\begin{problembox} \subsection{Problems:} \begin{questions} \question[12] Solve these inequalities. \begin{parts}\begin{multicols}{2} \part \[x+7 \geq 17\] \begin{solutionordottedlines}[1in] Subtract 7 from both sides: \\ \(x \geq 17 - 7\) \\ \(x \geq 10\) \end{solutionordottedlines} \part \[x-7 \leq-4\] \begin{solutionordottedlines}[1in] Add 7 to both sides: \\ \(x \leq -4 + 7\) \\ \(x \leq 3\) \end{solutionordottedlines} \part \[-2 x \geq 16\] \begin{solutionordottedlines}[1in] Divide both sides by -2 (and reverse the inequality): \\ \(x \leq \frac{16}{-2}\) \\ \(x \leq -8\) \end{solutionordottedlines} \part \[\frac{x}{5}-\frac{1}{2} \geq 2\] \begin{solutionordottedlines}[1in] Add \(\frac{1}{2}\) to both sides: \\ \(\frac{x}{5} \geq 2 + \frac{1}{2}\) \\ \(\frac{x}{5} \geq \frac{5}{2}\) \\ Multiply both sides by 5: \\ \(x \geq \frac{5}{2} \times 5\) \\ \(x \geq \frac{25}{2}\) \\ \(x \geq 12.5\) \end{solutionordottedlines} \part \[6(x-3) \leq 15\] \begin{solutionordottedlines}[1in] Divide both sides by 6: \\ \(x - 3 \leq \frac{15}{6}\) \\ \(x - 3 \leq 2.5\) \\ Add 3 to both sides: \\ \(x \leq 2.5 + 3\) \\ \(x \leq 5.5\) \end{solutionordottedlines} \part \[7-4 x \leq-12\] \begin{solutionordottedlines}[1in] Subtract 7 from both sides: \\ \(-4x \leq -12 - 7\) \\ \(-4x \leq -19\) \\ Divide both sides by -4 (and reverse the inequality): \\ \(x \geq \frac{-19}{-4}\) \\ \(x \geq 4.75\) \end{solutionordottedlines} \part \[11-3 x>18\] \begin{solutionordottedlines}[1in] Subtract 11 from both sides: \\ \(-3x > 18 - 11\) \\ \(-3x > 7\) \\ Divide both sides by -3 (and reverse the inequality): \\ \(x < \frac{7}{-3}\) \\ \(x < -\frac{7}{3}\) \\ \(x < -2.\overline{3}\) \end{solutionordottedlines} \part \[6(1-x) \leq 2.4(15-12 x)\] \begin{solutionordottedlines}[1in] Expand both sides: \\ \(6 - 6x \leq 36 - 28.8x\) \\ Add \(6x\) to both sides and subtract 36: \\ \(6 \leq -22.8x + 36\) \\ \(-30 \leq -22.8x\) \\ Divide both sides by -22.8 (and reverse the inequality): \\ \(x \geq \frac{30}{22.8}\) \\ \(x \geq \frac{5}{3.8}\) \\ \(x \geq 1.\overline{315789473684210526}\) \end{solutionordottedlines} \part \[\frac{x-3}{3} \leq \frac{3+x}{2}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(2(x - 3) \leq 3(3 + x)\) \\ \(2x - 6 \leq 9 + 3x\) \\ Subtract \(2x\) and add 6 to both sides: \\ \(-6 \leq 9 + x\) \\ \(-15 \leq x\) \\ \(x \geq -15\) \end{solutionordottedlines} \part \[\frac{2 x+3}{2}-\frac{x-4}{3}>2\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{3(2x + 3) - 2(x - 4)}{6} > 2\) \\ \(\frac{6x + 9 - 2x + 8}{6} > 2\) \\ \(\frac{4x + 17}{6} > 2\) \\ Multiply both sides by 6: \\ \(4x + 17 > 12\) \\ Subtract 17 from both sides: \\ \(4x > -5\) \\ Divide both sides by 4: \\ \(x > -\frac{5}{4}\) \\ \(x > -1.25\) \end{solutionordottedlines} \part \[\frac{4-x}{2}+\frac{3-x}{4}<1\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{2(4 - x) + (3 - x)}{4} < 1\) \\ \(\frac{8 - 2x + 3 - x}{4} < 1\) \\ \(\frac{11 - 3x}{4} < 1\) \\ Multiply both sides by 4: \\ \(11 - 3x < 4\) \\ Subtract 11 from both sides: \\ \(-3x < -7\) \\ Divide both sides by -3 (and reverse the inequality): \\ \(x > \frac{7}{3}\) \\ \(x > 2.