\begin{testbox} \begin{questions} \question[4] Evaluate \(3 x+2 y^{2}\) when: \begin{parts}\begin{multicols}{2} \part \(x=2\) and \(y=3\) \begin{solutionordottedlines}[1cm] \(3(2)+2(3)^{2}=6+2(9)=6+18=24\) \end{solutionordottedlines} \part \(x=5\) and \(y=2\) \begin{solutionordottedlines}[1cm] \(3(5)+2(2)^{2}=15+2(4)=15+8=23\) \end{solutionordottedlines} \part \(x=-23\) and \(y=-3\) \begin{solutionordottedlines}[1cm] \(3(-23)+2(-3)^{2}=-69+2(9)=-69+18=-51\) \end{solutionordottedlines} \part \(x=\frac{1}{2}\) and \(y=\frac{-3}{5}\) \begin{solutionordottedlines}[1cm] \(3\left(\frac{1}{2}\right)+2\left(\frac{-3}{5}\right)^{2}= \frac{3}{2}+2\left(\frac{9}{25}\right)=\frac{3}{2}+\frac{18}{25}=\frac{75}{50}+\frac{36}{50}=\frac{111}{50}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] Simply each of these expressions by collecting like terms. \begin{parts}\begin{multicols}{2} \part \(3 a+2 b-a+4 b\) \begin{solutionordottedlines}[1cm] \(3a-a+2b+4b=2a+6b\) \end{solutionordottedlines} \part \(5 x^{2} y-3 x y+7 x y-x^{2} y\) \begin{solutionordottedlines}[1cm] \(5x^{2}y-x^{2}y-3xy+7xy=4x^{2}y+4xy\) \end{solutionordottedlines} \part \(7 m+12 n^{2}+2 n^{2}-9 m\) \begin{solutionordottedlines}[1cm] \(7m-9m+12n^{2}+2n^{2}=-2m+14n^{2}\) \end{solutionordottedlines} \part \(p^{2}-6 p-p+15\) \begin{solutionordottedlines}[1cm] \(p^{2}-6p-p+15=p^{2}-7p+15\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] Simplify: \begin{parts}\begin{multicols}{2} \part \(7 a b \times 2 a\) \begin{solutionordottedlines}[1cm] \(7ab \times 2a = 14a^{2}b\) \end{solutionordottedlines} \part \(-3 x \times-2 y\) \begin{solutionordottedlines}[1cm] \(-3x \times -2y = 6xy\) \end{solutionordottedlines} \part \(\frac{20 x y}{5 x}\) \begin{solutionordottedlines}[1cm] \(\frac{20xy}{5x} = 4y\) \end{solutionordottedlines} \part \(25 a \div 5 \times 3\) \begin{solutionordottedlines}[1cm] \(25a \div 5 \times 3 = 5a \times 3 = 15a\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[6] Write each expression as a single fraction. \begin{parts}\begin{multicols}{2} \part \(\frac{a}{5}-\frac{2 a}{3}\) \begin{solutionordottedlines}[1cm] \(\frac{a}{5}-\frac{2a}{3}=\frac{3a-10a}{15}=\frac{-7a}{15}\) \end{solutionordottedlines} \part \(\frac{3 x}{8}-\frac{2 x}{5}\) \begin{solutionordottedlines}[1cm] \(\frac{3x}{8}-\frac{2x}{5}=\frac{15x-16x}{40}=\frac{-x}{40}\) \end{solutionordottedlines} \part \(\frac{a}{5} \times \frac{2 a}{3}\) \begin{solutionordottedlines}[1cm] \(\frac{a}{5} \times \frac{2a}{3}=\frac{2a^{2}}{15}\) \end{solutionordottedlines} \part \(\frac{a}{2 b} \times \frac{2 a b}{7}\) \begin{solutionordottedlines}[1cm] \(\frac{a}{2b} \times \frac{2ab}{7}=\frac{a^{2}}{7}\) \end{solutionordottedlines} \part \(\frac{3 x}{4} \div \frac{6 x}{7}\) \begin{solutionordottedlines}[1cm] \(\frac{3x}{4} \div \frac{6x}{7}=\frac{3x}{4} \times \frac{7}{6x}=\frac{7}{8}\) \end{solutionordottedlines} \part \(\frac{a b}{3} \div \frac{6 b}{b}\) \begin{solutionordottedlines}[1cm] \(\frac{ab}{3} \div \frac{6b}{b}=\frac{ab}{3} \times \frac{b}{6b}=\frac{a}{18}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[6] Expand: \begin{parts}\begin{multicols}{2} \part \(3(a+4)\) \begin{solutionordottedlines}[1cm] \(3(a+4)=3a+12\) \end{solutionordottedlines} \part \(6(x-1)\) \begin{solutionordottedlines}[1cm] \(6(x-1)=6x-6\) \end{solutionordottedlines} \part \(2(3 b+2)\) \begin{solutionordottedlines}[1cm] \(2(3b+2)=6b+4\) \end{solutionordottedlines} \part \(5(4 d-1)\) \begin{solutionordottedlines}[1cm] \(5(4d-1)=20d-5\) \end{solutionordottedlines} \part \(-3(3 d-2)\) \begin{solutionordottedlines}[1cm] \(-3(3d-2)=-9d+6\) \end{solutionordottedlines} \part \(-2(5 \ell-4)\) \begin{solutionordottedlines}[1cm] \(-2(5\ell-4)=-10\ell+8\) \end{solutionordottedlines} \part \(-2 x(3 x+1)\) \begin{solutionordottedlines}[1cm] \(-2x(3x+1)=-6x^{2}-2x\) \end{solutionordottedlines} \part \(4 x(2 x+3)\) \begin{solutionordottedlines}[1cm] \(4x(2x+3)=8x^{2}+12x\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[6] Expand and collect like terms for each of these expressions. \begin{parts}\begin{multicols}{2} \part \(3(a+2)+4(a+5)\) \begin{solutionordottedlines}[1cm] \(3(a+2)+4(a+5)=3a+6+4a+20=7a+26\) \end{solutionordottedlines} \part \(4(2 x-1)+3(3 x+2)\) \begin{solutionordottedlines}[1cm] \(4(2x-1)+3(3x+2)=8x-4+9x+6=17x+2\) \end{solutionordottedlines} \part \(5(3 d-2)+4(2 d-7)\) \begin{solutionordottedlines}[1cm] \(5(3d-2)+4(2d-7)=15d-10+8d-28=23d-38\) \end{solutionordottedlines} \part \(8(4 e+3)-5(e-1)\) \begin{solutionordottedlines}[1cm] \(8(4e+3)-5(e-1)=32e+24-5e+5=27e+29\) \end{solutionordottedlines} \part \(6(f-2)-3(2 f-5)\) \begin{solutionordottedlines}[1cm] \(6(f-2)-3(2f-5)=6f-12-6f+15=3\) \end{solutionordottedlines} \part \(2 x(x+4)+3(x-2)\) \begin{solutionordottedlines}[1cm] \(2x(x+4)+3(x-2)=2x^{2}+8x+3x-6=2x^{2}+11x-6\) \end{solutionordottedlines} \part \(x(3 x+2)-4 x(2 x-3)\) \begin{solutionordottedlines}[1cm] \(x(3x+2)-4x(2x-3)=3x^{2}+2x-8x^{2}+12x=-5x^{2}+14x\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] Simplify: \begin{parts}\begin{multicols}{2} \part \(\frac{x+1}{4}+\frac{x+3}{3}\) \begin{solutionordottedlines}[1cm] \(\frac{x+1}{4}+\frac{x+3}{3}=\frac{3(x+1)+4(x+3)}{12}=\frac{3x+3+4x+12}{12}=\frac{7x+15}{12}\) \end{solutionordottedlines} \part \(\frac{x-2}{2}+\frac{x-1}{3}\) \begin{solutionordottedlines}[1cm] \(\frac{x-2}{2}+\frac{x-1}{3}=\frac{3(x-2)+2(x-1)}{6}=\frac{3x-6+2x-2}{6}=\frac{5x-8}{6}\) \end{solutionordottedlines} \part \(\frac{2 x+1}{3}-\frac{x+1}{4}\) \begin{solutionordottedlines}[1cm] \(\frac{2x+1}{3}-\frac{x+1}{4}=\frac{8(2x+1)-3(x+1)}{24}=\frac{16x+8-3x-3}{24}=\frac{13x+5}{24}\) \end{solutionordottedlines} \part \(\frac{3 x-1}{4}-\frac{2 x-1}{6}\) \begin{solutionordottedlines}[1cm] \(\frac{3x-1}{4}-\frac{2x-1}{6}=\frac{9(3x-1)-4(2x-1)}{36}=\frac{27x-9-8x+4}{36}=\frac{19x-5}{36}\) \end{solutionordottedlines} \end{multicols}\end{parts} \question[16] Expand and simplify: \begin{parts}\begin{multicols}{2} \part \((x+3)(x+5)\) \begin{solutionordottedlines}[1cm] \((x+3)(x+5)=x^{2}+5x+3x+15=x^{2}+8x+15\) \end{solutionordottedlines} \part \((x+7)(x-3)\) \begin{solutionordottedlines}[1cm] \((x+7)(x-3)=x^{2}-3x+7x-21=x^{2}+4x-21\) \end{solutionordottedlines} \part \((x-3)(x+8)\) \begin{solutionordottedlines}[1cm] \((x-3)(x+8)=x^{2}+8x-3x-24=x^{2}+5x-24\) \end{solutionordottedlines} \part \((2 x+1)(3 x-2)\) \begin{solutionordottedlines}[1cm] \((2x+1)(3x-2)=6x^{2}-4x+3x-2=6x^{2}-x-2\) \end{solutionordottedlines} \part \((4 x+3)(3 x+5)\) \begin{solutionordottedlines}[1cm] \((4x+3)(3x+5)=12x^{2}+20x+9x+15=12x^{2}+29x+15\) \end{solutionordottedlines} \part \((5 x-2)(2 x+3)\) \begin{solutionordottedlines}[1cm] \((5x-2)(2x+3)=10x^{2}+15x-4x-6=10x^{2}+11x-6\) \end{solutionordottedlines} \part \((x+5)(x-5)\) \begin{solutionordottedlines}[1cm] \((x+5)(x-5)=x^{2}-5x+5x-25=x^{2}-25\) \end{solutionordottedlines} \part \((2 x+3)(2 x-3)\) \begin{solutionordottedlines}[1cm] \((2x+3)(2x-3)=4x^{2}-6x+6x-9=4x^{2}-9\) \end{solutionordottedlines} \part \((3 x-5)(3 x+5)\) \begin{solutionordottedlines}[1cm] \((3x-5)(3x+5)=9x^{2}+15x-15x-25=9x^{2}-25\) \end{solutionordottedlines} \part \((x+7)^{2}\) \begin{solutionordottedlines}[1cm] \((x+7)^{2}=x^{2}+14x+49\) \end{solutionordottedlines} \part \((2 x-5)^{2}\) \begin{solutionordottedlines}[1cm] \((2x-5)^{2}=4x^{2}-20x+25\) \end{solutionordottedlines} \part \((3 x-4)^{2}\) \begin{solutionordottedlines}[1cm] \((3x-4)^{2}=9x^{2}-24x+16\) \end{solutionordottedlines} \part \((x+2)^{2}-(x-4)^{2}\) \begin{solutionordottedlines}[1cm] \((x+2)^{2}-(x-4)^{2}=x^{2}+4x+4-(x^{2}-8x+16)=12x-12\) \end{solutionordottedlines} \part \((2 x+3)^{2}-(2 x-3)^{2}\) \begin{solutionordottedlines}[1cm] \((2x+3)^{2}-(2x-3)^{2}=4x^{2}+12x+9-(4x^{2}-12x+9)=24x\) \end{solutionordottedlines} \part \((x+1)(2 x+3)+(2 x-1)(3 x+2)\) \begin{solutionordottedlines}[1cm] \((x+1)(2x+3)+(2x-1)(3x+2)=2x^{2}+3x+2x+3+6x^{2}+4x-3x-2=8x^{2}+6x+1\) \end{solutionordottedlines} \part \((x+2)(2 x-5)-(3 x+1)(2 x-4)\) \begin{solutionordottedlines}[1cm] \part \[(x+2)(2x-5)-(3x+1)(2x-4)\] \end{solutionordottedlines} \begin{solutionordottedlines}[1cm] $(x+2)(2x-5)-(3x+1)(2x-4)$ \\ $= 2x^2 - 5x + 4x - 10 - (6x^2 - 12x + 3x - 4)$ \\ $= 2x^2 - x - 10 - 6x^2 + 12x - 3x + 4$ \\ $= -4x^2 + 8x - 6$ \end{solutionordottedlines} \end{multicols}\end{parts} \question[6] Fill in the missing gaps: \begin{doublespacing} \begin{parts} \part \((x+3)(x+7)=x^{2}+10x+21\) \begin{solutionordottedlines}[1cm] $(x+3)(x+7)$ \\ $= x^2 + 7x + 3x + 21$ \\ $= x^2 + 10x + 21$ \end{solutionordottedlines} \part \((x+2)(x-3)=x^{2}-x-6\) \begin{solutionordottedlines}[1cm] $(x+2)(x-3)$ \\ $= x^2 - 3x + 2x - 6$ \\ $= x^2 - x - 6$ \end{solutionordottedlines} \part \((x+6)(5+x)=x^{2}+11x+30\) \begin{solutionordottedlines}[1cm] $(x+6)(5+x)$ \\ $= x^2 + 5x + 6x + 30$ \\ $= x^2 + 11x + 30$ \end{solutionordottedlines} \part \((x+4)(6+x)=x^{2}+10x+24\) \begin{solutionordottedlines}[1cm] $(x+4)(6+x)$ \\ $= x^2 + 6x + 4x + 24$ \\ $= x^2 + 10x + 24$ \end{solutionordottedlines} \part \((2x-1)(x+3)=2x^{2}+5x-3\) \begin{solutionordottedlines}[1cm] $(2x-1)(x+3)$ \\ $= 2x^2 + 6x - x - 3$ \\ $= 2x^2 + 5x - 3$ \end{solutionordottedlines} \part \((3x+2)(2x+7)=6x^{2}+23x+14\) \begin{solutionordottedlines}[1cm] $(3x+2)(2x+7)$ \\ $= 6x^2 + 21x + 4x + 14$ \\ $= 6x^2 + 23x + 14$ \end{solutionordottedlines} \end{parts} \end{doublespacing} \end{questions} \end{testbox}