\subsection{Fractional Indices} \begin{questions} \Question[3] Evaluate: \begin{multicols}{3} \begin{parts} \part \(\sqrt[4]{81}\) \begin{solutionordottedlines}[2cm] \( \sqrt[4]{81} = 3 \) \end{solutionordottedlines} \part \(\sqrt[3]{64}\) \begin{solutionordottedlines}[2cm] \( \sqrt[3]{64} = 4 \) \end{solutionordottedlines} \part \(\sqrt[5]{2^{10}}\) \begin{solutionordottedlines}[2cm] \( \sqrt[5]{2^{10}} = 2^{2} = 4 \) \end{solutionordottedlines} \end{parts} \end{multicols} \Question[2] Write using fractional indices. Evaluate, correct to 4 decimal places. \begin{multicols}{2}\begin{parts} \part \(\sqrt[7]{11}\) \begin{solutionordottedlines}[2cm] \( 11^{\frac{1}{7}} \approx 1.4407 \) \end{solutionordottedlines} \part \(\sqrt[3]{2^{7}}\) \begin{solutionordottedlines}[2cm] \( (2^{7})^{\frac{1}{3}} = 2^{\frac{7}{3}} \approx 5.0397 \) \end{solutionordottedlines} \end{parts}\end{multicols} \Question[6] Evaluate: \begin{multicols}{2}\begin{parts} \part \(243^{\frac{1}{5}}\) \begin{solutionordottedlines}[2cm] \( 243^{\frac{1}{5}} = 3 \) \end{solutionordottedlines} \part \(81^{\frac{1}{4}}\) \begin{solutionordottedlines}[2cm] \( 81^{\frac{1}{4}} = 3 \) \end{solutionordottedlines} \part \(125^{\frac{1}{3}}\) \begin{solutionordottedlines}[2cm] \( 125^{\frac{1}{3}} = 5 \) \end{solutionordottedlines} \part \(64^{\frac{1}{3}}\) \begin{solutionordottedlines}[2cm] \( 64^{\frac{1}{3}} = 4 \) \end{solutionordottedlines} \part \(216^{\frac{1}{3}}\) \begin{solutionordottedlines}[2cm] \( 216^{\frac{1}{3}} = 6 \) \end{solutionordottedlines} \part \(49^{\frac{1}{2}}\) \begin{solutionordottedlines}[2cm] \( 49^{\frac{1}{2}} = 7 \) \end{solutionordottedlines} \end{parts}\end{multicols} \Question[6] Evaluate: \begin{multicols}{2}\begin{parts} \part \(125^{\frac{2}{3}}\) \begin{solutionordottedlines}[2cm] \( 125^{\frac{2}{3}} = 25 \) \end{solutionordottedlines} \part \(64 \frac{5}{6}\) \begin{solutionordottedlines}[2cm] \( 64^{\frac{5}{6}} \approx 32 \) \end{solutionordottedlines} \part \(216^{\frac{2}{3}}\) \begin{solutionordottedlines}[2cm] \( 216^{\frac{2}{3}} = 36 \) \end{solutionordottedlines} \part \(243^{\overline{5}}\) \begin{solutionordottedlines}[2cm] \( 243^{-\frac{1}{5}} \approx 0.4822 \) \end{solutionordottedlines} \part \(\sqrt[5]{32^{4}}\) \begin{solutionordottedlines}[2cm] \( \sqrt[5]{32^{4}} = 32^{\frac{4}{5}} = 16 \) \end{solutionordottedlines} \part \(\sqrt[3]{2^{6}}\) \begin{solutionordottedlines}[2cm] \( \sqrt[3]{2^{6}} = 2^{2} = 4 \) \end{solutionordottedlines} \end{parts}\end{multicols} \Question[8] Simplify: \begin{multicols}{2}\begin{parts} \part \(\left(c^{12}\right)^{\frac{1}{4}}\) \begin{solutionordottedlines}[2cm] \( \left(c^{12}\right)^{\frac{1}{4}} = c^{3} \) \end{solutionordottedlines} \part \(\left(c^{10}\right)^{\frac{1}{5}}\) \begin{solutionordottedlines}[2cm] \( \left(c^{10}\right)^{\frac{1}{5}} = c^{2} \) \end{solutionordottedlines} \part \(p^{\frac{3}{4}} \times