This part is the most challenging yet. It requires a degree of conceptual thought. Practise as always will carve this skill groove deeper within your mind, but be prepared to get things incorrect in this section. \begin{examplebox} \begin{questions} \Question[1] Find a formula for \(n\), the number of cents in \(x\) dollars and \(y\) cents. \begin{solutionordottedlines}[2cm] In \(\$ x\) there are \(100 x\) cents. In \(\$ x\) and \(y\) cents there are \((100 x+y)\) cents. The formula is \(n=100 x+y\). \end{solutionordottedlines} \Question[2] Here is an isosceles triangle with equal base angles marked. Find a formula for \(\beta\) in terms of \(\alpha\). \begin{tikzpicture} \end{tikzpicture} \begin{solutionordottedlines}[2cm] \[ \begin{aligned} \alpha+2 \beta & =180 \quad \text { (angle sum of triangle) } \\ 2 \beta & =180-\alpha \\ \beta & =\frac{180-\alpha}{2} \end{aligned} \] \end{solutionordottedlines} \Question[4] Construct a formula for: \begin{parts} \part \(D\) in terms of \(n\), where \(D\) is the number of degrees in \(n\) right angles \begin{solutionordottedlines}[1cm] \(D = 90n\) \end{solutionordottedlines} \part \(c\) in terms of \(D\), where \(c\) is the number of cents in \(\$ D\) \begin{solutionordottedlines}[1cm] \(c = 100D\) \end{solutionordottedlines} \part \(m\) in terms of \(h\), where \(m\) is the number of minutes in \(h\) hours \begin{solutionordottedlines}[1cm] \(m = 60h\) \end{solutionordottedlines} \part \(d\) in terms of \(m\), where \(d\) is the number of days in \(m\) weeks \begin{solutionordottedlines}[1cm] \(d = 7m\) \end{solutionordottedlines} \end{parts} \end{questions} \end{examplebox} \begin{exercisebox} \begin{questions} \Question[4] Construct a formula for: \begin{parts} \part the number of centimetres \(n\) in \(p\) metres \begin{solutionordottedlines}[1cm] \(n = 100p\) \end{solutionordottedlines} \part the number of millilitres \(s\) in \(t\) litres \begin{solutionordottedlines}[1cm] \(s = 1000t\) \end{solutionordottedlines} \part the number of centimetres \(q\) in \(5 p\) metres \begin{solutionordottedlines}[1cm] \(q = 500p\) \end{solutionordottedlines} \part the number of grams \(x\) in \(\frac{y}{2}\) kilograms \begin{solutionordottedlines}[1cm] \(x = 500y\) \end{solutionordottedlines} \end{parts} \Question[6] Find a formula relating \(x\) and \(y\) for each of these statements, making \(y\) th subject. \begin{parts} \part \(y\) is three less than \(x\). \begin{solutionordottedlines}[1cm] \(y = x - 3\) \end{solutionordottedlines} \part \(y\) is four more than the square of \(x\). \begin{solutionordottedlines}[1cm] \(y = x^2 + 4\) \end{solutionordottedlines} \part \(y\) is eight times the square root of one-fifth of \(x\). \begin{solutionordottedlines}[1cm] \(y = 8 \sqrt{\frac{x}{5}}\) \end{solutionordottedlines} \part \(x\) and \(y\) are supplementary angles. \begin{solutionordottedlines}[1cm] \(y = 180 - x\) \end{solutionordottedlines} \part A car travelled \(80 \mathrm{~km}\) in \(x\) hours at an average speed of \(y \mathrm{~k} / \mathrm{h}\). \begin{solutionordottedlines}[1cm] \(y = \frac{80}{x}\) \end{solutionordottedlines} \part A car used \(x\) litres of petrol on a trip of \(80 \mathrm{~km}\) and the fuel consumption was \(y\) litres \(/ 100 \mathrm{~km}\). \begin{solutionordottedlines}[1cm] \(y = \frac{x}{80} \times 100\) \end{solutionordottedlines} \end{parts} \Question[6] Find a formula relating the given pronumerals for each of these statements. \begin{parts} \part The number of square \(\mathrm{cm} x\) in \(y\) square metres \begin{solutionordottedlines}[1cm] \(x = 10000y\) \end{solutionordottedlines} \part The selling price \(\$ S\) of an article with an original price of \(\$ m\) when a discount of \(20 \%\) is given \begin{solutionordottedlines}[1cm] \(S = m - 0.2m\) \end{solutionordottedlines} \part The length \(c \mathrm{~cm}\) of the hypotenuse and the lengths \(a \mathrm{~cm}\) and \( \mathrm{~cm}\) of the other two sides in a right-angled triangle \begin{solutionordottedlines}[1cm] \(c = \sqrt{a^2 + b^2}\) \end{solutionordottedlines} \part The area \(A \mathrm{~cm}^{2}\) of a sector of a circle with a radius of length \(r = \mathrm{~cm}\) and angle \(\theta\) at the centre of the circle \begin{solutionordottedlines}[1cm] \(A = \frac{1}{2} r^2 \theta\) \end{solutionordottedlines} \part The distance \(d \mathrm{~km}\) travelled by a car in \(t\) hours at an average speed of \(75 \mathrm{~km} / \mathrm{h}\) \begin{solutionordottedlines}[1cm] \(d = 75t\) \end{solutionordottedlines} \part The number of hectares \(h\) in a rectangular paddock of length \(400 \mathrm{~m}\) and width \(w \mathrm{~m}\) \begin{solutionordottedlines}[1cm] \(h = \frac{400w}{10000}\) \end{solutionordottedlines} \end{parts} \end{questions} \end{exercisebox}