)	$x^2 + 5x - 24$
			2 . 0
(c)	$x^2 - 7x - 60$	(g)	$x^2 + 8x + 12$
(d)	$x^2 - 10x - 24$	(h)	$x^2 + 11x + 30$

(e)
$$x^2 + 2x - 15$$

.....

2.

(i)
$$x^2 - 9x - 90$$

		(m) $x^2 - 18x + 81$	
		•••••••••••••••••••••••••••••••••••••••	
(j)	$x^2 - 7x - 18$	(n) $x^2 + 12x + 36$	
(k)	$x^2 + x - 90$	(o) $x^2 - 16x + 64$	
(l)	$x^2 + 14x + 49$	(p) $x^2 - 8x + 16$	
			
7.4 I	Perfect Squares		
1. (a)	$x^2 + 10x + 25$	(b) $a^2 + 28a + 196$ (c) $x^2 - 11x + \frac{121}{4}$	3
0.11			
2. Idei	ntily the simple quadr	ratic expression that cannot be factorised as a perfect Square.	2
(a)	$x^2 + \frac{2x}{3} + \frac{1}{9}$	(e) $x^2 - \frac{11x}{2} + \frac{121}{16}$	
(b)	$x^2 - 3x + \frac{9}{4}$	(f) $x^2 - \frac{4x}{5} + \frac{4}{25}$	
(c)	$x^2 - \frac{5x}{3} + \frac{25}{36}$	(g) $x^2 - \frac{3x}{2} - \frac{9}{16}$	
(d)	$x^2 + \frac{7x}{4} + \frac{49}{16}$	(h) $x^2 - \frac{9x}{2} + \frac{81}{16}$	
7.5	Quadratics with	Common Factors	
1. Fac	•		16
(a)	$3x^2 - 27x + 24$	(b) $5x^2 - 5x - 30$	
()	·	\ /	

(c)	$5x^2 + 40x + 35$	(j)	$27x^2 - \frac{1}{3}y^2$
(d)	$5x^2 + 60x + 180$	(k)	$\frac{1}{4}x^2 - y^2$
(e)	$3x^2 + 30x - 72$	(l)	$7 - 6x - x^2$
(f)	$3x^2 - 24x + 36$	(m)	$-x^2 - 14x - 45$
(g)	$3x^2 - 48$	(n)	$22x - x^2 - 40$
(h)	$3a^2 - 27b^2$	(o)	$-56 - x^2 - 15x$
(i)	$12 - 3m^2$	(p)	$7x + 18 - x^2$

Question:	1	2	3	4	5	6	7	??	??	??	??	??	??	
Points:	16	2	5	6	8	3	4	????	????	????	????	????	????	?
Score:														