p^{\frac{2}{5}}\) \begin{solutionordottedlines}[2cm] \( p^{\frac{3}{4}} \times p^{\frac{2}{5}} = p^{\frac{3}{4}+\frac{2}{5}} = p^{\frac{15}{20}+\frac{8}{20}} = p^{\frac{23}{20}} \) \end{solutionordottedlines} \part \(q^{\frac{3}{2}} \times q^{\frac{2}{3}}\) \begin{solutionordottedlines}[2cm] \( q^{\frac{3}{2}} \times q^{\frac{2}{3}} = q^{\frac{3}{2}+\frac{2}{3}} = q^{\frac{9}{6}+\frac{4}{6}} = q^{\frac{13}{6}} \) \end{solutionordottedlines} \part \(p^{\frac{3}{4}} \div p^{\frac{2}{5}}\) \begin{solutionordottedlines}[2cm] \( p^{\frac{3}{4}} \div p^{\frac{2}{5}} = p^{\frac{3}{4}-\frac{2}{5}} = p^{\frac{15}{20}-\frac{8}{20}} = p^{\frac{7}{20}} \) \end{solutionordottedlines} \part \(q^{\frac{3}{2}} \div q^{\frac{2}{3}}\) \begin{solutionordottedlines}[2cm] \( q^{\frac{3}{2}} \div q^{\frac{2}{3}} = q^{\frac{3}{2}-\frac{2}{3}} = q^{\frac{9}{6}-\frac{4}{6}} = q^{\frac{5}{6}} \) \end{solutionordottedlines} \part \(\left(2 x^{\frac{2}{3}}\right)^{3}\) \begin{solutionordottedlines}[2cm] \( \left(2 x^{\frac{2}{3}}\right)^{3} = 2^{3} \cdot x^{2} = 8x^{2} \) \end{solutionordottedlines} \part \(\left(3 y^{\frac{1}{2}}\right)^{4}\) \begin{solutionordottedlines}[2cm] \( \left(3 y^{\frac{1}{2}}\right)^{4} = 3^{4} \cdot y^{2} = 81y^{2} \) \end{solutionordottedlines} \end{parts}\end{multicols} \Question[4] Evaluate: \begin{parts} \part \(\left(\frac{64}{27}\right)^{-\frac{1}{3}}\) \begin{solutionordottedlines}[2cm] \( \left(\frac{64}{27}\right)^{-\frac{1}{3}} = \left(\frac{27}{64}\right)^{\frac{1}{3}} = \frac{3}{4} \) \end{solutionordottedlines} \part \(32^{-\frac{2}{5}}\) \begin{solutionordottedlines}[2cm] \( 32^{-\frac{2}{5}} \approx 0.2795 \) \end{solutionordottedlines} \part \(\left(\frac{16}{81}\right)^{-\frac{1}{4}}\) \begin{solutionordottedlines}[2cm] \( \left(\frac{16}{81}\right)^{-\frac{1}{4}} = \left(\frac{81}{16}\right)^{\frac{1}{4}} \approx 2.3784 \) \end{solutionordottedlines} \part \(\left(\frac{32}{243}\right)^{-\frac{1}{5}}\) \begin{solutionordottedlines}[2cm] \( \left(\frac{32}{243}\right)^{-\frac{1}{5}} = \left(\frac{243}{32}\right)^{\frac{1}{5}} \approx 1.9036 \) \end{solutionordottedlines} \end{parts} \Question[6] Simplify, expressing the answer with positive indices. \begin{parts} \part \(\left(3 y^{\frac{1}{2}}\right)^{-4}\) \begin{solutionordottedlines}[2cm] \( \left(3 y^{\frac{1}{2}}\right)^{-4} = \left(\frac{1}{3}\right)^{4} \cdot y^{-2} = \frac{1}{81y^{2}} \) \end{solutionordottedlines} \part \(x^{\frac{1}{2}} \times x^{-\frac{3}{2}}\) \begin{solutionordottedlines}[2cm] \( x^{\frac{1}{2}} \times x^{-\frac{3}{2}} = x^{\frac{1}{2}-\frac{3}{2}} = x^{-1} = \frac{1}{x} \) \end{solutionordottedlines} \part \(x^{\frac{3}{2}} \div x^{-\frac{1}{2}}\) \begin{solutionordottedlines}[2cm] \( x^{\frac{3}{2}} \div x^{-\frac{1}{2}} = x^{\frac{3}{2}+\frac{1}{2}} = x^{2} \) \end{solutionordottedlines} \part \(y^{\frac{2}{3}} \div y^{-\frac{1}{3}}\) \begin{solutionordottedlines}[2cm] \( y^{\frac{2}{3}} \div