You should now understand the difference between equalities $x = 5$ and inequalities $ x < 2$, where the first expression only has one answer \fillin[5], and the other has an infinite amount of answers: \fillin[any number less than 2]. We can now add another layer of complexity to this and learn how to do some mathematical operations on on inequality expression. Let us begin with $-1 < 5$, which is something we agree to be true. From here we can add 3 to both sides yielding \fillin[$2 < 8$]. We agree that this is also true! What about subtraction? Let's continue with our inequality from the last blank and subtract 1: $1 < 7$. That still checks out, very cool. How about we multiply the whole expression by $-1$? \[-1 < -7\] Is this still true?... \fillin[NO]! That is the most important thing to remember when manipulating inequalities! \begin{theorembox} \textbf{When multiplying an inequality by a negative number you must flip the inequality!} \end{theorembox} \begin{examplebox} Let us practise our 4 operations of addition, subtraction, multiplication and division on inequality expressions: \begin{questions} \Question[2] \begin{parts} \part Solve the inequality \(4x-5 < 3\) \part Graph the solution set on the number line\\ \begin{center} \begin{tikzpicture} \draw[latex-latex] (-6,0) -- (4,0); \foreach \x in {-5,...,3} \draw (\x,0.1) -- (\x,-0.1) node[below] {\x}; \ifprintanswers \draw[very thick, blue, -{Stealth[scale=1.5]}] (1.9,0.5) -- (-4.1,0.5); \filldraw[fill=white, draw=blue, very thick] (2,0.5) circle (2pt); \fi \end{tikzpicture} \end{center} \end{parts} \Question[2] Solve each of the following inequalities: \begin{parts}\begin{multicols}{2} \part \[-2x \leq 6\] \begin{solutionordottedlines}[1in] \(-2 x \leq 6\) \(x \geq-3\) (Divide both sides by -2 and reverse the inequality sign.) \end{solutionordottedlines} \part \[-\frac{x}{3}>4\] \begin{solutionordottedlines}[1in] \(-\frac{x}{3}>4\) \(x<-12\) (Multiply both sides by -3 and reverse the inequality sign.) \end{solutionordottedlines} \end{multicols}\end{parts} \Question[2] \begin{parts} \part Solve the inequality \(2 x+3<3 x-4\). \begin{solutionordottedlines}[1in] \subsubsection*{Method 1} \[ \begin{aligned} 2 x+3 & <3 x-4 & & \\ 3 & 7 & & \end{aligned} \] \subsubsection*{Method 2} \[ \begin{aligned} 2 x+3 & <3 x-4 \\ 2 x & <3 x-7 \\ -x & <-7 \\ x & >7 \end{aligned} \] (Subtract 3 from both sides.) (Subtract \(3 x\) from both sides.) (Multiply by -1 and reverse the inequality sign.) The solution set is \(\{x: x>7\}\). \end{solutionordottedlines} \part Graph the solution set on the number line.\\ \begin{center} \begin{tikzpicture} \draw[latex-latex] (-1,0) -- (9,0); \foreach \x in {0,...,8} \draw (\x,0.1) -- (\x,-0.1) node[below] {\x}; \ifprintanswers \draw[very thick, blue, -{Stealth[scale=1.5]}] (7.1,0.5) -- (8.5,0.5); \filldraw[fill=white, draw=blue, very thick] (7,0.5) circle (2pt); \fi \end{tikzpicture} \end{center} \end{parts} \end{questions} \end{examplebox} \begin{exercisebox} \subsection{Exercises:} \begin{questions} \Question[6] Solve each of these inequalities. Graph each solution on a number line. \begin{parts} \part \[x+3 \geq 7\] \begin{solutionorbox}[1in] \end{solutionorbox} \part \[x-10 > -6\] \begin{solutionorbox}[1in] \end{solutionorbox} \part \[3x>-15\] \begin{solutionorbox}[1in] \end{solutionorbox} \end{parts} \Question[3] Solve the following purely algebraically: \begin{parts} \part \[2x+1 \geq 5\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{4x}{7}\leq -2\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{x}{3}-\frac{1}{2} \geq 1\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[3] Solve: (don't forget to reverse the inequality sign when dividing the expression through by a negative number!) \begin{parts} \part \[-4 x \leq 20\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[-\frac{x}{2} \leq 5\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[-\frac{x}{12} \geq-8\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[2] Solve: \begin{parts} \part \[3-2 x>5\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[6-\frac{2 x}{3}<4\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{x+3}{2} \leq \frac{3-x}{2}\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[5] Solve: \begin{parts} \part \[1.2 x+6.8 \leq 15.2\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[1.6(x+7) \leq 1.5(x-3)\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[2 x-14 \leq 8\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{2 x+1}{6}>-3\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \part \[\frac{x-8}{2}-\frac{2 x}{3} \geq 3\] \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{parts} \Question[2] When 5 is added to twice \(p\), the result is greater than 17 . What values can \(p\) take? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[2] When 16 is subtracted from half of \(q\), the result is less than 18 . What values can \(q\) take? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \Question[2] When \(2 p\) is subtracted from 10 , the result is greater than or equal to 4 . What values can \(p\) take? \begin{solutionordottedlines}[1in] \end{solutionordottedlines} \end{questions} \end{exercisebox}