\overline{3}\) \end{solutionordottedlines} \part \[\frac{3-2 x}{2} \geq \frac{7-10 x}{5}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(5(3 - 2x) \geq 2(7 - 10x)\) \\ \(15 - 10x \geq 14 - 20x\) \\ Add \(10x\) to both sides: \\ \(15 \geq 14 - 10x + 10x\) \\ \(15 \geq 14\) \\ The inequality is always true, so \(x\) can be any real number. \end{solutionordottedlines} \end{multicols}\end{parts} \question[4] At 2 p.m., two aeroplanes leave airports \(2880 \mathrm{~km}\) apart and fly towards one another. The average speed of one plane is twice that of the other. If they pass each other at 5 p.m., what is the average speed of each plane? \begin{solutionordottedlines}[1in] Let the speed of the slower plane be \(v\) km/h. \\ Then the speed of the faster plane is \(2v\) km/h. \\ They meet after 3 hours, so the total distance covered is: \\ \(3v + 3(2v) = 2880\) \\ \(3v + 6v = 2880\) \\ \(9v = 2880\) \\ \(v = 320\) km/h \\ The speed of the slower plane is 320 km/h, \\ and the speed of the faster plane is \(2 \times 320 = 640\) km/h. \end{solutionordottedlines} \question[3] When a mathematics teacher was asked her age she replied, 'One-fifth of my age three years ago, when added to half my age last year, gives my age 11 years ago.' How old is she? \begin{solutionordottedlines}[1in] Let her current age be \(x\) years. \\ One-fifth of her age three years ago: \(\frac{x - 3}{5}\) \\ Half her age last year: \(\frac{x - 1}{2}\) \\ Her age 11 years ago: \(x - 11\) \\ The equation is: \\ \(\frac{x - 3}{5} + \frac{x - 1}{2} = x - 11\) \\ Multiply through by 10 (LCM of 5 and 2): \\ \(2(x - 3) + 5(x - 1) = 10(x - 11)\) \\ \(2x - 6 + 5x - 5 = 10x - 110\) \\ \(7x - 11 = 10x - 110\) \\ Subtract \(7x\) from both sides: \\ \(-11 = 3x - 110\) \\ Add 110 to both sides: \\ \(99 = 3x\) \\ Divide by 3: \\ \(x = 33\) \\ The teacher is 33 years old. \end{solutionordottedlines} \question[3] \(3 \$ 420\) is divided between \(A, B\) and \(C . B\) receives \(\$ 20\) less than \(A\), and \(C\) receives half as much as \(A\) and \(B\) together. How much does each receive? \begin{solutionordottedlines}[1in] Let \(A\) receive \(x\) dollars. \\ Then \(B\) receives \(x - 20\) dollars. \\ \(C\) receives \(\frac{1}{2}(x + (x - 20))\) dollars. \\ The total amount is: \\ \(x + (x - 20) + \frac{1}{2}(x + (x - 20)) = 3420\) \\ \(2x - 20 + x + (x - 20) = 3420\) \\ \(4x - 40 = 3420\) \\ Add 40 to both sides: \\ \(4x = 3460\) \\ Divide by 4: \\ \(x = 865\) \\ So, \(A\) receives \$865, \(B\) receives \(865 - 20 = \$845\), \\ and \(C\) receives \(\frac{1}{2}(865 + 845) = \$855\). \end{solutionordottedlines} \question[3] In a printing works, 75000 leaflets are run off by two printing presses in \(18 \frac{3}{4}\) hours. One press delivers 200 more leaflets per hour than the other. Find the number of leaflets produced per hour by each of the machines. \begin{solutionordottedlines}[1in] Let the number of leaflets the slower press prints per hour be \(x\). \\ Then the faster press prints \(x + 200\) leaflets per hour. \\ Total time is \(18 \frac{3}{4}\) hours or \(18.75\) hours. \\ The equation is: \\ \(18.75x + 18.75(x + 200) = 75000\) \\ \(18.75x + 18.75x + 3750 = 75000\) \\ \(37.5x + 3750 = 75000\) \\ Subtract 3750 from both sides: \\ \(37.5x = 71250\) \\ Divide by 37.5: \\ \(x = 1900\) \\ The slower press prints 1900 leaflets per hour, \\ and the faster press prints \(1900 + 200 = 2100\) leaflets per hour. \end{solutionordottedlines} \question[4] A salesman makes a trip to visit a client. The traffic he encounters keeps his average speed to \(40 \mathrm{~km} / \mathrm{h}\). On the return trip, he takes a route \(6 \mathrm{~km}\) longer, but he averages \(50 \mathrm{~km} / \mathrm{h}\). If he takes the same time each way, how long was the total journey? \begin{solutionordottedlines}[1in] Let the distance of the initial trip be \(d\) km. \\ Time for the initial trip: \(\frac{d}{40}\) hours. \\ Time for the return trip: \(\frac{d + 6}{50}\) hours. \\ Since the times are equal: \\ \(\frac{d}{40} = \frac{d + 6}{50}\) \\ Cross multiply: \\ \(50d = 40(d + 6)\) \\ \(50d = 40d + 240\) \\ Subtract \(40d\) from both sides: \\ \(10d = 240\) \\ Divide by 10: \\ \(d = 24\) km \\ Total distance for both trips: \(24 + (24 + 6) = 54\) km \\ Total time for both trips: \(\frac{24}{40} + \frac{30}{50} = 1.2\) hours \end{solutionordottedlines} \question[4] Solve these inequalities: \begin{parts} \part \[\frac{5-2 x}{3}-\frac{5+2 x}{4} \geq-1\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{4(5 - 2x) - 3(5 + 2x)}{12} \geq -1\) \\ \(\frac{20 - 8x - 15 - 6x}{12} \geq -1\) \\ \(\frac{5 - 14x}{12} \geq -1\) \\ Multiply both sides by 12: \\ \(5 - 14x \geq -12\) \\ Add 14x to both sides: \\ \(5 + 14x \geq -12 + 14x\) \\ Subtract 5 from both sides: \\ \(14x \geq -17\) \\ Divide by 14: \\ \(x \geq -\frac{17}{14}\) \\ \(x \geq -1.\overline{214285714285714285}\) \end{solutionordottedlines} \part \[\frac{2 x-1}{7} \geq \frac{2 x+3}{4}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(4(2x - 1) \geq 7(2x + 3)\) \\ \(8x - 4 \geq 14x + 21\) \\ Subtract \(8x\) from both sides: \\ \(-4 \geq 6x + 21\) \\ Subtract 21 from both sides: \\ \(-25 \geq 6x\) \\ Divide by 6 (and reverse the inequality): \\ \(-\frac{25}{6} \leq x\) \\ \(x \geq -\frac{25}{6}\) \\ \(x \geq -4.\overline{1}\) \end{solutionordottedlines} \part \[\frac{6 x+1}{3}>\frac{3 x-1}{2}+3\] \begin{solutionordottedlines}[1in] Find a common denominator and combine: \\ \(\frac{2(6x + 1) - 3(3x - 1)}{6} > 3\) \\ \(\frac{12x + 2 - 9x + 3}{6} > 3\) \\ \(\frac{3x + 5}{6} > 3\) \\ Multiply both sides by 6: \\ \(3x + 5 > 18\) \\ Subtract 5 from both sides: \\ \(3x > 13\) \\ Divide by 3: \\ \(x > \frac{13}{3}\) \\ \(x > 4.\overline{3}\) \end{solutionordottedlines} \part \[\frac{6-3 x}{2} \geq \frac{3 x-6}{5}\] \begin{solutionordottedlines}[1in] Cross multiply to compare: \\ \(5(6 - 3x) \geq 2(3x - 6)\) \\ \(30 - 15x \geq 6x - 12\) \\ Add \(15x\) to both sides: \\ \(30 \geq 21x - 12\) \\ Add 12 to both sides: \\ \(42 \geq 21x\) \\ Divide by 21: \\ \(2 \geq x\) \\ \(x \leq 2\) \end{solutionordottedlines} \end{parts} \end{questions} \end{problembox}