You will want to pay attention to this section. The reason for this is that you are accustomed to \textit{always expanding brackets}, but now we sometimes do not! \begin{demobox} \subsection*{Solve:} \begin{enumerate}[a)] \item \[3(x+2)=21\] \subsection*{Solution} \[ \begin{aligned} x+2 & =7 \quad \text { (Divide both sides by 3.) } \\ x & =5 \end{aligned} \] \item \[2(3-x)=12\] \subsection*{Solution} \(3-x=6 \quad\) (Divide both sides by 2.) \(-x=3\) \[ x=-3 \] \end{enumerate} \end{demobox} \begin{examplebox} \subsection{Examples:} \begin{questions} \questionpoints[1] Solve \(3(x+5)=31\) \begin{solutionordottedlines}[1in] \begin{multicols}{2} \section*{Method 1} \(3(x+5)=31\) \(3 x+15=31\) \(3 x=16\) \(x=\frac{16}{3}\) \(x=5 \frac{1}{3}\) \section*{Method 2} \[ \begin{array}{r} 3(x+5)=31 \\ x+5=\frac{31}{3} \\ x=\frac{16}{3} \end{array} \] \end{multicols} \end{solutionordottedlines} \questionpoints[3] Solve: \begin{parts} \part \(2(x+1)+4(x+3)=26\) \begin{solutionordottedlines}[2cm] \(2(x+1)+4(x+3)=26\) \(2 x+2+4 x+12=26\) \(6 x+14=26\) (Expand the brackets.) \(6 x=12\) \(x=2\) \end{solutionordottedlines} \part \(3(a+5)=2(a+6)\) \begin{solutionordottedlines}[2cm] \(3(a+5)=2(a+6)\) \(3 a+15=2 a+12\) \(a+15=12\) \(a=-3\) (Subtract \(2 a\) from both sides.) \end{solutionordottedlines} \part \(3(y-3)-2(y-4)=4\) \begin{solutionordottedlines}[2cm] \(3(y-3)-2(y-4)=4\) \(3 y-9-2 y+8=4\) \(y-1=4\) (Expand both sets of brackets, being careful with the signs.) \(y=5\) \end{solutionordottedlines} \end{parts} \end{questions} \end{examplebox} \begin{exercisebox} \subsection{Exercises:} \begin{questions} \questionpoints[12] Solve for \(x\). \begin{parts}\begin{multicols}{2} \part \(2(x+3)=8\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(5(x+1)=10\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(-3(2 x-6)=12\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(2(x+3)=15\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(4(7-x)=7\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(5(x-3)=\frac{2}{3}\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(2(a+1)+4(a+2)=22\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(5(c+2)-2(c+1)=17\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(2(x+3)-3(x-4)=20\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(5(a+3)=3(2 a+1)\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(-2(x+4)+3(x-2)=16\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(\frac{1}{2}(2 x+5)+6(x-2)=4 \frac{1}{2}\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \end{exercisebox}