y^{-\frac{1}{3}} = y^{\frac{2}{3}+\frac{1}{3}} = y^{1} = y \) \end{solutionordottedlines} \part \(\left(27 n^{-12}\right)^{\frac{1}{3}}\) \begin{solutionordottedlines}[2cm] \( \left(27 n^{-12}\right)^{\frac{1}{3}} = 27^{\frac{1}{3}} \cdot n^{-4} = 3n^{-4} = \frac{3}{n^{4}} \) \end{solutionordottedlines} \part \(\left(2 x^{-\frac{2}{5}}\right)^{5}\) \begin{solutionordottedlines}[2cm] \( \left(2 x^{-\frac{2}{5}}\right)^{5} = 2^{5} \cdot x^{-2} = 32x^{-2} = \frac{32}{x^{2}} \) \end{solutionordottedlines} \end{parts} \end{questions} \subsection{Scientific Notation} \begin{questions} \Question[4] Write in scientific notation. \begin{multicols}{2}\begin{parts} \part 26000 \begin{solutionordottedlines}[2cm] $2.6 \times 10^{4}$ \end{solutionordottedlines} \part 4000000000000 \begin{solutionordottedlines}[2cm] $4 \times 10^{12}$ \end{solutionordottedlines} \part 0.00072 \begin{solutionordottedlines}[2cm] $7.2 \times 10^{-4}$ \end{solutionordottedlines} \part 0.000000206 \begin{solutionordottedlines}[2cm] $2.06 \times 10^{-7}$ \end{solutionordottedlines} \end{parts}\end{multicols} \Question[4] Write in decimal form: \begin{multicols}{2}\begin{parts} \part \(8.6 \times 10^{2}\) \begin{solutionordottedlines}[2cm] 860 \end{solutionordottedlines} \part \(7.2 \times 10^{1}\) \begin{solutionordottedlines}[2cm] 72 \end{solutionordottedlines} \part \(8.72 \times 10^{-4}\) \begin{solutionordottedlines}[2cm] 0.000872 \end{solutionordottedlines} \part \(2.6 \times 10^{-7}\) \begin{solutionordottedlines}[2cm] 0.00000026 \end{solutionordottedlines} \end{parts}\end{multicols} \Question[6] Simplify, expressing the answer in scientific notation. \begin{parts} \part \(\left(4 \times 10^{-2}\right)^{2} \times\left(5 \times 10^{7}\right)\) \begin{solutionordottedlines}[2cm] $1.6 \times 10^{-4} \times 5 \times 10^{7} = 8 \times 10^{3}$ \end{solutionordottedlines} \part \(\left(6 \times 10^{-3}\right) \times\left(4 \times 10^{7}\right)^{2}\) \begin{solutionordottedlines}[2cm] $6 \times 10^{-3} \times 16 \times 10^{14} = 9.6 \times 10^{12}$ \end{solutionordottedlines} \part \(\frac{\left(4 \times 10^{5}\right)^{3}}{\left(8 \times 10^{4}\right)^{2}}\) \begin{solutionordottedlines}[2cm] $\frac{64 \times 10^{15}}{64 \times 10^{8}} = 10^{7}$ \end{solutionordottedlines} \part \(\frac{\left(2 \times 10^{-1}\right)^{5}}{\left(4 \times 10^{-2}\right)^{3}}\) \begin{solutionordottedlines}[2cm] $\frac{32 \times 10^{-5}}{64 \times 10^{-6}} = 0.5 \times 10^{1} = 5 \times 10^{0}$ \end{solutionordottedlines} \end{parts} \Question[2] If light travels at \(3 \times 10^{5} \mathrm{~km} / \mathrm{s}\) and our galaxy is approximately 80000 light years across, how many kilometres is it across? (A light year is the distance light travels in a year.) \begin{solutionordottedlines}[2cm] $3 \times 10^{5} \mathrm{~km/s} \times 60 \times 60 \times 24 \times 365.25 \times 80000 = 7.5696 \times 