\subsection{Using linear equations to solve problems} \begin{questions} \Question[2] Ping and Anna compete in a handicap sprint race. Anna starts the race \(10 \mathrm{~m}\) ahead of Ping. Ping runs at an average speed that is \(20 \%\) faster than Anna's average speed. The two sprinters will be level in the race after 9 seconds. Find the average speed of: \begin{parts} \part Anna \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part Ping \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[1] Yolan buys 8 pens and receives 80 cents change from \(\$ 20.00\). How much does a pen cost, assuming each pen costs the same amount? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[1] If the sum of \(2 p\) and 19 is the same as the sum of \(4 p\) and 11 , find the value of \(p\). \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[2] If the sum of half of \(q\) and 6 is equal to the sum of one-third of \(q\) and 2, find the value of \(q\). \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[3] The length of a swimming pool is \(2 \mathrm{~m}\) more than four times its width. \begin{parts} \part If \(x\) metres represents the width of the pool, express the length of the pool in terms of \(x\). \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part If the perimeter of the pool is \(124 \mathrm{~m}\) find the length and width of the pool. \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[3] Ms Minas earns \(\$ 3600\) more than Mr Brown, and Ms Lee earns \(\$ 2000\) less than Mr Brown. \begin{parts} \part If \(\$ x\) represents Mr Brown's salary, express the salary of: \begin{subparts} \subpart Ms Minas in terms of \(x\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \subpart Ms Lee in terms of \(x\) \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{subparts} \part If the total of the three incomes is \(\$ 151600\), find the income of each person. \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \end{questions} \subsection{Literal Equations} \begin{questions} \Question[10] Rewrite in terms of $x$: \begin{parts}\begin{multicols}{2} \part \(-x+m=n\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(c-b x=e\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(m(n x+p)=n\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(\frac{x+a}{b}=c\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(\frac{m x}{n}=p\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(\frac{a x+b}{c}=d\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(\frac{x}{f}+\frac{g}{h}=k\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(\frac{x}{b}-b=\frac{a}{b}\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(m x+n=n x-m\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \part \(a(x-b)=c(x-d)\) \begin{solutionordottedlines}[2cm] \end{solutionordottedlines} \end{multicols}\end{parts} \end{questions} \subsection{Inequalities} \begin{questions} \Question[3] Fill in the missing blanks with \(>\), \(<\) or $=$ to make each statement true. \begin{parts} \part \(3 \fillin[>] -4\) \part \(-6 \fillin[<] 0\) \part \(-2 \fillin[<] 5\) \part \(5 \fillin[5] -7\) \part \(0 \fillin[=] 0\) \part \(9 \fillin[=] 9\) \end{parts} \Question[3] Use set notation to describe each interval: \begin{parts} \part \ineqLine{-1}{5}{4}{0.8}{1} \begin{solutionorbox}[1in] \end{solutionorbox} \part \ineqLine{-1}{6}{1}{5}{1} \begin{solutionorbox}[1in] \end{solutionorbox} \part \ineqLine[1.5]{-4}{3}{-1.66}{1.8}{0} \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \end{questions} \subsection{Solving linear inequalities} \begin{questions} \Question[3] Solve and also sketch: \begin{parts} \part \[x-2<3\] \begin{solutionorbox}[1in] \end{solutionorbox} \part \[x-5>-12\] \begin{solutionorbox}[1in] \end{solutionorbox} \part \[\frac{x}{5} \geq 4\] \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \Question[14] Just solve: \begin{parts} \part \[4 x-6 \leq-2\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[3(x+5) \geq 9\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{2 x}{5}+\frac{1}{4}>4\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[-10 x \geq 130\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[-\frac{x}{7} \geq 4\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[-\frac{x}{2} \geq-8\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[2-5 x \leq-8\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[4-\frac{2 x}{5} \geq 6\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{2 x-1}{3}-\frac{3 x+2}{4}>3\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[2.4-0.7 x \leq 12.9\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[2.8(x-4)>1.3(x+3.5)\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[-5 x+3 \geq 78\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[-\frac{x+2}{3} \leq 7\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{x}{4}>-\frac{x+12}{5}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[2] The sum of \(4 d\) and 6 is greater than the sum of \(2 d\) and 18 . What values can \(d\) take? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[2] A number \(a\) is increased by 3 and this amount is then doubled. If the result of this is greater than \(a\), what values can \(a\) take? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{questions}