\fbox{% \makebox[\textwidth]{ \randomword{index}% \hspace{\fill} \randomword{indices}% \hspace{\fill} \randomword{power}% \hspace{\fill} \randomword{root}% \hspace{\fill} \randomword{exponent}% \hspace{\fill} \randomword{reciprocal}% \hspace{\fill} \randomword{sig fig}% \hspace{\fill} \randomword{base}% \hspace{\fill} \randomword{product}% \hspace{\fill} } } \begin{questions} \Question[1] What is the fourth power of two equal to? \begin{solutionordottedlines}[2cm] $2^4 = 16$ \end{solutionordottedlines} \Question[4] How do you interpret this? \begin{solutionordottedlines}[2cm] $2^4 = 2\times 2\times 2\times 2 = 16$ \end{solutionordottedlines} \Question[4] But then what about $2^{-2}$? Does this have an answer? What is it's interpretation?! \begin{solutionorbox}[1in] $2^4 = 2\times 2\times 2\times 2 = 16$ \end{solutionorbox} \Question[1] Why are learning about these powers? \begin{solutionordottedlines}[1.5in] Because they express small quantities and large quantites very well. And the world around us expresses itself to us in that way: there are $10^{22}$ stars in the universe (thereabouts) and the mass of an electron has the mass of $9.1 \times 10^{-31}$. These quantities would be dreadful to write out in full. Also, if we study these well we can manipulate them and make our mathematical expressions simpler. \end{solutionordottedlines} \end{questions}