10^{17} \mathrm{~km}$ \end{solutionordottedlines} \Question[2] The mass of a hydrogen atom is approximately \(1.674 \times 10^{-27} \mathrm{~kg}\) and the mass of an electron is approximately \(9.1 \times 10^{-31} \mathrm{~kg}\). How many electrons, correct to the nearest whole number, will have the same mass as a single hydrogen atom? \begin{solutionordottedlines}[2cm] $\frac{1.674 \times 10^{-27}}{9.1 \times 10^{-31}} \approx 1839$ electrons \end{solutionordottedlines} \Question[2] In a lottery there are \(\frac{45 \times 44 \times 43 \times 42 \times 41 \times 40}{720}\) different possible outcomes. If I mark each outcome on an entry form one at a time, and it takes me an average of 1 minute to mark each outcome, how long will it take me to cover all different possible outcomes? \begin{solutionordottedlines}[2cm] $\frac{45 \times 44 \times 43 \times 42 \times 41 \times 40}{720} = 8,145,060$ minutes \end{solutionordottedlines} \end{questions} \subsection{Significant Figures} \begin{questions} \Question[4] Write in scientific notation, correct to 2 significant figures. \begin{multicols}{2}\begin{parts} \part 368.2 \begin{solutionordottedlines}[2cm] $3.7 \times 10^{2}$ \end{solutionordottedlines} \part 278000 \begin{solutionordottedlines}[2cm] $2.8 \times 10^{5}$ \end{solutionordottedlines} \part 0.004321 \begin{solutionordottedlines}[2cm] $4.3 \times 10^{-3}$ \end{solutionordottedlines} \part 0.000021906 \begin{solutionordottedlines}[2cm] $2.2 \times 10^{-5}$ \end{solutionordottedlines} \end{parts}\end{multicols} \Question[4] Use a calculator to evaluate the following, giving the answer in scientific notation correct 3 significant figures. \begin{multicols}{2}\begin{parts} \part \(3.24 \times 0.067\) \begin{solutionordottedlines}[2cm] $2.17 \times 10^{-1}$ \end{solutionordottedlines} \part \(4.736 \times 10^{13} \times 2.34 \times 10^{-6}\) \begin{solutionordottedlines}[2cm] $1.11 \times 10^{8}$ \end{solutionordottedlines} \part \(0.0276^{2} \times \sqrt{0.723}\) \begin{solutionordottedlines}[2cm] $5.48 \times 10^{-4}$ \end{solutionordottedlines} \part \(\frac{6.54\left(5.26^{2}+3.24\right)}{5.4+\sqrt{6.34}}\) \begin{solutionordottedlines}[2cm] $2.97 \times 10^{1}$ \end{solutionordottedlines} \end{parts}\end{multicols} \Question[4] Use a calculator to evaluate, giving the answer in scientific notation correct to 4 significa figures. \begin{multicols}{2}\begin{parts} \part \(1.234 \times 0.1988\) \begin{solutionordottedlines}[2cm] $2.453 \times 10^{-1}$ \end{solutionordottedlines} \part \(1.234 \div 0.1988\) \begin{solutionordottedlines}[2cm] $6.206 \times 10^{0}$ \end{solutionordottedlines} \part \(1.9346^{3}\) \begin{solutionordottedlines}[2cm] $7.238 \times 10^{0}$ \end{solutionordottedlines} \part \(\left(7.919 \times 10^{21}\right)^{2}\) \begin{solutionordottedlines}[2cm] $6.271 \times 10^{43}$ \end{solutionordottedlines} \end{parts}\end{multicols} \end{questions}